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Multigrid particle-in-cell simulations of plasma microturbulence

J.L.V. Lewandowski

Princeton Plasma Physics Laboratory

Princeton University, P.O. Box 451, Princeton NJ 08543

(June 9, 2003)

Abstract

A new scheme to accurately retain kinetic electron effects in particle-in-cell

(PIC) simulations for the case of electrostatic drift waves is presented. The

splitting scheme, which is based on exact separation between adiabatic and

nonadiabatic electron responses, is shown to yield more accurate linear growth

rates than the standard δf scheme. The linear and nonlinear elliptic problems

that arise in the splitting scheme are solved using a multigrid solver. The

multigrid particle-in-cell approach offers an attractive path, both from the

physics and numerical points of view, to simulate kinetic electron dynamics

in global toroidal plasmas.

Pacs # : 52.35Kt, 52.30Jb, 52.35Ra
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I. INTRODUCTION

It is now generally accepted in the fusion community that low-frequency, small-scale

instabilities (eg. drift waves, Ion Temperature Gradient-driven (ITG) modes) are major

contenders for the anomalous, cross-field transport observed in tokamaks1 and stellarators2.

The impact of electron dynamics on linear modes and fully developed turbulence is a most

important subject.

The treatment of electrons in particle-in-cell simulations is made difficult due to the

fact that the electrons move ∼
√

mi/me times faster than the ions. However, for drift-

type modes3,4, the bulk of the electrons respond adiabatically to the waves and it may be

advantageous to focus on the nonadiabatic part of the electron response.

The paper is organized as follows; in section II, the governing equations for the (standard)

δf scheme are given. The splitting scheme is presented in section III. A consequence of the

splitting scheme is that, in addition to the usual gyrokinetic Poisson equation, a nonlinear

elliptic equation is to be solved. This problem is addressed in section IV where a multigrid

Poisson solver is described and tested. Numerical experiments comparing the standard δf

scheme and the splitting scheme are reported in section V. Concluding remarks are presented

in section VI.

II. STANDARD δF SCHEME

In this section, we present the model equations governing electrostatic drift waves in

shearless slab geometry based on the standard δf scheme5. The magnetic field is taken to

be of the form B0 = B0 (ẑ + θŷ) where θ � 1 is a small parameter related to the tilt of the

magnetic field lines with respect to the z direction; the equilibrium direction is taken to be

along the x axis. Our starting equation is the collisionless, electrostatic, gyrokinetic Vlasov

equation, in the long-wavelength limit, for particle species j with mass mj and charge qj

dFj

dt
≡ ∂Fj

∂t
+
(
v||b̂0 + VE

)
·∇Fj − qj

mj
b̂0·∇Φ

∂Fj

∂v||
= 0 , (1)
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where b̂0 = B0/B0 a unit vector and VE = cb̂0×∇Φ/B0 is the E×B drift velocity. The

standard δf scheme is based on the representation

Fj = FMj + δfj (2)

where FMj is the Maxwellian distribution. Introducing the marker weight, Wj ≡ δfj/Fj,

one obtains

dWj

dt
= (1 −Wj)

(
VE·κj − qj

Tj
v||∇||Φ

)
, (3)

where κj = κ
[
1 − ηj

2

(
1 − v||2

)]
, v|| = v||/Vthj and κ = −∇n0/n0. In gyrokinetic units

(ωcit 7→ t; v||/cs 7→ v||; ρsκ 7→ κ; ρs∇ 7→ ∇; eΦ/Te 7→ Φ), the equations of motion are

dr

dt
= v||b̂0 + b̂0×∇Φ , (4)

dv||
dt

= −Zj
mi

mj
∇||Φ , (5)

and the weight equation becomes

dWj

dt
= (1 − Wj)

[(
b̂0×∇Φ

)
·κj − σjv||∇||Φ

]
. (6)

where σj = ZjTe/Tj. The system of equations is closed with the gyrokinetic Poisson equation

(in the long wavelength limit)

∇2
⊥Φ =

∫ +∞

−∞
(δfe − δfi) dv|| . (7)

As shown in section V, the linearized form of the standard δf scheme, based on Eqs.(4-7),

does not yield accurate growth rates, especially when the drive is small (small κ). For low-

frequency drift-type modes, only the slow electrons interact with the wave; the majority of

the electrons does not ‘see’ the wave, that is they respond adiabatically. In order to address

this accuracy problem, we introduce the splitting scheme in the next section. Numerical

experiments presented in section V confirm that the splitting scheme yields accurate linear

growth rates, even when few electrons are used in simulations.
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III. SPLITTING SCHEME

In order to address the accuracy problem mentioned in the previous section, we write

the distribution Fj as

Fj = H (Φ) FMj + hj , (8)

where, as before, FMj is the Maxwellian distribution for particle species j and H (Φ) is a

yet undetermined function of the electrostatic potential. The so-called nonadiabatic part of

the distribution function, hj , is governed by

dhj

dt
= −H VE·∇FMj︸ ︷︷ ︸

1

−v||∇||Φ

(
H ′ +

qj

Tj
H

)
︸ ︷︷ ︸

2

FMj − H ′FMj
∂Φ

∂t︸ ︷︷ ︸
3

, (9)

where a prime denotes a derivative with respect to Φ and the relation VE·∇Φ = 0 has been

used. Term 1 represents the drive from the free energy whereas term 2 accounts for the

parallel free streaming and the parallel force. Demanding that term 2 vanishes, we get

dH

dΦ
= − qj

Tj
H

with solution

H = H0 exp

(
− qj

Tj
Φ

)
. (10)

In the absence of turbulence, Φ = hj = 0, we have Fj = FMj [Eq.(8)] so that H0 = 1. A

convenient splitting scheme for Eq.(1) is thus given by

Fj = exp

(
− qj

Tj
Φ

)
FMj + hj . (11)

The equation governing the weight associated with the nonadiabatic part of the distribution

function, Wj ≡ hj/Fj, can be easily derived using Eqs.(1,11)

dWj

dt
=
(
1 − Wj

)(
VE·κj +

qj

Tj
ϕ

)
(12)

where ϕ ≡ ∂Φ/∂t. By construction, the contribution due to the free streaming markers has

been removed from the weight equation [compare with the corresponding weight equation
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for the standard δf scheme, Eq.(6)]. Representation (9) implies the computation of an

additional scalar field, ϕ. The equation governing ϕ can be obtained as follows. Multiply

Eq.(1) by v||k and integrate over velocity space; the evolution equation for the velocity

moment of order k

M
(k)
j ≡

∫ +∞

−∞
v||kFjdv|| (k = 0, 1, 2, · · ·) (13)

can be written as

∂

∂t
M

(k)
j = −VE·∇M

(k)
j − b̂0·∇M

(k+1)
j +

qj

mj
kE||∇M

(k−1)
j , (14)

where E|| = −b̂0·∇Φ. Upon multiplication of Eq.(14) by qj and summation over species,

we obtain (for k = 0)

∂ρ

∂t
= −VE·∇ρ −∇||J|| , (15)

where ρ =
∑

j qjM
(0)
j is the charge density and J|| =

∑
j qjM

(1)
j is the current density.

The elliptic equation governing ϕ can be calculated by taking the time derivative of the

gyrokinetic Poisson equation, Eq.(7), together with Eq.(15) with the result of (in gyrokinetic

units)

∇2
⊥ϕ = VE ·∇ρ + ∇||J|| (16)

Using representation (11) the gyrokinetic Poisson equation becomes

∇2
⊥Φ −

(
1 +

1

τ

)
Φ =

∫ +∞

−∞
(he − hi) dv|| + Q (Φ) (17)

where Q (Φ) ≡ exp (Φ)−exp (−Φ/τ )−(1 + 1/τ ) Φ and τ = Ti/Te. In summary, the equations

describing the splitting scheme are the equations of motions [Eqs.(4,5)], Eq.(12) for the

nonadiabatic weight, and the elliptic equations (17,16) for Φ and ϕ = ∂Φ/∂t, respectively.

The linear dispersion relation, based on the splitting scheme, is (Appendix A)(
1 +

1

τ
+ b

)
ω = −ω

[
ζeZ (ζe) +

1

τ
ζiZ (ζi)

]
+ ω? [ζeR (ζe) − ζiR (ζi)] (18)

where R (ζj) ≡ (1 − ηj/2) Z (ζj) + ηjζj [1 + ζjZ (ζj)], ζj ≡ ω/
(√

2k||Vthj

)
, b = ky

2ρs
2 and

Z(ζ) is the plasma dispersion function of Fried and Conte6.
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IV. THE MULTIGRID POISSON SOLVER

One consequence of the splitting scheme is that the original (linear) gyrokinetic Poisson

equation, Eq.(7), is transformed into a nonlinear elliptic problem, Eq.(17). It can be argued

that the nonlinear term, Q (Φ), in the new form of the gyrokinetic Poisson is small [i.e.

O
(
|Φ|2

)
] and that it can be neglected. However, in order to compare the δf scheme and

the splitting scheme, it is preferable to solve Eq.(17) without approximation.

In this section, we present a multigrid solver for a periodic elliptic problem. The model

problem considered here is linear; the generalization of the algorithm to nonlinear elliptic

equations is discussed in the next section.

A. General Description

For a configuration with period L, Poisson’s equation is of the form

LF ≡ d2F

dθ2
= S (θ) (19)

where θ ≡ 2πx/L is an angle-like coordinate with period 2π and S(θ) is a known source term;

the uniform computational grid has Nθ nodes. The one-dimensional problem described by

Eq.(19) can be solved for F (θ) (∝ electrostatic potential) using the Fast Fourier Transform

(FFT) technique. However, the nonlinear version of problem (19) is straightforward in

multigrid algorithms, whereas FFT-based techniques must resort to convolutions in k space.

In this paper, we choose a solution method based on multigrid techniques.

Although the advantage of using a multigrid method for the solution of Eq.(19) is not

apparent (in view of the simplicity of the problem), the generalization to 2-dimensional and

3-dimensional problems in complex (e.g. toroidal) geometries is relatively easy, whereas other

methods are difficult to implement, numerically inefficient or may simply not be applicable.

Consider the example of a toroidal configuration with a shaped cross-section. One can

write the solution of a typical elliptic type problem in terms of Fourier-Bessel series7. In the

simplest situation, the FFT technique can be used to resolve components that vary in the
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periodic coordinates (e.g. the poloidal and toroidal coordinates), whereas a one-dimensional

(e.g. finite element) solver is used to treat the remaining (radial) coordinate. However the

computational cost of such a scheme becomes prohibitive as the number of grid points is

increased. Furthermore, as typical particle-in-cell simulations require the global solution of

elliptic Poisson-type equations at each time step, it is imperative to use near-optimal global

solvers, such as multigrid solvers.

An additional attractive feature of the multigrid method is that it is relatively easy

to parallelize as it is amenable to domain decomposition techniques. This advantage is

particularly attractive for modern, global, parallel PIC codes.

The multigrid technique8–10 is based on a set of overlapping grids. The fundamental

idea behind the multigrid method is to solve modified problems using different scales (grids)

in order to suppress error components of different scales. Basic iterative methods (e.g.

Jacobi method, Gauss-Seidel method,...) are very efficient at damping short wavelength

error components but converge poorly for the long wavelength error components.

Multigrid methods, and the closely related multilevel methods, are based on a sequence

of problems of various sizes that are solved iteratively; intergrid transfer operators (pro-

longation and restriction operators) are used to transfer information between the solution

spaces on each level. The multigrid procedure for solving elliptic partial differential equa-

tions (PDes) is stable and it uses an optimal order of time and space simultaneously. For

many problems multigrid lowers the work estimate by a polylog factor; for applications with

a large number of unknowns (say in the range 104 − 106) this is a quite substantial speed

up.

Problem (19) can be defined on a set of overlapping grids (or levels) as

L(p)F (p) = S(p) , (20)

where p = 0, 1, · · · , Q, and Q is the total number of levels compatible with the original

number of grid points Nθ; the grid spacing on the finest grid (p = 0) is ∆θ = 2π/Nθ,

whereas the grid spacing on coarser grids is δθ = 2p∆θ (for p > 0). If f denotes the exact
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solution of Eq.(19), that is f = L−1S, and if F denotes an approximation to the exact

solution, then the algebraic error, e ≡ f − F , and the residual r ≡ S − LF and related

through the residual equation

Le = r
(
or L(p)e(p) = r(p) .

)
(21)

If A(p) denotes an approximation to L(p)−1
then F (p) = A(p)S(p); in general, the approximate

solution F (p) will depend on the initial guess F
(p)
0 . Thus

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
, (22)

where νp is the number of relaxation sweeps on level p and F
(p)
0 is the initial guess. We define

the intergrid transfer operators from coarse grid to fine grid , I (p + 1 7→ p) (prolongation

operator), and from fine grid to coarse grid, I (p 7→ p + 1) (restriction operator); we have

the relations

F (p) = I (p + 1 7→ p) F (p+1) (23)

and

F (p+1) = I (p 7→ p + 1)F (p) (24)

where p = 0, 1, · · · , Q − 1. Note that intergrid transfer operators are local and therefore

approximate. As a consequence the convolutions of intergrid transfer operators

I (p 7→ p + 1) I (p + 1 7→ p) and I (p + 1 7→ p) I (p 7→ p + 1)

are, in general, not equal to the identity operator Î; the notable exception is, of course, the

linear profile. Here we consider a simple multigrid V cycle algorithm; in the V cycle, one

proceeds from the finest grid (p = 0) to the coarsest grid (p = Q), and then back to the

finest grid. The V cycle can be cast in the following algorithmic form of

MultiGrid V cycle

8



F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
r(p) = S(p) − L(p)F (p) ; p = 0, 1, · · · , Q − 1

S(p+1) = I (p 7→ p + 1) r(p)

..... . ................................ (25)

F
(p)
0 ⇐= F (p) + I (p + 1 7→ p) F (p+1)

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)

The dotted line indicates the bottom of the V cycle. The numerical solution of a typical

elliptic problem (19) is presented in the next section.

B. Numerical Example

In this section, we present some numerical experiments based on the algorithm presented

in the previous section. The source term in Eq.(19) is taken to be of the form

S (θ) = −
M∑

q=1

q2
[
α̂q cos (qθ) + β̂q sin (qθ)

]
, (26)

which corresponds to the exact solution

f (θ) =
M∑

q=1

α̂q cos (qθ) +
M∑

q=1

β̂q sin (qθ) , (27)

where M is the total number of modes; such exact solution allows us to ‘tune’ specific

modes and study the performance of the multigrid solver for short-, intermediate- and long-

wavelength modes. All the numerical results presented in this section are for M = 12 modes

with amplitudes α̂q = β̂q = 1, for q = 1, 2, · · · , M . The initial profile (on the finest grid) is

chosen as

F0(θ) = π2 sin (θ/2) . (28)

Figure 1 shows the L2 norm of the residual as a function of the number of the V cycles for

a grid with Nθ = 256 nodes. The number of relaxations per level is kept fixed at ν = 4;
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the basic solver on each level is the damped Jacobi method with damping parameter ω =

0.6. The restriction operator used is the full weighting operator, whereas the prolongation

operator is the linear interpolation operator. We note the sharp decrease in the L2 norm

of the residual after a single V cycle. The discretization error is reached after 9 V cycles.

In order to illustrate the efficiency of the multigrid algorithm, the same problem was solved

(with the same parameters and the same initial conditions) using the damped Jacobi method

on the finest grid, that is no coarser grids were used during the numerical solution. As

shown in Figure 2, the damped Jacobi solver performs well in the first iterations, and its

efficiency then decreases dramatically; this is the signature that the long wavelength modes

are not properly resolved. To put the difference in efficiency in perspective, a total of 6846

iterations were required for the single-grid Jacobi solver to reach the same residual norm

as that obtained by a set of 10 multigrid V cycles! This dramatic difference between the 2

solvers becomes more acute as the number of grid points increases.

Figure 3 shows the initial and exact profiles, as well as the approximate profile, obtained

after one V cycle. The multigrid solver ‘picks up’ the right modes after a single iteration,

but the amplitudes are not those of the exact solution. After 3 V cycles, the approximate

amplitudes are in much better agreement with the exact amplitudes (Figure 4). After 7 V

cycles, the approximate solution is virtually indistinguishable for the exact solution (Figure

5).

V. NUMERICAL EXPERIMENTS

The multigrid solver described in the previous section is now used to compare the stan-

dard δf scheme and the splitting scheme for the case of electrostatic drift waves. All simu-

lations were carried out with mi/me = 1836.

We first discuss some linear simulations. The parameters for Figures (6,7) are for a set

of Ni = 6765 ion markers, Ne = 6765, on a 64-grid system of length L = 8; the time step is

∆t = 1. The magnetic field tilt is θ = 0.01, and the electron and ion temperature-gradient
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parameters are ηe = ηi = 0. Markers were initially loaded using the quiet start technique

based on Fibonacci numbers.11. The driving parameter, κ = ρs/Ln, has been varied between

0.05 and 0.13.

For the splitting scheme, the gyrokinetic Poisson equation, Eq.(17), has been solved using

the multigrid solver described in the previous section. Newton’s method is used to treat the

term Q (Φ) in Eq.(17); typically 2 to 3 Newton iterations are sufficient for convergence. For

all the simulations presented in this paper, the multigrid relaxations have been carried out

with a set of 6 V cycles, with ν = 4 relaxations on each grid level.

The mode frequency, ωr , obtained from the Φ power spectrum, for the δf and splitting

schemes is shown in Figure 6. The plain line represents the numerical solution (based

on Muller’s algorithm12 in the complex ωr − γ plane) of the exact linear dispersion relation

(18). Both schemes predict mode frequency in reasonable agreement with the exact solution.

However, the comparison of the linear growth rates is more meaningful. As shown in Figure

7, the splitting scheme yields a linear growth in excellent agreement with the theory; the

standard δf scheme, however, is quite inaccurate even when the drive is strong. Increasing

the number of markers per cell should improve the agreement between the δf and theoretical

results. This is shown in Figure 8 for the case of Ni = Ne = 10946 markers (all other

parameters are the same as in Figure 7). However inaccurate linear growth rates are still

observed at low drive. Increasing the grid resolution while keeping the number of markers

per cell constant does not alter the results of Figure 7 significantly.

The favorable numerical properties of the splitting scheme can be best understood from

the power spectrum of the electrostatic potential. Figure 9 shows the power spectrum

based on the δf scheme for a linear run with 500 time steps (linear run) (in Figs. (9,10),

[Φ] stands for |Φ|2). The parameters are L = 8 (system size), ∆x = 1/8 (grid spacing),

Ne = Ni = 10946, κ = 0.05, ηe = ηi = 0 and θ = 0.01. We note the presence of a ‘secondary

mode’ (near ω = 0) and the slow decay of the high-frequency tail. Figure 10 shows the

power spectrum using the splitting scheme based on 500 time steps; all parameters are the

same as those of Figure 9; the initial configuration in phase space in Figure 9 and Figure

11



10 are identical. The spectrum has no ‘secondary mode’ (compare with Figure 9). Most

importantly, P (ω) decays with ω much faster compared with the δf run. The presence of

a single, well-defined maxima in P (ω) and the rapid decay with ω is a signature that the

nonadiabatic electrons have not ‘contaminated’ the plasma response, as was the case in the

δf scheme. Based on Figures 9 and 10, one can intuitively expect a better agreement with

theory for the linear growth rate using the splitting scheme, as was oberved in Figure 7.

Figure 11 shows the real and imaginary parts of the electrostatic potential for a nonlinear

run. The parameters are Ne = Ni = 10946 and κ = 0.15. Other parameters are the same as

in Figure 10. We note that this clean result has been obtained for a relatively small number

of markers.

The nonlinear saturation of the most unstable modes (n ± 1) is due to the parallel non-

linearity; in this simplified one-dimensional model, the saturation due to the E×B advection

is absent. In a more realistic situation (e.g. toroidal plasmas), both mechanisms can con-

tribute to saturate the drift waves. Based on a perturbative, three-wave coupling theory

(two fastest growing modes and the nonlinear n = 0 response due to mode coupling), Parker

and Lee have estimated that the saturation level of Φ(n = 1) to be13

|Φ|sat = 5.48

(
γ`

k||Vthe

)2

, (29)

where γ` is the linear growth rate and k|| = θk⊥ in this one-dimensional model. Figure 12

shows the measured saturation level for the n = 1 mode as a function of the drive, κ, for a

simulation with Ni = Ne = 6765 markers. Since the linear growth rate varies linearly with

the density gradient parameter, we expect |Φ|sat ∝ κ2. The plain line in Figure 12 shows the

theoretical value [Eq.(29)] whereas the squares and the triangles correspond to the measured

values for the splitting scheme and the δf scheme, respectively. Taking into account that

these simulations have been carried out with a small number of markers (Ni = Ne = 6765),

the agreement with theory is quite satisfactory. We note, however, a departure from the

theoretical curve for strong drive; this trend is more pronouced for the δf scheme than for

the splitting scheme.
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VI. CONCLUDING REMARKS

We have presented multigrid particle-in-cell simulations of electrostatic drift waves with

kinetic electrons. The impact of electron dynamics on the anomalous transport3,4 in toroidal

devices is expected to be quite substantial; this impact could be more pronounced in stellara-

tor plasmas14 where toroidally-trapped and helically-trapped electron population coexist.

For illustrative purposes, we have compared the standard δf scheme with the split-

ting scheme, which only treats the nonadiabatic electron response dynamically, for a one-

dimensional case. For identical parameters (same number of markers, same configuration in

phase space at t = 0,etc...), it has been shown that the splitting scheme yields better results

for the linear growth rates and for the mode frequency. Furthermore, the power spectrum of

the electrostatic potential shows that the splitting scheme does not suffer from the contam-

ination of the nonadiabatic electrons. Finally, the saturation of the fastest growing modes

due to the parallel nonlinearity has been shown to be in good agreement with the three-wave

coupling theory13 even for a small number of markers.

This paper represents the first example of what we term the ‘multigrid particle-in-cell

concept’ applied to plasma microturbulence. Although a relatively simple (but nonlinear)

problem was presented here, the generalization to complex geometry (e.g. nonaxisymmetric,

toroidal plasmas) is far easier using the multigrid approach compared to other methods that

usually rely on various (and sometimes dubious) approximations and/or are plagued with

numerical inefficiency.
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APPENDIX A: LINEAR PROPERTIES OF ELECTROSTATIC DRIFT WAVES

In this Appendix, we derive the dispersion relation for electrostatic drift waves based on

the splitting scheme. The distribution for species j is written as Fj = exp (−qjΦ/Tj)FMj+hj

where the nonadiabatic part, hj, is governed by

dhj

dt
= exp

(
−qjΦ

Tj

) [
VE·κj +

qj

Tj

∂Φ

∂t

]
FMj , (A1)

where κj = κgj(v||); gj(v||) = 1−ηj

(
1 − v||2

)
/2; and v|| = v||/Vthj . Assuming perturbations

of the form exp (ik·r − iωt) and linearizing, we get

hj =
[
ω?gj(v||) + σjω

] FMj

ω − k||v||
Φ̃ , (A2)

where ω? = (kyρs) cs/Ln is the drift frequency, σj = ZjTe/Tj and Φ̃ = eΦ/Te. Multiplying

Eq.(A2) by v||k and integrating over velocity space

∫ +∞

−∞
hjv

k
||dv|| = −n0

(√
2Vthj

)k

ω||j

{
[σjω + ω? (1 − ηj/2)] Z

(k) (ζj) + ω?ηjZ
(k+2) (ζj)

}
Φ̃ , (A3)

where ω||j ≡
√

2k||Vthj, ζj ≡ ω/ω||j ; we have defined

Z(k) (ζ) ≡ 1√
π

∫ +∞

−∞
xk

x − ζ
exp

(
−x2

)
dx , (A4)

for nonnegative integer k; Z(0) (ζ) ≡ Z (ζ) is the usual plasma dispersion function of Fried

and Conte6. The particle density for species j is

nj = n0 exp

(
− qj

Tj
Φ

)
+
∫ +∞

−∞
hjdv|| ,

= n0

(
1 − σjΦ̃

)
+
∫ +∞

−∞
hjdv|| . (A5)

Substituting Eq.(A5) in the gyrokinetic Poisson equation, ky
2ρs

2Φ̃ = (ni − ne) /n0, and using

Eq.(A3), we obtain the dispersion relation for electrostatic drift waves

(
1 +

1

τ
+ b

)
ω = −ω

[
ζeZ (ζe) +

1

τ
ζiZ (ζi)

]
+ ω? [ζeR (ζe) − ζiR (ζi)] , (A6)

where R (ζj) ≡ (1 − ηj/2) Z (ζj) + ηjζj [1 + ζjZ (ζj)], τ = Ti/Te and b = ky
2ρs

2. In the cold

ions, warm electrons limit

14



ω

k||Vthi
� 1 � ω

k||Vthe
, (A7)

Eq.(A6) assumes the simplified form of

(1 + b)ω = ω? + i
√

πζe [ω? (1 − ηe/2) − ω] ,

which can be solved for the mode frequency

ωr =
ω?

1 + b
(A8)

and the linear growth rate

γ =

√
π

2

ωr

k||Vthe

ω? (1 − ηe/2) − ωr

1 + b

=

√
π

2

me

mi

ω?
2

k||cs

(1 + b) (1 − ηe/2) − 1

(1 + b)
3 . (A9)
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Figure 1 L2 norm of the residual as a function of the number of V cycles (iterations) for

a grid with Nθ = 256 grid points. The number of relaxation sweeps on each level is

ν = 4 and the Jacobi damping parameter is ω = 0.6. The initial profile is given by

Eq.(28).

Figure 2 L2 norm of the residual as a function of the number of Jacobi solves on the finest

grid. Other parameters are the same as in Figure 1. A total of 6846 iterations are

required to reach the same residual norm as that obtained for a set of 10 V cycles

(||r||210 = 0.066)

Figure 3 Exact (plain line), initial (dashed line) and approximate profile (dotted line) as a

function of the periodic coordinate θ. The approximate profile shown is that obtained

after one V cycle (other parameters are ω = 0.6, ν = 4 and Nθ = 256).

Figure 4 Same as Figure 3 but the approximate profile shown is that obtained after 3 V

cycles.

Figure 5 Same as Figure 3 but the approximate profile shown is that obtained after 7 V

cycles.

Figure 6 Mode frequency for the standard δf scheme (triangles) and for the splitting

scheme (squares) as a function of κ = ρs/Ln. The plain line is the numerical so-

lution of the linear dispersion relation. The parameters are: Ne = Ni = 6765, on a

grid of length L = 8 with 64 grid points; ηe = ηi = 0 and θ = 0.01. Only the n = 1

mode (k⊥ρs ' 0.78) is retained in the simulation. The initial configuration in phase

space for the splitting scheme run and the δf run are identical.

Figure 7 Linear growth rate for the standard δf scheme (triangles) and for the splitting

scheme (squares) as a function of κ = ρs/Ln. The plain line is the numerical solution

of the linear dispersion relation. The parameters are: Ne = Ni = 6765, on a grid of

length L = 8 with 64 grid points; ηe = ηi = 0 and θ = 0.01. Only the n = 1 mode

17



(k⊥ρs ' 0.78) is retained in the simulation. The initial configuration in phase space

for the splitting scheme run and the δf run are identical.

Figure 8 Same as Figure 7 but for Ni = Ne = 10946 markers. The initial configuration in

phase space for the splitting scheme run and the δf run are identical.

Figure 9 Power spectrum of the electrostatic potential for the standard δf scheme based

on 500 time steps (linear run). The parameters are L = 8, number of grid points

Ng = 64, Ne = Ni = 10946, κ = 0.05, ηe = ηi = 0 and θ = 0.01.

Figure 10 Power spectrum of the electrostatic potential for the splitting scheme based on

500 time steps (linear run). The parameters and the initial configuration in phase

space are identical to those of Figure 8.

Figure 11 Time history of the real (plain line) and imaginary (dotted line) parts of the

n = 1 mode based on the splitting scheme (nonlinear run).

Figure 12 Saturation level of the Parker-Lee three-wave mode coupling theory13 (plain

line) compared with the measured values for the splitting scheme (squares) and the

δf scheme (triangles) for a set of Ne = Ni = 6765 as a function of the drive, κ.
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FIG.1 Lewandowski
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FIG.2 Lewandowski
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FIG.3 Lewandowski
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FIG.4 Lewandowski
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FIG.5 Lewandowski
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FIG.6 Lewandowski
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FIG.7 Lewandowski
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FIG.8 Lewandowski
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FIG.9 Lewandowski
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FIG.10 Lewandowski
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FIG.11 Lewandowski
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FIG.12 Lewandowski
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