
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3825 PPPL-3825
UC-70

Gabor Wave Packet Method
to Solve Plasma Wave Equations

by

A. Pletzer, C.K. Phillips, and D.N. Smithe

June 2003



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Fiscal
Year 2003. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Gabor wave packet method to solve plasma wave
equations

A. Pletzer�, C. K. Phillips� and D. N. Smithe†

�Princeton Plasma Physics Lab, Princeton NJ 08543
†Mission Research Corporation

Abstract. A numerical method for solving plasma wave equations arising in the context of mode
conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The
numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as
Gabor functions, which have good resolution properties in both real and Fourier space. The wave
packets are ideally suited to capture both the large and small wavelength features that characterize
mode conversion problems. The accuracy of the scheme is compared with a standard finite element
approach.

INTRODUCTION

The problem of computing RF wave dynamics in fusion plasmas is numerically chal-
lenging due to locally fine-scale resonance and short-wavelength mode conversion ef-
fects [1]. The conversion of fast magnetosonic into ion Bernstein waves, for instance,
requires the resolution of waves with dramatically different wavelengths.
Many codes written (e.g. the Mets code [2]) rely on a Fourier decomposition of the

waves, requiring many modes to capture short-wavelength phenomena. Thus, there is a
need to explore other more efficient numerical approaches, which provide better local
resolution, and can take better advantage of windowing or multiple scale-length aspects
of the problem. Due to the constraint that the dielectric tensor is most easily expressed
analytically for sinusoidal waves, the extension of Fourier to using wave packets with a
Gaussian envelop (Gabor functions) is most natural.
In this article, we explore a novel numerical approach based on expanding the solution

in Gabor functions, which combines the advantages of the Fourier and finite element
methods. The method, which we refer to as the Gabor element method (GEM), allows
for a high degree of flexibility in the specification of boundary conditions. The process of
discretization leads to, effectively, a sparse matrix due to the limited support of the Gabor
functions. Therefore, GEM shares many similarities with the finite element method
(FEM). However, GEM differs from FEM in that a single set of basis functions can
be used to solve differential equations, in principle, of arbitrary order.
To validate GEM, we focus on two test problems. First, GEM is applied to solve a

second order, Airy-type equation with a linear turning point (cut-off). The solution is
then compared to that obtained using linear FEM. Next, a fourth-order, Wasow-type
model equation describing the mode coupling between fast and slow waves, with two
well separated wavelengths, is solved.



THE GABOR ELEMENTMETHOD

Our aim is to solve ordinary differential equations of arbitrary order 2N (an even integer),
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In (1), fi j and s are user supplied functions of the independent variable x. Note that con-
ditions (2) are flexible enough to accommodate Dirichlet, Neumann, or Robin boundary
conditions by allowing, if required, theCi’s and Bi j’s to be infinite.
The Gabor element method is now presented. Following a Galerkin approach, (1) is

multiplied by a test function h�x� and integrated over the domain �0�1� to yield
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The first term in (4) represents the energy functional while the two subsequent terms
arise after integrating by parts i times the term of (1) in � �. Next, the solution

y�x� �∑
γ
gγ�x�yγ ; gγ�x�� e

i2πu jxe��x�xi�
2��2w2i � (6)

is expanded in Gabor wave packets gγ�x� where γ � �i� j�. Equation (6) is a double
expansion in wave-numbers 2πu j, j���NF�1��2 � � ��NF�1��2 and envelop positions
xi� i � 0� � � �Nx. Upon inserting (6) into (3) and choosing h�x� � gγ � we then get NxNF
linear coupled equations

∑
γ
Aγ ��γyγ � bγ �

for the unknowns yγ , where Aγ ��γ � a�gγ ��gγ� and bγ � � b�gγ ��.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x

y−
nu

m
er

ic
al

 −
 y
−

ex
ac

t

FEM error (N
x
=51) 

0.1 × y−exact 

GEM error (w=∆x, u w = 1.05) 

10000 × GEM error (w=0.4 ∆x, u w=0.15) 

α= 21 π/2, N
X
=8, N

F
=5 

FIGURE 1. Error of the GEM solution for the Airy type equation using two combinations of u and w
parameters. Notice the reduction factor of 10 000 used to plot the GEM solution obtained using w� 0�4∆x
and uw� 0�15. The FEM error obtained using linear hat elements (same number of degrees of freedom)
is shown for comparison.

RESULTS

For simplicity, we will assume in the following that the phase-space lattice is uniform:
xi� i∆x and u j � ju. The accuracy of GEMwill depend on the values of the grid spacing
∆x, the fundamental frequency u and the Gaussian (half) width w. It can be proved that
the Gabors form a frame only under the condition that u∆x � 1 [3]. Moreover, in order
for the Gabors to overlap, we must have 2w� ∆x.
To determine more precisely the optimal u and w parameters, we solve equation y���

α2�1�2x�y� 0 whose solution, the Airy function Ai��α�2�2�3�2x�1�� is a propagating
wave for x� 1�2 but evanescent for x� 1�2. Figure 1 shows the pointwise error of the
Gabor solution for α � 21π�2, using 8 envelops and 5 Fourier modes ��2 � � �� 2�.
The exact solution (reduced by a factor of 0�1) is shown as a dashed line. The GEM
error (dash-dotted line) compares favorably with the FEM error obtained using the same
number of degrees of freedom. Notice that the FEM error is proportional to the second
derivative y��, as expected for linear hat elements. However, the choice of w � ∆x and
uw � 1�05 is suboptimal; changing these parameters to w�∆x � 0�4 and uw � 0�15
suppresses the error by a factor� 10000. This emphasizes the ability of GEM to capture
the solution more accurately than FEM with a small number of degrees of freedom.
To model the coupling of fast to slow waves, we solve the Wasow equation�

d2

dx2
� k2 �1�0�5�x�0�5��

��
d2

dx2
� k2 �1�160�x�0�5��

�
y�αy� 0

subject to boundary conditions y�0� � 0, y�1� � 1, and y��0� � y��1� � 0, with k2 �
2� 103 and α � 8� 106. To the right of x � 0�506, the slow wave is evanescent while
to the left it is propagating with λ � 0�01. The wavelength of the fast wave ranges
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FIGURE 2. Solution of the fourth order equation obtained using w�∆x� 1�0, u∆x� 0�9, N x � 21 and
NF � 21: (a) solution, (b) blow-up of x� 0�5 region, and (c) spectrogram (log of amplitude).

from 0�13� 0�16 across. Figure 2 shows the solution (a) with the short wavelength
contribution from the slow wave clearly noticeable in (b). Picture (c) shows the mode
structure in phase space, which depends on the choice of u and w parameters.

CONCLUSIONS

Good accuracy was achieved with the Gabor element method (GEM) when u∆x� 1 and
w�∆x � 0�4� 1. A small Gaussian width w yields a sparser matrix system but requires
more Fourier modes. A larger w�∆x� 1 can be more efficient but yields a residual error
that cannot be suppressed by increasing the resolution in phase space.
When optimally chosen, u and w yield an error that is insensitive to high order

derivatives of the solution and so confers to GEM the capability to extract small and
large features equally well. For problems with an oscillatory solution, GEM typically
outperforms the finite element method error by several orders of magnitudes.
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