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Abstract

An artificial neural network algorithm for continuous minimization is developed and
applied to the case of numerical particle loading. It is shown that higher-order moments of
the probability distribution function can be efficiently renormalized using this technique.
A general neural network for the renormalization of an arbitrary number of moments is
given.
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1 Introduction

The collective behavior of a hot collisionless plasma is described in kinetic theory by the evolution
of the distribution functions of its species fe (x, z, t) and fi (x, z, t) in continuous phase space.
In the particle-in-cell (PIC) technique one returns to a discrete representation of the plasma in
terms of a small sample of 104 to 108 ”particles”, or more appropriately, markers [1].

The most common (and natural) initialization of the simulation particles is to load the
particle velocities, for example, with random numbers having the desired distribution. This
method has obvious advantages; in particular it is in agreement with our physical intuition (that
is the numerically-loaded probability distribution function (PDF) for the markers resembles the
random distribution of actual particles). However, one disadvantage of random loading is that
higher-order velocity moments are not well represented, and this may impact the long term
behavior and the noise level of the simulated plasma.

In this paper, we present a neural network algorithm to renormalize a numerically-loaded
PDF; we specifically consider the case of a Maxwellian PDF (because of its applications to plasma
particle-in-cell simulations) but the method can be easily generalized to arbitrary distribution
functions. A numerically-loaded PDF with accurate higher-order moments allows for noise-free
simulations to be run for longer times; this is especially important for the modelling of the
fast-moving electrons.

The paper is organized as followss; in section 2, we discuss the main features of a continuous
neural minimization algorithm. This algorithm is tested numerically for the case of a Maxwellian
distribution in section 3; the issues related to the parallelization of the algorithm are discussed
in the same section. Concluding remarks are given in section 4.

2 Neural Minimization Algorithm

In this section, we present the general features of a neural network algorithm for continuous
minimization. The specific case of a neural algorithm for particle loading is specifically discussed,
and numerical results are given.

2.1 General Aspects of Neural Networks

Over the past decade highly parallel neural networks have been investigated extensively to
solve complicated problems such as robotic control [2], vision and image processing [3] and
speech recognition [4]. Artificial neural networks (ANNs) is an abstract simulation of a real
nervous system that contains a collection of neuron units communicating with each other via
axon connections (such a model bears strong resemblance to axons and dendrites in a nervous
system). ANNs consist of individual processors and interconnections between the processors,
or neurons (Figure 1). Each neuron can have two different states, i.e. on and off which are
represented by binary numbers 1 and 0; each neuron sums all the signals coming from all the
other neurons through the weighted interconnections, thresholds the summed signal to 0 or 1,
and changes its state according to the thresholded output. This method of computation is based
on the collective interaction between the neurons and it exhibits a high degree of parallelism.

In this paper, we focus out attention on the Hopfield model, which is based on the nonlinear
dynamics between globally interconnected neurons [5, 6]. The states of individual neurons are
specified by their outputs θi which range between 0 and 1. In the (continuous) Hopfield model,



neurons change their states according to the following equations

dζi

dt
=

∑
j

Tijθj , (2.1)

θi = g (ζi) , (2.2)

where t is the continuous time which corresponds to the updating parameter, Tij is the intercon-
nection strength, and g(x) is a monotonically increasing nonlinear function bounded between 0
and 1, and ζi is an intermediate variable. The nonlinear function g(x) is typically of the form
g(x) = 1

2
[1 + tanh(x/x0)], where x0 is a constant. Hopfield [6] has shown that if the intercon-

nection strengths are symmetric, Tij = Tji, neurons in the continuous model always their states
in such a way as to minimize an energy functional defined by

E = −1

2

∑
i

∑
j

Tijθiθj , (2.3)

and stop at the minima of this function. Clearly, the updating rules (2.1,2.2) for minimizing the
energy function (2.3) are highly parallel The Hopfield model has been generalized to arbitrary
energy function by Koch et al [7] as follows; write the positive-definite energy function as

E = F (θ1, θ2, · · · , θM) ≡ F (θ) , (2.4)

where F is a non-singular, bounded function of the variable θi. The updating rules given by

dζi

dt
= −∂F

∂θi
, (2.5)

θi = g (ζi) , (2.6)

minimize the energy function (2.4) [7].

2.2 Neural Network Algorithm for Particle Loading

Having introduced the principal features of the neural network algorithm for continuous mini-
mization, we can proceed with the renormalization problem discussed in the Introduction. Let
us assume that a Maxwellian PDF, based on a set of N samples (markers), has been numeri-
cally generated using some arbitrary random technique; the method used can be straightforward
methods (for example, Neumann’s rejection technique) or more sophisticated methods, such as
those based on number theory [8,9]. Some methods based on random number generators tend to
introduce a ‘background noise’ that could be detrimental for the observation of low-amplitude
instabilities. Apart from the noise properties associated with the initial PDF, the accuracy of
higher-order velocity moments can be also important in some applications. This paper attempts
to address some of the issues associated with higher-order velocity moments (irrespective of
the loading method of the initial PDF). The problematic velocity moments are the odd mo-
ments because of an obvious cancellation problem between markers with positive and negative
velocities.



The odd velocity moments of the continuous (exact) Maxwellian distribution function FM(v) =

(2π)
−1/2

exp (−v2/2) vanish

M2n+1 ≡
∫ +∞

−∞
v2n+1FM(v)dv = 0 , (2.7)

for n = 0, 1, 2, .... Now consider the moments of the numerically-loaded PDF. It is sufficient to
carry out the velocity space integration using Riemman sums; the velocity moment of order n,
based on a set of N markers, is then

Mn ≡ 1

N

N∑
k=1

Vk
n . (2.8)

In general, however, the odd velocity moments M2n+1 do not vanish; this break of symmetry in
the PDF can be problematic for long timescale simulations. Let us consider a neural network al-
gorithm to renormalize the first-order (”particle flux”) and the third-order (”heat flux”) velocity
moments; the energy functional is written as

E = C1M
2
1 + M2

3 ≡ F (V1, V2, · · · , VN ) ≡ F (V) > 0 , (2.9)

where C1 is a positive constant. Without thresholding the evolution equation for the kth marker
is

dVk

dt
= − ∂F

∂Vk

= − 2

N
C1M1

N∑
`=1

∂V`

∂Vk
− 6

N
M3

N∑
`=1

V 2
`

∂V`

∂Vk

= − 2

N

(
C1M1(t) + 3M3(t)V

2
k

)
, (2.10)

where we have used the definition (2.8) and the relation ∂V`/∂Vk = δk,l, where δk,l is the
Kronecker symbol for integers k and `. Before the renormalization (t = 0), we usually have
|M3(0)| � |M1(0)|, since the higher-order velocity moments are more ”noisy”. If C1 is chosen to
be unity in Eq(2.10) then the neural network will be biased towards the highest velocity moment
(here M3). In order to remedy to this situation, we have chosen C1 = (M3(0)/M1(0))

2 � 1;
numerical simulations confirm the validity of this choice. The generalization of the above al-
gorithm for the renormalization of the first Q velocity moments is straightforward; define the
energy functional as

E =

Q∑
q=1

Cq (Mq − Iq)
2 = F (V) , (2.11)

where the constants Cq are conveniently chosen as Cq = (MQ(0)/Mq(0))
2
, for q = 1, 2, · · · , Q;

and

Iq ≡ 1√
π

∫ +∞

−∞
xq exp

(−x2
)
dx

for positive integer q is related to the exact moment of the Maxwellian PDF (note that Iq = 0
for q odd; the first nonvanishing moments are I2 = 1

2
, I4 = 3

4
, I6 = 15

8
, I8 = 105

16
, I10 = 945

32
, · · ·).

Using the chain rule as before, the evolution equation for the kth marker then becomes

dVk

dt
= − 2

N

Q∑
q=1

qCq (Mq − Iq)V q−1
k . (2.12)



2.3 Numerical Results

For the simulations presented in this paper, we have a second-order Runge-Kutta algorithm [10]
to integrate the N equations (2.10). The algorithm has been parallelized using the Message Pass-
ing Interface (MPI); the parallel version of the algorithm is based on distributing the N equations
(2.10) across different processors; the computation of the velocity moments [Mq in Eq.(2.12] is
the operation that requires synchronization and global communication across processors.

In this paper, we compare the renormalization of a Maxwellian PDF for the case of random
loading and the so-called ”quiet start loading” of Denavit and Walsh [9] which is based on
number theory [8]. The original PDF (i.e. before the renormalization procedure) are shown in
Figure 1 (random loading) and Figure 2 (quiet start loading based on Fibonacci numbers [9]) for
the case on N = 10946 markers. Figure 2 shows the regular array in X −V space; note that the
velocities are staggered to prevent a pattern of velocity beams with their associated unphysical
recurrences and instabilities [11].

Figure 3 shows the time evolution of the absolute values of the odd velocity moments M1

(dotted line) and M3 (plain line) computed using the neural network algorithm with a time step
∆t = 10. The time step can be chosen by considering the order of magnitude of the right-hand
side of Eq.(2.10)

1

τ
≡ 2

N
{C1 |M1(0)| + 3M2(0) |M3(0)|}

The above estimate can be extended to the general neural network (2.11,2.12). For reasonable
accuracy (and possibly stability), we must chose a time step such that ∆t/τ � 1. Figure 3
shows that the renormalized particle flux, M1, has decreased by 4 orders of magnitude, whereas
the heat flux, M3, has decreased by 3 orders of magnitude.

In order to compare the random and quiet start loading procedures, one can consider the
probability spectrum, P (∆V ), associated with the absolute value of the velocity change, ∆V ≡
|V (0) − V (T )|, where T is the total simulation time. Figures 5 and 6 show P (∆V ) for the case
of random loading and quiet start loading, respectively. The probability spectrum for the case
of random loading displays a maxima at relatively large ∆V ; on the other hand, the probability
spectrum for the quiet start loading (Figure 6) follows a power law P (∆v) ∝ (∆v)−α. This
suggests that the renormalization of the quiet start PDF using the neural network algorithm will
be more effective as compared to the random loading case; this is confirmed by the simulations.

Figure 7 shows the renormalization of the odd velocity moments M1, M3 and and M5. All
velocity moments decrease by 3 to 4 orders of magnitude. Similar performance is observed in
the general case (2.12).

3 Concluding Remarks

We have presented a neural network algorithm for particle loading based on continuous mini-
mization. It has been shown that such renormalization procedure is efficient and be can easily
generalized. The success of the method presented in this paper can be enhanced further when
coupled with loading techniques based on number theory [8,9]. Numerically-loaded distribution
functions with accurate higher-order moments are useful for long-time, noise-free simulations of
turbulent plasmas.
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Figure 1 Schematic diagram of a simple neural network; Tij, Tjk and Tik are the interconnec-
tions strengths between the pairs of neurons (i, j), (j, k) and (i, k), respectively.

Figure 2 Random loading of a Maxwellian distribution function for a set of N = 10946 markers.

Figure 3 Quiet start loading (based on Fibonacci numbers [9]) of a Maxwellian distribution
function for a set of N = 10946 markers.

Figure 4 Renormalization of the first two odd moments [M1 (dotted line) and M3 (plain line)]
for a quiet start loading of a Maxwellian distribution based on a set of N = 196418 markers.
The time step used is ∆t = 10.

Figure 5 Probabibility spectrum for the velocity change ∆V = |V (T )− V (0)| for the case of a
random loading based on a set of N = 196418 markers.

Figure 6 Probabibility spectrum for the velocity change ∆V = |V (T )− V (0)| for the case of
the quiet start loading for the same parameters as in Figure 5. The probability spectrum
follows a power law distribution, P (∆V ) ∝ (∆v)

−α
.

Figure 7 Renormalization of the first three odd moments [M1 (dotted line), M3 (plain line)
and M5 (dashed line)] for the same parameters as in Figure 4.
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