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Abstract

It is shown that a simple algorithm which exactly segregates between adiabatic and
nonadiabatic electrons in particle-in-cell simulations of drift modes yields excellent conser-
vation properties (e.g. particle number, energy) compared to the conventional δf scheme.
The removal of the free streaming term in the evolution of the marker weight is shown to
be responsible for the improved linear and nonlinear properties of the simulated plasma.

Pacs # : 52.35Kt, 52.30Jb, 52.35Ra

1 Introduction

It is generally accepted that low-frequency, small-scale instabilities are major contenders for the
anomalous transport observed in tokamaks [1–3] and stellarators [4]. Particle-in-cell simulations
of ion dynamics in tokamak plasmas is now well understood; however, the numerical study of
electron dynamics, including kinetic effects, has received much less attention.

The treatment of electrons in particle-in-cell simulations is made difficult due to the fact
that the electrons move ∼ √

mi/me � 1 times faster than the ions. Although the standard
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δf scheme [5] works well for the ion dynamics, an accuracy problem arises when the scheme is
used to treat the electron dynamics. Therefore, noting that the bulk of the electrons respond
adiabatically to the low-frequency (ω � ωci) waves, it may be (physically and numerically)
advantageous to focus on the nonadiabatic part of the electron response.

In this Letter, it is shown that an exact segregation between adiabatic and nonadiabatic
electron responses yields a more accurate linear response of the plasma (e.g. linear growth rate)
and improved nonlinear properties (particle number and energy conservation). The splitting
scheme introduced in this Letter can be adapted to study the impact of electron dynamics on
ion-temperature-gradient driven modes in general toroidal geometry.

2 Kinetic Electron Scheme

In this section, we present a scheme that separates adiabatic and nonadiabatic electron responses
for the case of electrostatic drift waves in shearless slab geometry. The collisionless, electrostatic,
gyrokinetic Vlasov equation for species j with mass mj and charge qj is, in the long-wavelength
limit, given by [6]

dFj

dt
≡ ∂Fj

∂t
+

(
v||b̂0 + VE

)
·∇Fj − qj

mj
b̂0·∇Φ

∂Fj

∂v||
= 0 , (1)

where b̂0 = B0/B0 is a unit vector and VE = cb̂0×∇Φ/B0 is the E×B drift velocity. The
confining magnetic field is taken to be of the form B0 = B0 (ẑ + θŷ) where θ is a small parameter.
For the standard δf scheme, the distribution is written as

Fj = FMj + δfj; , (2)

where FMj is the Maxwellian distribution. The evolution equation for the marker weight, Wj ≡
δfj/Fj, is obtained from Eqs.(1,2) as

dWj

dt
= (1 − Wj)

[(
b̂0×∇Φ

)
·κj − σjv||∇||Φ

]
, (3)

where gyrokinetic units (ωcit 7→ t; v||/cs 7→ v||; ρsκ 7→ κ; ρs∇ 7→ ∇; eΦ/Te 7→ Φ) are used, to-
gether with the definitions of κj = −∇FMj/FMj, σj = ZjTe/Tj, ρs = cs/ωci, ωci = eB/(mic) and

cs =
√

Te/mi. The electrostatic potential is obtained from the gyrokinetic Poisson equation [6]
(in the long-wavelength limit)

∇2
⊥Φ = −ρ =

∫ +∞

−∞
(δfe − δfi) dv|| . (4)

As discussed in the Introduction, the bulk of the electrons respond adiabatically to low-frequency,
drift-type mode

(
Vthe � ω/k||

)
. Therefore, for most of the electrons, the last term on the right-

hand side of Eq.(3) does not carry much relevant information; however, this term may generate
noise, especially in the fully turbulent state. Therefore, in order to remedy this situation, it is
natural to separate the electrons into two groups (adiabatic and nonadiabatic) so as to reflect
their different responses to the low-frequency waves by writing the distribution Fj as

Fj = exp

(
− qj

Tj

Φ

)
FMj + hj . (5)
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The equation governing the weight associated with the nonadiabatic part of the distribution
function, W j ≡ hj/Fj, can be easily derived using Eqs.(1,5)

dW j

dt
=

(
1 − W j

)(
VE ·κj +

qj

Tj
ϕ

)
, (6)

where ϕ ≡ ∂Φ/∂t is termed the polarization field. By construction, the contribution due to
the free streaming markers has been removed from the weight equation [compare with Eq.(3)].
Representation (5) implies the computation of an additional scalar field; a direct discretization
of ϕ = ∂Φ/∂t in the right-hand side of Eq.(6) can be shown to be numerically unstable. It is
preferable to exploit the information contained in the original Vlasov equation, Eq.(1, and the
gyrokinetic Poisson equation, Eq.(4). We start by integrating the Vlasov equation over velocity
space with the result of

∂ρ

∂t
= −VE·∇ρ −∇||J|| , (7)

where J|| is the parallel current density. Taking the time derivative of Poisson equation, ∇2
⊥ϕ =

−∂ρ/∂t, and using Eq.(7) we obtain an elliptic equation for the polarization field ϕ

∇2
⊥ϕ = VE·∇ρ + ∇||J|| . (8)

Here ρ and J|| are obtained from the marker distributions; these quantities are deposited on
the computational grid at each time step. Based on representation (5), the gyrokinetic Poisson
equation takes the form of

∇2
⊥Φ −

(
1 +

1

τ

)
Φ =

∫ +∞

−∞
(he − hi) dv|| + Q (Φ) , (9)

where Q (Φ) ≡ exp (Φ) − exp (−Φ/τ ) − (1 + 1/τ ) Φ and τ = Ti/Te. The nonadiabatic response
hj is normalized according to cshj/n0 7→ hj . The markers are evolved in phase space using the
equations of motion (in gyrokinetic units)

dr

dt
= v||b̂0 + b̂0×∇Φ , (10)

and

dv||
dt

= −Zj
mi

mj
∇||Φ . (11)

In summary, the model equations for the conventional δf scheme are the weight equation, Eq.(3),
the gyrokinetic Poisson equation, Eq.(4), and the equations of motion, Eqs(10,11). The corre-
sponding equations for our kinetic electron scheme are the evolution equation for the marker
weight associated with the nonadiabatic part of the electron distribution, Eq.(6), the ellip-
tic equations (9,8) for Φ and ϕ = ∂Φ/∂t, respectively; and the usual equations of motion,
Eqs.(10,11). The linear and nonlinear properties of these schemes are compared and discussed
in the next section.
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3 Numerical Results

The linear dispersion relation based on the splitting scheme can be obtained as follows (in-
termediate results are presented in physical units rather than normalized units). Assuming
perturbations of the form exp (ik·r − iωt) and linearizing, the nonadiabatic response reads

hj =
[
ω?gj(v||) + σjω

] FMj

ω − k||v||
Φ̃ , (12)

where gj(v||) = 1 − ηj

(
1 − v||2

)
/2, v|| = v||/Vthj , ω? = (kyρs) cs/Ln is the drift frequency,

σj = ZjTe/Tj, Φ̃ = eΦ/Te, ηj = Ln/LTj , Ln = (−d lnn0/dx)−1 and LTj = (−d ln Tj/dx)−1.
Multiplying Eq.(12) by v||k and integrating over velocity space, one gets

∫ +∞

−∞
hjv

k
||dv|| = −n0

(√
2Vthj

)k

ω||j

{
[σjω + ω? (1 − ηj/2)] Z

(k) (ζj) + ω?ηjZ
(k+2) (ζj)

}
Φ̃ , (13)

where ω||j ≡
√

2k||Vthj, ζj ≡ ω/ω||j ; we have defined

Z(k) (ζ) ≡ 1√
π

∫ +∞

−∞

xk

x − ζ
exp

(−x2
)
dx , (14)

for nonnegative integer k; Z(0) (ζ) ≡ Z (ζ) is the usual plasma dispersion function of Fried and
Conte [7]. The particle density for species j is

nj = n0 exp

(
− qj

Tj
Φ

)
+

∫ +∞

−∞
hjdv|| ,

= n0

(
1 − σjΦ̃

)
+

∫ +∞

−∞
hjdv|| . (15)

Substituting Eq.(15) in the gyrokinetic Poisson equation, ky
2ρs

2Φ̃ = (ni − ne) /n0, and using
Eq.(13), we obtain the dispersion relation for electrostatic drift waves(

1 +
1

τ
+ b

)
ω = −ω

[
ζeZ (ζe) +

1

τ
ζiZ (ζi)

]
+ ω? [ζeR (ζe) − ζiR (ζi)] , (16)

where R (ζj) ≡ (1 − ηj/2) Z (ζj)+ηjζj [1 + ζjZ (ζj)] /2 and b = ky
2ρs

2. For benchmark purposes,
the dispersion relation (16) has been solved numerically using Muller’s algorithm [10] in the
complex ωr − γ plane. One consequence of the splitting scheme is that the original (linear)
gyrokinetic Poisson equation, Eq.(4), is transformed into a nonlinear elliptic problem, Eq.(9),
through the term Q(Φ). This nonlinear equation has been solved using a multigrid algorithm [8,
9]. Newton’s method is used to treat the term Q (Φ) in Eq.(9); typically 2 to 3 Newton iterations
are sufficient for convergence. For all the simulations presented in this paper, the multigrid
relaxations have been carried out with a set of 6 V cycles, with ν = 4 relaxations on each grid
level.

The equations of motion and the weight equation have been integrated using a fourth-order
Runge-Kutta scheme. A linear interpolation has been used to deposit marker quantities (number
density and current density) on the computational grid.

4



We first discuss some linear simulation results. Figure 1 shows the linear growth rate obtained
using the δf scheme (triangles) and the splitting scheme (squares). The plain line is the numerical
solution of the dispersion relation (16); the parameters are: Ni = 6765 (number of ion markers);
Ne = 6765; system length L = 8 for a grid with 64 nodes; the time step is ∆t = 1.0. The
magnetic field tilt is θ = 0.01, and the electron and ion temperature-gradient parameters are
ηe = ηi = 0. The driving parameter, κ = ρs/Ln, has been varied between 0.05 and 0.13.
Although the splitting scheme results agree very well with the exact solution, the δf scheme
gives inaccurate results both for low and strong drives.

Figure 2 shows the power spectrum of the electrostatic potential for a fully nonlinear simu-
lation, based on a time history of 5000 time steps, for the conventional δf scheme (in Figs.(2,3),
[Φ] stands for |Φ|2). The spectrum peaks at ωr/ωci ' 0.06. We note the presence of spurious
modes in the high-frequency tail of the power spectrum. Figure 3 shows the power spectrum of
Φ for the splitting scheme, using the same physical parameters, the same initial conditions in
phase space and the same number of time steps as in Figure 2. The most dramatic aspect of
Figure 3 is that the high-frequency part of P (ω) is now free of spurious modes. We expect this
clean result to impact the particle number and energy conservation properties of the simulated
plasma. This is confirmed below.

Figure 4 shows the absolute value of the time-integrated averaged weight of the electrons,
defined as

〈〈We〉〉 ≡ 1

T

∫ T

0

1

Ne

Ne∑
k=1

Wk(t)dt

where Wk(t) is the marker weight of the kth at time t, as a function of the drive, κ; here T
is the integration time which is chosen so that γ`T � 1, where γ` is the linear growth rate of
the fastest growing mode; in Figures 4 and 5, T = 2000 and other parameters are the same
as in Figure 3. For an infinite number of markers and an infinitesimally small time step one
would get 〈〈We〉〉 = 0. However, finite-size effects (‘granularity’ in temporal, configuration and
velocity spaces) prevent perfect particle number conservation. As expected, the stronger the
instability, the poorer the particle number conservation. However, since the parallel motion has
been removed from the weight equation [Eq.(6)], the splitting scheme has a discrepancy in the
number conservation two orders magnitude smaller that the conventional δf scheme.

Figure 5 shows the time-integrated total energy, defined as

〈E〉 ≡ 1

T

∫ T

0

{
1

2L

∫ L

0

|∇⊥Φ|2 dx +
1

2

∫ +∞

−∞
v2
||

(
Fi +

me

mi

Fe

)
dv||

}
dt

as a function of the driving parameter, κ. The splitting scheme achieves very good energy
conservation, even when the drive is strong. The poor particle number and energy conservation
properties of the δf scheme can be intuitively understood in view of the high-frequency random
kicks (Figure 2) experienced by the markers. Conversely, the clean power spectrum for the
splitting scheme (Figure 3) translates in improved conservation properties. Although there are
various ways to ‘split’ the electron distribution, the splitting scheme based on Eq.(5) yields an
evolution equation for the marker weight which does not involve the free streaming contribution.
Alternatively, writing the electron distribution function as Fe = (eΦ/Te)FMe + he yields a
marker evolution equation which does involve a free streaming term with its associated noise
and detrimental impact on the energy conservation.
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4 Concluding Remarks

The accurate treatment of electron dynamics in particle-in-cell simulations represents a major
challenge since the fast electrons, Vthe/Vthi ∼

√
mi/me � 1, imply a stringent condition on the

time step. However, for low-frequency modes [2,3] that are relevant to the anomalous transport
in tokamaks [1] and stellarators [4], the bulk of the electrons do not ”see” the waves; based on
this observation, we have developed the splitting scheme, which segregates electrons into two
subgroups (adiabatic electrons and nonadiabatic electrons). It has been shown that the splitting
scheme has better linear and nonlinear properties than those of the conventional δf scheme.
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Figure 1 Linear growth rate for the standard δf scheme (triangles) and for the splitting scheme
(squares) as a function of κ = ρs/Ln. The plain line is the numerical solution of the linear
dispersion relation. The parameters are: Ne = Ni = 6765, on a grid of length L = 8 with
64 grid points; ηe = ηi = 0 and θ = 0.01. Only the N = 1 mode (k⊥ρs ' 0.78) is retained
in the simulation. The initial configuration in phase space for the splitting scheme run and
the δf run are identical.

Figure 2 Power spectrum of the electrostatic potential based on a nonlinear simulation with
5000 time steps for the δf scheme ; other parameters are Ni = Ne = 10946, κ = 0.1,
θ = 0.01, 64-grid of length L = 8.

Figure 3 Same as Figure 2 but for the splitting scheme. The initial conditions in phase space
and the physical parameters are identical to those of Figure 2.

Figure 4 Absolute value of the time-integrated average weight as a function of the drive, κ, for
the standard δf scheme (squares) and the splitting scheme (triangles); other parameters
are the same as in Fig.2.

Figure 5 Time-integrated total energy as a function of the drive, κ, for the standard δf scheme
(squares) and the splitting scheme (triangles); other parameters are the same as in Fig.2.
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FIG.1 Lewandowski
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FIG.2 Lewandowski
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FIG.3 Lewandowski
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FIG.4 Lewandowski
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FIG.5 Lewandowski

13



02/25/03

   External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, MTA KFKI-ATKI, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Insitute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Plasma Physics Laboratory, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People’s Republic of 

China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho

Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San

Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


