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Abstract

An instability of fast magnetoacoustic waves (FMW) driven by circulating

energetic ions in axisymmetric toroidal plasmas and characterized by the

frequencies below the ion gyrofrequency is considered. An important role of

the l = 0 resonance (l is the number of a cyclotron harmonic) in the wave-

particle interaction is revealed: It is shown that this resonance considerably

extends an unstable region in the space of the pitch-angles of the energetic

ions and the wave frequencies. The analysis is carried out for a ”slow”

instability, which has the growth rate less than the bounce frequency of the

energetic ions. Specific examples relevant to the National Spherical Torus

Experiment (NSTX) [J. Spitzer et al., Fusion Technol. 30, 1337 (1996)],

where instabilities of this kind were observed, are considered.



I. INTRODUCTION

The instability of Fast Magnetoacoustic Waves (FMW) caused by the energetic ions

was first considered in 70s, see, e.g., an overview.1 Later it was found that it can be

responsible for the superthermal Ion Cyclotron Emission (ICE) with the frequencies ω ≥
ωB (ωB is the ion gyrofrequency) observed in experiments on tokamaks.2 This stimulated

further development of theory of the FMW instability. In particular, it was found that the

presence of a drift term in the local cyclotron resonance condition plays an important role

by strongly enhancing the instability; moreover, it may explain a number of peculiarities

of the ICE frequency spectrum in Joint European Torus (JET)3 experiments.4,5 This

result was obtained for a ”rapid” instability, i.e., the instability with the growth rate, γ,

exceeding the bounce/transit frequency of the energetic ions, ωb. The mentioned condition

may be not satisfied, in which case ”slow” instability (γ < ωb) takes place.6,7 In more recent

time, a low-frequency FMW instability, ω < ωB, was observed in National Spherical Torus

(NSTX)8 experiments.9,10 This instability seems to contribute to the bulk ion heating

due to a non-linear mechanism leading to stochastic motion of the particles.11 A linear

theory of ”slow” FMW instability with ω < ωB was developed in Ref.12. The instability

considered in the mentioned work is driven through the cyclotron resonance with l = 1,

where l is the number of the cyclotron harmonic. It was claimed in Ref.12 that the l = 0

resonance cannot lead to the instability. However, this statement is not correct, which

follows from the present work, where we develop a theory including the influence of the

l = 0 resonance on the destabilization of FMW. In numerical examples we use NSTX

parameters.

The paper is organized as follows. In Sec. II the resonances of the waves and circu-

lating energetic ions are considered, a qualitative analysis which demonstrates a possible

excitation of the l = 0 instability (with γ < ωb or γ > ωb) is carried out. In Sec. III the

growth rate of the ”slow” FMW instability is calculated and analyzed. In Sec. IV the

obtained results are summarized and their consistency with experimental observations of

FMW in NSTX is discussed. In Appendix the anti-Hermitian part of the flux-surface
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averaged dielectric permeability tensor of well circulating particles is calculated in the

assumption that characteristic times of interest exceed the particle transit time.

II. QUALITATIVE ANALYSIS

In order to see that the l = 0 resonance can be of importance, we note that the insta-

bility drive is proportional to dFb/dv, where Fb is the equilibrium distribution function of

the energetic ions, v is the particle velocity. The case of l = 0 corresponds to neglecting

the particle Larmor rotation. In this case, when Fb = Fb(E , µ) (E and µ are the particle en-

ergy and the magnetic moment, respectively), dFb/dv = Mv∂Fb/∂E with M the beam ion

mass, which implies that the instability drive is absent unless Fb(E) is a non-monotonic

function. Taking into account the Larmor rotation results in a term proportional to

l∂Fb/∂µ, which drives the instability considered in Ref.12. However, the distribution

function of the energertic ions typically depends on λ ≡ µB0/E rather than on µ (because

λ is approximately conserved during the collisional slowing down of the ions when E À Ec

with Ec ∼ (M/Me)
1/3Te, Te and Me the electron temperature and mass, respectively).

Therefore, a term associated with the velocity anisotropy appears even when effects of

Larmor rotation are neglected (the l = 0 case): dFb/dv = Mv[∂Fb/∂E − λE−1∂Fb/∂λ].

The physical mechanism responsible for the ”slow” instability is actually the same as

that of the ”rapid” instability: both instabilities are driven by the velocity anisotropy of

the energetic ions through the ”local” resonance:

ω − lωB = k‖v‖ + ωd, (1)

where k‖ = (m − nq)/(qR0) is the longitudinal mode number, m and n are the poloidal

and toroidal mode numbers, respectively, q is the safety factor, R0 is the radius of the

magnetic axis, v‖ is the longitudinal velocity of the energetic ions, ωd = k · vd, vd is the

particle drift velocity, k is the wave vector. Equation (1) is written in the assumption

that the perturbed quantities are proportional to exp(−iωt + imϑ− inϕ), where ϑ is the

poloidal angle, ϕ is the toroidal angle. Because the mode is localized at the outer midplane
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of the torus,7 the last term in Eq. (1) is reduced to ωd ≈ −mvd/r where r is the radial

coordinate. If the resonance condition is satisfied, the particle drive is maximum for the

particles with the highest energy. For this reason, Eq. (1) can be considered as an equation

which determines the mode numbers of the destabilized waves. If so, we can conclude

that the l = 0 resonance extends the frequency spectrum of the instability driven through

l 6= 0 resonances. This fact is of importance to lower the threshold magnitudes of the wave

amplitudes required for stochastic heating on sub-harmonics of the ion gyrofrequency.11

The growth rates of both ”slow” and ”rapid” instabilities can be expressed through

Bessel functions of the lth order, Jl(ξ), where ξ = k⊥ρ⊥ = (ω/ωB)
√

λ v/vA, ρ⊥ = v⊥/ωB,

v⊥ is the particle velocity across the magnetic field. The l 6= 0 instability can occur

only when ξ > 1, which is difficult to satisfy for well circulating particles (λ ¿ 1) when

ω ¿ ωB. In contrast to this, as will be shown in this work, the l = 0 instability exists

even when ξ < 1. This implies that it can be driven by particles with larger pitch angles

(smaller λ) and, in addition, it can have lower wave frequencies.

For the ”slow” instability to occur, an additional condition of the ”global” resonance

between the particles and the waves must be satisfied. This condition can be written as

ω − l〈ωB〉 = mωϑ − nωϕ + sωb, (2)

where s is an integer, 〈...〉 denotes the transit time averaging, ωϑ and ωϕ are the frequen-

cies of the particle poloidal rotation and toroidal rotation, respectively. Equation (2) is

satisfied only for certain magnitudes of s. In order to evaluate s we specify the pitch

angles of the energetic ions. We assume that the population of the energetic ions with the

energy close to their maximum energy, E0, consists mainly of the well circulating particles.

Then ωb = |ωϑ| ≈ |〈v‖〉/qR0|, and we can write Eq. (2) in the following form:

ω − l〈ωB〉 = k‖〈v‖〉+ s
〈v‖〉
qR0

, (3)

Comparing Eq. (1) and Eq. (3) we conclude that

s
〈ρ‖〉
qR0

≈ ωd

〈ωB〉 + l
ωB − 〈ωB〉
〈ωB〉 , (4)
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where ρ‖ = v‖/〈ωB〉. It follows from Eq. (4) that the sign of s is determined by the sign

of m for l = 0 and for l 6= 0 when the ωd/〈ωB〉 is large enough. Another conclusion is

that the presence of the ωd term in Eq. (1) reconciles the condition of the local resonance

with the condition of the global one for circulating particles when l = 0.

Let us consider a specific example relevant to an NSTX plasma. We take R0 = 100

cm, the Alfvén velocity vA = 108 cm s−1, the particle injection energy E0 = 80 keV,

ωB = 1.5 × 107 s−1, ρ ≡ v/ωB = 20 cm. Then ωd/〈ωB〉 = 0.6ω̃/κ with ω̃ = ω/〈ωB〉 and

κ the elongation of the plasma cross-section. The second term in the right-hand side of

Eq. (4) can be evaluated as lε with ε = r/R0, i.e., it slightly exceeds the ωd/〈ωB〉 term.

This implies that the magnitudes of s satisfying Eq. (4) are different for l = 0 and l = 1.

For l = 0 we obtain |s| ≤ 3qχ−1ω̃/κ (we used v0/vA = 3, where v0 = (2E0/M)1/2), i.e.,

|s| ∼ 1 for ω̃ <∼ 1/2, q ∼ 2.

Note that when ω < ωB, typically the global resonance condition can be satisfied for

l ≥ 0, but not for l < 0. Indeed, it follows from Eq. (3) that

k

k‖s

vA

v0

√
1− λ

(
1− l

ω̃

)
< 1, (5)

where k‖s = k‖ + s/(qR) and k/k‖s > 1 [we used k ≈ ω/vA = ω̃(v0/vA)ρ−1 À s/(qR0)].

III. GROWTH RATE OF THE INSTABILITY

Assuming k‖ ¿ k⊥, we proceed from the following dispersion relation for FMW in a

plasma with energetic ions:13

Λ(ω) ≡ ε̄11(ε̄22 −N2
⊥) + ε̄2

12 = 0, (6)

where N⊥ = ck⊥/ω, ε̄ij are the flux-surface-averaged components of the dielectric tensor.

We treat the problem perturbatively, in which case the contribution of the energetic ions

to the Hermitian part of the permeability tensor, ε̄′ij, can be neglected, and we have:14

ε̄′11 = ε̄′22 =
ω2

pi

ω2
Bi − ω2

, (7)
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ε̄′12 = −ε̄′21 = iḡ′, ḡ′ =
ω

ωBi

ε̄′11. (8)

where ωBi and ωpi are the gyrofrequency and the plasma frequency of the bulk plasma

ions, respectively. Note that Eq. (8) for the considered waves with ω < ωBi is valid for

both a ”cold” plasma (ω À k‖vth,i, ω À k‖vth,e, where vth is the thermal velocity) and

a plasma with ”cold” ions and ”hot” electrons (ω ¿ k‖vth,e). Assuming that the anti-

Hermitian part of the dielectric permeability tensor, ε̄′′ij, is small, we can write ω = ω0+iγ,

where ω0 À γ. Then Eq. (6) yields ω0 = k⊥vA and

γ = − ε̄′′11(ε̄
′
22 −N2

⊥) + ε̄′′22ε̄
′
11 − 2ḡ′′ḡ′

∂Λ′/∂ω
, (9)

where the subscript ”0” at ω is omitted. Components of the Hermitian part of the

dielectric tensor can be eliminated from Eq. (9) due to Eqs. (6) - (8). As a result, Eq. (9)

is reduced to

γ

ω
= − v2

A

2c2

(
ε̄′′22 − 2

ω

ωBi

ḡ′′ +
ω2

ω2
Bi

ε̄′′11

)
. (10)

Let us neglect the wave damping caused by the bulk plasma and assume that the

population of the energetic ions consists only of circulating particles. Then can use the

expressions for ε̄′′ij obtained in Appendix. This leads to

γ

ω
= 2π2 ω2

pb

k2
⊥c2

∑

l,s,σ

∫ dλλE2

M |k‖s|(1− λ)
Ql

2(ξ)Js
2(ζ) Π̂lFb(E , λ)

∣∣∣E=Es
, (11)

where l and s are integers, σ = sgnv‖,

Es =
Mv2

‖s
2(1− λ)

, v‖s =
ω − lωB0

k‖s
, k‖s = k‖ +

s

qR
,

Ql(ξ) = Jl
′(ξ)− ω

ωBi

l

ξ
Jl(ξ), Π̂ = ω

∂

∂E + (lωB0 − λω)
∂

E∂λ
, (12)

and ξ = k⊥vs

√
λ/ωB0, ζ is defined in Appendix, ωB0 = 〈ωB〉(λ = 0)). Note that we used

the condition of the ”global” resonance given by Eq. (3) in order to integrate over E in

Eq. (11).

Now we have to specify the distribution function of the energetic ions. We take it in

the form:
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Fb(E , λ) = fE(E)δ(λ− λ0)η(E0 − E)η(E − Ec), (13)

where λ0 and E0 are the initial pitch-angle parameter and energy of the beam ions, η(x) =

∫ x
−∞ δ(x)dx, δ(x) is the Dirac delta function.

One can see that when λ is sufficiently small, the λ dependence can be neglected in

Js(ζ). Then, after integration over λ in Eq. (11) we obtain:

γb

ω
= 2π2 ω2

pb

k2
⊥c2

∑

l,s

ω

|k‖s|
Eb

M
Js

2(ζb)

{
λ0Ql

2(ξb)
d

dEb

(EbfE(Eb))

+

(
λ0 − lωB0

ω

)
fE(Eb)

2ξb

d

dξb

(
ξb

2Ql
2(ξb)

)}
, (14)

where

vc < |v‖s|/
√

1− λ0 < v0, (15)

Eb =
Mv2

‖s
2(1− λ0)

, ξb =
k⊥v‖s
ωB0

(
λ0

1− λ0

)1/2

,

ζb =
(
ζ2
‖b + ζ2

⊥b

)1/2
, ζ‖b =

lωB0qr

v‖s
, ζ⊥b =

k⊥qv‖s
ωB0κ

1− λ0/2

1− λ0

. (16)

Finally, taking fE = C/E3/2 with C =
√

1− λ0M
3/2/

(
π
√

2 ln(E0/Ec)
)

we have:

γb

ω
= Cπ2 ω2

pb

k2
⊥c2

∑

l,s

ω

|k‖s|
(

M

Eb

)1/2

Js
2(ζb)

{
λ0

d

dξb

(ξbQl
2(ξb))

− lωB0

ω

1

ξb

d

dξb

(
ξb

2Ql
2(ξb)

)}
. (17)

It follows from Eq. (17) that a necessary condition of the instability is

Dl ≡ d

dξb

(ξbQl(ξb))− l

λ0

ωB0

ω

1

ξb

d

dξb

(
ξb

2Ql(ξb)
)

> 0, (18)

which must be must be satisfied, at least, for some l and s. Another necessary condition

given by Eq. (15) can be written as

vc

√
1− λ0 <

∣∣∣∣∣
ω − lωB0

k‖s

∣∣∣∣∣ < v0

√
1− λ0. (19)

Note that the right inequality in Eq. (19) is actually Eq. (5).

The functions D0 and D1 are shown in Fig. 1. We observe that the condition D0 > 0 is

satisfied for ξb > 0, which implies that it is satisfied for arbitrary small λ0. In contrast to
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this, D1 > 0 only when ξb exceeds a certain magnitude ξmin. The latter weakly depends

on ω, being a decreasing function. More detailed analysis shows that D1 almost does not

depend on λ0. Using these facts and that ξbω̃(v‖/vA)
√

λ0/(1− λ0) < ω̃(v‖/vA)
√

λ0, we

obtain the following condition for the l = 1 driven instability:

λ0ω̃
2 >

(
ξmin

vA

v0

)2

. (20)

Equation (20) shows that ω cannot be arbitrary small. On the other hand, for a given

ω̃, this equation gives a restriction for λ0. For instance, when v0/vA = 3, it cannot be

satisfied for ω̃ <∼ 0.3, and it yields λ > 0.3 for ω̃ = 0.5. We conclude from here that only

the l = 0 instability is possible for sufficiently small ω̃. In the other case, ω̃ → 1, Eq. (20)

can be satisfied small λ, but, nevertheless, the l = 1 instability is absent or weak because

then Dl → 0, see Fig. 1.

Now we calculate the growth rate for various directions of the wave propagation using

Eq. (17). The results for co-injection (which corresponds to NSTX experiments) are

shown in Figs. 2, 3. We observe that the growth rate of the instability with k‖ > 0

considerably exceeds that one for k‖ < 0. The reason for this is that the l = 0 resonance,

which provides the strongest drive (see Fig. 1), is responsible for the instability in the

first case, whereas the l = 1 resonance leads to the instability in the second one (the l = 0

resonance takes place for k‖s > 0, which leads to k‖ > 0 when R0/ρ > v0/vA). Note that

the non-monotonic dependence of γ on λ0 shown in Fig. 2 is caused by the fact that the

number of the terms in the sum over s in Eq. (17) depends on λ0.

IV. SUMMARY AND CONCLUSIONS

Our analysis shows that the l = 0 resonance of the wave-particle interaction provides

the destabilization of FMW with the frequencies lower than those destabilized through

the l = 1 resonance. In addition, it makes possible the destabilization of the waves by the

energetic ions with smaller λ (larger pitch angles).

These facts are of importance for the interpretation of NSTX experimental data re-

ported in Ref.9. In the mentioned experiments the modes in the frequency range 0.4−2.5
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MHz were observed. This means that the lowest frequency, ωmin, was about ωB/6, which

cannot be explained by theory ignoring the l = 0 resonance. Another important exper-

imental fact is that the mode excitation is sensitive to NBI injection angle: the switch

in the injection angle accompanied by the decrease of the number of circulating particles

resulted in stabilization of modes with lowest frequencies, which was observed in the shot

#104505.9 This fact can be explained by our theory, which predicts that the instability

exists only when k⊥ρ⊥ =
√

λ0 (ω/ωB)(v0/vA) < 2, and thus, the increase of λ0 may vio-

late the latter condition. In addition, our consideration agrees with the experimentally

observed reduction of the number of unstable modes when switching the beam energy

from E0 = 80 keV to E0 = 70 keV with the same injection power12: It follows from the

obtained expressions that γb ∼ J1
2(ξb)Js

2(ζb)/
√E0 ∼ E0

s+1/2, therefore, the decrease of E0

may result in violation of the instability condition γb > γd, where γd is the mode damping.

Thus, the carried out analysis reveals an important role of the l = 0 resonance. On

the other hand, the mentioned resonance is possible due to the presence of the drift term

in the local resonance condition, as it follows from Eq. (4). Therefore, the conclusion that

the toroidal drift enhances the destabilization of FMW, which was made for the ”rapid”

high-frequency (ω > ωB) instability in Refs.4,5, is valid also for the ”slow” instability with

ω < ωB. This indicates physical mechanisms responsible for ”slow” and ”fast” insta-

bilities are similar, the mentioned instabilities are essentially the same FMW instability,

which, depending on conditions, has the growth rate either larger or less than the transit

frequency of the energetic ions.
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APPENDIX A: ANTI-HERMITIAN PART OF THE DIELECTRIC

PERMEABILITY TENSOR OF CIRCULATING IONS

We proceed from the following general expression for the dielectric permeability tensor

in local approximation14

εij = δij − i
ωp

2

ω

∫
dvvi(t)

∫ t

−∞
∂F

∂vl(t′)

{(
1− kv(t′)

ω

)
δlj

+
klvj(t

′)
ω

}
exp

{
iω(t− t′)− ik

∫ t

t′
v(t′′)dt′′

}
, (A1)

where the time integration is carrying out along the unperturbed orbit, F the equilibrium

distribution function.

We follow the approach of Ref.15, assuming that characteristic times exceed the particle

transit time. Then we obtain the anti-Hermitian part of the dielectric permeability tensor

averaged over the flux surfaces in the form:

ε̄′′ij = −π
ω2

p

ω2

∑

l,s,σ

∫
EdEdλ

τb

MqR
qiqj|Gl,s|2δ(〈Ωl〉 − sωb)Π̂lF (E , λ), (A2)

where τb is the particle transit time, l and s are integers, σ = sgnv‖, E = Mv2/2,

λ = µB0/E , µ = Mv2
⊥/2B,

Π̂l = ω
∂

∂E + (lωB0 − λω)
∂

E∂λ
,

∫
F (v)dv = 1

q =

{
v⊥

l

ξ
Jl(ξ), iv⊥J ′l (ξ)

}
, ξ =

k⊥v⊥
ωB0

,

Gl,s = 〈exp{iW (t)− isωbt}〉,

W (t) =
∫ t

0

(
l(ωB − 〈ωB〉) + k‖(v‖ − 〈v‖〉) + ωd − 〈ωd〉

)
dt′,

〈Ωl〉 = ω − l〈ωB〉 − k‖〈v‖〉 − 〈ωd〉, 〈...〉 =
1

τb

∫ τb

0
dt(...) (A3)

where Jl is the lth order Bessel function. In the small-orbit-width approximation, |r −
r0| ¿ r, the expression for Gl,s for the well circulating particles, is reduced to:15

Gl,s = Js(ζ), (A4)

where
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ζ =
(
ζ2
‖ + ζ2

⊥
)1/2

, ζ‖ =
lωB0qr

v‖0
, ζ⊥ = k⊥qR

vd

v‖0
,

v‖0 = σv(1− λ)1/2, vd =
v2(1− λ/2)

ωB0κR

〈Ωl〉 = ω − lωB0 − k‖v‖0, ωb = v‖0/(qR), (A5)

where ωB0 = 〈ωB〉(λ = 0), κ the elongation of the plasma cross section.
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16th IAEA Conference on Fusion Energy, Montreal, Canada), IAEA, Vienna, v.2, 497

(1997).
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FIG. 1. Dependence of the growth rate drive, Dl, on ξb for λ0 = 0.4. 1, l = 0; 2, l = 1 and

ω̃ = 0.3; 3, l = 1 and ω̃ = 0.5; 4, l = 1 and ω̃ = 0.8.
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FIG. 2. Normalized growth rate, Γ = (γb/ω)(n/nb), versus the pitch-angle parameter for

k‖ > 0, ω̃ = 0.5, and various directions of the wave propagation: 1, |k‖|/k = 0.5; 2, |k‖|/k = 0.4;

3, |k‖|/k = 0.3. Here n and nb are the plasma and beam density, respectively.
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FIG. 3. The same as Fig. 2 but for k‖ < 0.
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