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Strange Attractors in Drift Wave Turbulence

Jerome L.V. Lewandowski
Princeton University, Princeton Plasma Physics Laboratory, Princeton, NJ 08543

1 Introduction

There are growing experimental, numerical and theoretical evidences that the anomalous trans-
port observed in tokamaks and stellarators is caused by slow, drift-type modes (such as trapped
electron modes and ion-temperature gradient-driven modes). Although typical collision frequen-
cies in hot, magnetized fusion plasmas can be quite low in absolute values, collisional effects are
nevertheless important since they act as dissipative sinks. As it is well known, dissipative systems
with many (strictly speaking more than two) degrees of freedom are often chaotic and may evolve
towards a so-called attractor.

This paper shows that strange attractors in collisional, electrostatic drift wave turbulence with
kinetic electrons can exist and that their fractal dimension are actually quite small; this result
suggests the presence of deterministic dynamics with few key variables but displaying chaotic be-
havior (because of the fractal dimensionality of the attractor). Another important conclusion is
that our observation of a low-dimensional attractor for this specific model of drift wave turbulence
has been achieved using an accurate scheme for kinetic electrons (splitting scheme; see next sec-
tion). In the presence of kinetic electrons, standard schemes (e.g. δf scheme [2]) fail to resolve the
underlying dynamics of the system, that is the fractal dimension cannot be measured.

2 Splitting Scheme

As mentioned in the Introduction, the measurement of the fractal dimension of the attractor in
electrostatic drift wave turbulence has been made possible by using an accurate electron scheme.
In order to stress the relevance of strange attractors to drift-wave turbulence, we consider a shear-
less slab model for electrostatic drift waves. We start from the collisionless, electrostatic, gyroki-
netic Vlasov equation, in the long-wavelength limit, for particles species j with mass mj and charge
qj

dFj

dt
≡ ∂Fj
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)
·∇Fj − qj
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∂Fj

∂v||
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where b̂0 = B0/B0 is a unit vector, VE = cb̂0×∇Φ/B0 is the E×B drift velocity, and C (Fj) is the
collision operator. The confining magnetic field is taken to be of the form B0 = B0 (ẑ + θŷ) where θ
is a small parameter, together with the simplification of ∂/∂z 7→ kz ≡ 0. Collisional effects on the
ion distribution are neglected, C(Fi) = 0; the effects of electron-ion collisions can be represented by
the number-conserving, energy-conserving Lorentz collision operator [1] including only pitch-angle
scattering in the velocity space for the electrons
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. Although
the standard δf scheme [2] works well for the ion dynamics, an accuracy problem arises when
the scheme is used to treat the electron dynamics. The origin of this accuracy problem is related
to the fact that the bulk of the electrons do not interact with the low-frequency waves but may
(and usually do) transfer noise if their dynamics is not treated accurately. Therefore, it is natural
to separate the electrons into two groups (adiabatic and nonadiabatic) to reflect their different



responses to the low-frequency waves. To do so, we write the distribution Fj as [4]

Fj = exp
(
−qjΦ

Tj

)
FMj + hj , (3)

where FMj is the Maxwellian distribution for particle species j and hj is the nonadiabatic response.
Substituting representation (3) in Eq.(1) and using the relations of (∂/∂t + v||b̂0·∇)FMj = 0 and
VE ·∇Φ ≡ 0, we obtain an evolution equation for the nonadiabatic response
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= C (Fj) + FMj exp
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)
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where κj = κ
[
1 − ηj

2

(
1 − v||2

)]
, v|| = v||/Vthj and κ = −∇n0/n0. As it is evident from Eq.(4)

the contribution due to the free streaming particles will not, unlike the corresponding δf scheme,
appear in the equation for the marker weight. The field equations related to Φ and ∂Φ/∂t have
been solved using a multigrid solver; the details are given in Ref. [4]. The initial loading of the
markers in velocity space is carried out using a low-noise technique described in Ref. [5]. The
linear properties of the splitting scheme [4] and the energy conservation properties have been
presented elsewhere [3] and these results are not reproduced here.

3 Characterization of Strange Attractors

It is already an accepted notion that many nonlinear dissipative dynamical systems do not ap-
proach stationary or periodic states asymptotically. Instead, with appropriate values of their pa-
rameters, they tend towards strange attractors on which the motion is chaotic, i.e. not periodic and
unpredictable over long times, being extremely sensitive on the initial conditions [7, 8, 6]. Typically
a strange attractor arises when the flow in phase space does not contract a volume element in all
directions, but stretches it in some. In order to remain confined to a bounded domain, the volume
element gets folded at the same time, so that it has after some time a multisheeted structure [7, 6].
In our model, dissipation through collisions is what allows for phase space contraction.

Grasseberger and Procaccia [9] have introduced an important measure of an attractor known as
the correlation exponent, which is based on correlations between random points on the attractor.
The basic idea behind the correlation exponent measure is that trajectories belonging to an at-
tractor, although not dynamically correlated, are spatially correlated. Introducing the correlation
integral C(`) these authors have shown that, for small enough `, C(`) ∼ `α, where α is the so-called
correlation exponent. Grassberger and Procaccia have proved that the information dimension, σ,
the Hausdorff dimension, D, and the correlation exponent, α, satisfy the inequality

α ≤ σ ≤ D . (5)

In most cases, the inequality (5) is rather tight. To measure the spatial correlation of the attractor,
Grassberger and Proccacia consider a time series {Xi ≡ X (t + i∆t) ; i = 1, · · · , M} of points on the
attractor, where ∆t is the (fixed) time step; they define the correlation integral [9] as

C (`) ≡ lim
M 7→∞

M̂(`)
M2

, (6)

where

M̂(`) ≡
∑
ij

H (|Xi − Xj| − `) , (7)

is the number of pairs (i, j) whose distance dij = |Xi −Xj | is less than `; in Eq.(7) H(x), denotes
the Heaviside function. One important conclusion of the work by Grassberger and Proccacia is
that, for small `, the correlation integral C(`) grows like a power

C (`) ∼ lα ,



and that this correlation exponent (α) can be taken as a measure of the local structure of a strange
attractor [9]. The usefulness of this measure for a system with many degrees of freedom is high-
lighted in the next section.

4 Numerical Results

The implementation of the Grassberger-Procaccia algorithm has been tested against known re-
sults for the (one-dimensional non-invertible) logistic map [8] and the (two-dimensional invertible)
map [11]. In both cases the measured correlation exponent provides a close lower bound to the
Hausdorff dimension [10].

Having tested the implementation of the Grassberger-Proccacia algorithm, we consider the case
of fully developed electrostatic drift wave turbulence. Since there is no explicit source of dissipa-
tion (no phase space contraction) for the ion population, we measure the correlation exponent of
the electron dynamics only. We randomly select a set of M electron markers from the electron
distribution function. Each sample Xq =

(
x

(n)
k , v

(n)
||k

)
is recorded for each marker k at time step n.

In order to prevent spurious spatial correlations, the system must be in the fully nonlinear state;
in this paper, the positions in phase space Xq were recorded for ωcit ≥ 3000 (fully turbulent regime)
for Ns time steps. The distance in phase space between Xq and Xq′ is simply given by
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{[
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]2
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||k − v
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}1/2

, (8)

and the correlation integral is computed as in Eq.(6). In a typical simulation, both the number
of sampling markers M and the number of time steps Ns is varied to ensure convergence. Figure
1 (left) shows the electron correlation integral, Ce(`), as a function of `/`0, where `0 is arbitrary;
the collision frequency is νei = 10−4. For very small distances, the data for Ce(`) deviate from
a power law, but that was to be expected: the values of Xq and Xq′ are strongly correlated. For
larger ` the correlation integral follows a power law over 7 orders of magnitude. The χ2 fit yields
a correlation exponent of α = 0.0126. This means that the low-dimensional attractor is somewhere
between a point (D = 0) and a line (D = 1). Since the system has many degrees of freedom, such
a low-dimensional may seem surprising; however, for a very different physical system, Nicolis
and Nicolis [12] have found a strange attractor with a small dimension D in a system with many
degrees of freedom (see next section) The key factor here is the rate of phase space contraction.

Figure 1: Correlation integral for νei = 10−4 as a function of `/`0 (left); dependence of C(`) on νei.

To pursue this argument, we have measured the dependence of the correlation exponent α
on the collision frequency (Figure 1; right). The general trend is a decrease in the correlation



exponent, and therefore a decrease in the Hausdorff dimension, with increasing collision frequency.
This is not surprising as the phase space contraction rate is related to, but not necessarily directly
proportional to, the collision frequency.

5 Conclusions

We have identified the existence of a low-dimensional strange attractor in particle-in-cell, elec-
trostatic drift-wave turbulence. The dimension of the attractor has been estimated based on the
measurement of the correlation exponent [9] (a lower bound to the usual Hausdorff dimension).
It has been shown that the dimension of the attractor is sensitive to the electron-ion collision
frequency since this quantity is related to the contraction rate in phase.

Numerical results have shown the presence of a low-dimensional attractor in a system with
many degrees of freedom. In a different context, Nicolis and Nicolis [12] have studied the attractor
associated with the climatic evolution over the past million years based on isotope records of deep-
sea cores. The surprising result of Nicolis and Nicolis’s work is that, although the climate has
very many degrees of freedom, a well-defined low-dimensional attractor was identified based on
the experimental time series. Their results and our results suggest that some physical systems
with many degrees of freedom can possess low-dimensional attractors, implying the presence of
deterministic dynamics with few key variables but displaying unpredictable behavior (because of
the fractal dimensionality of the attractor).

As a final remark, we note that, since the Grassberger-Procaccia algorithm is based on the
information contained in one (or many) time series, their method can be useful to analyze and
characterize strange attractors from experimental measurements in fusion plasmas.
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