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L-HMode Transitions in the National Spherical Torus Experiment

(NSTX)

S.M. Kaye1, C.E. Bush2, E. Fredrickson1, B. LeBlanc1, R. Maingi2, S.A. Sabbagh3

Abstract

Edge data from plasmas in the National Spherical Torus Experiment (NSTX) [S. Kaye et al., Fusion

Technology, 36, 16 (1999)] have been compared to theories of transport suppression that have been used

to develop a physics framework for Low confinement (L)- to High confinement (H)-mode transitions. The

NSTX data were obtained in low aspect ratio (R/a�1.3) discharges taken from a variety of discharge phases,

including L-modes, L-H transitions and H-modes with and without Edge Localized Modes (ELMs). The

comparisons show that the group of points taken just before the L-H mode transition are well mixed with the

purely L-mode group to within the measurement uncertainties, indicating that changes in these parameters

leading up to the transition are subtle. One of the theory parameters, ���� � ����������, does show a

clear threshold (����=1 to 2) between the H-mode grouping of points and those remaining in the L-mode

or taken just prior to the transition. Additionally, there is no evidence for an edge temperature threshold

necessary for transitioning into the H-mode. NSTX data indicate further a possible connection between L-H

transitions and non-ambipolar beam ion losses.

1Princeton Plasma Physics Laboratory, Princeton University, Princeton, N.J. 08543
2Oak Ridge National Laboratory, Oak Ridge, Tenn.
3Dept. of Applied Physics and Applied Mathematics, Columbia Univ, NYC, NY, 10027
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I. INTRODUCTION

The discovery of the High-confinement (H-) mode� nearly two decades ago, as well

as development of the “supershot”� operating scenarios, have indicated the critical role of

the plasma edge in optimizing confinement throughout the entire plasma. In particular, the

H-mode offers an operating scenario that can combine high energy confinement, greater

plasma stability to magnetohydrodynamic (MHD) modes and steady-state operation. It is,

therefore, important to understand those discharge conditions and parameters that could

lead to the transition from the Low confinement (L-) mode to the H-mode state. Since the

H-mode transport barrier develops near the plasma edge, it is natural to study plasma edge

parameters in this context.

There has been much work to develop theoretical models of transport suppression that

both distinguish between the two confinement states, and, more importantly, that can lead

to a predictive means of identifying conditions and parameter changes just prior to the tran-

sition between the two. The latter will help to identify the underlying physics mechanisms

as well as facilitate device operation when H-mode states either are, or are not, desired.

Recent theory has focused on drift-resistive ballooning modes,��� peeling modes,� the drift-

Alfv�en instability� and, most recently, on shear flow and field generation by finite-�� drift

waves.�

The theories have enabled experimentalists to characterize the measured edge parame-

ters by the important variables as predicted by the theory in an effort to identify the under-

lying change of transport processes. For instance, results from Alcator C-Mod indicated a

threshold edge �� for an L-H transition of approximately 120 eV at the 95% flux surface,

and clearly showed a distinction, within the framework of the drift-resistive ballooning

mode theory, between discharges in well developed L- or H-mode plasmas.� A simple

temperature threshold was not observed in DIII-D,	��
 which, nevertheless, also showed a

distinction between L- and H-mode phases for all three theories, but the results did not
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identify parameter changes as a precursor to an H-mode transition.	 Furthermore, the H-

mode edge parameters for pellet-fueled discharges in DIII-D fell significantly below those

predicted by the theories.�
 On the other hand, data from COMPASS-D appears to show

some predictive capability of the drift-Alfv�en theory in that discharge characteristics near

the time of the L-H transition clustered at or above the predicted transition threshold.�� In

the recent study of finite-�� drift wave-induced turbulence suppression, DIII-D edge tem-

peratures showed very good agreement with the predicted threshold.� The authors also

indicated that this theory is successful in reconciling differences in the threshold depen-

dence on�B drift direction and pellet fueling.

Studies of possible temperature thresholds for L-H transitions have been carried out in

other devices, ASDEX-U,�� JET�� and JT-60U,�� although these studies did not attempt to

relate the measured edge parameters to the predictions of the transition theories mentioned

above.

In this paper, for the first time, data from L- and H-modes in a high power spherical

torus (i.e., low aspect ratio tokamak) will be studied in the framework of the theories dis-

cussed above. The data were obtained from experiments on the National Spherical Torus

Experiment (NSTX), which has the following operating parameters: major/minor radius,

R/a=0.85/0.68 m � 1.3; plasma current, �� � 1.4 MA; toroidal magnetic field, �� � 0.6

T; elongation, � � ���� triangularity, Æ � ���� neutral beam heating power, ��� � 5 MW

(�80 keV �
 neutral beams); High Harmonic Fast Wave heating power, ����� � �

MW, and �� plasmas. A complete description of the design and physics mission of the

experiment can be found in Kaye et al.��
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II. EXPERIMENTAL RESULTS

A. H-mode Plasmas

Attaining the H-mode in NSTX has been crucial to achieving a high-��, high non-

inductive current fraction discharge. As will be seen, H-mode operation in NSTX leads

to broad density profiles, which, in turn, lead to broad pressure profiles and high-�
 nec-

essary for stable high-�� operation. High-�� operation, coupled with the high energy con-

finement times associated with H-modes (up to 2.5 times ITER97L),�� leads to relatively

high bootstrap fractions. To date, 	 �� 
 values up to 36% have been achieved, where

�� �	 � 
 ���

 , where �
 is the vacuum toroidal magnetic field at the geometric axis.

Corresponding values of �� (� ���
���) have reached 6 to 6.5 in H-mode plasmas.��

Irrespective of the definition of �� (i.e., with respect to the toroidal or total magnetic field),

these high �� plasmas are above the ideal, no-wall limit.�� Additionally, H-mode discharges

have achieved steady-state conditions for over 500 msec (� ��	 ), and bootstrap fractions

of approximately 50%.

H-mode plasmas were created in NSTX with both neutral beam (NB) and radio fre-

quencey (rf) heating. In order to obtain an L-H transition with neutral beam heating, it was

necessary to operate with plasmas in a lower single null or double null divertor configu-

ration with a 1 to 6 cm inner wall gap, �� from 0.6 to 1.3 MA, �� from 0.3 to 0.6 T and

��� 
 ����MW. Densities at the transition were in the range from 1.5 to 2.0 � 	��	 ���.

H-phases of up to 600 msec were produced, and the discharges tended to be ELM-free if

the plasmas became diverted at the start of the current flattop phase but ELMy if the plasma

became diverted during current ramp-up. ELM characteristics depend also on gas fueling

rate and divertor configuration/triangularity. Comprehensive descriptions of the NSTX H-

modes can be found in Maingi et al�	��
 and Bush et al.�� Only NBI-heated discharges will

be used for the study presented here, although H-modes with rf heating only have been

observed. There are not, however, a sufficient number of rf-only H-modes to do any mean-
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ingful comparisons between threshold conditions in those and NB-heated discharges. In

addition, no ohmic H-modes were observed.

What is found in the theory-experiment comparison in this work is that L- and H-mode

NSTX plasmas are distinguishable within the frameworks of most of the theories, and this

distinction is due primarily to differences in �� and �
, the density gradient scale length,

between the two states. The theories, however, appear to have little or no predictive capa-

bility. This is not necessarily surprising in light of the relatively limited set of parameters

considered by the various theories and the possible importance of other effects. One such

effect, evidence for which will be presented, is fast ion loss. Because of the low toroidal

magnetic field of NSTX, the fast ion Larmor radius can be a signficant fraction of the minor

radius (1/5 to 1/3) unlike that at conventional aspect ratio, and fast ion loss due to classical

or MHD-related effects can be large. It will be shown how this loss can influence the L- to

H- transition.

An example of an H-mode discharge is shown in Fig. 1. Close to 4 MW of neutral

beam power was injected into this 0.8 MA discharge (top panel), and the L-H transition as

seen in the �� and line-averaged density traces (middle panel) occurred at approximately

0.24 sec, shortly after the second beam source turned on. At the time of the transition, the

time rate of change of the line-averaged density increased, and the stored energy (bottom

panel), which was increasing due to the turning on of the second beam source, continued to

increase. The stored energy reached a steady-state for over 0.3 sec, with the confinement

enhancement factor, relative to the ITER98pby,2 scaling,�� reaching 1.4 to 1.6. The con-

finement enhancement is calculated by normalizing the global confinement time (including

the fast ion component) by the value given by the scaling expression, which is for the ther-

mal confinement time. Calculations of fast ion energy content and losses are underway in

order to determine the thermal confinement times, and, therefore, a more accurate thermal

confinement enhancement factor.

The critical data used for this study come from the multi-point Thomson scattering
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(MPTS) diagnostic, which measured instantaneous electron temperature and density pro-

files every 16 msec. The MPTS profiles consisted of 20 spatial points, with the channels

separated by approximately two to three cm in the outer portion of the plasma. Tempera-

ture, density, and gradients of these quantities were taken from spline fits to the MPTS data

for this study. The spline fits used consisted of 100 radial points, with a radial grid of 1.3

cm. Data were chosen at locations midway down the edge density gradient, similar to the

location chosen for the DIII-D studies.	

Figures 2 and 3 show sets of MPTS profiles, both full and in the outer portion of the

plasma (R � 1.2 m), for two discharges, one 0.7 msec before the L-H transition (Fig. 2),

and one in the midst of the H-phase, ���=0.252 sec (Fig. 3). Also shown in each figure

are the positions of the separatrix, as determined from EFIT magnetic reconstructions,��

and the “mid-gradient” location at which the relevant plasma parameters are measured or

calculated. The mid-gradient location is determined from the positions of the knee and the

separatrix. In these examples and for the points to be shown, the normalized poloidal flux

at the mid-gradient location varied from 0.935 to 0.995, but with most of the values being

approximately 0.98. The red triangles in the figures represent the actual data points whose

statistical (photon count) errors are actually smaller than the triangle height. The blue lines

are the spline fits to the data. What is clearly seen in the Fig. 3 is the development of

an “ear” in the density profile during the H-phase, and the much larger edge density and

density gradient than during the L-phase. During the latter portions of the H-phase, the

central density fills in, and the density profile becomes flat. In these cases, the density

gradient, as determined from the spline fit, is about a factor of two to three larger during

the H-phase than just prior to the transition.

B. Comparisons with Transition Theories

For the comparison with theory, 225 different time points from 214 different discharges

were used. The 225 time points were grouped by the following discharge phases and con-
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ditions: L-mode - 41; Dithering transitions - 6; times just prior to the L-H transition -

79; ELM-free H-mode - 22; ELMy H-mode - 77 (64 with small ELMs and 13 with gi-

ant ELMs). For the L-H transition grouping, only times where the MPTS measurement

was within 8 msec prior to the transition were used. For this grouping, the range of


��� � ��� � ���� was 0.0 to 7.9 msec, with an average value of 4.1 msec and a

standard deviation of 2.4 msec. In the H-mode grouping, for both ELM-free and ELMy

points, the time of interest was taken within the well-developed H-mode phase, with the

average ���� � ���=143.7 � 74.4 msec. Dividing the data into these groupings is im-

portant for both determining any significant differences among the various phases as well

as, particularly with the L-H grouping, determining whether there are any theory-based

parameters that can be used as predictors for impending transitons.

The results of the comparisons are shown in Fig. 4. Data is plotted in terms of the

relevant theoretical quantities for the drift-resistive ballooning mode (Fig. 4a), the peeling

mode (Fig. 4b), and the drift-Alfv�en mode (Fig. 4c). The ELMy and ELM-free data are

grouped together in the H-mode group; the ELMy discharges generally lie at the upper

range of the H-mode groupings for the three different cases. The dithering grouping is

indistinct from the L-H group of points (i.e., times taken just before the transition) in the

figure, and, therefore, have not been separated from the L-H group.

In the drift-resistive ballooning mode theory, the two controlling parameters are the

MHD ballooning parameter, ��� � ���������� where � is radius, � is the inverse

rotational transform and �� is as defined previously, and the diamagnetic parameter, ����,

which reduces to �����
�������������


����	 � � ��
���
�� � where �� � ������� � � �����,

and �
 is the density scale length, with all quantities taken locally and � taken to be one.

Here, �� is electron gyrofrequency, ��� is electron-ion collision frequency, �� is the sound

speed and ��� is the ion gyrofrequency. The above expressions are valid for a shifted circle

geometry, which is not entirely appropriate for NSTX; however, the difference in results

from the above expressions and those with general geometry and shaping corrections is
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small.�� Also, for these comparisons, only the electron profiles were used to determine

�
� ��� ������, etc.

In the drift-resistive ballooning theory, higher ���� causes enhanced poloidal flow

shear which serves to suppress turbulence. In addition, increased ��� also leads to

transport suppression so that a reduced transport (H-mode) region forms at large values of

���� and ���. The NSTX results shown in Fig. 4a show a clear separation between the

points in the H-phase and those points either remaining in the L-mode or in the transition

groupings, indicative of the higher local � and � � during the H-phase. What is striking in

the plot is that this separation occurs at a value of ��� � 1 to 2 over almost an order of

magnitude variation in ����, consistent with expectations from a bifurcation mechanism

for which ��� � 1 to 2 is the threshold. In contrast, the approximate boundary for the

H-mode, as given by the theory, is denoted by the shaded region in Fig. 4a. As can be seen,

there is not quantitative agreement between the theory and the experimentally observed

boundaries, with the experimental threshold for ���� being about a factor of two lower

than the theoretical threshold (� ���), and the experimental threshold for ��� being a

factor of two to three higher than that of theory (� ���).

Of particular significance also is that little difference is seen among the L-mode and

L-H transition groupings, although it appears from the plot (and also in Fig. 4b) that the

maximum ��� values of the L-H grouping lie slightly above those of the group of L-

mode points. This systematic difference, however, is within the error bars, the typical size

of which is shown on each plot. In addition, no systematic dependence between the mag-

nitude of ��� and temporal proximity to the L-H transition was observed; that is, ���

was not systematically higher for L-H points for times that were closest to the time of the

L-H transition. These results indicate that changes in the relevant profile characteristics

on time scales just prior to the transition are subtle. The error bars were estimated from

the appropriate sum of the relative errors of the individual parameters that make up these

variables. The largest source of quantifiable random error comes from the spline fits to
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the Thomson scattering data, and their derivatives. Consequently, even with the size of the

error bars, the above conclusion regarding the threshold value of ��� is still valid. How-

ever, the changes leading up to the transition are unresolvable within experimental error,

limiting the usefulness of this parameter as a dynamic predictor of an impending transition.

In the peeling mode formulation, the key parameters are the electron collisionality,

�� � �����������
���

 ��� �

� �
��� and, once again ���. The peeling mode is stabilized by

edge pressure gradient, but destabilized by edge current. Therefore, high collisionality is

needed to reduce the bootstrap current driven by large��, thus forming a space of reduced

transport at large ��� and ��. Fig. 4b also shows a clear separation between the H-phase

points and the L-mode or transition groupings, with the ��� � 1 to 2 threshold extend-

ing over an order of magnitude in � �� , and with the L and L-H groupings overlapping over

this range as well. As for the drift-resistive ballooning theory, there is some discrepancy

between the experimental and theoretical thresholds (the H-mode region as defined by the-

ory is again shown by the shaded region). The theoretical threshold for � �� is �1, while

experimentally H-mode values down to 0.2 are observed, with L and L-H points above the

theoretical threshold as well.

The same results are also seen in Fig. 4c, in which �
��	�����
  � ��

��
�����������	�

����
  where � � ������ and �
 � ��� ��������������, is plotted against �
. In this drift-

Alfv�en mode theory, transport is suppressed above the threshold �
 
 	 � ����
 . While

the scatter is much greater for this theory than for the others, the NSTX data do show that

the H-phase points generally lie above a minimum �
��	� ����
  value, consistent with the

COMPASS-D and DIII-D results, which for NSTX is � � (the theoretical threshold is 1).

Again, the transition grouping appears to overlap with the L-phase grouping, and both can

lie above this “threshold” as well.

Comparisons with the above theories were also made at locations close to the knee,

where the normalized poloidal flux varied from 0.91 to 0.98, with most of the values being

approximately 0.955. The results of the comparisons at this location were similar to those
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at the mid-gradient location.

The NSTX edge data also do not indicate any obvious critical temperature for the L-H

transition, as there is no simple separation of measured edge �� values for the L-mode,

L-H or H-mode groups of points from shot-to-shot. The existence or not of a critical edge

temperature can be investigated further within the framework of the zonal flow turbulence

suppression model,� in which the critical �� is given by ����

 �

���
� ���

�����
���. In Fig. 5

is shown a time evolution of ��

�������
(top panel) and �� (bottom panel) at a position 5 cm

inside the separatrix for a discharge that underwent an L-H transition at a time indicated

by the vertical line. A similar plot is shown in Fig. 6 for a lower power, higher current

discharge that remained in the L-mode. As can be seen in Fig. 5, the ��

�������
reached a value

of approximately 0.3 (corresponding to ��=50 eV), and then remained at that level for about

40 msec until it underwent a transition to the H-mode. In some cases, the ��

�������
was seen

to increase monotonically to the point at which it transitioned, while in others, such as the

case shown here, the “threshold” value was reached and the discharge remained there for

some time before undergoing a transition. In other cases yet, the value of ��

�������
at which

the discharge transitioned was actually lower than the values of this parameter at preceding

times. This alone suggests that ��

�������
is not sufficient to determine the L-H transition for

NSTX plasmas. It is seen in Fig. 6, where the discharge remained in the L-mode, that ��

�������

achieved values greater than the value at the transition in Fig. 5 (up to 0.6), and remained

at that higher level. Despite this, and the fact that �� �50 eV during this period of time, no

transition was observed. In general, once a transition occurred, ��

�������
increased as the large

density gradient developed.

The result discussed above can also be studied statistically. In Fig. 7 are plotted his-

tograms of the measured edge �� normalized to the critical �� for time slices just before

the L-H transition (top panel) and for time slices in discharges that remained in L-mode

(bottom panel). The values shown are taken 5 cm inside the separatrix ( 
=0.955 to 0.975,

where  
 is normalized poloidal flux), but similar results are found for radial positions
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anywhere from 3 ( 
=0.975 to 0.995) to 6 ( 
=0.950 to 0.97) cm inside as well. The

histograms show a wide range of ��

�������
for the L-H points; there is no minimum value as

was seen for DIII-D.� The L-H distribution covers a range similar to that covered by the

L-mode distribution of time slices, indicating no separation between these groups of points

(i.e., the L-H distribution is not skewed to higher values of ��

�������
, as might be expected if

this were a controlling parameter).

The results from Figs. 5 to 7 indicate that if there is a local �� threshold for an L-H

transition in NSTX, it has a more complicated scaling than that given by Guzdar et al..� A

more detailed experimental study of whether or not a �� threshold exists is planned, and this

will involve controlling the edge �� through gas or impurity puffing for otherwise constant

discharge conditions.

C. Influence of Fast Ions

The comparisons presented thus far indicate that the theories as such cannot explain the

L-H transition dynamics for NSTX. The theories may need further development to enhance

their validity in low aspect ratio regimes, but they also, however, may not take into account

effects that can influence the L-H transition. One such effect is the non-ambipolar loss of

beam ions, which can influence the edge radial electric field and its shear, and thus the

development of an edge transport barrier. Once piece of evidence that this loss can aid the

L-H transition in NSTX. is the current dependence of the L-H threshold power as reported

in Bush et al.��When the total power required for an L-H transition is normalized according

to the threshold scaling in Eq. 1 of Snipes et al.,�� to take into account the conventional

density, toroidal field and plasma size and shape dependences, a residual dependence of this

normalized threshold power on plasma current is found. The threshold power triples going

from 0.6 to 1.0 MA. For 0.6 MA, ����� � ���� �! was required for an L-H transition

(������������
� � ���), while for 1.0 MA, ����� � 	��� �! (������������
� � �). A key

difference between the two current levels which may lead to the current dependence for
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the reasons just mentioned is the expected beam ion loss through bad orbits and charge-

exchange, which is 40% for 0.6 MA but only 5% at 1 MA.

Transient fast ion loss apparently can also affect the L-H transition. An example of this

is shown in Fig. 8, which is an expanded time period of a sawtooth-free discharge near the

time of an L-H transition. Plotted in the figure is the perturbed magnetic field (top), neutron

signal (middle) and D� (bottom). A transient drop in D� which could signify a transient

entry into the H-mode (dither), and which was associated with a burst ofMHD and a drop in

the neutron flux, occured at 0.231 seconds. The discharge entered into a sustained H-phase

at 0.244 sec, and this L-H transition was associated with a larger MHD burst and larger

drop in the neutron flux (10%). The MHD bursts associated with these drops in neutron

flux and D� are believed to be bounce precession fishbones.�� In both cases, the D� drops

were delayed from the neutron flux drop by about 1 to 2 msec. The drops in neutron flux

indicates a loss or redistribution of the fast ion population, as little or no change in density

or temperature was associated with these events. The L-H transition was associated with

the largest neutron drop, and thus the largest fast ion loss (or redistribution). The drop

in the neutron rate corresponds to a similar reduction in the fast ion reactions creating

these neutrons since the neutrons are produced primarily by beam-target reactions. That

magnitude loss corresponds to over 	��� ��� fast ions, which, according to Parail et al.,��

corresponds to an incremental radial electric field of approximately 3 kV/m. While this

"� is modest compared to values at conventional aspect ratio,�� the associated rotation and

possibly rotational shear can be large owing to the order of magnitude lower �� on NSTX

than that at conventional aspect ratio. It is believed that it is the radial electric field and

shear created by the loss of fast ions that influence the L-H transition, as there is no heat

pulse associated with these MHD bursts that could trigger the transition. Other discharges

reveal series of D� and neutron drops, representing an extended dithering period, where the

ultimate L-H transition here also is associated with the largest neutron drop, and, therefore,

largest fast ion loss.
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III. SUMMARY

In summary, this paper presents the first attempt to relate edge measurements in a high

power Spherical Torus to transport suppression theories in order to understand mechanisms

that may lead to the transition from the L- to the H-mode. Overall, the results challenge

present theory and suggest paths for further development of these frameworks. Data mea-

sured by the MPTS diagnostic were broken into different groups, and for the theories stud-

ied, clear differences between the H-phase points and L-mode and transition groups are

seen. These differences can be attributed primarily to the larger edge pressure and density

gradients and density during the H-phase, and the strong dependence of the respective the-

ory variables on these parameters. In particular, the separation of these data appear to be

consistent with a bifurcation mechanism with ��� � 1 to 2 as a threshold. The experi-

mental boundaries separating the groups are not in strict quantitative agreement with those

expected from theory, and the reason for this may be due, in part, to the fact that only the

electron profile data were used to compute the local �� and gradients. Little distinction is

seen between the L-H group and the L-mode group within the error bars, indicating that

the changes in the parameters, most notably ���, leading up to the transition are subtle,

and any differences in discharges that remain in the L-mode and those in the L-mode that

ultimately transition are not readily resolvable within experimental error either statistically

or dynamically. In addition, the NSTX data show no simple temperature threshold for tran-

sitioning into the H-mode. These results indicate that the theories, at present, have limited

predictive capability to within the temporal and spatial resolution of the dataset used, and

for the low aspect ratio geometry and discharge characteristics.

Key effects may also be missing from the theories. One of may be the possible in-

fluence of fast ion loss, which can be significant for STs, and the effect of turbulence

suppression due to radial electric fields and field shear on the L-H transition. A model

of non-ambipolar losses leading to L-H transitions was developed by Itoh and Itoh.�� In
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this model, non-ambipolar electron losses were induced by microturbulence, while non-

ambipolar ion losses were due to ion-ion collisions, and, therefore, their derived condition

for bifurcation depended strongly on collisionality. It is noteworthy that the NSTX dataset

overall did not show a dependence of the threshold on collisionality (Figs. 4b and 4c); how-

ever, more work is planned which will attempt to identify key parameters and dependences

associated with the fast ion loss that can lead to the L-H transitions in NSTX. Furthermore,

estimates of fast ion loss and generated radial electric fields will be made using the ex-

pected mode structures as computed by MHD stability codes coupled to calculations of the

distribution of fast ions.
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Figure Captions

Figure 1 NSTX H-mode discharge evolution.

Figure 2 MPTS electron temperature and density profiles measured just before an L-H

transition and The red triangles are data points, the blue curves are spline fits to the

data.

Figure 3 MPTS electron temperature and density profiles measured during a well devel-

oped H-phase. The red triangles are data points, the blue curves are spline fits to the

data.

Figure 4 Comparisons between experimental data and theory for (a) drift-resistive bal-

looning modes, (b) peeling modes and (c) drift-Alfv�en modes. The shaded region in

each plot indicate the theoretical prediction of H-mode access.

Figure 5 Time evolution of �� normalized to the critical temperature given by Guzdar et

al� (top panel) and �� (bottom panel) for a discharge that transitioned into the H-

mode at a time denoted by the vertical line The solid triangles are the actual times at

which the data were taken. The discharge parameters were ��=0.8 MA, ��=0.5 T,

��
�=4.1 MW, and �� � ���� 	��	 ��� at the time of the transition.

Figure 6 Time evolution of �� normalized to the critical temperature given by Guzdar et

al� (top panel) and �� (bottom panel) for a discharge that remained in the L-mode.

The solid triangles are the actual times at which the data were taken. The discharge

parameters were ��=1.0 MA, ��=0.44 T, ��
�=1.6 MW, and �� � ��	� 	��	 ��� at

0.25 sec.

Figure 7 Histograms of �� normalized to the critical temperature given by Guzdar et al� 5

cm inside the separatrix for time points just prior to the L-H transition (top) and in

discharges that remained in the L-phase (bottom).
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Figure 8 Expanded time evolution of a discharge showing a dither (t=0.231 sec) prior

to the L-H transition (t=0.242 sec). Plotted is the magnetic field fluctuation (top),

neutron flux (middle) and D� signals (bottom).
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