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Abstract

Non-linear equations for the slow space-time evolution of the radial drift wave envelope and zonal

flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium

within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin and

White [Phys. Plasmas 7, 3129, (2000)]. Solutions clearly demonstrate turbulence spreading due to

non-linearly enhanced dispersiveness and, consequently, the device-size dependence of the saturated

wave intensities and transport coefficients.

PACS numbers: 52.55.Dy, 52.55.Fa, 52.55.Tn
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The dependence of plasma confinement on the device size is obviously a very crucial

issue in fusion energy research. Assuming drift waves are responsible for the anomalous

transport, size-scaling can be reduced, in the simplest model, to the dependence of drift-

wave fluctuation intensity on ρ∗. Here ρ∗ = ρi/Lp with ρi and Lp being, respectively, the

ion Larmor radius and the plasma inhomogeneity scale length. The coherent 4-wave drift

wave-zonal flow modulation interaction model of Chen, Lin and White [1] has captured the

essential features observed in global gyrokinetic simulations in the ρi/Lp → 0 limit. We

are thus motivated to adopt the same model as a theoretical paradigm, including finite Lp

(i.e., finite ρ∗) plasma inhomogeneities. In this finite-ρ∗ coherent 4-wave model, not only the

drift wave (pump) radial envelope will be localized, leading to reduction in the modulational

instability growth rate due to the finite interaction region; but more interestingly the damped

pump and sidebands will disperse outward leading to radial spreading of the drift wave

turbulence, qualitatively similar to that observed in recent simulations [2]. As we will

show in the following, this turbulence characteristic behavior crucially depends on the wave

dispersive properties of the radial envelope; which, in turn, depend intrinsically on the

toroidal geometry of the considered system. As a consequence, the model we propose here

predicts that numerical simulations of turbulent transport in cylindrical plasmas should be

generally and profoundly different from those in a torus.

Following the theoretical formalism introduced in Refs. [1, 3], we assume that fluctuating

fields are given by a single n 6= 0 drift wave, δφd, and a zonal (n = m = 0) scalar field

perturbation δφz:

δφd = δφ0 + δφ+ + δφ− ,

δφ0 = einϕ
∑
m

A0,me
−imϑφ0(nq −m, r) + c.c. ,

δφ± = e±inϕ
∑
m

A±,me
∓imϑφ±(nq −m, r) + c.c. ,

δφz = Az(r) + c.c. , (1)

where m and n are, respectively, poloidal and toroidal mode numbers. To simplify notations,

time dependencies are suppressed, while (r, ϑ, ϕ) denote a right handed toroidal coordinate

system and q is the tokamak safety factor. Equations (1) explicitly indicate the existence

of two characteristic spatial scales for high-n drift waves [4]. The long scale reflects the

characteristic radial variation of A0, A±, Az, i.e. of mode envelopes and zonal flow, and is

typically shorter than the equilibrium scale Lp. The short radial scale, instead, is associated
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FIG. 1: Radial structure of the real part of the wave fields, IReP (black), IReS (red) and IReZ

(green), at three subsequent times τ = 20 (left), τ = 50 (center) and τ = 125 (right), for A = 1.15

and L = 200. The radial domain where the pump is linearly stable is also indicated.

with the parallel (to the ambient magnetic field) mode structure. It is ≈ n−1dr/dq and can

be formally separated via the Fourier transform

φ0(nq −m, r) =
1√
2π

∫ ∞
−∞

e−i(nq−m)θψ0(θ, r)dθ , (2)

where r dependencies reflect slow residual radial variations on the equilibrium scale. Similar

equations can be written for φ±(nq −m, r).

The typical time for setting up the parallel mode structure is of O (ω−1), the inverse

mode frequency. Zonal flows, meanwhile, have characteristic times that are long compared

with ω−1 and typically of O
(
γ−1

L

)
, the inverse drift wave growth rate. Assuming formally

proximity to marginal stability such that γL � |ω|, non-linear dynamics, thus, will only

affect radial envelope and zonal flow structures, leaving parallel mode structures essentially

unchanged. That is, radial envelope and zonal flow structures could be completely different
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from those predicted by linear theory and need to be determined consistently from non-

linear equations for their slow space-time evolution. Detailed derivations of these equations

will be given elsewhere. The basic approach for such derivations, however, can be found in

Refs.[1, 3] in the k2
⊥ρ

2
i � 1 limit, k⊥ being the perpendicular (to the ambient magnetic field)

drift wave vector. These equations are the quasi-neutrality conditions for the fluctuating

fields of Eq. (1); explicitly written in a closed form via direct solution of the non-linear gyro-

kinetic equation [5]. As stated above, the possibility of reducing these non-linear system

of Partial Differential Equations (PDE) (2-D in space plus time) to a non-linear system

of Pseudo Differential Equations (ΨDE) (1-D in space plus time) relies both on time and

spatial scale separation of the mode structures; i.e., γL � |ω| and |n−1dr/dq| � ∆, ∆

representing the characteristic width of the radial envelope and zonal flow structures[6].

Under these conditions, one can assume the parallel mode structures ψ0(θ, r), ψ±(θ, r) to be

those predicted by linear theory and adopt an eikonal ansatz for radial envelope and mode

structures

A0,m = A0(r) = ei
∫

nθkdq ,

A∗−,m = A+,m = A+(r) = ei
∫

nθkdq
(
ei
∫

nθzdq + c.c.
)
,

Az = ei
∫

nθkzdq + c.c. . (3)

Note, in Eqs. (3), we take kz ≈ kr , and assume |∂rkr/k
2
r | � 1 and |∂rkz/k

2
z | � 1 for

consistency. Here, k−1
z = θ−1

kz n
−1dr/dq and k−1

r = θ−1
k n−1dr/dq, 2πk−1

z (k−1
r ) being the

characteristic wavelength of zonal flow (drift wave) oscillations. Within this framework, it is

possible to average the quasi-neutrality conditions for drift wave and zonal flow and reduce

them to the following standard form for k2
⊥ρ

2
i � 1 [1, 3]:

LPP = 2S∂xZ

LSS = −P∂xZ

LZZ = 2IRe [P ∗∂xS − S∂xP
∗] . (4)

Here, the normalized fields P, S, Z are related with A0, A+, Az as

e [A0, A+]

Te
=

ω/ωci

(nqρi/r)
2

(
1.6q2

α0ε1/2

)1/2
[P,−iS]

sΓ1/2
,

eAz

Te
=

ω/ωci

(nqρi/r)
2

Z

sΓ1/2
, (5)
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where Γ = ω/|γL P (x = ∞)| is the mode frequency normalized to the drift wave growth rate

at the boundaries of the radial domain, s = (r/q)(dq/dr), ε = r/R0, R0 is the tokamak major

radius, α0 = 1 + δp⊥i/(en0δφ) [1], δp⊥i is the perpendicular ion pressure fluctuation, n0 the

equilibrium density and other notations are standard. Note that Eqs. (4) have the Reynolds-

stress like antisymmetric non-linearity, as it is generally expected for electrostatic drift waves

in the k2
⊥ρ

2
i � 1 limit [5, 7]. The linear operators LP ,LS,LZ , meanwhile, are defined in

terms of the local drift wave dispersion function D = DR(r, ω, θk) + iDI(r, ω, θk); with the

wave frequency ω0 and envelope radial wave-number θk0(r) given by DR(r, ω0, θk0(r)) = 0.

More precisely:

LP,S = ∂τ − γ̄P,S − 2δ1/2∂x + iΓ(λ + ξ) + i∂2
x ,

LZ = (∂τ + γz) , (6)

where time is normalized as τ = |γL P (x = ∞)|t, [γ̄P,S, γ̄z] = [γLP,S , νz]/|γL P (x = ∞)|,
νz being the zonal flow collisional damping, νz ≈ (1.5ετii)

−1 [8]. The normalized radial

coordinate x and the other quantities to be defined in Eq. (6) are given by:

ξ =
θk0∂DR/∂θk0 − θ2

k0∂
2DR/∂θ

2
k0

ω0∂DR/∂ω0
,

λ =
θ2

k0

2

∂2DR/∂θ
2
k0

ω0∂DR/∂ω0
; δ1/2 =

ξΓ1/2

2λ1/2
,

γL = − DI

∂DR/∂ω0
;

∂

∂x
=

λ1/2Γ1/2

θk0n(dq/dr)

∂

∂r
. (7)

In the cylindrical limit, ∂DR/∂θk0 = 0 and ξ = λ = δ1/2 = 0 as well as ∂x = 0 in Eqs.(6)

and (7), demonstrating the crucial importance of toroidal geometry.

Equations (4) generally require numerical solutions. As a simple but relevant paradigm,

we take Gaussian non-uniformity profiles and quadratic dispersiveness for numerical studies

of Eqs. (4). That is, DR = ω/ω0 − 1 + θ2
k + V (x), with the potential well V (x) = 1 −

exp(−x2/L2), where L is related with the equilibrium profile scale as L = |ndq/dr|Lp/Γ
1/2.

We also choose DI = −(γ̄P (x)/Γ) = −(1/Γ)(A exp(−x2/L2) − 1) for the pump and DI =

(γ̄d/Γ) for the sidebands in order to have

LP = ∂τ − γ̄P (x)− iΓV (x) + i∂2
x ,

LS = ∂τ + γ̄d − iΓV (x) + i∂2
x ,

LZ = (∂τ + γ̄z) . (8)
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FIG. 2: Characteristic squared width of the wave fields normalized to L2 as a function of time, for

A = 1.2 and L = 200. Color code is the same as in Fig. 1.

From Eqs. (4) and (8), we readily recover the local limit considered in Ref. [1] by taking L→
∞, P = P0(t), S = S0(t) cos(κzx) and Z = Z0(t) sin(κzx). In that case, maximum zonal flow

growth rate for fixed pump amplitude, Γz,Max = |P0|2− γ̄z, is expected for κ2
z = γ̄d + Γz,Max

i.e. for θkz = Γ−1/2(γ̄d + Γz,Max)
1/2[1]. In the same L → ∞ limit, Eqs. (4) also admit a

fixed point solution that, for minimum zonal flow amplitude, Z2
0,min = 2γ̄P0γ̄d/|γ̄d − γ̄P0| is

characterized by P0,f = γ̄1/2
z γ̄

1/2
d /|γ̄d − γ̄P0|1/2 exp(−iγ̄P0τ ), S0,f = −(1 + i)(γ̄P0/2γ̄d)

1/2P0,f ,

with γ̄P0 = A− 1 and κ2
z,f = |γ̄d − γ̄P0|.

Fast radial non-linear oscillations of sidebands and zonal flow on the characteristic scale

≈ κ−1
z are a general feature of the solutions of Eqs. (4) also for finite L [6]. The spatially

averaged drift wave intensity on this short scale is Ī = |P + 2S|2 = |P0|2 + 2|S0|2 and, for

the fixed point solution as L → ∞, Īf = |P0,f |2 + 2|S0,f |2 = γ̄z(γ̄d + 2γ̄P0)|γ̄d − γ̄P0|−1.

Assuming drift waves are responsible for anomalous transport and that anomalous diffusion

in an infinite system has gyro-Bohm scaling, χ∞ = χGB ≈ ρ∗ωciρ
2
i , the present model

yields χ = χGB(Ī/Īf). Thus, any size-scaling of anomalous transport can be reduced to

the dependence of Ī on L, and ultimately on ρ∗. In order to investigate this aspect, we

have solved Eqs. (4) and (8) numerically, keeping γ̄z = 0.1, γ̄d = 1 and Γ = 4 fixed,

while changing both γ̄P0 = A − 1 and L to assess Ī dependencies on these parameters.

Snapshots of simulation results for the wave fields at different times are shown in Fig. 1

for A = 1.15 and L = 200. They clearly demonstrate outward radial dispersion of pump,

assisted by the non-linear modulation interaction and leading to radial spreading of the drift
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FIG. 3: Drift wave intensity
〈
Ī
〉

vs. L after spatial averaging on one fifth of the linearly unstable

domain. The three curves refer to A = 1.15, A = 1.2 and A = 1.3.

wave turbulence qualitatively similar to that observed in recent simulations by Lin et al. [2].

Pump radial spreading is then followed by similar spreading of zonal flow and sidebands,

as indicated in Fig. 2. Numerical solutions can be understood via asymptotic analyses of

Eqs. (4) and (8); employing the optimal ordering ∂τ ≈ γ̄z ≈ γ̄P0 � γ̄d. Here, we omit

the details and only report some of the main results. The leading order solution can be

represented as P ∼ P0(x1, τ ), S ∼ S0(x2, τ ) cos(κzx), Z ∼ Z0(x2, τ ) sin(κzx), x1 ≈ L1/2,

x2 ≈ L1/4, with κz = γ̄
1/2
d for the fastest growing zonal flow. Equations (4) and (8) then

reduce to S0 = −(1 + i)P0Z0/2γ̄
1/2
d and

[
∂τ − γ̄P (x) + Z2

0/2− iΓV (x) + iZ2
0/2 + i∂2

x

]
P0 = 0 ,[

∂τ + γ̄z − |P0|2 − 2γ̄−1
d |P0|2∂2

x

]
Z0 = 0 . (9)

Zonal flows, thus, act both as non-linear damping as well as anti potential well on the drift

wave pump. Meanwhile, the pump drives zonal flows non-linearly but it generates non-linear

diffusion as well, that manifests itself in numerical simulations as turbulence spreading [2, 9].

In the early non-linear phase, P0 = Π0(τ )Hp(y) exp(−y2/2), with y = Γ1/4L−1/2(1 + i/4Γ)x,

Hp are Hermite polynomials and Π0 ∼ exp[i(2p+1)(Γ1/2/L)τ + γ̄P0τ − (p+ 1/2)τ/(LΓ1/2)].

The maximum order of excited radial modes will then be p ≈ Γ1/2Lγ̄P0, while the fastest

growing mode is the ground state, for which Z0 = ζ0(τ ) exp(−γ̄1/2
d Γ1/4x2/

√
8L) and ζ0 ∼

exp[|Π0|2(1 −
√

2Γ1/2/γ̄dL) − γ̄z ]τ , as in Fig. 1 (left). When radial spreading stops and

the fluctuation intensity has reached a time asymptotic value (see right frame in Fig. 1),
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FIG. 4: Values of
〈
Ī
〉
fit = 24.0(L− 9.6)1/2(γ̄1/2

P0 + .03γ̄P0L)/(98.3 + L3/2) are shown vs. the same

simulation data of Fig. 3. Same markers are maintained.

both pump and sideband are characterized by complex radial structures on intermediate

scales between fast non-linear oscillations on ≈ γ̄
−1/2
d and the size of the linearly unstable

region ≈ γ̄
1/2
P0 L. To adequately evaluate the drift wave intensity Ī , we have taken a further

spatial average of its value to make the result reasonably independent on the averaging

method itself. Figure 3 shows the results of the spatially averaged drift wave intensity〈
Ī
〉

on 1/5 of the linearly unstable domain [10]. In the L → ∞ limit, numerical results

reflect well the values for the fluctuation intensity expected from the fixed point solution,

i.e.
〈
Īf

〉
' 0.15, 0.18, 0.23 respectively for A = 1.15, 1.2, 1.3. The scaling of

〈
Ī
〉

with

the system size is evident: it sharply increases with L for L < 30, suggesting a Bohm

scaling of anomalous transport, and it eventually reaches the asymptotic value set by the

fixed point solution for L > 100, where gyro-Bohm scaling is indeed expected. Due to

the definition of L = nq(ρi/r)(|s|/ρ∗)Γ−1/2, values obtained from simulation results depend

intrinsically on dimensionless physical parameters such as magnetic shear and normalized

poloidal wavelength. With the parameters of global gyrokinetic simulations reported in

Ref. [2], and defining a as the tokamak minor radius, present results would predict a Bohm to

gyro-Bohm transition for a/ρi > 420 and saturation to gyro-Bohm transport for a/ρi > 1400,

in remarkable agreement with the results therein [2]. From dimensional analyses of Eqs. (4)

and (8), we note that the dependence of
〈
Ī
〉

on γ̄P0L is expected, with γ̄P0L representing

the ratio between the size of the unstable region and the characteristic scale of pump wave-

packets as well [6]. In particular, Fig. 3 shows that
〈
Ī
〉
≈ γ̄

1/2
P0 (L − Lcrit)

1/2 as γ̄P0L → 0

and
〈
Ī
〉
≈ γ̄P0 as γ̄P0L → ∞. We have therefore fitted the simulation data on

〈
Ī
〉

with
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〈
Ī
〉

fit
= 24.0(L−9.6)1/2(γ̄

1/2
P0 + .03γ̄P0L)/(98.3+L3/2), and the results are plotted in Fig. 4.

In summary, we have demonstrated that the coherent 4-wave drift wave-zonal flow modu-

lation interaction model of Chen, Lin and White [1] not only captures the essential features

observed in global gyrokinetic simulations in the ρi/Lp → 0 limit, but, by allowing non-

uniform equilibrium, accounts as well for size scaling of drift wave intensity and ultimately

of turbulent diffusion. This model sets a hierarchy among the relevant non-linear interac-

tions; making it possible to consistently derive equations for the slow space-time evolution

of drift wave radial envelope and zonal flow structures. The predicted size scaling of drift

wave intensity is remarkably similar to that of global gyrokinetic simulations [2].

This work was partly done with support of U.S. D.o.E. Grant DE-FG03-93ER54271 and

Contract No. DE-AC02-76-CH03073 to University of California at Irvine and Princeton

Plasma Physics Laboratory.

[1] L. Chen, Z. Lin, and R. White, Phys. Plasmas 7, 3129 (2000).

[2] Z. Lin, S. Ethier, T. Hahm, and W. Tang, Phys. Rev. Lett. 88, 195004 (2002).

[3] L. Chen, Z. Lin, R. White, and F. Zonca, Nucl. Fusion 41, 747 (2002).

[4] Y. Lee and J. V. Dam (1977), in Proceedings of the Finite-Beta Theory Workshop, Varenna

1977, edited by B. Coppi and W. Sadowskii (U.S. Department of Energy, Washington, DC,

1977) CONF-7709 167, p. 93.

[5] E. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).

[6] L. Chen, R. White, and F. Zonca (2003), Paper 2D02. Presented at the 2003 International

Sherwood Fusion Theory Meeting, April 28-30, Corpus Christi, TX.

[7] A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205 (1977).

[8] F. Hinton and M. Rosenbluth, Plasma Phys. Contr. Fusion 41, A653 (1999).

[9] Z. Lin, T. Hahm, S. Ethier, W. Lee, J. Lewandowski, G. Rewoldt, W. Tang, W. Wang,

L. Chen, and P. H. Diamond (2002), Paper TH/1-1. Presented at the 19.th IAEA Fusion

Energy Conf., Lyon, France, Oct. 14-19.

[10] Z. Lin (2003), Private communication.

9



07/07/03

   External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute

for Physics, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Laboratory for Complex Energy Processes, Institute for Advanced Study,

Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences,

People’s Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2,

Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California

at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


