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Abstract

A method for computing the ideal MHD stability boundaries in three-dimensional equilibria is employed.
Following Hegna & Nakajima [Phys. Plas., 5(5):1336, 1998.], a two-dimensional family of equilibria are con-
structed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given
stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium
condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability
diagrams are thus constructed that are analogous to (s, α) diagrams for axi-symmetric configurations. A quasi-
axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability
can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present.

I Introduction

A principle aim of stellarator research is to understand the physical mechanisms that limit the plasma stored
energy. The expectation is that pressure driven instabilities will be excited as the plasma energy increases relative
to the magnetic energy. Since one of the advantages of stellarators is the avoidance of current limiting instabilities,
pressure driven instabilities may be critical in limiting stellarator operation.

In theoretical studies of particular configurations, local criterion deduced from ideal magnetohydrodynamic (MHD)
ballooning theory are often used to predict the plasma pressure limits of stellarators. There is, however, experi-
mental evidence [1, 2] suggesting that localized ballooning instabilities set a pressure limit that is too pessimistic
for stellarators.

The intent of this article is to contribute to the understanding of the physics describing the onset of ideal MHD
ballooning instabilities in stellarator configurations. In an effort to understand the physical mechanism that causes
ballooning instability, Greene & Chance [3] introduced a technique for constructing ballooning stability boundaries.
In this method, for a given numerically computed axisymmetric equilibrium, a two-dimensional family of equilibria
is constructed by self-consistently imposing perturbations on the pressure gradient and the shear at a given flux
surface. This method allows the pressure gradient and average magnetic shear to be varied independently of
geometry. For each such constructed equilibrium, the ballooning stability may be examined.

This technique clarified the onset of ‘second-stability’ in tokamak configurations. It was noted that ballooning
instabilities arise in regions of unfavorable curvature and small local shear. As the pressure gradient is increased,
the increased parallel currents alter the local shear and the zeros of local shear migrate poloidally. Second-stability
is observed when the zeros of the local shear coincide with favorable curvature, and when in the unfavorable
curvature regions, the magnitude of the local shear is sufficient to stabilize the ballooning modes.

To what extent these ideas are applicable to the non-axisymmetric stellarator devices is an area of present research.
Stellarator geometry can be far more complicated than that of the tokamak. It has been suggested that second-
stability may be difficult to obtain in quasi-helical equilibria [4], but second-stability has been observed in a
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quasi-poloidal equilibrium [5]. The existence of a second stable region in stellarators suggests the possibility of
high β operation and is an enticing prospect.

A feature related to second stability, which we call ‘self-stabilization’ after Ref.[6] has been observed in various
stellarator experiments [7, 8, 9, 10]. In these results, geometrical deformations associated with the Shafranov shift
result in configurations which are stable with respect to Mercier modes as pressure is increased. In this article, we
use the term second stability to refer to the stabilization of ballooning modes due to pressure induced variations
in the local shear, with no geometrical deformations.

Hegna & Nakajima [11] extended the theory of Greene & Chance to three-dimensional configurations. In this
work, we study the ideal ballooning stability of a family of quasi-axisymmetric stellarator equilibria and present
marginal stability diagrams. We find that for this configuration, the existence of second-stability is observed on
some magnetic surfaces. While the conventional explanation of the appearance of second-stability (instability
ensues when regions of unfavorable curvature overlap regions of small local shear; second-stability occurs through
pressure modulations of the local shear) seems plausible, the non-axisymmetry of stellarators results in a more
complicated structure of both the curvature and the local shear and the mechanism of second-stability is less easily
demonstrated.

The outline of this paper is as follows. In Sec(II), the theory of the profile variation method is described. The
numerical implementation is discussed in Sec(III), and in Sec(IV) benchmarking results for an axisymmetric case
are presented. The axi-symmetric case is useful for developing intuition about the role of curvature and local
shear. Sec(V) will present marginal stability diagrams and analysis of a quasi-axisymmetric stellarator. Some
similar features of the marginal stability diagrams are observed. The existence of unstable regions for either sign
of averaged magnetic shear and the existence of second-stability is observed. Sec(VI) will discuss the effect of field
line variation on the stability diagrams. Some discussion of the physical mechanism of ballooning stability, and
the characteristics leading to second-stability will be mentioned is given in Sec(VII); however, a full quantitative
description of the onset of second-stability is an involved topic and requires further detailed analysis which is left
to future work.

II Theory

This work is essentially a numerical implementation of the theory presented by Hegna & Nakajima [11], who
generalized the work of Greene & Chance [3]. By applying variations to, in this case, the pressure gradient and
the average magnetic shear at a selected surface of a given equilibrium, and requiring that the coordinate response
to the variations be such that the resultant state is also an equilibrium, a two-dimensional family of perturbed
equilibria are constructed. Using this method, the effect on ballooning stability of changes in the pressure gradient
and changes in the shear may be separately studied, with the surface geometry held fixed. The following shall
outline the principles of the method and the key assumptions. For additional details the reader should consult
Ref.[11].

The analysis proceeds using Boozer coordinates [12] with (ψ, θ, ζ) being the radial (toroidal flux), poloidal and
toroidal coordinates. The magnetic field is written in contravariant and covariant form as

B = ∇ψ ×∇θ + ι-(ψ)∇ζ ×∇ψ, (1)
B = β(ψ, θ, ζ)∇ψ + I(ψ)∇θ +G(ψ)∇ζ, (2)

where ι- is the rotational-transform, G is the poloidal current exterior to ψ, I is the toroidal current interior to ψ,
and β is related to the Pfirsch-Schlüter current.

The magnetic field is defined implicitly through the coordinate transform x(ψ, θ, ζ) from Boozer coordinates to
Cartesian coordinates. The metric elements of the transformation gij = ei · ej are defined by the basis vectors
eψ = ∂ψx, eθ = ∂θx, and eζ = ∂ζx. The magnetic field may be written in terms of the basis vectors as

B = ( ι-eθ + eζ)/
√
g. (3)
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As equations (1,2) represent the same magnetic field the following conditions must be satisfied :
√
g = (G+ ι-I)/B2, (4)
G = (gζζ + ι-gθζ)/

√
g, (5)

I = (gθζ + ι-gθθ)/
√
g, (6)

β = (gψζ + ι-gψθ)/
√
g. (7)

These equations, and the force balance equation

∇p = J×B, (8)

will be used to derive relationships between the perturbed quantities.

The method of profile variations is to vary the pressure gradient p′ and shear ι-′ at a given surface ψb while keeping
the pressure p and rotational-transform ι- undisturbed (to lowest order). To achieve this, the variable y is introduced

y =
ψ − ψb
µ

, (9)

where µ� 1 is a small expansion parameter. By expressing the perturbed quantities as functions of y rather than
ψ, derivatives with respect to ψ will introduce a factor µ−1: thus ensuring that the variations in the gradients p′, ι-′

are lower order than the variations in the pressure and rotational-transform p, ι-.

The pressure and rotational-transform profiles are described in the vicinity of a magnetic surface ψb by the expansion

p(ψ) = p(0)(ψ) + µp(1)(y) + . . . , (10)
ι-(ψ) = ι-(0)(ψ) + µ ι-(1)(y) + . . . , (11)

where p(0), ι-(0) are the pressure and rotational-transform profiles of the undisturbed equilibrium and p(1), ι-(1) are
the perturbation profiles (similar notation is used below).

For the perturbed state to satisfy the equilibrium conditions, it is necessary that the magnetic field also be per-
turbed. This is achieved by perturbing the coordinate transformation

x(ψ, θ, ζ) = x(0)(ψ, θ, ζ) + µx(1)(y, θ, ζ) + . . . (12)

From this representation, the perturbed basis vectors are determined

eψ = e(0)
ψ + ∂yx(1) + . . . (13)

eθ = e(0)
θ + µ∂θx(1) + . . . (14)

eζ = e(0)
ζ + µ∂ζx(1) + . . . , (15)

The basis vectors eθ and eζ are undisturbed to lowest order, but the eψ basis vector has order unity variations.
It follows that the metric elements gθθ, gθζ and gζζ are undisturbed, but that gψψ, gψθ and gψζ have order unity
variations. For consistency, both G and I are perturbed similarly to p and ι-, but β requires order unity variations
as it contains the gψζ and gψθ metric elements.

As can be seen from the perturbed basis vectors, the key quantity in the coordinate variation is ∂yx(1). This is
expanded in a basis

∂x(1)

∂y
= CB +D

B ×∇ψ

B2
+M

∇ψ

gψψ
(16)

where C,D and M are to be determined. The condition that the magnetic field strength be undisturbed to lowest
order is imposed. This is equivalent to requiring that the variation in the Jacobian be zero which, given the
perturbed basis vectors, becomes

∂x(1)

∂y
· ∂x

(0)

∂θ
× ∂x(0)

∂ζ
=
∂x(1)

∂y
· ∇ψ√g = 0, (17)
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giving the constraint M = 0. The ensures that the variation ∂yx(1) lies within the flux surface. The quantity
C may be written C = β(1)/B2 due to eqn(7) and a relation for β(1) is obtained from the momentum balance
equation.

To obtain an expression for the quantity D the constraints imposed by requiring the perturbations satisfy eqn(5,6)
and force balance are utilized. This results in an equation for D
(
∂

∂ζ
+ ι-

∂

∂θ

)
D = ι-(1)′ 1∮

1/gψψ

(
1
gψψ

−
∮

1
gψψ

)

−p(1)′V
′(G+ ι-I)∮

1/gψψ

(
λ

gψψ

∮
1
gψψ

− 1
gψψ

∮
λ

gψψ

)
(18)

where∮
Q ≡

∮
dθ

2π

∮
dζ

2π
Q (19)

is the flux surface average.

All the necessary information to solve for infinite-n ballooning mode equation in the perturbed equilibrium is now
obtained. The ballooning equation eqn(28) depends on the following quantities: B2 and

√
g, which are required

to be undisturbed to lowest order; gψψ, which is equivalent to (gθθgζζ − gθζgθζ)/√g2 and is undisturbed to lowest
order; G, ι- and I, which are undisturbed to lowest order; and the normal and geodesic curvatures κn, κg, and the
local shear. The curvatures are defined in Ref.[11]

κn =
(b · ∇)b · ∇ψ

gψψ
, (20)

κg =
(b · ∇)b ·B×∇ψ

B2
. (21)

The unit vector in the direction of the magnetic field b is

b =
ι-eθ + eζ
| ι-eθ + eζ | , (22)

and ∇ψ may be written

∇ψ =
eθ × eζ√

g
. (23)

Both these quantities (and B, B2) are undisturbed to lowest order; thus, the normal and geodesic curvatures are
also undisturbed as no radial derivatives are involved. The local shear used by Ref.[11] is

s =
√
g
B×∇ψ
gψψ

· ∇ × B×∇ψ
gψψ

. (24)

This term is disturbed by the perturbations as a radial derivative is involved. Using the contravariant form of B
given in eqn(1), the local shear is written s = ι-′ + s̃ where s̃ is given

s̃ =
(
ι-
∂

∂θ
+

∂

∂ζ

) (
Ggψθ − Igψζ√

ggψψ

)
. (25)

The perturbed part of this is
(
G∂yx(1) · eθ − I∂yx(1) · eζ

)
/

(√
ggψψ

)
= D. (26)

The term D thus represents how the profile variations affect the local shear. Remarkably, as far as the infinite-n
ballooning equation eqn(28) is concerned, it is only the local shear that is affected by the profile variations (other
than of course p′, ι-′). We conclude that any change in the ballooning stability caused by the profile variations must
be due to variations in the local shear.
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The ballooning mode equation in the perturbed equilibrium is written by transforming the angle variables α =
θ − ι-ζ, η = ζ so that α labels the field line, η labels position along the field line and the B · ∇ operator becomes

B · ∇ =
1√
g

∂

∂η
(27)

where ∂η = ∂ζ + ι-∂θ. The ballooning equation is given in a form that highlights the role of the (integrated) local
shear

∂

∂η

(
B2

gψψ
+ gψψL2

)
∂ξ

∂η
+ 2(p(0)′ + p(1)′)

√
g(G+ ι-I)

×(κn + κgL)ξ = ω2(ψ, α, ηk)
(
B2

gψψ
+ gψψL2

)
ξ, (28)

where L is the integrated local shear

L =
∫ η

ηk

dη′s(η′), (29)

ηk is the ballooning angle and ω2 is the ballooning eigenvalue which in general depends on the surface, field line and
ballooning angle ηk. This is an ordinary differential equation with boundary condition ξ(±∞) = 0. For numerical
work, the boundary condition is that ξ(±η∞) = 0 where η∞ is chosen to sufficiently large to contain the mode.

The equilibrium variations describe the separate effects that the variation in p′ and ι-′ have on the local shear, and
thus on ballooning stability. Taking p′ and ι-′ as independent variables, a two-dimensional family of equilibrium
surfaces may be constructed. For each surface ballooning stability may be determined and marginal stability curves
constructed. Note that if the analysis of the perturbed equilibrium is local to the original surface ψb in Eqn.(9),
as infinite-n ballooning analysis indeed is, then the equations describing how the variations affect the local shear
are exact. Variations of any magnitude are allowed and the stability properties of the perturbed equilibria are
characteristic of the geometry of the original surface.

In global equilibrium calculations, altering the pressure may well alter the geometry of the magnetic surfaces. This
in turn will affect the ballooning stability properties. In this work, we only investigate the role of profile variations;
however, it is possible to incorporate variations in magnetic geometry using the formulation presented by Hegna
[13].

Dimensionless quantities are used to describe the variations in pressure gradient and shear. The equilibrium
variations are parameterized by ( ι-′, p′). It is convenient to use the normalized quantities (s̄, ᾱ) defined as

s̄ = − R0

ι-(G+ ι-I)
∮

1/gψψ
ι-′ (30)

ᾱ = −2V ′

ι-2

(
V ′

(G+ ι-I)
∮

1/gψψ

)1/2

p′. (31)

These normalizations reduce to the conventional definitions used in the shifted circle model of tokamak studies
[14].

III Numerical implementation

The equilibria used in this study are generated by VMEC [15]. The VMEC representation, assuming stellarator
symmetric equilibria [16], is as follows :

R =
∑
n,m

Rn,m(ψ) cos(mθV − nφ), (32)
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Z =
∑
n,m

Zn,m(ψ) sin(mθV − nφ), (33)

where θV is the VMEC poloidal angle the summation in the VMEC convention includes the terms n = 0, N for
m = 0 and n = −N,N for m = 1,M − 1. The VMEC equilibrium, or more precisely a selected flux surface in the
VMEC equilibrium, is occasionally referred to in this article as the ‘original’ equilibrium, upon which variations in
the profiles are performed.

The Boozer coordinate information is expressed

R =
∑
n,m

RBn,m cos(mθ − nζ), (34)

φ = ζ +
∑
n,m

φBn,m sin(mθ − nζ), (35)

Z =
∑
n,m

ZBn,m sin(mθ − nζ), (36)

where similarly the summation includes the terms n = 0, NB for m = 0 and n = −NB , NB for m = 1,MB − 1.

The identities eqn(4,5,6) are useful for examining the numerical accuracy of both the original equilibrium and the
transformation to Boozer coordinates.

To implement the method numerically it is necessary to compute the term D appearing in Eqn.(18). It is most
convenient to solve separately for the coefficients of ι-′ and p′, as later these will be varied separately. By noting
that 1/gψψ and λ/gψψ are even functions for stellarator symmetric configurations [16], D may be written

D = ι-(1)′
′∑
Dι-′mn sin(mθ − nζ)

− p(1)′
′∑
Dp′mn sin(mθ − nζ). (37)

where the summation excludes (n,m) = (0, 0) and

Dι-′mn =
(1/gψψ)mn

( ι-m− n)(1/gψψ)0,0
(38)

Dp′mn =
V ′(G+ ι-I)

( ι-m− n)(1/gψψ)0,0
(39)

× [
(1/gψψ)0,0(λ/gψψ)mn − (λ/gψψ)0,0(1/gψψ)m,n

]

All quantities in this expression are provided by the original equilibrium represented in Boozer coordinates. After
the Dι-′mn, Dp′mn have been evaluated, no further equilibrium computations or equilibrium variation computations
are required. Arbitrary variations in p′, ι-′ may be made, and the perturbed ballooning equation directly solved.

A numerical code, STESA (STEllarator s − α), that solves for D and calculates the ballooning eigenvalues has
been developed. The numerical procedure used to solve the ballooning equation is to represent the eigenvector on
a discrete grid along the chosen field line, with derivatives evaluated on the half-grid. This reduces the problem to
that of finding the eigenvalue and corresponding eigenvector of a tri-diagonal matrix. To this extent, the numerical
procedure is equivalent to that used by COBRA [17], with the exception that COBRA also uses Richardson’s
extrapolation and variational refinement to improve the eigenvalue estimate and thus is more efficient numerically.

The computational intensive component of the calculation is the determination of the coefficients of the ballooning
equation. This takes the form of a Fourier summation of the metric elements. To implement the method of profile
variations, the only additional computation required at this point is the determination of L, which, given the original
equilibrium and p′, ι-′, is a Fourier summation of the Dι-′mn, Dp′mn harmonics and does not add significantly to
the calculation.
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The ballooning eigenvalue solver used in this work has been bench-marked against COBRAVMEC [18], an extension
of COBRA written in VMEC coordinates. In benchmarking the eigenvalue solver in STESA against COBRAVMEC,
it was necessary to increase both the Fourier resolution of both the VMEC equilibrium and the transformation to
Boozer coordinates to obtain good agreement with the ballooning profiles: particularly so at high pressure. The
radial ballooning profile for all configurations considered in this article have been verified against COBRAVMEC
with good agreement and will be shown in later sections.

IV Axisymmetric case

To understand the properties of stability boundaries in stellarators, it is useful to consider first a simpler case : a
large aspect-ratio, circular cross-section tokamak [14, 19]. This serves both to illuminate some of the features we
may expect in toroidal configurations, and enables us to see later what the non-axisymmetric effect on stability
boundaries is. Also, it serves as a useful benchmark for the numerical results.

A series of circular cross-section axisymmetric equilibria, with increasing aspect-ratio is constructed. Each con-
figuration is given a broad pressure profile to resemble the sharp-boundary model, but this detail is somewhat
irrelevant as the it is only the pressure gradient p′ at the magnetic surface of interest that directly affects the
ballooning stability (though the pressure profile and β may alter the geometry and thus indirectly affect the bal-
looning stability), and p′ itself is varied to construct the stability curves. For each case, the (s̄, ᾱ) marginal stability
diagram is constructed and as shown in Fig(1) there is good convergence to the model (infinite aspect-ratio) case.
In fact, it is difficult to distinguish the A = 100 stability curve with A = ∞ curve. The numerical resolution of
VMEC is 299 surfaces (with the 240th surface selected), M = 10, N = 0, the resolution the Boozer transformation
is MB = 40, NB = 0. Numerical infinity η∞ for the ballooning calculation is set to ±40 × 2π poloidal, with 50
grid points per 2π for the finite difference calculation of the ballooning eigenvalue. The large ‘numerical-infinity’
is required to correctly describe the eigenmodes near (s̄, ᾱ) = (0, 0), as the modes become quite extended near this
point.

Ballooning modes are pressure driven instabilities, and the driving force is the relative direction of the curvature
and the pressure gradient. The pressure gradient is negative in all these cases, so there is potentially an instability
when the curvature is negative. The effect of local shear is to contribute a stabilizing effect though field line
bending. The local shear is related to the pressure gradient through the Pfirsch-Schlüter modulation as described
by the term proportional to p(1)′ in Eqn.(18), and as the pressure increases the pressure induced modulation of the
local shear increases. When regions of small local shear |s| coincide with regions of negative curvature, a ballooning
instability can occur.

In Fig.(2,3,4), eigenvectors, the normal curvature and local shear are shown for the aspect ratioA = 50 configuration
in the first stable region (s̄, ᾱ) = (0.50, 0.25), the unstable region (s̄, ᾱ) = (0.25, 0.50) and the second stable region
(s̄, ᾱ) = (0.75, 0.00) of Fig.(1). In the first stable region, |s| is sufficiently large in the negative curvature region
to stabilize the modes. In the unstable region, |s| goes to zero in the negative curvature region and a localized
mode can exist. In the second stable region, |s| is again sufficiently large in negative curvature region to stabilize
(broaden) the eigenmode. Note that for the purposes of illustration, ‘numerical-infinity’ is chosen ±2×2π for these
eigenvector diagrams.

V Quasi-axisymmetric case

We consider a quasi-axisymmetric stellarator configuration considered in the design of the National Compact Stel-
larator eXperiment (NCSX) [20, 21, 22]. The ballooning instability mechanisms in a quasi-axisymmetric stellarator
have been studied in Refs.[23, 24, 25]. The fixed-boundary design li383 is studied. Cross sections in Boozer coor-
dinates of li383 at low pressure and high pressure are shown in Fig.(5,6). The pressure and rotational-transform
profiles for various pressures are shown in Fig.(7). For the high pressure case, there is a noticeable deformation of
the coordinates, which indicates a change in the geometry of the inner surfaces. As the method of constructing
marginal stability diagrams considered in this article is geometry dependent, we may expect that the marginal
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stability diagrams will change as the pressure (and thus the magnetic coordinate geometry) is increased. Note
that these configurations, particularly the high-pressure configurations, are not intended to be realized in the
experimental operation of NCSX. They may be considered as suitable example equilibria intended for study.

A comparison of the ballooning profiles (λ ∼ −ω2) from STESA and COBRAVMEC for various pressures are shown
in Fig.(8,9,10). The ballooning profiles show that li383 is marginally unstable to ballooning modes for β = 4.20%,
and is unstable over a large region of the minor radius 0.3 < ψ < 0.95 at β = 11.93%; however, as the pressure is
further increased the surfaces 0.35 < ψ < 0.6 become stable.

The STESA and COBRAVMEC profiles show good agreement in the location of marginal stability. Note that
there are differences in the normalization of the eigenvalue between these codes. For these ballooning profiles, the
eigenvalue depends upon field line label α and ballooning angle ηk. Unless stated otherwise, we use the choice
α = 0, ηk = 0 in these calculations. For this study, M,N = 18, 10 in Eqn.(32,33) which results in 368 Fourier
harmonics, and MB = 8M,NB = 8N in Eqn.(34,35,36) which results in 22817 Fourier modes to describe the
equilibrium in Boozer coordinates. The radial resolution used was ns = 100. This resolution was deemed sufficient
by the agreement between the STESA ballooning solver and COBRAVMEC.

Marginal stability diagrams for li383 at β = 4.20%, 11.93% and 16.43%, on surfaces ψ = 0.30, 0.50 and ψ = 0.80
are shown in Fig.(11,12,13). In each of these diagrams, the location of the original equilibrium is also shown. The
field line label α = 0 and the ballooning angle ηk = 0. Fig.(11) suggests there will be a second stable region for
the ψ = 0.5 and ψ = 0.8 surfaces, but not for the ψ = 0.3 surface, in apparent agreement with the ballooning
eigenvalue profiles. For this case, the location of the original equilibrium for the ψ = 0.5 and ψ = 0.8 surfaces
in (s̄, ᾱ) space coincide. As the pressure is increased to β = 11.93%, all the original surfaces are in the unstable
region. The stability boundaries have changed slightly, with the stability boundary for the ψ = 0.3 surface now
showing the existence of second-stability. For the β = 16.43% case, the original ψ = 0.5 surfaces is now in the
second stable region. The stability boundary for each surface suggests the existence of second-stability, provided
that dramatic geometric variations do not occur.

It will be interesting to examine higher pressure equilibria to examine whether the suggested second-stability indeed
exists on all surfaces simultaneously. An attempt to construct higher pressure equilibria was performed, but with
the high numerical resolution parameters used here some difficulty was encountered with VMEC convergence and
the accuracy of the transformation to Boozer coordinates at high pressure. To enable marginal stability diagrams
and to determine if the region of second-stability extends over the entire plasma for stellarator configurations with
very high β (β > 20%), it may be necessary to follow the example of COBRAVMEC [18] and develop the theory of
profile variations in VMEC coordinates, thus alleviating some of the convergence problems. Nevertheless, through
the use of the profile variation method, this work suggests that quasi-axisymmetric stellarators may exist with
ballooning stable profiles at high β.

It is interesting to compare the behavior of the eigenvectors, the normal curvature and local shear to that of the
large aspect-ration circular-cross section tokamak. In Fig.(14,15,16) are shown the behavior of the eigenvectors,
normal curvature and shear along the field line in the first stable, unstable and second stable regions for the
β = 11.93% case. The behavior of the curvature and local shear is quite complicated in the stellarator case and
for clarity only the region near the ‘origin’ ηk = 0 is shown. The value ηk = 0 is used throughout this study. In
the three cases shown, this is where the eigenmode peaks and thus it is reasonable to expect that this is where the
eigenmode is most sensitive to variations in the local shear.

At ηk = 0, the curvature is negative so there is the potential for a localized ballooning mode to exist. In the first
stable region, the local shear is negative, apparently with sufficient magnitude to prevent a localized mode from
forming. The ballooning mode for this case is comparatively broad. As p′ is increased, the local shear increases
and passes through zero at ηk = 0 and the ballooning mode now becomes localized and unstable. In the second
stable region, as the pressure is further increased the local shear increases and now has sufficient magnitude to
stabilize and broaden the mode. The behavior is thus similar to that observed in the tokamak case.

Note that though the simple picture that ballooning instability occurs when small local shear and bad curvature
coincide is consistent with both the tokamak and quasi-symmetric stellarator case presented here, an exhaustive
investigation and confirmation of this has not yet been performed. The structure of both the curvature and local
shear is quite complicated in the stellarator case.
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VI Variation of field line label

A unique feature of three-dimensional geometry is that the ballooning eigenvalue λ will depend not only on the
flux surface label ψ and the ballooning angle ηk, but also on the magnetic field line label α : λ = λ(ψ, α, ηk). This
is not case in axisymmetric systems where the ballooning eigenvalue is a function of the surface and ballooning
angle only : λ = λ(ψ, ηk). This dependency on magnetic field line label adds complexity to solving the full WKB
problem [26]; however, there are examples of three-dimensional systems showing that global ballooning spectrum
properties can in some cases be accurately predicted from the WKB-ballooning theory [27, 28, 29].

In Fig.(17), the dependence of the ballooning eigenvalue on magnetic field line (α = θ − ι-ζ) is shown for the
β = 16.44% case on the magnetic surfaces ψ = 0.30, 0.50 and 0.80. Note that for the ψ = 0.30, 0.80 surfaces, the
ballooning eigenvalue is near the maximum at α = 0; however, for the ψ = 0.50 surface, the eigenvalue is near a
minimum. This suggests that the stability boundaries shown in the previous section will likely be altered as the
field line label is allowed to vary. Additionally, it is interesting to note that on the same magnetic surface, for all
three magnetic surfaces, there is a mixture of field lines with negative and positive ballooning eigenvalues.

In Figs.(18,19,20), the marginal stability boundaries are plotted for the β = 16.44% case with α = 1.04720.
While the structure of these diagrams is qualitatively similar to the α = 0 case, there are important quantitative
differences. The diagram for the ψ = 0.8 surface suggests that the second stable region is fractured.

The dependence of the eigenvalue on ηk has not been examined here.

VII Discussion

In this work, a study of the ideal MHD ballooning stability properties of a quasi-axisymmetric stellarator is
presented. In particular, the marginal stability properties as functions of plasma profiles have been examined
using the procedure introduced by Greene & Chance [3] and generalized to three-dimensional systems by Hegna &
Nakajima [11]. This technique allows one to manipulate the plasma profiles in the vicinity of a particular magnetic
surface, keeping the magnetic geometry fixed, while ensuring that the MHD equilibrium condition is satisfied. By
using this technique, a generalization of (s, α) curves used prominently in tokamak ballooning calculations can be
constructed for general three-dimensional equilibria.

The marginal stability diagrams for the quasi-axisymmetric stellarator case studied in this article have a number
of similarities to the marginal stability diagrams of axisymmetric tokamaks; however, there are some important
differences. Both configurations show a stability boundary in the ‘tokamak-like’ shear (s̄ ∼ −d ι-/dψ > 0) region
where the critical pressure gradient for instability rises (nearly) monotonically with average magnetic shear. This
can be seen by comparing the s̄ > 0 regions of Fig.(1) and Figs.(11,12,13). In this ‘strong-shear’ limit, the ballooning
eigenmode is localized to a narrow range along the field line where the curvature is unfavorable. In this region of
profile space, the quasi-axisymmetric stellarator and the tokamak have similar ballooning properties.

Where the quasi-axisymmetric stellarator and axisymmetric tokamak differ is when s̄ becomes small. For tokamaks,
there are no unstable ballooning modes for zero or ‘stellarator-like’ magnetic shear (s̄ ≤ 0); however, for stellarators,
unstable ballooning modes can exist in the s̄ ≤ 0 region of parameter space. The underlying reason for this is the
three-dimensional nature of the important geometric objects (local shear and curvature) that govern the marginal
stability properties. Various workers [30, 31, 32, 33] have studied the local magnetic shear in non-axisymmetric
configurations. In this region of parameter space, the variation of the local shear within the magnetic surface can
dominate the averaged shear. Since the harmonic structure of the local shear has incommensurate helicity with
the prominent toroidal curvature, the ballooning eigenmode can localize to particular region along the field line
with bad curvature [4, 34]. Cuthbert and co-workers demonstrated that this mechanism can produce unstable
eigenmodes even in the limit of zero averaged shear [35, 36].

Associated with this behavior is a sensitivity of the ballooning mode eigenvalue to magnetic field line label. When
the averaged magnetic shear becomes sufficiently small or negative, ballooning modes can be excited in quasi-
axisymmetric stellarators.
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Previous work suggested that due to the three-dimensional nature of stellarators, the geometry of non-axisymmetric
systems would provide sufficient freedom for ballooning modes to find a region in which they may localize; thus
deteriorate, and even eliminate, the onset of second-stability [4, 34]. While this qualitative trend is seen in the
calculations presented here, quantitative calculations are needed to address the second-stability question properly.
Having performed such calculations, the results indicate that there are quasi-axisymmetric stellarators that possess
regions of second-stability.

This work suggests that there may be ways to further optimize the stellarator to take advantage of second-stability.
Perhaps through further shaping and/or profile optimization, a stable path through configuration space may be
discovered and exploited. It will be interesting to examine the quasi-helical case at high β and to construct marginal
stability diagrams for QPS [5].

We note that the method presented enables the stability of equilibria in the neighborhood of a given equilibria to
be determined with a minimum of computational effort. Thus, there is a possibility that this method will be of
benefit in stellarator optimization routines [37, 21, 38]. At each surface, the pressure gradient may be altered to
optimize stability, and the pressure profile itself be determined from the pressure gradient profile. A local method
of optimization can become stuck in local minima. By incorporating the method of profile variations, the optimizer
may be able to determine that across a small region of previously impassable instability lies a region of stability.

For stellarator geometry, the ballooning eigenvalue generally depends on all three coordinates (ψ, α, ηk). Con-
sequently, the isosurfaces of unstable eigenvalues may have spherical topology in this space, in addition to the
topological toroidal surfaces that axisymmetric configurations possess. This may lead to the global modes con-
structed from ray tracing being highly localized. Such highly localized modes may be stabilized by non-ideal effects,
and thus not be the deciding factor in determining pressure limits in stellarators.
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Figure 1: (s̄, ᾱ) diagrams for large aspect-ratio, circular cross-section tokamak. As the aspect-ratio A increases
(dotted A = 10, dashed A = 20, dash-dot A = 50, dash-dot-dot-dot A = 100) the stability boundary converges to
the infinite aspect-ratio model (solid) boundary.
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Figure 2: Eigenvector (solid), local shear (dotted), and normal curvature (dashed) for the equilibrium in the first
stable region (s̄, ᾱ) = (0.50, 0.25).
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Figure 3: Eigenvector (solid), local shear (dotted), and normal curvature (dashed) for the equilibrium in the
unstable region (s̄, ᾱ) = (0.25, 0.50).
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Figure 4: Eigenvector (solid), local shear (dotted), and normal curvature (dashed) for the equilibrium in the second
stable region (s̄, ᾱ) = (0.00, 0.75).
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Figure 5: Cross section of Boozer coordinates of li383 at β = 0.32% (left) and β = 16.43% (right) for li383 on ζ = 0
plane.
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Figure 6: Cross section of Boozer coordinates of li383 at β = 0.32% (left) and β = 16.43% (right) for li383 on
ζ = 2π/6 plane.
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Figure 7: Rotational-transform (solid) and pressure (dashed) profiles for li383 at β = 4.53%, 11.2416%, 16.43%.
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Figure 8: Ballooning radial profile from STESA (solid) and COBRAVMEC (dotted) for li383 at β = 4.20%.
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Figure 9: Ballooning radial profile from STESA (solid) and COBRAVMEC (dotted) for li383 at β = 11.93%.
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Figure 10: Ballooning radial profile from STESA (solid) and COBRAVMEC (dotted) for li383 at β = 16.43%.
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Figure 11: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 4.20%. The position of the initial equilibrium (for each surface) is also shown.
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Figure 12: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 11.93%. The position of the initial equilibrium (for each surface) is also shown.
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Figure 13: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 16.43%. The position of the initial equilibrium (for each surface) is also shown.
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Figure 14: Eigenvector (solid), normal curvature (dashed) and shear (dotted) for β = 11.93%, ψ = 0.80, (s̄, ᾱ) =
(2.5, 1.0).
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Figure 15: Eigenvector (solid), normal curvature (dashed) and shear (dotted) for β = 11.93%, ψ = 0.80, (s̄, ᾱ) =
(0.0, 3.0).
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Figure 16: Eigenvector (solid), normal curvature (dashed) and shear (dotted) for β = 11.93%, ψ = 0.80, (s̄, ᾱ) =
(−2.5, 5.0).
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Figure 17: Dependence of ballooning eigenvalue on field line label α for the β = 16.43% case for surfaces ψ = 0.30
(solid), 0.50 (dotted) & 0.80 (dashed).
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Figure 18: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 4.20% with field line label α = 1.04720. The position of the initial equilibrium (for each surface) is also shown.
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Figure 19: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 11.93% with field line label α = 1.04720. The position of the initial equilibrium (for each surface) is also
shown.
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Figure 20: (s, α) diagrams for the ψb = 0.3 (solid), 0.5 (dotted) and 0.8 (dashed) surfaces in NCSX li383 at
β = 16.43% with field line label α = 1.04720. The position of the initial equilibrium (for each surface) is also
shown.
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