Diagnostic Setup for Characterization of Near-anode Processes in Hall Thrusters

by

L. Dorf, Y. Raitses, and N.J. Fisch

May 2003
PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Telephone: 1-800-553-6847 or (703) 605-6000
Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm
DIAGNOSTIC SETUP FOR CHARACTERIZATION OF NEAR-ANODE PROCESSES IN HALL THRUSTERS
L. Dorf, Y. Raitses and N. J. Fisch
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ, 08543

ABSTRACT
A diagnostic setup for characterization of the near-anode processes in Hall thrusters was designed and assembled. Experimental results with a single floating probe show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for near-anode measurements.

I. INTRODUCTION
Conventional Hall Thrusters can efficiently produce I_{sp} in the range of 1000-2000 sec operating at moderate discharge voltages of several hundred volts. However, an increase of the discharge voltage to a thousand volts and above in order to reach higher I_{sp} may be accompanied with a reduction of the thruster efficiency.\(^1\) Physical mechanisms leading to this degradation of thruster performance are unknown, in part because high I_{sp} operation of Hall thrusters is relatively less studied. Theory predicts the presence of a negative anode sheath and a back-ion flow in order to limit electron flux towards the anode at moderate discharge voltages.\(^2\) An increase of the discharge voltage at the same magnetic field leads to the increase of the discharge current; however, the electron temperature is limited by the secondary electron emission from the channel walls. Therefore at large discharge voltages the electron drift velocity at the anode may become on the order of or larger than the electron thermal velocity, rendering the sheath unnecessary or making it positive. Existing experimental evidence indicate, although indirectly, some principal changes in the near-anode potential profile with the increase of the discharge voltage.\(^3\) Analysis of boundary conditions for a quasi one-dimensional steady-state model of a Hall thruster shows that the discharge voltage determines the operating regime: for discharge voltages greater than a certain value, the negative anode sheath and the back-ion flow disappear.\(^4\)

Near-anode processes may have an effect on the overall operation of a Hall Thruster. At the same discharge current electron energy flux towards the anode is higher in case of a positive sheath, because electrons gain kinetic energy in the positive voltage drop. As a result they can provide an additional ionization in this region,\(^5\) which may be useful at low mass flow rates, and increase the anode heating. Taking into account that in Hall thrusters the anode is typically a gas-distributor, its damage by overheating may result in the irreversible failure of the thruster. In addition, a change of the voltage drop in the near-anode sheath causes changes in the electric field distribution along the entire channel, which may potentially affect the beam divergence inside and outside the thruster. Therefore it is important to investigate near-anode processes experimentally, and understand physical conditions for thruster operation in “no sheath” and “positive sheath” regimes.

The near-anode region in Hall thrusters is typically about 1-2 cm long. Plasma density, $n \sim 10^{10} - 10^{11}$ cm$^{-3}$, electron temperature, $T_e \sim 3 - 5$ eV, and their variations in the near-anode region are smaller than
in the acceleration region. The magnetic field is also much smaller, so the electron flux towards the anode is mainly affected by the electron pressure gradients, \(\frac{1}{en} \frac{dP}{dz} \sim 10 \text{ V/cm}. \)

Similar to the experimental studies of the sheath and presheath in low-pressure gas discharges,\(^6\) measurements of the plasma parameters in the near-anode region can also be implemented by various electrostatic probe techniques including single, double and emissive probes. However, implementation of conventional plasma diagnostics for measurements inside the Hall thruster channel is complicated by its relatively small size and obstacles imposed by thruster structures, in particular by the magnetic circuit. Besides, introducing probes axially into the acceleration region with \(T_e \sim 20 \text{ eV} \) has caused significant perturbations to the Hall thruster discharge, namely increases up to and greater than 50% and fluctuations of the discharge current.\(^7,8,9\) This may cause inaccuracy of up to tens of volts in measured plasma potential, which is unacceptable for characterization of a near-anode region where the overall expected potential change is of order of several volts.

In this paper we describe the diagnostic setup for near-anode measurements and experimental results for characterization of the effect of probe insertion and axial motion on thruster operation. The probe is introduced radially into the near-anode region and does not pass through the acceleration region. It is not expected to cause significant perturbations to the discharge or get severely damaged because the electron temperature and plasma density in the near-anode region are low. For the same reason probe residence time should not be an issue and therefore radial probe insertion does not require high-speed motion.

II. DIAGNOSTIC SETUP

The new 2 kW Hall thruster and test facility used in this study are described in Ref. 10. Fig. 1 shows a diagnostic setup for near-anode measurements and the probe location relative to the thruster channel. The probes holder, which can accommodate up to three plain electrostatic or hot emissive probes simultaneously, is mounted on a CVI precision rotary stage and a Newport linear stage for fine pitch and height adjustment of the probe relative to the thruster channel. These manually controlled stages are assembled on a Velmex motor-driven X-Y linear positioning stage, equipped with two 400-steps/rev step-motors, two 40-rev/inch high precision lead screws and two 5 \(\mu \text{m} \)-resolution Renishaw optical encoders. This motor-driven stage is mounted on an additional CVI rotary stage for a fine yaw adjustment, which is fixed on an aluminum breadboard near the thruster mounting table. Probes can be introduced into the thruster through a 2mm wide and 10 mm long axial slot starting at 2 mm from the anode, made in the outer ceramic wall of the thruster channel. The motor-driven positioning stage allows probe motion along the slot between the inner and the outer channel walls. Control of the positioning system and the signal measurements are performed by a National Instruments, PC-based, data acquisition system.

For the present study we introduced a single floating electrostatic probe into the plasma near the anode in order to measure probe induced perturbations in a discharge current. The probe consists of a high purity alumina single bore tube 1.5 mm in diameter covering 0.25 mm diameter thoriated tungsten wire (Fig. 1). The uncovered tip length was 3 mm and the overall probe length was 165 mm.
III. EXPERIMENTAL RESULTS

A floating electrostatic probe was introduced radially into the near-anode plasma at various thruster operating parameters, namely discharge voltages, V_d, from 200 to 700 volts and mass flow rates, dm/dt, from 20 to 50 SCCM. During the first experimental session probe was inserted radially as deep as 20 mm into the channel at various axial positions, $Z = 2.5 - 12$ mm from the anode, and left in plasma for up to 5 min. During the second experimental session probe moved from the anode side, $Z = 2.5$ mm, to the cathode side, $Z = 12$ mm, of the slot at several radial locations from near the outer wall, $R = 0$, to near the inner wall, $R = 25$ mm. Measured discharge current vs. time characteristics are shown on Fig. 2.
We found that in all delivered experiments probe motion did not disturb the plasma of the discharge. This leads to the conclusion that radial probe insertion can be used for plasma measurements in the near-anode region of a Hall thruster.

ACKNOWLEDGEMENT

The authors would like to thank Mr. D. Staack for his contribution to preparations and delivering of the experiments. We also benefited from discussions with Prof. V. Semenov. This work was supported by the US DOE under contract No. DE-AC02-76CH03073.

REFERENCES

External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, MTA KFKI-ATKI, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Plasma Physics Laboratory, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People's Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People's Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People's Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA

02/25/03