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GeV electrons acceleration in focused laser fields after above-threshold ionization

I.Y. Dodin and N.J. Fisch
Princeton Plasma Physics Laboratory, Princeton, NJ 08543

Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated
by currently producible laser pulses up to GeV energies, as shown recently in [Hu and Starace,
Phys. Rev. Lett. 88, art. 245003 (2002)]. To describe electron acceleration by general focused laser
fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive
approach. Analytical expressions are derived and the applicability conditions of the ponderomotive
formulation are studied both analytically and numerically. The theoretical predictions are supported
by numerical simulations.

PACS numbers: 2.38.Kd, 52.35.Mw, 52.20.Dq, 52.27.Ny, 45.20.Jj

I. INTRODUCTION

Recent advances in high-power laser technology have
resulted in the development of petawatt laser systems [1–
3]. Those can deliver superstrong laser pulses with inten-
sities of focused output radiation as high as 1021 W/cm2,
which makes them especially attractive from the stand-
point of studying the interaction between electromag-
netic radiation and matter. One of the aspects of this
interaction is the problem of obtaining ultra-relativistic
beams of charged particles. Results of numerical simu-
lations [4–11] and experiments [12–15] show that there
exists a mechanism of interaction between laser waves
and charged particles, which allows particle acceleration
up to ultra-relativistic energies. For electrons, the ener-
gies achievable with currently available laser systems can
be as large as several GeV [4–7, 9].

In this paper, we propose derive analytical expressions
describing acceleration of electrons produced as a result
of above-threshold ionization up to ultra-relativistic ener-
gies [9, 10, 13, 16]. To start, let us introduce the dimen-
sionless parameter a0 = eE0/mωc, conventionally used
to characterize the strength of electromagnetic radiation.
Here E0 is the amplitude of the laser electric field, e and
m are the electron charge and the mass correspondingly,
ω is the frequency of the laser field, and c stands for the
speed of light. The value of a0 can be understood as
the ratio of the momentum imparted by the wave field
in a single oscillation to mc, meaning that relativistic ef-
fects become important at a0 & 1. (For the wavelength
of the laser radiation equal to 1 µm, the intensity cor-
responding to a0 ∼ 1 is about 1018 W/cm2.) Thus, un-
der the influence of currently available laser intensities
(a0 . 102), the ultra-relativistic electron oscillatory mo-
tion itself has gamma-factor (γ = E/mc2) of the order
of a0, which though large is still small compared to the
experimentally and numerically observed values γ ∼ a2

0

[4–15].
Under the plane wave approximation, the particle mo-

tion is exactly integrable (Sec. III) and the scaling γ ∼ a2
0

follows naturally. This can also be explained in terms of
the ponderomotive formulation (Sec. IV, see also Refs.
[10, 11, 17]), which can be applied to experimentally real-
izable conditions. For focused laser beams used in exper-

iments, the plane-wave model does not capture the im-
portant dynamics, because of the possibility for particles
to escape from the interaction region in the direction per-
pendicular to the wavevector. However, ionization event
itself cannot be described ponderomotively, because the
electron leaves the ion on a time scale small compared to
the oscillation period [9].

The surprise in this work is that the ponderomotive
formulation can still give good results if the ionization is
accounted for properly, and the laser field, in which the
acceleration takes place changes, is smooth enough (for
the nonrelativistic problem, see Ref. [18]). We show how
ionization can be included into a model based on the
relativistic ponderomotive approach. For certain cases
of interest, we calculate the electron energy gain pre-
cisely. Also, we address the applicability conditions of the
model, both analytically and numerically. These condi-
tions turn out to be significantly more relaxed than those
given in Ref. [11].

The paper is organized as follows. In the next section,
we discuss the main principles of particle acceleration by
intense laser pulses and formulate the actual analytical
model studied in the present paper. In Sec. III, we revise
the conventional model of particle acceleration under the
plane wave approximation and derive the corresponding
expression for the particle energy gain. In Sec. IV, we
give the ponderomotive treatment of nonadiabatic par-
ticle acceleration in spatially nonuniform laser fields. In
Sec. V, we compare our analytical results with those
obtained from numerical simulations of particle motion
and, in the end, summarize our main ideas.

II. PARTICLE ACCELERATION BY LASER

PULSES

In order to describe the mechanism of charged particle
acceleration by intense laser pulses, first, consider parti-
cle motion in laser waves of uniform or slightly nonuni-
form intensity. In a smooth laser field with a characteris-
tic spatial scale of the wave envelope L, large compared to
the wavelength λ, a charged particle experiences oscilla-
tory “figure-eight” motion (in a linearly polarized wave)
or circular motion (in a wave with circular polarization)
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[19, 20]. Its guiding center drifts as a quasi-particle with

an effective mass meff = m
√

1 + a2, where the bar above
a(η) = eE(η)/mωc stands for averaging over the phase
η = ωt−k·r [21–26]. Slow variations of the laser intensity
“seen” by the particle result in variations of its effective
mass and produce a ponderomotive force, proportional
to the intensity gradient. Because of the conservative na-
ture of this force, as the pulse passes over the particle, the
particle is decelerated almost precisely down to its initial
energy. In this case, the net acceleration appears to be
exponentially small with respect to the parameter λ/L.
In order to prevent adiabatic deceleration and extract the
energy from the laser field irreversibly, one needs to vio-
late the adiabatic approximation for particle drift. (See
also the discussion on the so-called Lawson-Woodward
theorem in Ref. [27] and references cited therein.)

From the technological point, pulses with L . λ, for
which the net acceleration can be substantial [8, 28], are
generally hard (yet possible) to produce. However, fields
with sufficiently large transverse gradients of average in-
tensity can be obtained by focusing laser radiation into
a small spot, which size is only limited by diffraction
spreading. The focal waist w = Nλ (with N often to be
of the order of several units) is usually small compared to
the longitudinal scale of the focal region b = kw2. Thus,
nonadiabatic acceleration in a focal spot can occur pri-
marily due to particle escape in the transverse direction
at N ∼ 1 [4–7]. (For more precise condition, see Sec.
IV.) However, in this case, charged particles must be de-
livered to the interaction region after the laser field has
been turned on. Otherwise, as the laser intensity “seen”
by a charged particle grows slowly, the particle is swept
away by the very front of the pulse even before the inten-
sity reaches its maximal value, which results in inefficient
acceleration [9].

Additional efforts are necessary to keep charged parti-
cles in the focal region until the field reaches its maximal
amplitude. In Ref. [9] (see also Refs. [10, 13, 16]), it was
proposed to keep the electron trapped by the Coulomb
field of a high-Z ion for the time needed for the laser
field to reach its maximal intensity. During this time,
the bounded electron practically remains at rest but, af-
ter the laser field intensity becomes large enough, it is
swept off by the wave. After the electron has left the ion,
the Coulomb field does not influence the electron dynam-
ics significantly. Thus, the electron can be considered as
accelerated in free space, assuming for the initial condi-
tions that, effectively, it starts “seeing” the intense laser
field instantaneously, immediately after ionization. The
actual value of the ionization potential does not influence
the acceleration but rather determines the amplitude of
the laser field, at which ionization occurs.

Consider now electron acceleration by an instanta-
neously switched on laser field [9, 10]. Assume, for clarity,
that the laser wave is linearly polarized and propagates
in vacuum at the speed of light. On a quarter of the
first period of the field “seen” by electron, the wave elec-
tric field E accelerates the electron up to the velocity

υ close to the speed of light in the direction transverse
to the wavevector k. The magnetic part of the Lorentz
force, υ × B/c, rotates the electron velocity vector in
the direction of k and, since υ ≈ c and E = B, reduces
the transverse force applied to the particle by a factor
about 1/γ2 � 1. Further, slower (but yet efficient) ac-
celeration is provided by the electric force. The mag-
netic force tends to align the electron velocity vector in
the direction of k providing that, in ultra-intensive laser
fields, the accelerated electrons remain well-collimated.
In other words, though it is the electric field that actu-
ally accelerates the particle, it is the magnetic force that
allows “storing” the obtained energy in the longitudinal
motion. In principle, this mechanism allows particles to
be accelerated by purely transverse waves, contrary to
the conventional accelerators utilizing the longitudinal
component of a wave electric field to accelerate charged
particles in the direction of wave propagation (see, e.g.,
Ref. [27, 29] and references therein).

This mechanism is quite robust, and the acceleration
proceeds as long as the particle remains in phase with
the wave. In vacuum, where the phase velocity is equal
to the speed of light, phase mismatching is inevitable.
On the other hand, phase matching can be sustained for
arbitrarily long time if the acceleration takes place in a
dispersive medium, where the laser wave is slowed down
properly [29].

It is important to emphasize that, after a single nonadi-
abatic effect (such as instantaneous ionization) has been
introduced into the acceleration scheme, an abrupt field
structure in the focal region no longer remains crucial
for effective acceleration. Indeed, if the laser intensity
“seen” by the particle decreases adiabatically to zero at
t → ∞, the ponderomotive deceleration generally does
not bring the particle to rest because the preceding ac-
celeration did not follow the adiabatic law. Therefore, in
this case, the particle can retain a significant part of its
energy even if leaving the region of interaction with the
laser field adiabatically.

In this paper, we consider such smooth laser field pro-
files (for precise conditions, see Sec. IV, V). We develop
a ponderomotive formulation to study electron accelera-
tion after ionization, which we model as an instantaneous
jump of the laser intensity “seen” by the electron. The
problem of particle acceleration by a plane laser pulse
yields an exact solution, which we discuss in the next
section. As shown in Sec. IV, the ponderomotive for-
mulation generalizing this conventional treatment to the
case of spatially nonuniform laser fields, which are rele-
vant to real experiments.

III. ACCELERATION BY PLANE WAVES

The conventional approach to solving the problem of
charged particle acceleration by a laser pulse implies ap-
proximating the latter by a plane wave [8, 19, 30]. In
this case, the problem of particle motion can be solved
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exactly for arbitrary polarization and longitudinal profile
of the pulse. In this section, we give a simple derivation.
A more detailed analysis follows in the next sections.

Consider particle motion under the action of a plane
laser wave propagating in vacuum with vector potential
given by

A(r, t) = (mc2/e) A(η), (1)

where η = ωt − kz stands for the phase of the wave,
k = ω/c represents the wavevector, and A(−∞) = 0.
Several exact integrals of particle motion under the ac-
tion of such a wave can be figured out readily. First, the
canonical momentum P ⊥ = p⊥+(e/c)A is conserved be-
cause of the symmetry of the laser field with respect to
the transverse displacement and equals the initial kinetic
momentum of the particle before the interaction p⊥,0.
This yields a solution for the kinetic momentum

p(η) = p0 − (e/c)A(η). (2)

Also, because of the fact that the wave field depends on
the phase (that is, on the combination z−ct, rather than
z and t separately), there exists an additional integral of
motion given by

u = γ − pz/mc = γ0 − pz,0/mc = const, (3)

where γ0 =
√

1 + (p0/mc)2 is the initial normalized en-
ergy of the particle. The equations for the particle energy
γ and the phase η

dγ

dt
=

e

mc2
(υ · E) ,

dη

dt
= ω − kυz, (4)

where E = −(1/c)(∂A/∂t), with Eqs. (2), (3) taken into
account, can be put in the dimensionless form

dγ

dτ
=

1

2γ

dÂ2

dη
,

dη

dτ
=

u

γ
, (5)

where we introduce the dimensionless time τ = ωt and
the quantity Â = A−p⊥,0/mc. Solving those, one read-
ily gets the function γ(η) for arbitrary initial conditions
and arbitrary shape of the laser pulse:

γ(η) = γ0 +

(
A(η) − p⊥,0/mc

)2
−

(
p⊥,0/mc

)2

2 (γ0 − pz,0/mc)
. (6)

Let us now precisely point out the connection between
A that enters the above formula and the actual laser
electric field E. From Eq. (1), it follows that

A(η) = −
e

mωc

∫ η

−∞

E(η′) dη′. (7)

In the case when the field “seen” by the charged particle
is smooth enough (λ/L � 1), one has

A ≈ a = <

(
−i

eE

mωc

)
, E = <

(
E0(η)e−iη

)
, (8)

with E0(η) to be a slow function of η. For such a pulse,
A(+∞) is exponentially small (with respect to the pa-
rameter λ/L), since it represents the average of a rapidly
oscillating function. Thus, after such a smooth laser
pulse had passed over the particle, the particle energy
γ reverts to its initial value γ0. This regime corresponds
to the adiabatic motion, when no substantial accelera-
tion takes place. As discussed above, in order to provide
significant acceleration, one needs to make the laser field
amplitude E0(η) an abrupt function.

Consider the case when the particle initially rests,
which will be the case of our further primary interest.
Eq. (6) now simplifies to

γ(η) = 1 + A2(η)/2. (9)

Suppose that the laser field “seen” by the particle grows
instantaneously at some phase η0 from zero value up to a
finite amplitude. If, later, the pulse amplitude decreases
to zero slowly, the value of the integral (7) at η → ∞ is
determined by the intensity only at η = η0. Precisely, for
the field (8), Eq. (9) can be written as

γ(∞) = 1 + a2(η0)/2 = 1 + a2

0 sin2(η0)/2. (10)

The model of instantaneous increase of the field “seen”
by the particle can adequately describe the acceleration
following an ionization event [9, 13] and, generally, rep-
resents a good qualitative model describing any nonadi-
abatic effects during acceleration. As mentioned above,
the scaling γ ∼ a2

0 predicted by Eq. (10) matches well
with the values of γ actually measured in experiments
[12–15].

Using Eqs. (2), (3), and (10), one can also calculate
the angular spectrum of accelerated particles (see also
Refs. [10, 11, 15]). The angle, at which particle travels
after the interaction with a plane laser pulse, is given by
tan θ = p⊥(∞)/pz(∞), or tan θ = 2/a. One can also
represent the scattering angle in terms of particle energy,
which, in the case a0 � 1, leads to θ =

√
2/γ, meaning

that a beam of charged particles accelerated up to ultra-
relativistic energies by a plane laser pulse must be well
collimated.

Consider now what happens if the particle interacts
with a train of pulses with equivalent intensity but ran-
dom phases. (A related problem is the well-known Fermi
acceleration of energetic particles in space plasmas where
particles are scattered off randomly wandering magnetic
shocks of various nature [31, 32].) Throughout the whole
acceleration process, u remains an exact integral of par-
ticle motion. Thus, averaging over η0 and assuming the
particle remained at rest before acceleration (u = 1),
one gets that each time the particle interacts with a
new laser pulse, on average, it gets the additional en-
ergy 〈∆γ〉 = a2

0/4. Since this value does not depend on
particle energy, the particle is accelerated steadily with
uniform rate by the whole wave train, despite the fact
that its energy may be changing by orders of magnitude
during acceleration. Thus, we conclude that, as a charged
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particle interacts with a train of laser pulses, its energy,
in average, grows proportionally to the total number of
pulses passed over the particle.

IV. PONDEROMOTIVE TREATMENT

The considered treatment of the acceleration process
under the approximation of a plane laser pulse represents
a useful tool providing a simple estimate for the energy
gain obtained by a particle during the interaction with
a laser wave. In reality, however, a different configura-
tion of the laser field is of primary interest. In order
to get the most efficient acceleration for a given fluence,
the radiation is usually focused into a tiny spot, where
the field gradients become essential for particle dynam-
ics. As discussed in Sec. II, the particles energy gain
depends on the transverse structure of the field because
particles primarily escape from the focal region in the di-
rection transverse to the wave propagation. In addition,
in focused fields, the longitudinal component of the laser
electric field appears, which, though small, can influence
the acceleration process substantially [11, 33]. Therefore,
more accurate model (rather than the one assuming the
plane-wave approximation for a laser pulse) is needed to
describe electron acceleration in real experiments.

In this section, we employ a ponderomotive formula-
tion of acceleration of an electron produced as a result of
above-threshold ionization in a smooth (though arbitrar-
ily nonuniform) laser field. Again, below we will assume
that the field “seen” by the particle is switched on instan-
taneously at t = t0 (or η = η0), when the particle remains
at rest. Note that, if the spatial scale of the field is large
enough (the exact conditions are discussed below), the
particle dynamics is adiabatic at any time t > t0. The
nonadiabatic “jump” of the laser field intensity at t = t0
can be attributed to proper initial conditions for the drift

motion, which is superimposed on the known laser-driven
oscillations and is considered only at t ≥ t0. The require-
ment on these proper initial conditions is that they must
provide the particle total velocity to be zero at t = t0
(similar approach for nonrelativistic particle energies is
discussed in Ref. [18]).

At t > t0, the particle average motion is determined
by the effective ponderomotive force [11, 21, 22, 24–26]
caused by inhomogeneity of a smooth laser field with the
vector potential satisfying Eq. (8). As shown in Refs.
[21, 25], the particle drift is described by the Hamiltonian
function

H(rd, pd; t) =
√

m2

eff
c2 + p2

d
c2, (11)

where rd = 〈r〉 stands for the guiding center location,
pd = meffγdυd equals the particle phase-averaged mo-

mentum p, meff(rd, t) = m
√

1 + a2 is the slowly variable

effective mass, and γd = 1/
√

1 − υ2

d
/c2 is the gamma-

factor associated with the drift velocity υd, which coin-
cides with the time-averaged particle velocity 〈υ〉. (The

bar denotes averaging over the phase η, and the an-
gle brackets stand for the time averaging [21].) As fol-
lows from the definition, the transverse drift momen-
tum pd,⊥ at t = t0 equals the canonical momentum
P ⊥ = (e/c)A(η0). The value of pd,z(t = t0) can be
readily obtained from [21, 25]

H = meffγdc2 = mγc2, γ = γd

√
1 + a2, (12)

considered together with the expressions γ = u + pz,0,
u(t = t0) = 1. (Note that, in nonuniform fields, which are
not only phase-dependent but may also vary in time and
space independently, the quantities u and P ⊥ are subject
to slow but substantial variations as the particle travels
across the laser field.) Finally, one gets the expressions
for the drift momentum and the normalized energy:

pd,⊥(t = t0) = mc a,

pd,z(t = t0) = mc (a2 + a2)/2, (13)

γ(t = t0) = 1 + (a2 + a2)/2,

where the right-hand side is assumed evaluated at t = t0
(or η = η0).

Eqs. (13) represent the initial conditions for the par-
ticle drift motion, which, at t > t0, can be solved for in
the framework of the ponderomotive canonical descrip-
tion with the Hamiltonian function given by Eq. (11).
Using those, one can finally formulate the limitations of
the ponderomotive treatment. (For the problem of free
electron scattering off a laser pulse, those were addressed
in Ref. [11].) In addition to the restriction that the
amplitude of oscillations must remain small compared
to the characteristic scale of the laser field, the parti-
cle needs to undergo at least several oscillations before
it leaves the interaction region. The number of oscil-
lations can be calculated as the ratio of the time Tint

spent by the particle within the interaction region to
the Doppler-modified period of oscillations T ∼ 2πa2

0/ω.
Denoting the transverse and the longitudinal scales of
the laser field with L⊥ and L|| correspondingly, one gets
Tint = min{L⊥/υd,⊥; L||/υd,||}. For a0 � 1, from Eqs.
(13), it follows that υd,⊥ ∼ c/a0 and υd,|| ≈ c. Thus,
finally, the condition for the ponderomotive approach to
be valid can be written as

L⊥ � λ a0, L|| � λ a2

0 (14)

(see also Sec. V). The condition of small amplitude of
particle oscillations (compared to L⊥ and L||) can also
be shown to coincide with Eqs. (14).

It is important to emphasize that, for the pondero-
motive approach to stay valid, the laser pulse may not
satisfy the plane wave approximation on the global scale.
Note that it is the potential of the field that enters the
drift motion equations rather than the field itself. Thus,
the possible inhomogeneity of the laser intensity is auto-
matically taken into account in the proposed treatment,
and so is the particle acceleration by a small longitudinal
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field component, which is hard to take into consideration
in the conventional plane-wave model [33].

In the framework of the ponderomotive approach uti-
lizing the concept of a quasi-particle (that is a guiding
center drifting with the effective mass meff), the scaling
for the retained energy γ ∼ a2

0 of an electron produced
as a result of ionization becomes apparent. Indeed, con-
sider the initial zero total velocity as a superposition of a
drift velocity υd in the laboratory frame of reference K
and the quiver velocity υ′ in the frame K ′ moving rela-
tively to K at the speed υd. From Lorentz addition of
velocities, one finds for t = t0 that υd = −υ′. Since the
magnitude of a is relativistically invariant [21, 22], it fol-

lows that γd = γ′ ∼ a0, where γ′ = 1/
√

1 − υ′2/c2 stands
for the relativistic factor of quiver motion. Recall that it
is the guiding center with an effective mass meff ∼ ma0

(rather than the true particle with mass m) that is ac-
celerated up to the velocity υ′. Thus, immediately after
the laser field is switched on, the guiding center energy
meffγdc

2 increases up to the value of the order of mc2a2
0.

On the other hand, as follows from Eq. (12), the guiding
center energy coincides with the average energy of the
true particle, which yields the predicted scaling γ ∼ a2

0.
The results obtained in the previous section for charged

particles acceleration by a plane wave with a = a(η)
can be readily derived from the proposed ponderomotive
formulation. Indeed, consider a particle instantaneously
injected into a plane laser wave, which amplitude de-
creases adiabatically at η → ∞ (a(∞) = 0). Using

dH/dt = ∂H/∂t and ∂(a2)/∂t = ω {d(a2)/dη}, one gets
equations similar to Eqs. (5):

dγ

dτ
=

1

2γ

d(a2)

d〈η〉
,

d〈η〉

dτ
=

1

γ
. (15)

Here 〈η〉 = ωt−kzd is the time-averaged phase, which we
can approximately use as the argument of a slow function
a2(η), that stands for the normalized average intensity.
From Eqs. (15), the previously obtained formula for the
particle net energy gain (10) follows immediately: As

follows from Eqs. (15), one has γ − a2/2 = const, which
yields

γ(∞) = γ(η0) +
a2(∞) − a2(η0)

2
= 1 +

a2(η0)

2
, (16)

where we substituted Eq. (13) for γ(η0) and used that

a2(∞) = 0.
On the other hand, from the ponderomotive treatment,

more results of interest can be derived. For example,
suppose the nonuniform intensity profile remains static
during a time larger than required for the accelerated
particle to leave the region of interaction (e. g., in a focal
region). In this case, the phase-average particle energy γ

is conserved, since ∂H/∂t = 0. Thus, assuming a2(∞) =
0, one gets γ(∞) = γ(∞) = γ(0), meaning that

γ(∞) = 1 +
1

2
(a2 + a2)0, (17)

where the subindex 0 denotes the evaluation of the right-
hand side of the formula at t = t0 (η = η0). The addi-

tional term a2/2 (compared to Eq. (10)) results from the
particle ponderomotive acceleration out of the interaction
region, which, for static intensity profile, replaces a sim-
ilar deceleration by the tail of a plane laser pulse. The
detailed structure of the intensity profile appears to be
unimportant for the net energy gain because of the con-
servative property of the ponderomotive force. Also, it
is worth noting that, by above-threshold ionization, elec-
trons are primarily produced at the maximum of electric
field [9], when the instantaneous magnitude of the vector
potential is zero (a(η0) = 0). Therefore, electrons pro-
duced in the same region of a static laser field at different
moments of time eventually must retain approximately
the same energy γ(∞) = 1 + a2

0/2.

V. DISCUSSION

In this section, we discuss the possibility of ponderomo-
tive acceleration by ultra-intense electromagnetic pulses,
available with existing laser systems. We consider par-
ticle acceleration both by a plane laser wave and by a
focused wave with a static average intensity profile. In
these two cases, the energy gain can be obtained analyt-
ically, which allows us to compare the numerical results
with our theoretical predictions.

To start, let us calculate the actual value of the pa-
rameter a0, which determines the characteristic energy
of accelerated particles. In terms of the wavelength λ
(measured in microns) and the laser intensity I (mea-
sured in W/cm2), a0 is given by

a0 = λµm

√
IW/cm2/2.74 × 1018. (18)

For the sake of definiteness, consider the parameters of
laser radiation accepted in Ref. [9], namely, λ = 1.054 µm
and I = 8 × 1021 W/cm2 for the peak field. For those,
Eq. (18) yields a0 ≈ 57. In the peak field, the maximal
possible value of the oscillating electron energy γ(η) =
1+a2

0(sin η−sin η0)
2/2 is therefore γmax = 1+2a2

0 ≈ 6500
(or E ≈ 3.3 GeV).

As discussed above, a significant fraction of the elec-
tron energy γ ∼ γmax can be retained by the particle
after the interaction, only if the field amplitude “seen”
by the particle changes abruptly in time. As in previ-
ous sections, we will assume a free electron to be born
(for instance, by means of ionization) in a peak laser
field rapidly in comparison with the wave period, so that
instantaneous increase of the “seen” field represents an
adequate approximation.

First, consider the interaction with a linearly polarized
plane laser pulse switched on at η = η0, with intensity
decreasing slowly at η → ∞ (see Fig. 1). From Eqs. (10)
and (16), it follows that the maximal retained energy is
given by γret = 1 + a2

0/2 ≈ 1630 (or E = 0.83 GeV).
This value matches precisely with the one obtained in
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FIG. 1: Normalized vector potential a (“seen” by electron)
of a linearly polarized laser pulse versus phase η. The field is
switched on at η0 = −π/2. For the peak intensity I = 8×1021

W/cm2 and the wavelength λ = 1.054 µm, the dimensionless
field strength parameter is a0 ≈ 57.

FIG. 2: Electron normalized relativistic energy γ = E/mc2

(solid line), normalized drift energy γ = H/mc2 (dashed line),
and predicted normalized retained energy γret = 1 + a2

0/2 ≈

1630 (dotted line) versus phase η (upper plot) and time τ = ωt
(lower plot) for electron acceleration by the laser field shown
in Fig. 1 (a0 = 57).

numerically. In Fig. 2, the normalized electron energy
γ (solid line) is shown versus the normalized time ωt.
It can be seen that γ(∞) = γret, where the asymptotic
value is represented by a dotted line. The electron drift
energy γ = H/mc2 (dashed line) if found to follow Eqs.
(15), as predicted above.

Lower acceleration is found for initial phases, other

FIG. 3: Electron normalized relativistic energy γ = E/mc2

(solid line) and normalized drift energy γ = H/mc2 (dashed
line) versus phase η (upper plot) and time τ = ωt (lower plot)
for electron acceleration by the laser field shown in Fig. 1
(a0 = 57) switched on at η0 = 0. The theoretically predicted
retained energy is γret = 1.

than η0 = ±π/2. For the same laser field switched on at
η0 = 0, the electron energy after acceleration is negligi-
ble (compared to γmax), exactly as predicted by Eq. (10)
(Fig. 3). If the amplitude of the laser pulse decreases adi-
abatically at η → ∞, substantial acceleration for η0 = 0
can only be achieved in spatially nonuniform field (rather
than the field which depends on the phase only), when
the acceleration is provided by the ponderomotive force
pushing the particle out of the region of strong field.

Simulations of electron acceleration of this type were
performed for a linearly polarized focused field with a =
< α, where

αx = a0

ib

b + 2iz
exp

(
−

k(x2 + y2)

b + 2iz
+ iη

)
, (19)

αz = (i/k) (∂αx/∂x), and the y-component is neglected
as one of a higher order with respect to b/λ. Here b = kw2

sets the longitudinal scale of the focal area, and w = Nλ
is the focal waist size. For the factor N , three different
values were chosen to simulate different regimes deter-
mined by the conditions Eqs. (14), which, for the focal
area, can be put in a simple form

N � a0. (20)

Note that this condition is significantly more relaxed than
the one given in Ref. [11], namely 1 − υz/c � 1/kw,
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FIG. 4: Electron normalized relativistic energy γ = E/mc2

(solid line) versus time τ = ωt for electron acceleration in a
focused laser field with the focal waist w = 140λ and a0 = 57,
instantaneously switched on at η0 = 0. Initial particle loca-
tion is in the center of the focal region. For η > η0, the av-
erage intensity profile is assumed static. The condition (20)
is satisfied, so that the ponderomotive description is valid.
The normalized drift energy γ = H/mc2 (dashed line) is con-
served equal to the theoretically predicted retained energy
γret ≈ 810.

FIG. 5: Electron normalized relativistic energy γ = E/mc2

(solid line) versus time τ = ωt for electron acceleration in a
focused laser field with the focal waist w = 10λ and a0 =
57, instantaneously switched on at η0 = 0. Initial particle
location is in the center of the focal region. For η > η0, the
average intensity profile is assumed static. The condition (20)
is not satisfied, and the electron motion in nonadiabatic. The
theoretically predicted retained energy is γret ≈ 810 (dotted
line).

which, for ultra-relativistic particles, yields N � a4. As
we show below, for the considered acceleration of elec-
trons produced as a result of above-threshold ionization,
the condition (20) is consistent with results of our nu-
merical simulations.

In Fig. 4, the particle energy γ is shown versus
time τ = ωt for N = 140 and initial particle location
r(t = 0) = 0, also assumed below. As predicted from the
ponderomotive approximation, the phase-average energy
is conserved throughout the acceleration process. Thus,
the retained energy is γret = 1 + (a2 + a2)/2, where a
is evaluated at the moment when the field was switched

FIG. 6: Electron normalized relativistic energy γ = E/mc2

(solid line) versus time τ = ωt for electron acceleration in a
focused laser field with focal the waist w = 50λ and a0 = 57,
instantaneously switched on at phase η0 (η0 = 0, π/2). Ini-
tial particle location is in the center of the focal region. For
η > η0, the average intensity profile is assumed static. Since
N ∼ a0, the condition (20) is satisfied only marginally, though
the ponderomotive description predicts the energy gain fairly
well. The theoretically predicted retained energy (dotted

lines) is γret = 1 + (a2 + a2)/2, which gives γret ≈ 810 for
η0 = 0 and γret ≈ 2440 for η0 = π/2.

on. For the given field and η0 = 0, one has γret ≈ 810.
Note that despite the fact that the energy plots in Fig.
4 seem to demonstrate nonadiabatic behavior, in fact,
the dynamics remains adiabatic: Each period of oscil-
lations contains two peaks of γ(η), and each of those
changes slightly from one period to another. Because of
the interchange of the two types of peaks, the function
γ(η) contains multiple Fourier harmonics, but the ampli-
tudes of those evolve slowly. As the interaction region
is decreased and the condition (20) is violated, the ac-
celeration becomes nonadiabatic, as, for example, shown
in Fig. 5 for N = 10. On the other hand, even for
N = 50 ∼ a0, the ponderomotive treatment predicts the
energy gain fairly well, as seen from Fig. 6.

VI. SUMMARY

In summary, we employed an analytical model to de-
scribe acceleration of electrons produced as a result of
above-threshold ionization up to ultra-relativistic ener-
gies. The model is based on a fully relativistic pondero-
motive treatment. The Hamiltonian formulation for the
electron average motion allows us to simplify the problem
of calculating the particle drift trajectory and the parti-
cle energy gain. Not only does it allow to reproduce the
well-known results of electron acceleration by plane laser
pulses, but it also gives the precise energy gain for ac-
celeration in smooth transversely nonuniform fields, for
which the conventional plane-wave approximation does
not hold. The analytical predictions show a good agree-
ment with the results of our numerical simulations.
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