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Abstract. Based on the ideal MHD model the stability of ballooning modes is

investigated by employing realistic 3D magnetospheric equilibria, in particular for the

substorm growth phase. Previous MHD ballooning stability calculations making use of

approximations on the plasma compressibility can give rise to erroneous conclusions. Our

results show that without making approximations on the plasma compressibility the MHD

ballooning modes are unstable for the entire plasma sheet where βeq ≥ 1, and the most

unstable modes are located in the strong cross-tail current sheet region in the near-Earth

plasma sheet, which maps to the initial brightening location of the breakup arc in the

ionosphere. However, the MHD βeq threshold is too low in comparison with observations

by AMPTE/CCE at X = −(8 − 9)RE, which show that a low frequency instability is

excited only when βeq increases over 50. The difficulty is mitigated by considering the

kinetic effects of ion gyroradii and trapped electron dynamics, which can greatly increase

the stabilizing effects of field line tension and thus enhance the βeq threshold [Cheng and

Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning

modes to the strong cross-tail current sheet region where the free energy associated with

the plasma pressure gradient and magnetic field curvature is maximum.
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1. Introduction

Observations by AMPTE/CCE satellite have clearly demonstrated that toward the

end of late growth phase in the near-Earth plasma sheet region the plasma pressure

becomes isotropic and β = 2P/B2 increases to ≥ 50 and a low frequency instability with

a wave period of ∼ 50 − 75 seconds (in the Pi 2 frequency range) is excited and grows

exponentially to a large amplitude and causes the onset of current disruption [Cheng and

Lui, 1998]. It is emphasized that the initial excitation of the low frequency instability

occurs in a localized equatorial area of less than 1 RE in width in the near-Earth plasma

sheet region [Ohtani et al., 1991]. The low frequency modes have also been observed by

satellites not located at the initiation region during the substorm expansion phase [e.g.,

Roux et al., 1991; Erickson et al., 2000].

To explain the observed low frequency instability, theoretical investigations of the

ballooning instability based on the ideal MHD model have been made [e.g., Lee and Wolf,

1992; Hurricane, 1997; Lee, 1998; Horton et al., 1999; Lee, 1999]. All these previous ideal

calculations employed simplified equilibria in 2D magnetospheric geometries and made

simplified assumptions on the plasma compressibility to reduce the eigenmode equations

from a fourth order differential equation to a second order integro-differential equation.

The stability of ballooning modes depends crucially on the equilibrium field structure

and the assumption made on the plasma compressibility. Numerical calculations to

examine the compressibility effect with different simplifying assumptions of the plasma

compressibility [Lee, 1999] have been performed for a 2D equilibrium model by Voigt

[1986]. By assuming the parallel plasma displacement to be a constant along the field

line [Lee and Wolf, 1992], the stability calculations predicted a low β (≤ 1) threshold

for instability. Horton et al. [1999] considered a different approximation for the plasma

compressibility with the fast-MHD model which assumes that the wave propagates very

fast along the ambient magnetic field such that there is not sufficient time for parallel

plasma motion and the plasma displacement along B vanishes, and they concluded that
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the ballooning instability occurs for β < 1. However, the numerical stability calculations

of the fast-MHD model performed by Lee [1999] show that the ballooning mode is stable in

the Voigt’s equilibrium, which is in contradiction to the analytical conclusion of Horton

et al. [1999]. Calculations with these simplifying compressibility models, but with a

more stretched 2D equilibrium field model by Kan [1973] gave totally different results

from the Voigt’s equilibrium. These results clearly illustrate that to obtain the correct

stability result even within the ideal MHD model it is essential to model the plasma

compressibility correctly as well as the equilibrium fields realistically. Another drawback

of these previous ballooning stability calculations is that there is no information on where

in the equatorial plane the ballooning instability would be unstable because of the use of

2D equilibria.

In this paper we will investigate the ballooning instability based on the ideal MHD

model without making assumptions on plasma compressibility. Moreover, we will employ

realistic 3D growth phase magnetospheric equilibria that satisfy the force balance, which

should provide the valuable information of where in the plasma sheet the free energy and

the most unstable ballooning instability are located. Our results show that the ballooning

stability calculations making use of approximations on the plasma compressibility can

give rise to erroneous conclusions. Based on the full MHD model our results show that

the ballooning instability is most unstable in the strong cross-tail current sheet region

in the near-Earth plasma sheet, which maps to the initial brightening location of the

breakup arc in the ionosphere.

2. Ideal MHD Theory of Ballooning Instability

We first derive the ideal MHD eigenmode equations without making assumption

on the plasma compressibility. We consider quasi-static equilibria with the equilibrium

relations J × B = ∇P and ∇(P + B2/2) = κB2, where κ = (B/B) ·∇(B/B) is the

magnetic field curvature vector. With the time dependence of perturbed quantities as
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e−iωt, the linearized ideal MHD equations governing the asymptotic behaviors of the

perturbed quantities are the momentum equation, ρω2ξ = ∇δP + δB× J + B× δJ, the

adiabatic pressure law, δP + ξ ·∇P + ΓsP∇ · ξ = 0, the Ampere’s law, ∇× δB = δJ,

the Faraday’s law, −iωδB = ∇× δE, and the Ohm’s law, δE = iωξ×B, where ξ is the

usual fluid displacement vector, δB is the perturbed magnetic field, δP is the perturbed

plasma pressure, ρ is the total plasma mass density, δE is the perturbed electric field, and

Γs = 5/3 is the ratio of specific heats. We introduce the electrostatic potential φ and the

vector potential A such that the perturbed electric field is expressed as δE = −∇φ+iωA,

and the perturbed magnetic field as δB = ∇×A. Because the perturbed parallel electric

field vanishes in the ideal MHD model, we have A‖ = A · B/B = −B · ∇Φ/B, where

Φ = iφ/ω. We also assume that A‖ and A⊥ are of the same order, but |∇⊥φ| � |∇‖φ|.
Then, δE⊥ ' −∇⊥φ and ξ ×B ' ∇⊥Φ.

Operating on the momentum equation with B×, we obtain the perturbed current

density perpendicular to B, and we have

∇ · δJ⊥ ' ρω2

B2
∇2
⊥Φ− 2κ ×B ·∇δP

B2

−B×∇P

B4
·∇(δP + δB ·B), (1)

where the small term δB ·∇(J ·B/B2) is neglected. Next, we choose the Coulomb gauge

∇ · A = 0 and the Ampere’s law becomes ∇2A = −δJ. Again, by ignoring the small

gradient on the equilibrium quantities we have δJ · B ' −∇2(A · B) = ∇2(B · ∇Φ).

Moreover, we consider the wave frequency to be much smaller than the compressional

wave frequency (∼ k⊥VA, where VA = B/ρ1/2 is the Alfvén speed), so that to the lowest

order in (ω/k⊥VA), ∇⊥(δP +δB ·B) ' 0 [Cheng and Johnson, 1999]. Then, from Eq. (1)

and ∇ · δJ = B ·∇(δJ ·B/B2) + ∇ · δJ⊥ = 0, we obtain the vorticity equation

B ·∇
(∇2

⊥(B ·∇Φ)

B2

)
+
ρω2

B2
∇2
⊥Φ− 2κ×B ·∇δP

B2
' 0. (2)

From the adiabatic pressure law, we obtain δP − B×∇P ·∇Φ/B2 + ΓsP∇ · ξ ' 0,

where we have made use of ξ · ∇P = (iδE × B/ωB2) · ∇P ' −B × ∇P · ∇Φ/B2.
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Next, we evaluate ∇ · ξ = B · (ξ ·B/B2) + ∇ · ξ⊥. By operating the momentum

equation with B· we obtain an expression for the parallel displacement ρω2ξ · B '
B ·∇δP −B ×∇P ·∇ (B ·∇Φ) /B2, where we evaluate δB ·∇P = ∇ · (A ×∇P ) '
∇ · [(A ·B/B2)B×∇P ] ' −(B×∇P/B2) ·∇(B ·∇Φ) with the help of A ·B = −B ·∇Φ

due to the vanishing parallel electric field. Making use of the Ohm’s law, we obatin

∇ · ξ⊥ = −
(

2κ ×B

B2
+

B×∇P

B4

)
·∇⊥Φ− δB ·B

B2
. (3)

Finally from Eqs. (2)-(3) and δP + δB · B = 0, and eliminating δP , we obtain two

3D eigenmode equations for Φ and ∇ · ξ for describing low frequency modes with

perpendicular wavelength much shorter than the parallel wavelength:

B ·∇
(∇2

⊥(B ·∇Φ)

B2

)
+
ρω2

B2
∇2
⊥Φ

−2κ ×B

B2
·∇

(
B×∇P ·∇Φ

B2

)
=

2κ ×B ·∇(ΓsP∇ · ξ)

B2
, (4)

and

B ·∇
[

ΓsP

ρω2B2
B ·∇(∇ · ξ)

]
+

ΓsP +B2

B2
∇ · ξ

=
2κ ×B ·∇Φ

B2
. (5)

It is clear that these two equations describe the coupling between the shear Alfvén type

modes, which are mainly determined by Eq. (4), and the slow magnetosonic type modes,

which are mainly determined by Eq. (5). The coupling is mainly via the magnetic field

curvature and the plasma pressure.

2.1. MHD Ballooning Mode Equations

Equations (4) and (5) describe low frequency modes in the three-dimensional space

and are usually difficult to solve if not impossible. Thus, further approximations must be

made to simplify these two equations. Fortunately a so-called WKB-ballooning formalism

has been developed to simplify these equations by taking advantage of the nature of
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solutions that the perpendicular wavelength is much shorther than the parallel wavelength

[Dewar and Glasser, 1983; Nevins and Pearlstein, 1988; Dewar et al., 2001]. Adopting

the WKB-ballooning formalism, we consider the eikonal representation of the perturbed

quantities, Φ = ieiSΦ̂, where S � 1 is the WKB eikonal and B ·∇S = 0. Note that ∇S

is essentially the wave vector perpendicular to B. Thus, the fast variation of Φ in the

direction perpendicular to B is contained in eiS and Φ̂ describes the slow variation along

as well as perpendicular to B. Then, to the lowest order in 1/S � 1, the MHD vorticity

equation, Eq. (4), reduces to

B ·∇
( |∇S|2B ·∇Φ̂

B2

)
+
ρω2

B2
∇2
⊥Φ̂ + κcPsΦ̂

+κc(ΓsP∆) = 0, (6)

where κc = 2κ×B ·∇S/B2, Ps = ∇P ×B ·∇S/B2, and ∇ ·ξ = eiS∆. Similarly, Eq. (5)

reduces to

B ·∇
[

ΓsP

ρω2B2
B ·∇∆

]
+

ΓsP +B2

B2
∆ + κcΦ̂ = 0. (7)

Eqs. (6) and (7) are 1D equations along B, and the eigenvalues depend on the angle

between ∇S and ∇P . With the Euler potential representation of the ambient magnetic

field B = ∇ψ × ∇α, ∇S can be expressed as ∇S = Sψ∇ψ + Sα∇α, where Sψ =

∂S/∂ψ, and Sα = ∂S/∂α. Then, κc = 2Sα[κs(∇ψ · ∇α/|∇ψ|2 + Υ/ψ) − κψ], and

Ps = Sα[(Υ/ψ)∂P/∂α − ∂P/∂ψ], where κψ = κ · ∇ψ/|∇ψ|2, κs = κ · B × ∇ψ/B2,

and Υ = ψSψ/Sα is a dimensionless free parameter. We see that Sα can be combined

with Φ̂, and the eigenmode equations, Eqs. (6) and (7) depend on Υ. Thus, the lowest

order eigenvalue, ω2, is a function of Υ and field lines labeled by ψ and α, with a

corresponding wave structure along the field line. Υ has two physical meanings; first, it

can be considered as the ratio of the radial wave vector to the azimuthal wave vector,

and second, it represents the central location of the mode structure along the field line.

Thus, by scanning the dependence of ω2 on Υ we determine the radial wave vector and its
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localization location along the field line for the most unstable mode. We will address the

lowest order ballooning mode equations and find out the lowest order eigenvalue for each

field line. From numerical solutions for magnetospheric equilibria with a north-south

symmetry, the most unstable solution is obtained with Υ = 0 for each field line.

To solve the lowest order ballooning mode equations, Eqs. (6) and (7), we onstruct

a variational principle. Multiplying Eq.(6) by Φ̂∗ (the complex conjugate of Φ̂) and

subtracting it by the complex conjugate of Eq.(7) multiplied by ΓsP∆, and then

integrating along the field line with respect to ds/B, where s denotes the distance along

the field line, we obtain a Lagrangian functional δL given by

δL =
∫ s2

s1

ds

B

{
ρω2

(|∇S|2
B2

|Φ̂|2 +B2|Z|2
)

+ κcPs|Φ̂|2

−
[ |∇ψ|2

B2
|B ·∇Φ̂|2 +

ΓsPB
2

ΓsP +B2
|κcΦ̂ + B ·∇Z|2

]}
= 0 (8)

where s1 and s2 are the two end points of the field line anchored in the ionosphere,

Z = ΓsP (B · ∇∆)/ρω2B2, the boundary conditions at the field line end points are

assumed to be Φ̂∗B ·∇Φ̂ = 0 and ∆Z∗ = 0, and we have also made use of Eq. (7) to

substitute ∆ in terms of Φ̂ and B · ∇Z. It is straightforward to verify that Eqs. (6)

and (7) are a consequence of the requirement that the functional δL is stationary. Since

δL = 0, it is clear that the eigenvalues ω2 and the corresponding eigenfunctions Φ̂ and

∆ must be real. The determination of the stability of ballooning modes reduces to that

of finding the eigenvalues ω2 and eigenfunctions so that the Lagrangian functional δL is

stationary with respect to variations of Φ̂ and ∆. The admissible variational functions

must be square-integrable and satisfy the boundary conditions at the field line end points.

It should be noted from Eq. (8) that there is a possibility of ω2 < 0 if κcPs > 0, and if

ω2 < 0 the plasma is unstable at these field lines. From the definition of κc and Ps (given

after Eq. (6)) we see that if the pressure gradient is in the same direction as the magnetic

field curvature, then κcPs > 0 and the ballooning mode is possible to be unstable. Figure 1.

Figure 2.
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2.2. Numerical Solutions of MHD Ballooning Mode Equations

Once a 3D quasi-static magnetospheric equilibrium is known we can compute the

ballooning mode solutions for each field line. However, to obtain the mode frequency or

growth rate in physical unit we need to specify the mass density along field lines. We

assume for simplicity the plasma density to be constant along the field line and choose

it to be a function of radius in the equatorial plane: ρ(R) = 10 (Rgeos/R)3mp/cm
3,

where Rgeos = 6.6RE is the geosynchronous orbit distance and mp is the proton mass.

When the actual mass density distribution is known, the frequency or growth rate can

be recalculated easily with the actual density from the results given in this paper.

Employing the growth phase magnetospheric equilibrium published previously

[Zaharia and Cheng, 2003] and choosing (Sψ/Sα) = 0, we compute numerically the

eigenvalues ω2 and the eigenfunctions by solving the Lagrangian equation, Eq. (8) for

each field line by a finite element method with the boundary conditions that both Φ̂ and

∆ vanish at the end points of the field line in the ionosphere. Figures 1 and 2 show the

color plot in the equatorial plane and the contours in the northern polar ionosphere of the

eigenvalue f2 (in (mHz)2) of the fundamental harmonic ballooning modes, respectively.

Also shown in Fig. 1 is the contours of the azimuthal current density (in nA/m2) and in

Fig. 2 is the color plot of the field-aligned current density. Note that all field lines beyond

x ' −6RE down the tail in the night side are unstable. The region of the most unstable

modes tracks well with the strong cross-tail current sheet region, consistent with the

expectation from substorm onset observations. The peak growth rate region is located in

the tailward side of the strong cross-tail current region. In the polar ionosphere the field

lines in the peak ballooning instability growth rate region map to the transition region

between the region-1 and region-2 currents. The results clearly indicate that, although

the ideal MHD model over estimates the instability growth rate due to the lack of particle

kinetic effects, it shows the field lines where the ballooning free energy is largest and the

most unstable ballooning mode is located. Moreover, we expect that the global structure
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of the MHD ballooning instability is localized around the maximum growth rate location

in the equatorial plane with an half-width extending to the location with growth rate

equal to about one half of the maximum growth rate. Figure 3.

Next, we compute the stability of the ballooning modes for the same growth

phase magnetospheric equilibrium with the Lee-Wolf model [Lee and Wolf, 1992]

and the fast-MHD model [Horton et al., 1999], which made approximations on the

plasma compressibility, and compare these solutions with the solution of the full MHD

model shown in Figs. 1 and 2. This will resolve the controversy arising from these

approximations [Lee, 1999]. In the Lee-Wolf model, the plasma compressibility is assumed

to be a non-vanishing constant along the field line. With B ·∇∆ = 0, ∆ can be obtained

from Eq. (7) and is given by 〈(ΓsP +B2)/B2〉∆ + 〈κcΦ̂〉 = 0, where 〈X〉 =
∫ s2
s1
dsX/B.

Then, Eq. (6) reduces to

B ·∇
( |∇S|2B ·∇Φ̂

B2

)
+
ρω2

B2
∇2
⊥Φ̂ + κcPsΦ̂

−κcΓsP 〈κcΦ̂〉〈ΓsP+B2

B2 〉 = 0, (9)

and a Lagrangian functional δL can be constructed and is given by

δL =
∫ s2

s1

ds

B

{
ρω2

( |∇S|2
B2

|Φ̂|2
)

+ κcPs|Φ̂|2

−
[ |∇S|2

B2
|B ·∇Φ̂|2 +

ΓsPκcΦ̂〈κcΦ̂〉
〈ΓsP+B2

B2 〉

]}
= 0 (10)

The solution of Eq. (10) is shown in Fig. 3, which shows that ballooning modes are

unstable only near the current sheet region between X = −8 and −10RE, but are stable

in other region. This result is different from the full MHD solution shown in Figure 1.

Thus, the Lee-Wolf model produce too much stabilization due to the approximation of

constant plasma compressibility. Figure 4.

In the fast-MHD model [Horton et al., 1999], the parallel displacement is assumed

to vanish, ξ ·B = 0. From the adiabatic pressure law and the parallel component of the
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momentum equation, we obtain ∆ + [κcB
2/(ΓsP +B2)]Φ̂ = 0. Then, Eq. (6) reduces to

B ·∇
( |∇S|2B ·∇Φ̂

B2

)
+
ρω2

B2
∇2
⊥Φ̂ + κcPsΦ̂

− ΓsPκ
2
cB

2

ΓsP +B2
Φ̂ = 0, (11)

and a Lagrangian functional δL can be constructed and is given by

δL =
∫ s2

s1

ds

B

{
ρω2

( |∇S|2
B2

|Φ̂|2
)

+ κcPs|Φ̂|2

−
[ |∇S|2

B2
|B ·∇Φ̂|2 +

ΓsPκ
2
cB

2

ΓsP +B2
|Φ̂|2

]}
= 0 (12)

The solution of Eq. (12) is shown in Fig. 4. which clearly shows that for most of the

field lines (except near the far tail boundary of the equilibrium) the ballooning modes are

stable. This result is completely different from the results of full MHD model shown in

Figures 1 and those of the Lee-Wolf model shown in Fig. 3. Thus, the fast-MHD model

gives a much worse approximation of the plasma compressibility.

3. Summary and Discussion

In summary, based on the ideal MHD model the ballooning modes are expected to

be unstable for the growth phase magnetospheric equilibrium in a large region of the

plasma sheet where βeq ≥ 1. The most unstable region is located in the strong cross-tail

current sheet region, which maps into the ionosphere in the transition area between the

region-1 and region-2 currents. The numerical results clearly illustrate that to obtain

the correct stability result even within the ideal MHD model it is essential to model the

plasma compressibility correctly as well as the equilibrium fields realistically. Moreover,

even for quiet time equilibria [Zaharia et al., 2003], the full MHD calculations (not shown

in the paper) indicate that the ballooning modes are unstable for the entire plasma sheet

region when βeq ≥ 1.

The results of the ideal MHD ballooning mode stability calculations are not

consistent with the AMPTE/CCE observations that during most of the growth phase
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βeq < 50 and the magnetic fields are quiet without noticeable fluctuations [Lui et al.,

1992], and the low frequency instability was observed in the enhanced cross-tail current

sheet region only toward the end of the growth phase when βeq > 50 [Cheng and

Lui, 1998]. Moreover, the ideal MHD model would predict purely growing ballooning

instabilities, and thus can not explain the observed frequency of the instability. Another

fundamental difficulty of the ideal MHD model is that there is no parallel electric field,

and thus the unstable MHD ballooning mode does not accelerate particles to produce

the substorm onset auroral brightening as observed in the ionosphere. However, even

with these inconsistencies with observations, the ideal MHD model provides the valuable

information that the most unstable ballooning instability and the maximum free energy

associated with the product of the plasma pressure gradient and magnetic field curvature

are located in the strong cross-tail current sheet region when realistic 3D magnetospheric

equilibria are considered.

To mitigate these difficulties arising from the ideal MHD model, we need to consider

the particle kinetic effects. As was shown previously [Cheng and Lui, 1998], the kinetic

effects of ion gyroradii and trapped electron dynamics can greatly increase the stabilizing

effects of field line tension and thus enhance the critical β to excite the ballooning

instability. The consequence is to reduce the equatorial region of the unstable ballooning

modes to the strong cross-tail current sheet region, where the free energy for the

ballooning instability is maximum. Full kinetic calculations need to be carried out to

provide a quantitative conclusion.
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Figure Captions
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Figure 1. The square of frequency (in (mHz)2) of ballooning modes is shown in color in the

equatorial plane for the growth phase equilibrium with the full MHD model. The contours

of the azimuthal current density (in nA/m2) is also plotted to show the location of the most

unstable region relative to the strong cross-tail current region.
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Figure 2. The contours of the square of frequency (in (mHz)2) of ballooning modes is plotted

over the northern polar ionosphere for the growth phase equilibrium with the full MHD model.

The field-aligned current density is also shown in color to show that the most unstable ballooning

instability region is located at the transition region between the region-1 and region-2 currents.
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Figure 3. The square of frequency (in (mHz)2) of ballooning modes is plotted in the equatorial

plane for the growth phase equilibrium with the Lee-Wolf model of compressibility.

Figure 4. The square of frequency (in (mHz)2) of ballooning modes is plotted over the

equatorial plane for the growth phase equilibrium with the fast-MHD model of compressibility.
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