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Abstract

Ion dynamics in a field-reversed configuration (FRC) are explored for a highly elongated device,

with emphasis placed on ions having positive canonical angular momentum. Due to angular in-

variance, the equations of motion are that of a two degree of freedom system with spatial variables

ρ and ζ. As a result of separation of time scales of motion, caused by large elongation, there

is a conserved adiabatic invariant, Jρ, which breaks down during the crossing of the phase-space

separatrix. For integrable motion, which conserves Jρ, an approximate one-dimensional effective

potential was obtained by averaging over the fast radial motion. This averaged potential has the

shape of either a double or single symmetric well centered about ζ = 0. The condition for the

approach to the separatrix and therefore the break-down of the adiabatic invariance of Jρ is de-

rived and studied under variation of Jρ and conserved angular momentum, πφ. Since repeated

violation of Jρ results in chaotic motion, this condition can be used to predict whether an ion (or

distribution of ions) with given initial conditions will undergo chaotic motion.

PACS numbers: 52.65.Cc, 05.45.Ac, 05.45.Pq, 52.20.Dq, 52.55.Lf
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I. INTRODUCTION

Field-reversed configurations (FRCs) occur in plasmas of astrophysical, planetary,1 and

laboratory scales. In all these cases, conditions may exist where the particles are collisionless

and their Larmor orbits of size comparable to the spatial scale of the magnetic field. Finite-

Larmor-radius (FLR) conditions are particularly important to the FRC as a fusion reactor,2

our primary interest. This paper elucidates the phase-space structure of particle motion in an

axisymmetric prolate FRC and derives the boundary between regular and stochastic behavior

for trapped-particle orbits. Understanding stochastic behavior of particle orbits in the FRC,

essential to issues of macroscopic stability,3 confinement, and heating, is necessary to explain

experimental observations of laboratory FRCs,4–7 such as those which show stability for times

much longer than predicted by MHD theory.8

Particle orbits in FRC and FRC-like geometries have been previously studied. The phase-

space structure in the z = 0 subspace is investigated by Wang and Miley (WM)9. Through-

out this paper we use a cylindrical coordinate system (r, z, φ), with r the radius of the

device, and z the distance along the axis from the midplane at z = 0. Motion in this sub-

space is integrable, hence the WM study did not elucidate conditions for stochastic behavior

or stability to perturbation out of the subspace. Finn,10 R.V. Lovelace, D.A. Larrabee and

Fleischmann (LLF),3 and Finn and Sudan (FS)11 treat orbit stochasticity in toroidal FRCs

by using perturbation techniques in situations where resonances occur between the r and z

degrees-of-freedom. The LLF work considers oblate devices and axis-encircling orbits only.

Rather than restricting attention to individual resonances and/or large gyroradius orbits,

the present paper aims to find a more general condition on chaotic motion by considering the

slowing-down in orbital radial frequency, ωr, which is shown to occur for a class of trapped

particles. Boundaries between regular and chaotic motion and the structure of phase space

have been explored in depth by Kim and Cary (KC)12 for a linear FRC geometry. This

linear geometry possesses an additional symmetry that allows “scaling away” the conserved

canonical momentum in the linear direction, reducing the number of free parameters to one,

ellipticity. The present paper studies ion orbits in an elongated Hill’s vortex FRC where

the toroidal geometry introduces an additional parameter pφ, qualitatively changing the ion

dynamics in the device. Also, the elongated Hill’s vortex is an elliptic geometry which allows

exploration of the effects on orbit stability of axial field curvature, expected to provide more
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macroscopic stability than the racetrack geometry.13 The boundary for chaotic behavior in an

elongated Hill’s vortex is obtained computationally by Yumi, Toshiki and Yoshiomi (YTY)14

for several values of energy. An approximate analytic criteria for stochasticity applicable

for many cases of interest was obtained for ions passing through the midplane by Belova,

Davidson, Ji and Yamada (BDJY).13 After deriving the averaged shape of the potential, the

present paper proceeds to obtain a general analytic expression for the transition to chaotic

motion that can be applied to any set of initial conditions or distribution functions.

A Newtonian formulation is applied to charged particles in an elongated Hill’s vortex

FRC by Hugrass and Turley15 and used to study a limited range of regular orbits for the

axisymmetric situation. Phase-space structure is not studied. The present paper uses a

Hamiltonian approach, analytic techniques from non-linear dynamics, and more extensive

single-particle numerical simulations to find the shape of the averaged potential and find a

criteria for the existence of an adiabatic invariant for those orbits which do not cross the

phase-space separatrix. It should not to be confused with the Hill’s vortex magnetic-field

separatrix, Sm, which separates open from closed field lines in configuration space.

Our numerical simulations16,17 use Hamilton’s equations and follow the full three-

dimensional motion of a single ion. Unlike that earlier work, this paper does not treat

rotating magnetic fields, leaving the system axisymmetric and time-independent. An ion

moving in such fields possesses two exact invariants: energy E and canonical angular mo-

mentum pφ. Due to a second invariant, the Hamiltonian can be reduced to four canonical

variables, r, pr, z, and pz, and the motion can be viewed as that of a particle moving in a

two-dimensional potential well, Veff(r, z). Since this is a two-dimensional system, the motion

is generally non-integrable, except in cases where there is a third, perhaps adiabatic, invari-

ant. A particle in a highly-elongated FRC possess an additional invariant which arises when

its frequency of motion along r is much higher than along z, leading to an adiabatic invari-

ant, the radial action Jr ≡
∮
prdr/2π, for that class of orbits. Break-down of this invariance

occurs at the crossing of the phase space separatrix18,19 that bounds cyclotron orbits from

figure-8 orbits, and which in the paper will be referred to simply as the separatrix.

Section II presents the equations of motion, a simple physical picture explaining orbit

stability, and, following WM, reviews types of orbits in the FRC midplane. New types of

axis-encircling orbit are classified. Section III discusses the stability of all orbit classes to

small axial dispacements. By averaging over the fast motion in r, an approximate averaged
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one-dimensional potential is derived for regular motion. The shape of of this averaged one

dimensional potential is either a double or single potential well centered about z = 0 and

depends on energy along the r degree-of-freedom, Hr, and an exact invariant, pφ. The

averaged one-dimensional potential gives a qualitative picture of ion dynamics and clarifies

the trapping of particles in one of the two potential wells along z. Section IV uses the

shape of the averaged potential to derive a general criterion for the existence of an adiabatic

invariant, which leads to regular orbits. Though all the results herein could apply equally

well to electrons, their orbits in most FRCs are predominantly of the small-gyroradius type

which we treat only in passing. Section V summarizes our conclusions and discusses the

relationship between our criterion and that of BDJY.13

II. TYPES OF MIDPLANE PARTICLE ORBITS

In this section we present the basic equations for the FRC field and Hamilton’s equa-

tions for the particle motion, introduce appropriate dimensionless variables, and describe a

classification of orbits in the FRC midplane.

For this study we use an analytic FRC equilibrium (elongated Hill’s vortex or Solov’ev

equilibrium20) described in cylindrical coordinates (r, z, φ) by a flux function

ψ(r, z) = rAφ = ψ0

(
r2

r2
s

)(
1 − r2

r2
s

− z2

z2
s

)
, (1)

with the magnetic field given by B = ∇× A = ∇ψ ×∇φ, the constant ψ0 = B0r
2
s/2, and

B0 the peak magnetic field strength at r = z = 0. There is an elliptic separatrix, Sm, with

radius rs and half-length zs, x-points at r = 0, z = ±zs, and an o-point at r = rs/
√

2. ψ is

positive inside Sm and negative outside. Much of our work is based on the assumption of a

highly prolate (or large elongation) FRC, where

ε ≡ rs

zs
� 1. (2)

The Hamiltonian for a single ion of mass m and charge q is given in CGS units by

H(r, pr, z, pz, pφ) =
1

2m

[
p2

r + p2
z +

1

r2

(
pφ − q

c
ψ
)2
]
, (3)

with canonical momenta pi, satisfying Hamilton’s equations,

dxi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂xi
, xi = (r, z, φ), pi = (pr, pz, pφ). (4)
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Since H is independent of φ, pφ is conserved, and the system describes motion with two

degrees-of-freedom in an positive-definite effective potential

Veff ≡ 1

2mr2

(
pφ − q

c
ψ
)2

. (5)

To simplify the discussion and elucidate the physics, we define scale factors,

Ω0 ≡ qB0

mc
, V0 ≡ mΩ2

0r
2
s

8
, p0 ≡ (2mV0)

1/2 . (6)

Ω0 is the cyclotron frequency of a particle in a uniform magnetic field of strength B0; V0

is the energy of a particle in such a field with a gyration radius of rs/2; and p0 is the

momentum of a particle with kinetic energy V0. Next we define scaled displacements and

canonical momenta,

ρ ≡ r

rs

, ζ ≡ z

zs

, πρ ≡ pr

p0

, πζ ≡ pz

p0

, πφ ≡ pφc

qψ0

. (7)

ρ and ζ are the fractional radial and axial distances to the magnetic separatrix. With these

definitions, the effective potential can be expressed as

Veff = V0υ(ρ, ζ, πφ), υ(ρ, ζ, πφ) ≡ f 2(ρ, ζ, πφ)

ρ2
, f(ρ, ζ, πφ) ≡ πφ − ρ2

(
1 − ρ2 − ζ2

)
(8)

and the Hamiltonian becomes

H = V0ε, ε ≡ π2
ρ + π2

ζ + υ (9)

Applying Hamilton’s equations to Eq. (3), we obtain

φ̇ =
Ω0

2

f(ρ, ζ, πφ)

ρ2
(10)

Thus φ̇ changes sign when f (and therefore υ) vanishes. Applying Hamilton’s equations,

Equation (4), to the Hamiltonian, Equation (9), where the partial derivative of H is taken

with respect to ζ , we get a force along ζ :

ζ̈ + ω2
ζζ = 0, ω2

ζ ≡ ε2Ω0ρ
2φ̇ = ε2

Ω2
0

2
f(ρ, ζ, πφ) (11)

From the equation above, it can be seen that at ζ = 0, the ion does not experience a force

along ζ , so that given the initial condition ζ = πζ = 0, the ion will remain in the ζ = 0

subspace. Equation (11) has a simple harmonic form, though with a non-constant coefficient
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multiplying ζ . For low-energy cyclotron orbits, the frequency ωρ is close to the cyclotron

frequncy, Ω0. Unlike ωζ in Eq. (11), ωρ is not proportional to ε, so that for small values

of ε, there is a separation of frequencies with ωρ � ωζ. This holds except at the approach

to separatrix, where ωρ slows down. This case and the resultant violation of an adiabatic

invariant will be discussed later in this paper. For orbits not close to the separatrix, ωρ � ωζ

holds, so that we can average ρ2φ̇ (see Eq. (11)) over one period of oscillation in ρ to obtain

an averaged force along ζ . In general, the fast motion can be averaged whenever there is

a large seperation in frequencies of motion.22 Since ω2
ζ ∝ ρ2φ̇, the ζ-motion is stable or

unstable to perturbations from ζ = 0, depending on the sign of < ρ2φ̇ >.

Consider orbits in the invariant subspace ζ = πζ = 0, some of which have been explored

by WM.9 The orbits are that of a particle in a 1-D effective potential Veff = V0υ(ρ, 0, πφ) and

are therefore integrable. Figure 1 shows four possible shapes of the scaled potential energy

υ for representative values of πφ. Figure 2 shows particle orbits projected onto the ρ-φ plane

for each of these cases. Our orbit classification is presented in order of increasing values of

πφ.

• Case I. πφ < −1/12. The scaled potential energy υ(ρ, 0, πφ) has a minimum

υ(ρ, 0, πφ) = 0 at ρ2 = 1/2 + (1/4 − πφ)
1/2 and → ∞ for ρ → 0,∞, resulting in

a single well. Figure 2-I shows three representative orbits for this case, with low,

medium, and high energy. Orbits (a), with ε = 0.01, and (b), with ε = 0.2, are both

cyclotron orbits outside the o-point at r = 7.07. They have negative average ρ2φ̇ and

are therefore unstable to small perturbations in ζ . Orbit (c), with ε = 0.4, extends over

a wider range of ρ, including both inside and outside the o-point, forming a figure-8.

The orbit shown has negative < ρ2φ̇ >, but similar shaped orbits may have positive

< ρ2φ̇ >.

• Case II. −1/12 < πφ < 0. In addition to the zero of υ as in case I, there are

extrema at ρ2 = [1 ± (1 + 12πφ)
1/2]/6, resulting in a double well. Figure 2-II shows 3

representative orbits for this case. Orbit (a), with ε = 0.1, is trapped near the bottom

of the outer well. Orbit (b), with ε = 0.18, oscillates about the inner minimum and

is axis-encircling orbit. Orbit (c), with ε = 0.4, extends over both minima, forming

a figure-8 with the inner lobe encircling the axis. All of these orbits have negative

< ρ2φ̇ > and are therefore unstable to small perturbations in ζ .
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• Case III. 0 < πφ < 1/4. There are two minima where υ = 0, at ρ2 = 1/2 ± (1/4 −
πφ)1/2. Figure 2-III shows 3 representative orbits for this case. Orbits (a) and (b) both

have the same scaled energy ε = 0.05, with (a) oscillating about the outer well, outside

the o-point, and (b) about the inner well, inside the o-point. Both execute cyclotron

orbits, and both have negative < ρ2φ̇ >. Orbit (c), with ε = 0.2, extends over both

wells, resulting in a figure-8 shape, with positive average ρ2φ̇. This is the case discussed

in great detail in this paper, since the transition between cyclotron and figure-8 orbits

which occurs in this range of πφ and the resultant crossing of the separatrix results

in the break-down of an adiabatic invariant which is otherwise conserved in this low

ε system. Thus, from now on, positive πφ figure-8 orbits will be referred to simply as

figure-8 orbits.

• Case IV. 1/4 < πφ. There is a single potential well with a raised minimumum, υ > 0.

Figure 2-IV shows 3 representative orbits for this case, with ε = 0.035, 0.2, and 0.4.

All betatron orbits have φ̇ > 0.

III. ORBIT STABILITY AND THE r−AVERAGED POTENTIAL

Transitions between the orbit types enumerated in Section II may occur when particles

move out of the ζ = πζ = 0 subspace. Accordingly, we now consider the stability of orbits

to perturbations out of the this subspace.

Figure 3 shows the shape of υ(ρ, ζ, πφ) vs. ρ for four elevations in ζ for Case III. The

radial zeroes of υ are found from Eq. (8),

ρ2 =
1

2

{
(1 − ζ2)2 ± [(1 − ζ2)2 − 4πφ

]1/2
}
. (12)

φ̇ is negative in the interval between the two zeroes and positive elsewhere. For the raised

potential it is everywhere positive. From Eq. (11), the force along ζ is stabilizing for φ̇ > 0,

thus the raised potential well exerts a stabilizing force on the ion. Eq. (12) shows that the

destabilizing region between the zeroes vanishes for ζ2 > 1−(4πφ)1/2. It follows that any ion

with πφ > 0 moving to larger |ζ | is subject to a restoring force towards the ζ = 0 midplane

as the central barrier in the double potential well lowers, as seen in Fig. 3, reducing the time

spent by the ion in the negative φ̇ part of the trajectory. With a finite ζ-velocity directed

away from the midplane, the positive πφ ion eventually will reach a region of ζ where υ(ρ, ζ)
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has the shape of a raised single potential well. There φ̇ will be positive everywhere along the

trajectory and ion will experience a positive restoring force at all points along its trajectory.

In ion dynamics, the traversal over the barrier between wells and the resultant crossing of

the separatrix corresponds to a change of orbit from cyclotron to figure-8. If the initial

πζ is high enough for the particle to reach the single raised-potential-well region, the orbit

will then become betatron. The restoring force along ζ , proportional to the averaged ρ2φ̇,

increases with absolute value of ζ .

For negative πφ orbits (cases I and II, Figure 1 I,II), φ̇ < 0 on the left part of the trajectory

along ρ, since υ(ρ, ζ, πφ) has only one zero in this range of πφ, so that φ̇ changes sign only

once. In this case, ion motion to higher absolute value of ζ does not necessarily increase the

restoring force, as occurs in the πφ > 0 cases, III and IV.

For a highly prolate (small ε) FRC, ωρ � ωζ for all orbits whose energy is not too close

to the separatrix or the top of the potential barrier that divides the double well. In other

words, the condition ωρ � ωζ applies for all orbits which are not close to the transition

between cyclotron and figure-8 motion, since such a transition coincides with a slow-down of

frequency ωρ, much as the frequency of a pendulum slows down as it approaches the top along

a trajectory that separates oscillating from circulating motion. In cases where the condition

ωρ � ωζ holds, the average force constant for motion along ζ can be found by using Eq. (11)

and integrating ε2Ω0

∫
ρ2φ̇dt over one period of oscillation in ρ. This provides a qualitative

picture of the potential well in which an ion moves after averaging over fast motion in

ρ. Since the sign of the radial-weighted average azimuthal drift, < ρ2φ̇ > determines the

stability to perturbation out of the ζ = 0 plane, cyclotron orbits which do not encircle the

major axis, i .e., type a and e, all of which have a clockwise angular drift, are unstable.

High energy figure-8 orbits drift counter-clockwise and are therefore stable to perturbations;

lower energy figure-8 orbits drift clockwise and are therefore unstable to perturbations out

of the subspace. The clockwise drift is due to the fact that lower energy figure-8 orbits

spend more of their time near the central barrier separating the double potential (see Case

III in Figure 1 where φ̇ is negative and therefore get a net negative angular drift. The fact

that the central barrier in the symmetric double potential gives a negative contribution to

angular drift also explains why positive πφ ions show better confinement. The symmetric

double well becomes more narrow and the potential barrier drops with increasing absolute

value of ζ , as shown in Figure 3. As cyclotron orbits move away from ζ = 0, their energy
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is eventually high enough to cross the separatrix whose area shrinks with increasing |ζ | and

turn into figure-8 orbits. As the barrier along ρ falls further, they will eventually turn into

figure-8 orbits with positive average ρ2φ̇, feeling an attractive force towards ζ = 0.

For orbits away from the separatrix, where ωρ � ωζ, we can obtain a quantitative picture

of the averaged potential along ζ in which an ion moves after averaging over the fast motion

in ρ. Segregating the ζ-dependent parts to Eq. (7) yields:

υ(ρ, ζ, πφ) = − [ρ2
(
1 − ρ2

)− πφ

]
ζ2 +

ρ2

2
ζ4 + g (ρ) (13)

where υ(ρ, ζ, πφ) is a scaled potential (Eq. 8) Where the ζ independent parts of the ex-

pression are segregated under g (ρ) For regular motion, a new effective scaled potential,

< υ(ζ) >, is obtained after averaging over fast oscillations in ρ. The variable of fast motion,

ρ, drops out and πφ is always a constant of motion, so that < υ(ζ) > represents averaged

motion in a one-dimensional potential along ζ . The shape of the averaged potential along ζ

for πφ > 0 ions is either a single or a double well centered around ζ = 0. Figure 4a) and b)

show numerically calculated phase-space plots, p0πζ vs . zsζ for higher and lower amplitudes

of oscillation along ρ, respectively. It can be seen that the potential along ζ is either a single

or a symmetric double potential well, with the location of the minima determined by πφ and

the energy of oscillation along ρ. Fast oscillations due to the fast ρ motion are superimposed

on the closed curves in πζ vs . ζ phase space in Figure 4. Jρ is a scaled adiabatic invariant,

which will be discussed in much detail in the next section, and the motion is regular.

A figure-8 orbit can be approximated as executing a non-linear ζ-dependent oscillation:

ρ = ρh +
∞∑

n=1

An cosnω (t− t0), (14)

where ρh is the location of the top of potential barrier that separates the two potential

wells for 0 < πφ < 1
4
, see Figure 1. It is computed by finding ∂υ(ρ, ζ, πφ)/∂ρ = 0 where

∂2υ(ρ, ζ, πφ)/∂ρ
2 < 0:

ρ2
h =

1

6

{(
1 − ζ2

)
+
[(

1 − ζ2
)2

+ 12πφ

]1/2
}

(15)

Keeping only the lowest order terms in Eq. (10) and dropping the subscript on An:

ρ ≈ ρh + A cosω (t− t0) (16)
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where ρh, A, and ω are functions of ζ . Calculating averaged terms, < ρ2 >= ρ2
h + 1

2
A2 and

< ρ4 >= ρ4
h + 5

2
ρ2

hA
2 + 3

8
A4, and substituting for ρ into Eq. (13) produces, after dropping

all ζ-independent and oscillatory terms,

< υ(ζ) >≈ ζ4

(
ρ2

h

2
+
A2

4

)
− ζ2

(
ρ2

h

(
1 − ρ2

h

)− πφ +
A2

2

(
1 − 6ρ2

h

)− 3

8
A4

)
(17)

The first term in the coefficient for ζ2 is positive since ρh < 1 and it can be shown

graphically, Figure 5, that at ζ = 0

ρ2
h

(
1 − ρ2

h

)− πφ > 0 (18)

for all 0 < πφ <
1
4
.

Using Eq. (15), it can be easily shown that for 2ζ2 < 1

1 − 6ρ2
h < 0 (19)

at all value of πφ. It follows that the contributions from amplitude of oscillation terms, A,

to ζ2 are positive, at least for smaller values of ζ . Thus for higher amplitudes of oscillation

along ρ such that

ρ2
h

(
1 − ρ2

h

)− πφ < −A
2

2

(
1 − 6ρ2

h

)
+

3

8
A4 (20)

the coefficient multiplying ζ2 is positive and ζ = 0 is a global stable minima of the ρ-averaged

motion. Thus at higher amplitudes of oscillation, A, along ρ, the averaged motion along ζ

is in a single well with a potential given by < υ(ζ) >. At lower values of A, the ζ2 term in

Eq. (17) gives a negative contribution, resulting in a double well, symmetric about ζ = 0.

To get an approximation for the location of the minima of this averaged symmetric double

well, we can approximate A and ρh as constants. For ζ2 � 1, Eq. (15) can be approximated

as:

ρ2
h ≈ (K1 −K2ζ

2
)

(21)

where K1 = 1
6
(1 + C1), K2 = 1

6

(
1 + 1

C1

)
, and C1 = (1 + 12πφ)

1
2 . It follows that K1 > K2

for all positive πφ. Dropping the second term:

ρ2
h ≈ K1 (22)

The criterion ζ2 � 1 is a reasonable assumption, except in cases where A is low and πφ <
1
8
.

This is due to the fact that lower values of A and πφ mean higher |ζ | for the location of
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a minima. Substituting Eq. (22) into Eq. (17) and assuming A is independent of ζ , we

see that for smaller A the coefficient of ζ2 in Eq. (17) is negative, and < υ(ζ) > can be

approximated as

< υ(ζ) >= Dζ4 − Lζ2 (23)

where D and L are positive coefficients. Completing the square shows that the potential

along ζ has minima at ζ = ±
√

L
2D

, resulting in a symmetric double potential well along ζ .

For πφ >
1
4
, the coefficient L is negative, even for A = 0, thus < υ(ζ) > is minimized at

ζ = 0 and all betatron orbits oscillate in a single potential well in ζ . This is perhaps not

surprising since πφ > 1
4

is a raised potential in ρ, so ρ2φ̇ > 0 everywhere along the orbit,

exerting a stabilizing force, Eq. (11).

It can be seen from Eq. (17) that for higher values of πφ, L in Eq. (23) is smaller and the

two minima in < υ(ζ) > are located closer together. This can be explained by the fact that

the potential barrier that separates the two minima of the double potential in ρ is lowered

with increasing πφ, thus the time spend in the destabilizing region, where φ̇ < 0, is lessened,

leading to stabilization at lower |ζ |.
Figure 6 shows the ion kinetic energy along ζ , V0π

2
ζ , vs . ζ , from numerical simulation

using the full Hamiltonian equations and also from motion in the approximate averaged

potential given by Eq. (17) with ρh given by Eq. (21). Agreement between the two is good

at smaller absolute values of ζ where the ζ2 � 1 assumption holds. The full Hamiltonian

simulation shows a smaller maximum excursion along ζ than that of the estimate, Eq. (19),

which doesn’t take account of higher order terms in ζ .

The above derivation assumed figure-8 orbits. However, as previously noted all cyclotron

orbits eventually move into the ζ region where the barrier of the double potential along r is

sufficiently low so that they are able to cross it and there become figure-8 orbits. Then the

same approximation as used in Eq. (17) can be applied with ρh evaluated at the location of

transition of cyclotron to a figure-8 orbit. Figure 7, discussed more fully in the next section,

shows the ζ location, as a function of Jρ where the transition of cyclotron to figure-8 orbits

occurs for different values of πφ.

For a particular orbit, the ζ location of a minima in < υ(ζ) > occurs where the average

ρ2φ̇ over one period of oscillation in ρ is equal to zero. Higher amplitudes of oscillation, A,

along ρ lead to lower absolute values of ζ at which the minima in < υ(ζ) > occurs since the

amount of time spend in a φ̇ > 0 part of the trajectory increases relative to time spend in
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the φ̇ < 0 part of a trajectory for higher values of A, see Figure 1, curve III. Thus higher

values of A or higher values of πφ result in a more closely spaced minima of the double

potential well in ζ , until the two wells merge at ζ = 0.

IV. SEPARATRIX CROSSING AND BREAK-DOWN OF THE ADIABATIC IN-

VARIANT

The dynamics described in the previous section for ion motion in both single or double

effective-potential wells in ζ apply to cases of integrable motion. For cases where ωρ � ωζ,

there exists an adiabatic invariant, Jρ, which is conserved up to an order of ε (ε is defined

in Eq. (2)).18,19 Jρ is the area enclosed by a contour of constant energy, keeping ζ and πζ

constant:

Jρ ≡ 1

2π

∮
πρdρ (24)

Jρ is the scaled action:

Jρ =
Jr

p0rs
(25)

For a large elongation device, Jρ is adiabatically conserved except during the crossing of

the separatrix, which results in transitions between figure-8 and cyclotron orbits. Cyclotron

orbits feel an average force away from ζ = 0, so that as the ion moves towards higher |ζ |
values, its orbit will begin to approach the top of the barrier that separates the two wells in

ρ, Figure 3, and its frequency ωρ will slow down. For smooth Hamiltonians, the nonlinear

frequency ωρ near the separatrix has the following form21:

ωρ (h) =
FΩ0

ln (G/|h|) (26)

where F and G are constants that depend on Veff , h ≡ (E−Es)
Es

, and Es is the ρ directed energy

at the separatrix: Es = V0υ(ρh, ζ, πφ). At the approach to the separatrix, the frequency

ωρ slows down. Under these conditions, the ωρ � ωζ criterion no longer holds and Jρ

conservation is violated, resulting in stochastic motion. Since this type of transition occurs

for nearly all orbits that are at any point cyclotron, it can be concluded that such orbits

are, in general, non-integrable. There is a very small fraction of very low-energy cyclotron

orbits where the guiding-center theory approximation applies. Excluding this small class of

cyclotron orbits, a positive pφ ion must, for all times, be in a figure-8 or betatron orbit for
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integrable motion. Comparing Eqs. (11) and (26) we can see that ωρ � ωζ condition begins

to break down around

ε
ln (G/|h|)

F
∼ O(1) (27)

Rearanging the above equation, we can obtain an approximate form for the distance from

the separatrix (in terms of dimensionless energy) at which the adiabatic invariance of Jρ

begins to break down. Labeling this as δ, where δ is just the value of h below which Jρ is

violated, we get

δ ∼ O(Ge
−F
ε ) (28)

In numerical simulations we found that δ ∼ .05 is sufficient to ensure the adiabatic conser-

vation of Jρ.

For figure-8 orbits, Jρ will be conserved in one of two cases:

Case A: The action Jρ is high enough so that the ion executes a figure-8 orbit with

ωρ � ωζ when it passes ζ = 0:

Jρ >
1

2π

∮ (
(1 + δ)υ(ρh, 0, πφ) −

(
πφ

ρ
− ρ

(
1 − ρ2

))2
)1

2

dρ (29)

The action Jρ is evaluated in the ζ = 0 subspace when the energy along ρ is just high

enough for the ion to pass over the energy barrier at some finite speed and execute figure-

8 orbits. The factor (1 + δ), with δ ∼ 0.05, ensures that the motion is not too close to

the phase-space separatrix. Figure 4a) b) are examples of such orbits. A stochasticity

criterion for untrapped particle ions was also derived by BDJY.13 It sets the boundary on

stochastic motion by requiring the total energy to be above a certain value for a given value

of πφ. The BDJY criterion while working well for most cases of interest, would fail under

certain conditions due to the fact that it uses the total energy H , rather than the energy of

ρ-oscillation, which determines Jρ.

Case B: A more complex case of Jρ adiabatic invariance occurs at lower values of Jρ which

do not satisfy the criterion of Eq. (21). In this case Jρ can still be conserved if an ion oscillates

in one of the two potential wells in ζ with an amplitude low enough so that it doesn’t pass into

the forbidden lower region of |ζ |, where the crossing of the separatrix resulting in a transition

to a cyclotron orbit occurs. Figures 8 and 9 show πζ vs . ζ and the corresponding Poincare

plots for integrable and stochastic motion respectively, for amplitudes of ζ oscillation just

below and just above the critical.
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Let us refer to the amplitude of ζ oscillation about one of its non-zero minima along ζ ,

given by < υ(ζ) >, as the critical amplitude, if above this amplitude the ion gets close to the

separatrix (where how close is determined by δ, which was found numerically δ ∼ .05). This

critical amplitude of ζ oscillation, below which the orbits are integrable, is a function of Jρ.

Critical values of ζ where the approach to the separatrix occurs are plotted as a function of

Jρ in Figure 7. The actual crossing of the separatrix corresponds to a transition of a figure-8

to cyclotron orbit. The curves were obtained by computing Jρ of an orbit in the vicinity of

the separatrix for a set of values of ζ .

Jρ =
1

π

∫ ρmax

ρmin

{
υ(ρh, ζ, πφ) −

[
πφ

ρ
− ρ

(
1 − ρ2 − ζ2

)]2
}1/2

dρ (30)

where ζ and ρh are kept constant during integration (ρh is a function of ζ given by Eq.

(15)). Eq. (30) was evaluated for different values of πφ to find Jρ for a table of values of ζ ,

Figure 7. The ζ-intercept in Figure 7 coincides with the point where the potential barrier in

ρ disappears and a single raised potential forms, the condition necessary for betatron orbits

which feel a force towards ζ = 0 in all cases. It therefore follows that, for a given value of πφ,

the ζ intercept in Figure 7 is the highest possible location of a minima in < υ(ζ) >. Since

it is also the location of the critical amplitude for Jρ = 0 in Figure 7, it can be seen that

the critical amplitude of ζ-oscillation goes to zero as Jρ goes to zero, resulting in a single

stationary orbit for each value of πφ.

To check that the oscillations above the critical amplitude in one of the two minima

along ζ result in stochastic orbits, numerical simulations using the full Hamiltonian code

were made. For example, at pφ = 3/16, numerical simulations of orbits at four values of Jρ

were made, each for 5 − 10 closely spaced values of ζ . The red stars indicate cases where

the orbits were stochastic and the blue stars where the orbits were integrable. These results

show the approximate conservation of the adiabatic invariant Jρ for oscillations in ζ below

the critical amplitude.

Figures 10 and 11 show πζ vs . ζ (Eq. (7)) and Jρ vs . t/τci for critical amplitudes of ζ

oscillation for two values of Jρ. It can be seen that Jρ is approximately conserved (fluctuates

by less than 10 percent). The figures show that higher values of Jρ have a greater range of

amplitudes along ζ and approach closer to ζ = 0. Thus, all else being equal, particles with

higher Jρ will have regular motion for a greater range of πζ and |ζ |-values.

For a given value of πφ, the highest possible value of ζ where the minimum of < υ(ζ) >
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occurs can be found by setting the square root in Eq. (12) to zero and solving for ζ . This

also gives the y-intercept in Figure 7:

ζ2 = 1 − 2π
1/2
φ (31)

Using the fact that the total energy, H is conserved and that Jρ is an adiabatic invariant,

except at the crossing of the separatrix, and requiring that π2
ζ = 0 at or below the critical

amplitude (to avoid the crossing of the separatrix), we can now derive a condition for

trapped particle orbits that adiabatically conserve Jρ. This is done by finding an upper

limit on energy of oscillation along ζ in the averaged potential < υ(ζ) >, for a given value of

Jρ. As was shown in the previous section, Jρ or identically the amplitude of oscillation along

ρ, A, determine < υ(ζ) >. Since the total energy of an adiabatic system can be expressed

as a function of Jρ, ζ and πζ , an upper limit on H can be found that for a given value of Jρ

will ensure that the energy of oscillation along ζ , determined by ζ and πζ does not exceed

critical amplitude. The condition for the adiabatic conservation of Jρ for trapped particle

orbits thus becomes

H < (1 + δ)V0υ(ρh(Jρ), ζc(Jρ), πφ) (32)

where ζc can be expressed in terms of the adiabatic invariant Jρ, and similarly ρh, which is

evaluated at ζc, can also be expressed in terms of Jρ. The inequality above thus imposes a

constraint on H determined only by the constant of motion πφ and the adiabatic invariant

Jρ. If this constraint is satisfied, Jρ will be a conserved adiabatic invariant of trapped ion

orbits. To obtain this constraint in terms of Jρ, we begin by estimating the location of the

critical amplitude, ζc, as a function of Jρ. These values are plotted in Figure 7 for four values

of πφ. From this figure we can obtain an over-estimate on ζc in all cases by approximating

the curves as

ζc = C (Jmax − Jρ)
1/2 (33)

where

C =

(
1 − 2πφ

1/2
)1/2

√
Jmax

, (34)

An over-estimate on ζc is needed since it ensures that the separatrix crossing will not occur.

C was obtained by solving 1 − 2π
1/2
φ = CJ

1/2
max where 1 − 2π

1/2
φ is the ζ intercept in Figure

7 (see Eq. (31)) and Jmax is evaluated at ζ = 0 for Veff = V0υ(ρh, 0, πφ). Substituting for ζc

from Eq. (33) into Eq. (32), where υ(ρh, ζc, πφ) is defined in Eq. (8), using ρ2
h, evaluated at
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ζ = ζc, given by Eq. (21) and expanding 1/ρ2
h, we get, after keeping only lowest order terms

of order ζ2
c and simplifying the expression

H < (1 + δ)V0
1

K1

(
A1 − A2C

2 (Jmax − Jρ)
)

(35)

where

A1 = (πφ −K1 (1 −K1))
2 (36)

A2 = A1
K2

K1
+ 2A1

1/2 (K2 (1 −K1) +K1 (1 −K2)) (37)

Thus, given an ion’s Jρ, H, and πφ, Eq. (35) determines whether Jρ is an adiabatic

invariant for a trapped figure-8 orbit. Case A, in the beginning of this section, places a limit

on Jρ for untrapped ion orbits, above which Jρ is an adiabatic invariant, for those types

of orbits. As previously mentioned Jρ invariance breaks down for all cyclotron orbits. The

location along ζ of a transition of a cyclotron to a figure-8 orbit is given by Eq. (33). At

|ζ | below ζc, the orbit is cyclotron, and above it is a figure-8. It is clear that the above

approximation is not valid at low πφ and energies where the ζ2 � 1 assumption breaks

down. For cyclotron orbits, the action Jρ is the same as the scaled magnetic moment µ̂,

where µ̂ = µ/p0rs. They are abiabatic invariants up to the point of a transition. Their

invariance is violated near

ζ ≈ C (Jmax − 2µ̂)1/2 (38)

at which point Jρ changes by a factor of ∼ 2. (See Figure 12). This neglects a possible

interaction between the ρ and ζ degrees-of-freedom. The values of ζ for which µ is violated

are shown in Figure 7. For figure-8 orbits, it sets the limit on the highest possible amplitude

of oscillation in one of the two symmetric potential wells that prescribe averaged motion

along the ζ-axis.

The stochasticity criterion given by Eq. (35) can be used to calculate the percentage of

stochastic particles for a given distribution of energies and angular momenta. For example,

a low energy beam parallel to the ζ axis with V0π
2
ζ � T , where T is the perpendicular

temperature, with T = V0υ(ρh, 0, πφ) and πφ = 1/5 will have 85 percent regular orbits

(regular meaning those that adiabatically conserve Jρ. This calculation was performed by

finding the percentage of figure-8 orbits for this distribution. This particular calculation

can be used when the parallel energy of the beam can be assumed to be essentially zero,

relative to perpedicular temperature. In this case, since πζ ≈ 0, all figure-8 orbits of the
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initial distribution are either at the critical amplitude, or at the turning point of oscillation

about ζ = 0.

Figure 13 shows action-angle (Jρ and θρ) Poincaré plots on the ζ = 0 section for a range

of Jρ values. The selection of the ζ = 0 plane eliminates inclusion of particles trapped in

the symmetric-in-ζ potential wells, e.g. Figures 8a), 10), and 11). Each color represents a

different initial condition (different Jρ values at fixed πφ). Taking the Jρ and θρ variables as

being on the smaller cross-section of a torus, we can see that for values of (the scaled) Jρ

less that 0.095, the dots representing cyclotron orbits show stochastic behavior. At higher

values of Jρ, closed circles occur, representing figure-8 orbits, showing that the motion is

integrable. The set of clearly-defined closed circles c − g, representing integrable motion,

begins just above the critical value of Jρ, i.e., circle b Figure 13, and are part of a continuous

set of closed KAM curves.22 The circle labeled b corresponds to figure-8 orbits with just

enough energy to cross the central barrier of Veff . The integrability of orbits which execute

a figure-8 orbit at ζ = 0 is expressed in the condition given by Eq. (29). Since these orbits

never undergo a transition, there is no limit on their amplitude of oscillation along ζ .

A gap in the action-angle Poincaré plot in Figure 13 separates stochastic and integrable

motion. It is due to the fact that the lowest energy figure-8 orbit has Jρ about twice as big

as that of the highest energy cyclotron orbit, because the figure-8 orbit oscillates across two

potential wells and cyclotron orbit across one. Thus the radius of the b circle in Figure 13

is about twice as big as that of the a circle.

V. CONCLUSIONS

The dynamics of single ions in a large aspect ratio FRC were explored. A fuller description

of ion orbits in the z = ζ = 0 subspace was presented. Stability of these orbits to out-of-

plane perturbations was shown to depend on < ρ2φ̇ >. For integrable orbits, ωρ � ωζ , the

averaged motion is in a single or double symmetric potential along the major axis, ζ . The

locations of the minima along ζ of this averaged potential are a function of the invariants

Jρ and conservedπφ. Higher values of Jρ and πφ lead to closer spaced double potential wells,

until the two wells merge into a single potential centered around ζ = 0. To be integrable, an

orbit must either have a high enough energy along ρ to execute figure-8 or betatron motion

in the ζ = 0 cross-section or be trapped in one of two averaged potentials along ζ . Two
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criteria for stochastic trajectories were derived. The first criterion, Eq. (29), for untrapped

orbits, was shown to depend on Jρ and πφ. The second criterion is given by Eq. (35), and

ensures that the amplitude of oscillation along ζ in one of two potential wells is low enough

so that the ion doesn’t experience a transition to cyclotron motion. It is found that the

amplitude of integrable oscillations along ζ decreases with decreasing Jρ, and goes to zero

as the cyclotron radius goes to zero. Since Jρ determines the shape of averaged potential

along ζ , for a given value of πφ, particle dynamics can be represented on a two-dimensional

torus with Poincaré cross-section of θζ and Jζ. For low values of Jζ (amplitudes of oscillation

along ζ below the critical value given by Eqs. (35)), Jζ is conserved and Poincaré cross-

sections show closed circles. The onset of stochastic behavior which occurs at higher values

of Jζ and island formation can be studied using KAM and perturbation theories, where the

Hamiltonian is expanded around minima in ζ estimated by Eq. (23). Different values of Jρ

give a family of nested tori.
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FIG. 1: Possible shapes of the scaled effective potential υ(ρ, 0, πφ) as a function of the scaled

radius ρ in the ζ = πζ = 0 invariant subspace for four values the scaled angular momentum πφ,

representative of four distinct cases. I: πφ = −0.12, single asymmetric well touching zero; II:

πφ = −0.04, asymmetric double well; III: πφ = 0.05, double potential well with both minima

touching zero; IV: πφ = 0.375, raised potential well.
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FIG. 2: Particle orbits in the potentials of Figure 1 with rs = 10 cm. I: scaled energy

ε = 0.01(a), 0.2(b), 0.4(c); II: ε = 0.1(a), 0.18(b), 0.4(c); III: ε = .05(a), 0.05(b), 0.2(c); IV:

ε = 0.035(a), 0.2(b), 0.4(c).
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the barrier in the double potential drops as |ζ| increases, until υ(ρ, ζ, πφ) turns into a single raised

potential well. φ̇ is negative in the interval between the two zeroes and positive elsewhere. For the

raised potential φ̇ is everywhere positive.
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FIG. 6: The solid black line is the averaged ζ-directed kinetic energy, V0 < π2
ζ >, obtained using Eq.

(17) with ρh given by Eq. (21). The oscillating curve is V0π
2
ζ obtained from the full-Hamiltonian

numerical simulation. In both cases πφ = 1/16, ε = 0.2, and amplitude of oscillation along ρ is

A = .5028. The full-Hamiltonian simulation shows fast ρ oscillations superimposed on the averaged

potential.
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1/16, 1/8, 3/16, 7/32. Lower values of πφ have higher ζ intercepts. The curve disappears at the

critical value πφ = 1
4 . For πφ = 3/16, numerical simulations of orbits were made at four values

of Jρ at closely spaced values of ζ. The red stars indicate cases where the orbits were stochastic

and the blue stars where the orbits were integrable. For πφ = 1/16, the region above the curve is

marked as containing regular (figure-8) orbits and that below containing stochastic (both figure-8

and cyclotron) orbits.
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FIG. 8: Regular motion: Oscillation in one of the two minima in ζ, (ε = 1/5) with amplitude of ζ

motion just below the critical amplitude. The lower figure is a Poincaré surface-of-section.
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FIG. 9: Stochastic motion: The amplitude of oscillation in one of the two minima along ζ (ε = 1/5)

was above the critical, resulting in chaotic motion. The lower figure is a Poincaré surface-of-section.
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FIG. 10: a) Phase-space plot for oscillation at the critical amplitude for Jρ ≈ 0.061. b) Jρ vs. τci in

units of τci, the ion cyclotron period at ζ = ρ = 0. Since the orbit is integrable, Jρ is approximately

conserved.
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of freedom) during a transition of a cyclotron to a figure-8 orbit.
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FIG. 13: Poincaré plot in Action-Angle variables taken in ζ = 0 cross-section: x = Jρcosθρ,

y = Jρsinθρ.

33



07/07/03

   External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute

for Physics, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Laboratory for Complex Energy Processes, Institute for Advanced Study,

Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences,

People’s Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2,

Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California

at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


