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Self-consistent equilibrium model of low aspect-ratio

toroidal plasma with energetic beam ions

E. V. Belova, N. N. Gorelenkov, and C. Z. Cheng

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

A theoretical model is developed which allows the self-consistent inclusion of the effects

of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A

two-component plasma is considered, where the energetic ions are treated using a kinetic

Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent

the thermal plasma. The model allows for an anisotropic distribution function and a large

Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated

plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with

an anisotropic fast ion distribution have been calculated for NSTX. It is shown for typical

experimental parameters that the contribution of the energetic neutral beam ions to the

total current can be comparable to that of the background plasma, and that the kinetic

modifications of the equilibrium can be significant. The range of validity of the finite-

Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX

is discussed. The calculated kinetic equilibria can be used for self-consistent numerical

studies of beam-ion-driven instabilities in NSTX.
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I. INTRODUCTION

Neutral Beam Injection (NBI) is commonly used as an effective way to heat and sustain

plasma in a variety of magnetic confinement concepts. The presence of energetic neutral

beam ions can significantly modify both the equilibrium and stability properties of toroidal

plasmas, particularly in very low aspect-ratio toroidal devices, where the Alfvén velocity

can be smaller than the injection velocity of the NBI ions. The relatively weaker toroidal

field in these devices also results in a large Larmor radius of the energetic ions, which can

be a significant fraction of the minor radius of the device. Unlike in a conventional large-

aspect-ratio tokamak, the gyro-radius of the fast ions can be comparable to typical plasma

scale lengths, which brings into question the validity of reduced kinetic descriptions (e.g.,

drift-kinetic) for the energetic ions. Therefore, new theoretical models are required, that

do not rely on the finite Larmor radius (FLR) expansion. In this work, we develop an

equilibrium model which allows the self-consistent inclusion of the effects of the energetic

ions in calculations of low-aspect-ratio toroidal plasma equilibria. Particularly, equilibria of

Spherical Tori (ST) are considered, and numerical results are obtained for neutral-beam-

heated plasmas in the National Spherical Torus Experiment (NSTX).

In this paper, the plasma is assumed to consist of two components, the thermal back-

ground plasma, for which a one-fluid magnetohydrodynamic (MHD) description is used, and

the energetic beam ion component, which is treated using a kinetic Vlasov description. A

generalized form of the Grad-Shafranov equation is derived, which includes the effects of

the beam ion toroidal and poloidal currents. It is assumed that the fast ion density is small

compared to the total plasma density, but that the fast ion current and pressure can be com-
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parable to that of the thermal plasma. The equilibrium electric field and the background

plasma rotation are neglected in the present work.

An anisotropic distribution function is assumed for the beam ions, with ρb ∼ Ln, where

ρb is the beam ion gyroradius, and Ln is the density gradient scale length. These assumptions

correspond to the experimental conditions in NSTX1, where the fast ion Larmor radius can

be as large as one-third of the minor radius, and a strong anisotropy in the NBI ion pitch-

angle distribution has been measured2. The NSTX is a low-aspect-ratio toroidal device with

geometrical center major and minor radii, Rg = 0.85m and a = 0.65m, respectively. In

NSTX, the magnetic field is low, and the NBI ion injection velocity is 2 to 4 times larger

than the Alfvén speed1. The supra-Alfvénic fast ions can drive Alfvén modes unstable,

and the anisotropy in the particle distribution3,4, as well as its spatial gradient provide the

free energy source for these instabilities. Therefore, it is necessary to develop methods of

calculating self-consistent equilibria for realistic beam ion distributions, when beam ion beta

is comparable to background beta.

In this paper, a description of the numerical scheme for calculating such equilibria, and

the results of the calculations are presented. It is shown that for typical NSTX experimental

parameters, the contribution of the energetic neutral beam ions to the total current can be

comparable to that of the background plasma, and the kinetic modifications of the equi-

librium can be significant. The range of validity of the finite-Larmor-radius expansion and

the drift-kinetic description for the beam ions in NSTX is discussed. The calculated kinetic

equilibria can be used for a comparison with commonly-used one-fluid Grad-Shafranov equi-

libria, and they also have been used for self-consistent numerical studies of beam-ion-driven

instabilities in NSTX5.
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The outline of this paper is as follows. In Sec. II, the theoretical model is discussed, and

the generalized Grad-Shafranov equation is derived. The form of the fast ion distribution

function, F0, and various approximations for the ion invariants of motion are considered in

Sec. III. In Sec. IV, the calculation of the moments of F0 is presented, and a comparison

is made between the drift-kinetic and the fully kinetic descriptions. Numerical methods for

computing the equilibria with fast ions, and the results of these calculations are presented

in Secs. V and VI. The summary and conclusions are presented in Sec. VII.

II. GENERAL FORM OF GRAD-SHAFRANOV EQUATION

An equation describing the axisymmetric equilibrium of the two-component plasma (the

thermal plasma plus the beam ions) can be obtained from the following set of equations:

0 = −∇pp + (J− Jb)×B, (1)

J = ∇×B, (2)

0 = ∇ · Jb, (3)

B = ∇φ×∇ψ + h∇φ, (4)

where the subscript “p” is used for thermal (fluid) plasma, and pp is the fluid pressure. The

subscript “b” is used to denote the beam ion density nb, the beam ion generated current

Jb, etc.; the total current density is J = Jp + Jb. Equation (1) is the momentum equation

for the thermal plasma, where the equilibrium rotation has been neglected [Vp = 0]. The

beam density is assumed to be small compared to the bulk density, nb � ne, therefore the

MHD Ohm’s law applies, and the equilibrium electric field is also neglected i. e., E = 0.

All quantities in Eqs. (1)-(4) are dimensionless, such that velocity is normalized to the

Alfvén speed VA = B0/
√

4πmin0, length is normalized to VA/ωci, where ωci = qiB0/mic, and
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the magnetic field and plasma density are normalized to the vacuum magnetic field at the

geometrical center, B0, and the peak electron density, n0, respectively.

The Grad-Shafranov equation can be obtained from the toroidal component of the

Ampere’s law Eq. (2), using the flux representation for the poloidal magnetic field Eq. (4).

This gives

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= RJφ, (5)

where the standard cylindrical coordinate system (R, φ, Z) is used, and ψ is the poloidal

magnetic flux function, and in Eq. (4) h = RBφ.

In order to cast Eq. (5) into a more useful form, we need to express the total toroidal

current Jφ in terms of pp, h, and the beam ion current using the bulk plasma momentum

equation. Since ∇pp has no component along the magnetic field, the bulk plasma pressure

is a function of ψ, and ∇pp = p′p∇ψ. Then from Eqs. (1), (2) and (4) it can be shown that

(Rp′p + Jφ − Jφ,b)∇ψ = −h(∇h/R+ Jpol,b × φ̂), (6)

where the prime denotes the differentiation with respect to the poloidal flux, and Jφ,b and

Jpol,b are the toroidal and poloidal components of the beam current. It follows that

B · ∇h = Jpol,b · ∇ψ. (7)

Therefore h is not a function of ψ, unless the beam ion poloidal current is zero, or it is

parallel to the magnetic flux surface, which, in general, is not the case. From the fast ion

continuity equation we have ∇ · Jpol,b = 0, and the fast ion poloidal current can be written

in terms of the poloidal stream function G as

Jpol,b = ∇G×∇φ. (8)
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Now it can be shown that B · ∇(h− G) = 0, and the function H ≡ h − G is a function of

the poloidal flux. Substituting h = H(ψ)+G into Eq. (6), we can write the toroidal current

as Jφ = −Rp′p − (H +G)H ′/R + Jφ,b.

The generalized Grad-Shafranov equation becomes

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −R2p′p −HH ′ −GH ′ +RJφ,b. (9)

The first two terms on the right-hand-side of Eq. (9) correspond to the usual MHD terms,

whereas the last two terms are due to the fast ions. The equilibrium can be calculated if

two magnetic surface functions pp(ψ) and H(ψ) are specified, and the beam ion current is

calculated using the fast ion distribution function F0. The poloidal stream function G can

be determined using Eq. (8).

III. FAST ION DISTRIBUTION FUNCTION

Any integrable function of the particle invariants of motion can serve as a solution to

the Vlasov equation. In this Section, we consider a suitable set of the phase-space variables,

and present a model form of the fast ion distribution function F0, which provides reasonable

agreement with the experimental measurements.

A. Magnetic moment conservation

Assuming zero equilibrium electric field and an axisymmetric configuration, the fast

ion constants of motion are the energy ε = v2/2, the toroidal canonical angular momentum

pφ = −ψ + (mic/qi)Rvφ, and the magnetic moment µ. While the first two invariants are

conserved exactly, the magnetic moment is an adiabatic invariant, which is based on the

asymptotic expansion with respect to the parameter εB ≡ ρi/LB , where ρi is the fast ion

Larmor radius, and LB is the scale length of the background magnetic field variation. In
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lowest order, µ0 = v2
⊥/2B. Including the first-order corrections6–8, the magnetic moment is:

µ = µ0 +
µ0

B
(ρ ·∇B) +

v2
‖
B

(b̂ ·∇) b̂ · ρ −µ0v‖
2Ω

[
b̂ ·∇× b̂ −2(â · ∇ b̂) · ĉ

]
, (10)

where b̂ is a unit vector along the equilibrium magnetic field, ĉ = v⊥/v⊥ and â = b̂× ĉ are

unit vectors along the particle perpendicular velocity and the Larmor radius vector respec-

tively, ρ is the Larmor radius vector, Ω = qiB/mic is the local ion cyclotron frequency, and

all fields are calculated at the particle position x. Note that in the test particle calculations9,

usually it is sufficient to know that an expression for µ, conserved to the required accuracy,

exists, but the explicit form for µ is not needed. In self-consistent calculations, when the

moments of the particle distribution function are calculated, an explicit relation between the

particle variable phase-space (x,v) and µ is required, like the one given in Eq. (10).

We have used the hybrid and MHD simulation code (HYM)5 to follow the fast particle

orbits in the equilibrium field for a representative NSTX equilibrium. The conservation of the

particle energy, the toroidal angular momentum, and the magnetic moment was monitored

for several particle trajectories with v = 2.5VA. For numerical efficiency, the expression for

µ in Eq. (10) has been modified, and the magnetic moment has been calculated as follows:

µ =

[
(v⊥ − vd)

2

2B
− v‖

2B
v⊥· b̂ (x− ρ)

](
1− v‖

2Ω
b̂ ·∇× b̂

)
, (11)

where vd = µ0b̂ × ∇B/Ω + v2
‖b̂ × (b̂ · ∇)b̂/Ω is the magnetic gradient and curvature drift

velocity, and the unit vector b̂ (x− ρ) in the square brackets is evaluated at the guiding-

center position X = x− ρ. This expression for µ agrees with Eq. (10) to order O(εB), and

includes some of the higher-order corrections.

Figure 1 shows a typical particle orbit projected on the poloidal plane, and Fig. 2 shows

the variation of the normalized particle energy, pφ, µ0, and µ = µ0 + µ1 along this orbit.

7



The relative amplitudes of the change in µ0 and µ are ∼ 30% and < 4% respectively, while

ε and pφ conservation is exact within the numerical accuracy. Other orbits, with the same

particle energy and different pitch angles, show variation of µ0 by more than 60% of its

value, whereas the expression in Eq. (11) is conserved to within 10%. It is evident that the

lowest order magnetic moment µ0 is a very poor approximation for the fast ions in NSTX,

while the higher-order corrections provide considerably better accuracy. Non-conservation

of µ, caused by resonances between particle bounce motion and its gyromotion, may lead to

a stochastic particle transport10. Since these resonances are typically of high order [> 10],

non-adiabatic variations of µ can be neglected for our purposes.

B. Guiding-center variables

Since µ is a good invariant, the equilibrium distribution function can be taken as F0 =

F0(ε, pφ, µ). The calculation of the moments of F0 can be simplified by using a transformation

from the particle variables (x,v) to the guiding-center variables (X, U, µ, θ), where X is

the guiding-center position, U is the parallel velocity, and θ is the gyro-angle. Such a

transformation can be constructed, for example, by using Hamiltonian (Lie transforms)

methods, as was done by Littlejohn6,7. In the guiding-center variables, the particle phase

space is four-dimensional due to the axial symmetry and the independence of F0 upon the

gyro-angle (by construction).

For 80keV deuterium NBI ions in NSTX, the value of the small parameter εB can be

estimated as εB ≈ ρi/R0 ∼< 0.2. As our test particle simulations have shown, an expansion

with respect to εB, and therefore, the guiding-center description of the particle orbits is

valid, but the first-order corrections must be included. In addition to Eq. (10), the relations

between the guiding-center and particle variables are given by6
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X = x− ρ +O(ε2B) (12)

U = v‖ − v‖(b̂ ·∇) b̂ · ρ +
µ0B

2Ω

[
b̂ ·∇× b̂ −2(â · ∇ b̂) · ĉ

]
(13)

while the expression for θ is not needed here. Due to the choice of transformation which

preserves the form of the guiding-center Hamiltonian, we have ε = v2
‖/2 + µ0B(x) = U2/2 +

µB(X) +O(ε2B).

The toroidal angular momentum in guiding-center coordinates is calculated in Ap-

pendix A, where it is shown that

pφ = −ψ + ε̄URbφ − ε̄2µ
[
bz +Rbφ(b̂ ·∇× b̂)/2

]
+O(ε2B), (14)

where ε̄ ≡ mic/qi, and fields are calculated at the guiding-center position. The formal

orders of the three terms on the right-hand-side of Eq. (14) are O(1/εB), O(1), and O(εB),

respectively. In lowest order, pφ = −ψ(x), which is the common large-aspect-ratio tokamak

approximation. In next order, pφ = −ψ(X)+ ε̄URbφ, where X = x− ρ is the guiding-center

position. The first term in Eq. (14) is formally O(1/εB) [due to the B = O(1) ordering]

therefore, the calculation of pφ through first-order requires the second-order corrections for

X. This is further discussed in the Appendix A.

Figure 3 shows the time evolution of pφ under three different approximations. The

values of pφ are calculated along the same particle trajectory, as shown in Fig. 1. It is

evident that pφ ≈ −ψ(x) is not suitable for the fast ions in NSTX, because a change in the

value of the poloidal flux along the particle orbit can be of the order of |ψ0|. The next-order

correction, Fig. 3(b), provides much better accuracy; however, for some orbits, the variation

in pφ = −ψ(X) + ε̄URbφ has been found to be up to 30%. In contrast, the expression given

in Eq. (14) has been found to be nearly as accurate as that of the exact form [Fig. 2(b)].
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The advantage of the guiding-center representation, Eq. (14), is that in this representation

pφ is explicitly gyro-angle independent.

C. Equilibrium distribution function

Realistic distribution function can be obtained by the Monte-Carlo simulations, like

one implemented in TRANSP code11. In NSTX, neutral beams are injected tangentially to

a major radius, so in many applications the pitch angle distribution can be approximated

by Gaussian distribution. Therefore, in this paper, the equilibrium distribution function is

taken to be of the form F0 = F1(v)F2(λ)F3(pφ, v, λ), where v =
√

2ε is the particle velocity,

λ ≡ µB0/ε is the pitch-angle variable, and the functions F1,2,3 are defined by

F1(v) =
1

v3 + v3∗
, for v < v0, (15)

F2(λ) = C exp(−(λ− λ0)
2/∆λ2), (16)

F3(pφ, v, λ) =
(pφ − pmin)

α

(pmax − pmin)α
, for pφ > pmin(v, λ), (17)

where F0 = 0 for v > v0 or pφ < pmin(v, λ). Thus, F0 is assumed to be a slowing-down

distribution in v, where v0 ≈ 3.5VA is the injection velocity, and v∗ = v0/2, which correspond

to typical NSTX parameters. The pitch-angle distribution is assumed to be relatively narrow

with ∆λ = 0.3 at large v; λ0 is taken to be between 0.5 and 0.8; and C is a normalization

constant. The function F3(pφ, v, λ) is used to match the profiles of the beam ion density

calculated by TRANSP, where α is a numerical parameter [α = 2 or 4], and the condition

pφ > pmin(v, λ) describes a prompt-loss boundary. The denominator in the expression for F3

is used for proper velocity space normalization.

1. Prompt-loss boundary and pφ dependence

The form of pmin(v, λ) can be found from prompt orbit-loss condition in the guiding-
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center variables12,13. Assuming pφ ≈ −ψ + ε̄URbφ, the particle guiding-center orbit with

constant pφ, v, and λ can be described in the (ξ, ψ) plane by the relation ψ = −pφ ±

ε̄vh(ψ)/B0

√
ξ(ξ − λ), where ξ = B0/B [with B=B(R,0) taken at the equatorial plane z=0],

B0 is the vacuum magnetic field at the geometric center, and h = RBφ has been defined

in Sec. II. The tip of the projection of the particle orbit into (ξ, ψ) plane corresponds to a

point (ξ = λ, ψ = −pφ). Thus, for a given particle energy, there is a unique correspondence

between the particle phase-space (λ, pφ) and the orbit representation in the (ξ, ψ) plane12.

Considering a class of the particle orbits crossing the plasma boundary at the equatorial

plane, the confinement region can be described approximately by pφ > pmin, where

pmin(v, λ) =



p1 = ε̄vh(0)/B0

√
ξmax(ξmax − λ), for λ > ξc,

p2 = −ψ(ξ = λ), for ξmin < λ < ξc,

p3 = −ε̄vh(0)/B0

√
ξmin(ξmin − λ), for λ < ξmin.

Here we assume that ψ = 0 at the plasma boundary, ξmax and ξmin are maximum and

minimum values of ξ at the outermost flux surface, and ξ = ξc at the intersection of the

trapped-passing boundary p2 and the trapped-particle loss boundary p1.

The prompt-loss boundaries have been studied for a representative NSTX equilibrium

with maximum beta 26%, and q0 = 1.15. The phase-space topologies for two values of the

particle energy corresponding to v = 2VA and v = 3VA are shown in Figs. 4(a) and 4(b).

The curves defined by the relations pφ = p1, pφ = p2, and pφ = p3 are labeled as 1, 2, and 3,

respectively. Curve 1 describes the tips of the trapped orbits passing through (ξmax, ψ = 0)

for the positive sign of U ; curve 2 is approximately the trapped-passing boundary; and curve 3

corresponds to the tips of the counter-passing orbits (U < 0) passing through (ξmin, ψ = 0).

The phase-space is bounded by pφ ≤ pmax(v, λ), above which no orbit can exist. This
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boundary is described approximately by curves 4 and 5 [Fig. 4]. Curve 4 [ 4′] corresponds to

orbits passing through the magnetic axis, so that pφ = −ψ0 ± ε̄vR0

√
1− λ/ξ0 with positive

[ negative] sign, where ψ0 and R0 are the poloidal flux and the radius at the axis, and

ξ0 = ξ(R0). Curve 5 corresponds to pφ = −ψ(ξ = λ).

Note that the expression for pmin and the phase-space boundaries plotted in Fig. 4 have

been obtained using the guiding center description of the fast ion orbits. Figure 4 also

shows scatter plots of the particle distribution in phase space, which have been obtained

from the full-orbit test particle simulations using the HYM code. In these simulations, the

test particles have been loaded initially with a uniform distribution in the configuration

space and a given energy [i.e. delta-function distribution δ(v − v0)], corresponding to v0 =

2VA [Fig. 4(a)] or v0 = 3VA [Fig. 4(b)]. Only particles which remained confined after t =

300(1/ωci) have been plotted.

It is evident that guiding-center description of the prompt loss boundaries is accurate

for lower particle energies with v ∼< 2VA, but the agreement is not as good for the ions with

v ∼ 3VA. The discrepancy is largest at the trapped-orbit-loss boundary (curve 1), and for

λ ∼> 1. One of the sources of inaccuracy is an FLR effect related to the difference between the

particle position and its guiding center position. It has been taken into account by shifting

curve 1 along the λ-axis by the value of the normalized Larmor radius at the plasma edge

∼ ρi/R0, which is shown by curves labeled 1′ in Figs. 4(a) and 4(b). A fraction of trapped

orbits (confined) has been found to be sensitive to the equilibrium profiles, in particular h(ψ)

profile. For v ∼< 2VA and λ0 ∼> 0.7, the fraction of trapped particles can be larger than that

of the passing particles.

An interesting feature of the v = 3VA case is a gap in the particle phase-space at low
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λ, between curves 1′ and 4′ as shown in Fig. 4(b). It occurs because there are no confined

orbits for the particle parameters in the region of the phase space formed by the intersection

of the curves 1′ and 4′ [this region corresponds to co-passing prompt loss orbits]. As a result,

co-passing and counter-passing confined orbits are completely separated in the (pφ, λ) plane

for v = 3VA. For lower values of the fast ion energy (v ≤ 2VA), the curves 1′ and 4′ do not

intersect, and there is partial overlap of the confined co- and counter-passing orbits in phase

space [Fig. 4(a)].

For numerical purposes, the expressions for pmin and pmax can be simplified. Assuming

the co-injection, 0.5 ∼< λ0 ∼< 1, and a relatively narrow distribution in the pitch-angle

parameter λ, the prompt-loss boundary, pmin, and pmax in Eq. (17) can be approximated by

pmin = ε̄vh(0)
√
ξmax(ξmax − λ0)/B0, (18)

pmax = −ψ0 + ε̄R0v
√

1− λ0/ξmax. (19)

2. Pitch-angle dependence F2(λ)

Distribution function of deuterium NBI ions, calculated by TRANSP code for NSTX

shot #108236 at t =0.151sec, is shown in Fig. 5(a), where v‖ and v⊥ denote particle velocities

parallel and perpendicular to the equilibrium magnetic field, normalized to the injection

velocity v0. In this example, the distribution function has been averaged over the minor

radius r for 0.5a < r < 0.6a at the low-field-side, and averaged over v at low energies.

In order to match an analytical distribution function F0 given by Eqs. (15)-(17) locally to

that from TRANSP calculations, the dependence of the width of the pitch-angle distribution

F2(λ) on the particle energy has to be taken into account. The effect of the strong pitch-angle

scattering at low energies can be modeled according to14,15
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∆λ2 = ∆2
0 − A(1− λ0) ln

[
v3(1 + v3

∗/v
3
0)

v3 + v3∗

]
, (20)

where ∆0 is the width of the λ-distribution at large v, and A is a numerical parameter used

to match the TRANSP results. For ∆λ dependent on the particle energy, the normalization

coefficient in Eq. (16) needs to be chosen as

C(v) =
2√
π∆λ

[Erf((1− λ0)/∆λ) + Erf(λ0/∆λ)]
−1 ,

where Erf is the error-function. Figure 5(b) shows the contour plot of F0, calculated at

r = 0.5a [low-field-side], and for the following set of parameters: λ0 = 0.6, ∆0 = 0.3,

A = 1/3 and α = 4. It is seen that the analytical distribution function reproduces major

features of the TRANSP calculation. [Note that TRANSP code assumes conservation of the

lowest-order magnetic moment, µ0, therefore, an exact comparison of distribution function

F0 with that calculated by TRANSP, is not possible.]

IV. CALCULATION OF THE MACROSCOPIC MOMENTS OF F0

The solution of the generalized Grad-Shafranov equation Eq. (9) requires calculation of

the energetic ion poloidal and toroidal currents. The beam ion density is also needed for a

comparison with the corresponding TRANSP profiles. Therefore, we need to calculate the

moments of F0

nb =
∫
F1(v)F2(λ,∆λ)F3(pφ, pmin, pmax) d

3v, (21)

Jb =
∫

vF1(v)F2(λ,∆λ)F3(pφ, pmin, pmax) d
3v, (22)

where ∆λ, pmin, and pmax are the functions of v given by Eqs. (18)-(20). The finite poloidal

current of the fast ions results from the pitch-angle dependence of F0, i. e., Jpol,b 6= 0

provided ∂F2/∂λ 6= 0. In this Section, we calculate moments of F0 using the drift-kinetic
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approximation, which relies on the FLR expansion of F0. The moments of F0 are also

calculated directly, as given by Eqs. (21) and (22), in order to examine the validity of the

FLR expansion.

It is known16 that current of the energetic beam ions J‖,b excites an oppositely directed

electron-drag current −J‖,b(Zb/Zeff ) for beam energies E > (mi/me)
1/3Te. As a result, the

parallel component of the beam-ion-generated current is modified by a factor (1−Zb/Zeff ),

where Zeff is the effective plasma charge. This effect is important for alpha particles,

and it can result in a cancellation or even reversion of the alpha-particle-generated current

compared to the pure alpha-particle current. For NBI ions in NSTX however, the ratio

Zb/Zeff is estimated as ≈ 1/3, therefore this effect is not expected significantly modify the

equilibrium, and it has been neglected in this paper.

A. Drift-kinetic approximation

As shown in Appendix B, the fast ion density and current density can be calculated as

nb(x) =
∫
F0B

∗
‖ dUdµ, (23)

Jb(x) =
∫

(U b̂ + Vd)F0B
∗
‖ dUdµ +∇×M, (24)

where B∗
‖ = B(1 + U/Ω b̂ ·∇ × b̂) is the Jacobian of the transformation to guiding-center

variables, Vd = µ b̂ ×∇B/Ω + U2 b̂ ×(b̂ · ∇)b̂/Ω is the magnetic gradient and curvature

drift velocity, and M = − b̂
∫
(µB/Ω)F0B dUdµ is the magnetization vector. Equations (23)

and (24) have been obtained by making a transformation to guiding-center variables in

Eqs. (21) and (22), and using the FLR expansion of F0 according to F0(x− ρ) ≈ F0(x)− ρ

·∇F0 +O(ε2). The small parameter for this expansion is ε ≡ ρi/Ln, which is the ratio of the

fast ion Larmor radius to the perpendicular scale length of the fast ion density gradient. For
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NSTX, ε > εB.

We define the guiding center fluid moments [the density, parallel current, parallel and

perpendicular pressures] by N =
∫
F0B dUdµ, NV‖ =

∫
UF0B dUdµ, P‖ =

∫
U2F0B dUdµ,

and P⊥ =
∫
µF0B

2 dUdµ, respectively. Then, in terms of the guiding center fluid moments,

the fast ion density and current density can be written as

nb(x) = N +NV‖(b̂ ·∇× b̂)/Ω +O(ε2), (25)

Jb(x) = NV‖ b̂ +(P‖ − P⊥)∇× b̂ /Ω+ b̂ ×∇P⊥/Ω +O(ε2). (26)

The perpendicular part of the beam ion current can be easily recognized as the diamagnetic

current with the pressure tensor taken in the Chew-Goldberger-Low [CGL] form.

It has been shown in Sec. II, that contributions of the fast ions in the generalized

Grad-Shafranov equation appear in terms of the toroidal component of the fast ion current,

and the poloidal stream function G defined by Eq. (8). For a chosen form of the fast ion

distribution function F0, the expression for G can be found analytically using Eq. (24).

The poloidal component of the magnetization current can be written as (∇ × M)pol =

∇(RMφ) × ∇φ. Therefore, Jpol,b = ∇(G̃ + RMφ) × ∇φ, where G = G̃ + RMφ, and Mφ =

− ∫ (µBφ/Ω)F0B dUdµ. The equation for G̃ then becomes

∇G̃ =
∫ [

−U∇ψ +mic/qi(U
2∇(Rbφ)− Rbφµ∇B)

]
F0 dUdµ

=
∫

[U∇pφ −mic/qiRbφ∇ε]F0 dUdµ,

where φ̂×B = −∇ψ/R, and φ̂× (∇× b̂) = ∇(Rbφ)/R have been used. Changing variables

from (U, µ) to (ε, µ), and using U∇|ε,µpφ = U∇|U,µpφ −mic/qiRbφ∇|U,µε [the gradients are

taken with fixed ε, µ or with fixed U , µ], we obtain
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∇G̃ =
∫

(∇|ε,µpφ)F0 dεdµ = ∇
∫
F̂0dεdµ. (27)

The solution is G̃ =
∫
F̂0 dεdµ, where F̂0 is a function of (ε, λ, pφ) which satisfies ∂F̂0/∂pφ =

F0. From Eq. (17), we find F̂0 = (pφ − pmin)F0/(α+ 1). The poloidal stream function of the

fast ions then becomes

G =
∫ [

U(pφ − pmin)

α+ 1
− µRBφmic/qi

]
F0 dUdµ. (28)

Integrating by parts, it can also be shown that G = − ∫ λ(∂F̂0/∂λ)|ε,pφ
dεdµ, which demon-

strates a relation between the poloidal current and the pitch-angle dependence of F0.

B. Fully kinetic calculations

The Larmor radius of the NBI ions in NSTX can be as large as one-third of the minor

radius, therefore for peaked beam ion profiles with Ln < a, we have ε > 0.3, and the

accuracy of the FLR expansion needs to be examined. The major difficulties in calculating

the fast ion density and current directly from Eqs. (21) and (22) are that the first-order

corrections for the magnetic moment must be explicitly included, and that the velocity space

becomes three-dimensional. Using a local coordinate system specified by the unit vectors

ê1 =b̂, ê2 =b̂ ×ẑ/
√

1− b2z, and ê3 =b̂ ×ê2, we have d3v = dv1dv2dv3, µ0 = (v2
2 + v2

3)/2B,

ρ= (v2ê3 − v3ê2)/Ω, etc. In this basis, the expression for µ becomes:

µ =

[
(v⊥ − vd)

2

2B
+

v1

4BΩ

{
(v2

2 − v2
3)a23 − 2v2v3a22

}] (
1− v1(b̂ ·∇× b̂)/Ω

)
,

where the scalars a23 and a22 are defined as a23 = (ê2 · ∇ b̂) · ê3 + (ê3 · ∇ b̂) · ê2, and

a22 = (ê2·∇ b̂)·ê2−(ê3·∇ b̂)·ê3. It can be shown that a23 = −(b̂ ·∇× b̂)−2ê2·∇bz/
√

1− b2z,

and a22 = (∇· b̂) + 2ê3 · ∇bz/
√

1− b2z.

In the general case, the poloidal stream function G cannot be determined analytically,

therefore it has been calculated using the equation
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R
∂

∂R

(
1

R

∂G

∂R

)
+
∂2G

∂Z2
= −Rφ̂ · ∇ × Jpol,b. (29)

The fast ion density and current have been calculated for a typical NSTX equilibrium

using both the drift-kinetic approximation [Eqs. (25)-(26)] and the integration of Eqs. (21)

and (22). Figures 6(a) and 6(b) show the radial profiles of the beam ion toroidal current and

the poloidal stream function, respectively, calculated for the following set of distribution

function parameters: λ0 = 0.8, v0 = 3.5VA, α = 4 and ∆0 = 0.3. The exact solution is

shown by the solid lines, and the dashed lines show the drift-kinetic results. The position

of the magnetic axis is shown by a vertical line. It is seen that drift-kinetic approximation

results in a more peaked current profile, and it also overestimates the outward shift of the

fast ion profiles relative to the magnetic flux surfaces. For injection velocity v0 = 3.5VA, the

characteristic Larmor radius of the NBI ions ρb = v0/ωci is of order ρb ≈ 0.2R0, and the

magnitude of the outward shift can be estimated as (1/3)ρb for the exact solution, and it is

∼ (1/2)ρb for the drift-kinetic approximation.

The difference between the exact solution and the drift-kinetic approximation in

Fig. 6(a) is of order ∼ O(ε2), and it depends strongly on the beam ion parameters, par-

ticularly on the values of v0 and λ0. Figure 7 shows the magnitude of the second-order

correction to the fast ion toroidal current ∆Jφ,b = bφ/2∇2
⊥
∫
(UµB/Ω2)F0B dUdµ [calculated

in Appendix B, Eq. (36)], for different values of the injection velocity and the pitch-angle pa-

rameter. This correction serves as a measure of the accuracy of the drift-kinetic description

of the fast ion profiles. It is seen that the error in the drift-kinetic profiles can be as large

as 30% for λ0 = 0.8 and v0 ∼> 3.5VA. The accuracy of the drift-kinetic description improves

for smaller values of injection velocity or smaller values of λ0.
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Despite the low aspect-ratio in NSTX, the scale length of the magnetic field is signif-

icantly larger than that of the beam ion profiles. For our parameters, the ratio is about

R0/Ln ∼ 2− 3. Therefore, the validity of the εB-expansion does not necessarily imply that

an expansion with respect to ε converges. As we have shown, the accuracy of Eqs. (25-26)

depends on the peakedness of the fast ion profiles and the injection energy. For typical NBI

parameters in NSTX, a higher-order FLR description, as given in Appendix B, or a fully

kinetic description [Eqs. (21)-(22)] may be necessary.

C. Effects of µ-corrections

It is interesting to examine the effects of the FLR corrections for µ [Eq. (10)] on the

fast ion current in Eq. (22). First, it can be shown that, if the lowest-order expression for

the magnetic moment µ0 = v2
⊥/2B is used, the beam current is parallel to the flux surface,

and the poloidal stream function is a function of ψ. This can be shown by calculating

b̂ ×φ̂ · Jb =
∫

v× b̂ ·φ̂ F0 d
3v =

qi

mic

∫
∂

∂v
· (v× b̂ F̂0/R) d3v = 0,

where it was assumed that F0 depends on λ = µ0B0/ε. It then follows that ∇ψ · Jb = 0,

and that G = G(ψ). Therefore, the first-order corrections for µ qualitatively change the fast

ion current profiles, namely, these corrections are responsible for a component of the fast ion

current perpendicular to the flux surface.

Second, one of the checks of the calculated equilibria is the accuracy with which the

calculated fast ion current [Eq. (22)] is divergence-free. This is particularly important if

the calculated equilibrium is to be used as an initial condition for nonlinear simulations,

which can be obscured by the equilibrium relaxation. If F0 satisfies the equilibrium Vlasov

equation exactly, then Eq. (3) is exact. It is expected that when the magnetic moment is
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approximated by µ0, the resulting current is divergence-free with O(εB) accuracy, whereas

with the higher-order corrections, ∇ · Jb = O(ε2B). For same parameters as in Fig. 6, we

find ∇ · Jb ≈ [0.4/R0] max(Jb) for zero-order µ, and an order-of-magnitude smaller value is

obtained when the higher-order corrections are retained.

V. NUMERICAL SCHEME

The Grad-Shafranov equation Eq. (9) has been solved as a free-boundary problem, i.e.,

with the plasma-vacuum boundary found during the calculations. The solution has been

obtained iteratively on a rectangular (R,Z) grid, and the boundary conditions and the

profiles have been chosen to match the field and plasma profiles obtained from the TRANSP

code. Without going into the details of the calculation of MHD equilibria [which can be found

elsewhere17], in this Section we focus on including the fast ion effects into the equilibrium

solver.

In Eq. (9), the flux-function H(ψ) has been assumed to be of the form H2 = H2
0 (1 +

α1f1(ψ) + α2f2(ψ)), where f1 and f2 are given functions of ψ, and the coefficients α1 and

α2 are determined during Grad-Shafranov iterations from two constraints imposed on the

solution. The first constraint requires that the total toroidal current Iφ remains constant

during the iterations. The second constraint is that the value of q (safety factor) at the

magnetic axis is fixed at q = q0. Since at the axis q ≈ 2h/(R2
0Jφ), for the MHD case a

relation between q0 and H and p functions is given by

q0 = − 2H(ψ0)

R0(R2
0p

′(ψ0) +HH ′(ψ0))
. (30)

The slowest part of the computation is the calculation of the integrals of the fast ion

distribution function. This can be minimized by using two levels of iteration in Eq (9).
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First, the MHD solution is found neglecting the fast ion current, and the calculated ψ and

magnetic field are used to find Jb from Eq. (22). The fast ion terms are then substituted

into the right-hand-side of the Grad-Shafranov equation, and a new solution is computed for

a given Jb. The process is iterated until a convergence criterion is satisfied, which typically

requires fewer than ten cycles.

In the calculations, it has been discovered that, when the condition 2h/(R2
0Jφ) = q0 is

imposed at the magnetic axis, no convergent solution can be found. Therefore, an MHD

expression, as in Eq. (30), has been used instead as the second constraint. As a result, the

actual value of q at the axis obtained for equilibria with the fast ion component was smaller

than that for the similar MHD solution [with the same Iφ]. The reduction was significant

for larger beam density.

VI. RESULTS

Self-consistent equilibria have been calculated for different fast ion parameters and den-

sities up to nb/n0 = 0.1. The calculations have been performed starting from a reference

MHD equilibrium with maximum thermal plasma beta β = 26%, and q0 = 1.15, assuming

that ne = 3.2 · 1013cm−3, B0 = 3kG, and the beam energy E = 80keV , which corresponds

to v0 ≈ 3.5VA. The results of the calculations for nb/n0 = 0.05 are shown in Fig. 8, where

the contour plots of the poloidal cross section of the fast ion density and the components

of current density Jb are plotted. Figure 9 shows the corresponding radial profiles at the

equatorial plane. The profile of q for this equilibrium is shown in Fig. 10.

The fast ion distribution function parameters have been taken λ0 = 0.8, ∆λ = 0.3, and

α = 4. For this set of parameters, the magnitude of the peak beam current is about 20% of
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the bulk current when nb/n0 = 0.03, and it increases to ∼ 50 % for nb/n0 ∼> 0.05. Thus, even

for modest NBI ion densities, the contribution of the beam ion current can be significant.

The fast ion pressure tensor is not needed for the solution of the generalized Grad-

Shafranov equation Eq. (9), but is has been calculated as a diagnostic for a comparison

with the fluid profiles. Figure 11(a) shows the components of the fast ion pressure tensor

pb for the above distribution function parameters. Both the fluid and beam pressure are

normalized to B2
0/4π. It can be seen that the perpendicular component of pb is a factor of

two larger than the parallel one for λ0 = 0.8. The calculations show that the off-diagonal

elements of the fast ion pressure tensor are comparable to p‖,b. The radial profiles of the

total and the bulk fluid pressure are shown in Fig. 11(b), where the total pressure has been

defined as ptot = pp + (p‖,b + 2p⊥,b)/3.

As can be seen from Figs. 8 and 11, the fast ion current and pressure profiles are

relatively peaked, and they are also shifted outward relative to the magnetic flux surfaces.

For large fast ion density, this results in a significant modification of the total [bulk plasma

plus the beam ions] pressure and current profiles, especially on the low-field-side. Due to

kinetic modifications, the resulting equilibrium is different from one-fluid MHD equilibria,

since the total plasma pressure is strongly anisotropic and it is not a function of ψ.

Other major effects, resulting from the self-consistent inclusion of the NBI ion contri-

bution, are the increase in the Shafranov shift, and the decrease of the value of the central

q compared to the reference MHD equilibrium. The reduction in qaxis is likely to be caused

by the peakedness of the NBI ion pressure profiles. Figure 12 shows the dependence of the

position of the magnetic axis R0, and the value of qaxis on the fast ion density. The calcula-

tions have been done for the same total toroidal current Iφ and the fast ion parameters, but
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varying the fast ion density. It is seen, that as nb is increased to 8 % of the bulk density, the

position of axis is changed by 5%, and value of qaxis drops significantly from qaxis = 1.15 to

0.73.

It is known that at the high β and the high poloidal field in NSTX, a significant absolute

magnetic well can be formed in the core region1. The reference MHD equilibrium used in

this work has relatively low β, without the magnetic well. However, is has been found that,

when effects of the NBI ions are added, the radial profile of the magnitude of the magnetic

field flattens locally at R > R0. Further increase in the beam density [in our case to 8%],

resulted in a formation of the absolute minimum of B at low-field-side, which indicates that

NBI can contribute to the formation of the magnetic well in the core for smaller bulk plasma

beta.

VII. SUMMARY AND CONCLUSIONS

A theoretical model has been developed which allows calculation of self-consistent equi-

libria for two-component plasma in small-aspect-ratio toroidal devices. The plasma is as-

sumed to consist of the thermal background plasma, for which the one-fluid MHD description

is used, and the low-density energetic ion component. The energetic ion contribution is in-

cluded non-perturbatively, and the generalized Grad-Shafranov equation is derived, which

includes the effects of the beam ion toroidal and poloidal currents.

An analytical form of the fast ion distribution function is presented, which takes into

account prompt loss conditions, anisotropy, and the large Larmor radius of the beam ions.

The distribution function computed for the 80 keV deuterium NBI ions in the NSTX com-

pares favorably with TRANSP code calculations. Chosen distribution function can also be
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used as a basis function, i. e. the set of basis functions of similar form [in our case, having

different λ0] can represent any kind of measured or modeled general distribution function of

beam ions.

Expressions for the fast ion current and poloidal stream function are derived using an

FLR expansion of the fast ion distribution function. The range of validity of this expansion

for NBI parameters in NSTX has been studied. It is shown that for smaller values of the

pitch angle parameter, the drift-kinetic approximation provides a good description for the

fast ion profiles, whereas for λ0 ∼ 1 and injection velocity v0 ∼> 3VA, higher-order corrections

or an exact integration of F0 are necessary.

Self-consistent equilibria including the NBI ion effects have been calculated numerically

for neutral-beam-heated plasmas in NSTX. It is shown that for typical experimental param-

eters, kinetic modifications of the equilibrium profiles can be significant. In particular, the

current profiles become more peaked, and the total plasma pressure is strongly anisotropic

in the presence of a significant fast ion population. The main self-consistent effects of the

NBI ions on equilibrium are an increase in the Shafranov shift, and a reduction of the qaxis

value compared to the reference MHD equilibrium. NBI ions are also found to contribute to

the formation of the local magnetic well inside plasma at the low-field-side.

The calculated kinetic equilibria can be used for a comparison with commonly used fluid

equilibrium models, and they can serve as an initial condition for self-consistent numerical

studies of the beam ion driven instabilities in NSTX. The model developed in this paper

can also be used to study the effects of the energetic alpha particles on the equilibrium,

for example, in deuterium-tritium ST reactor18 with the correction for the alpha-induced

electron current. The important effects of the NBI-induced rotation on the equilibrium
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profiles have not been considered here, and will be included in future work.
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APPENDIX A: HIGHER-ORDER CORRECTIONS FOR Pφ

The angular momentum conservation in the guiding-center system was discussed in

detail in Ref. 7. Since the system possesses azimuthal symmetry, then pφ = ε̄ ∂L/∂φ̇ is a

constant of the guiding-center motion, where L is the Lagrangian19

L =
(

1

ε̄
A + U b̂ −ε̄µ

[
R+ b̂ (b̂ ·∇× b̂)/2

])
· Ẋ + ε̄µθ̇ − (U2/2 + µB), (31)

and A is the vector potential, ε̄ ≡ mic/qi, R = ∇ê2 · ê3, where ê2 and ê3 are unit vectors

perpendicular to the magnetic field, and we choose the same guiding-center transformation

as in Refs. 6 and 19. Thus, the angular momentum in these guiding-center coordinates is

given by

pφ = −ψ + ε̄URbφ − ε̄2µ[bz +Rbφ(b̂ ·∇× b̂)/2]. (32)

Just like µ, the guiding-center angular momentum is exactly conserved by the guiding-center

equations of motion correct to a given order. On the other hand, since the relations between

the particle and guiding-center variables are known only up to O(εB), the expression in

Eq. (32) is a first-order approximation for pφ.

The first term in Eq. (32) is formally O(1/εB), therefore, the calculation of pφ through

first-order requires the second-order expression for X. The higher-order relation between the

guiding-center position and the particle position x was calculated by Littlejohn7, and can

be expressed as

X = x− ρ (33)

+ ρ
[
v‖
Ω

b̂ ·∇× b̂ − 1

2B
ρ ·∇B

]
+ b̂

[
2v‖v⊥

Ω2
(b̂ ·∇ b̂) · ĉ +

µ0B

4Ω2

(
(ĉ · ∇ b̂) · ĉ− 5(â · ∇ b̂) · â

)]
.

The last two terms in Eq. (33) are the second-order corrections, of which only the first is

needed, since b̂ ·∇ψ = 0.
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APPENDIX B: CALCULATION OF DENSITY INTEGRALS IN THE

GUIDING CENTER VARIABLES

Here we derive an explicit expression for the fast ion current density integral in terms of

the guiding center coordinates Z = (X, U, µ, θ). An additional expansion parameter, which

is related to the fast ion profile is ε = ρi/Ln, where Ln = |∇⊥nb/nb|−1 is the perpendic-

ular density gradient scale length [from the guiding center Vlasov equation it follows that

ρi∇‖F0/F0 = O(εB)]. It is assumed that ε� εB.

The general expression for transformation of density integrals to guiding-center coor-

dinates was given in Ref. 19, and the first-order expression, accurate to O(ε, εB), was de-

rived, for example, in Ref. 20. We calculate the fast ion current following Ref. 19 and keep

higher-order terms in the ε-expansion. Using the relations between the particle phase-space

coordinates (x,v) and the guiding-center coordinates, it can be shown that

Jb(x) =
∫

VGCF (Z) δ(X+ ρ (X)− x)B∗
‖ d

6Z, (34)

where F (Z) is distribution function in guiding-center variables [in our case, F = F0(ε, pφ, µ),

where values of ε, and pφ do not change in the transformation], and B∗
‖ = B(1 + U/Ω b̂

·∇× b̂) is the Jacobian of the transformation. The velocity in guiding-center coordinates,

VGC ≡ v(Z), can be written as19 VGC = U b̂ +V⊥ + Vd + Ṽd. First two terms are the

O(1) parallel and perpendicular velocities, Vd = µb̂ × ∇B/Ω + U2b̂ × (b̂ · ∇)b̂/Ω is the

magnetic gradient and curvature drift velocity, and Ṽd = O(εB) is the oscillating part [with

zero gyroaverage].

Using the Larmor radius expansion everywhere, except in the distribution function, and

keeping only the terms first-order in εB, the current can be written as
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Jb(x) =
∫ [

VGCB
∗
‖ −

(
U∇ · (b̂ ×V⊥ b̂) +∇ · (b̂ ×V⊥V⊥)

) B
Ω

]
F0(x− ρ, U, µ) dUdµdθ.

This expression is valid for ε = O(1), but no gyroaveraging can be done explicitly, because

the arguments in F0 depend on the gyroangle. Assuming ε � 1, and using the εB = O(ε2)

ordering, we obtain

Jb(x) =
∫ [

U b̂ B∗
‖〈F0〉 + VdB

∗
‖F0 −∇ · 〈b̂ ×V⊥V⊥〉BF0/Ω + 〈V⊥F0〉B

]
dUdµ, (35)

where angular brackets denote the gyroaveraging, and O(εεB) terms have been neglected.

The gyroaverages are calculated as 〈F0〉 = F0 + µB∇2
⊥F0/2Ω

2, ∇ · 〈b̂ ×V⊥V⊥〉 = µ∇×B,

and 〈V⊥F0〉 = µB ×∇F0/Ω. Therefore, the expression for the beam ion current becomes

Jb(x) =
∫ [

(U b̂ +Vd)B
∗
‖F0 − µ∇× (BF0)B/Ω+ b̂ Uµ∇2

⊥F0B
2/2Ω2

]
dUdµ. (36)

In the same way, the beam ion density can be written as

nb(x) =
∫ [

B∗
‖F0 + µ∇2

⊥F0B
2/2Ω2

]
dUdµ. (37)

These expressions for the beam ion density and current rely on the ε-expansion of the fast-

ion distribution function, and are valid through order O(εB) and O(ε2). By neglecting the

second-order terms in ε, we obtain Eqs. (23) and (24) used in Sec. IV, which agrees with

results obtained in Ref. 20.
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FIGURE CAPTIONS

FIG.1. Poloidal projection of the particle orbit with v = 2.5VA; dashed lines are the

contours of poloidal flux.

FIG.2. Variation of the normalized particle energy, pφ, µ0, and µ along the orbit shown

in Fig. 1.

FIG.3. Time evolution of pφ along the orbit shown in Fig. 1, calculated in three different

approximations: (a) pφ = −ψ(x), (b) pφ = −ψ(x− ρ) + (mic/qi)RUbφ, and (c) pφ obtained

from Eq. (14).

FIG.4. Phase-space topology of the particle orbits for (a) v = 2VA, and (b) v = 3VA;

curves 1, 2, 3, and 4′ represent the prompt loss boundaries; scatter plots are obtained from

full-orbit test particle simulations; and λ is defined by λ = µB0/ε.

FIG.5. Distribution function of NBI ions from (a) TRANSP calculations for NSTX shot

#108236 [t =0.151sec], and from (b) the analytical form of F0 given in Eqs. (15)-(17) and

calculated at r = 0.5a at the low-field-side.

FIG.6. Radial profiles of (a) the beam ion toroidal current, and (b) the poloidal stream

function. The exact results are shown by the solid lines, and the drift-kinetic approximations

are shown by the dashed lines.

FIG.7. Magnitude of the second-order correction O(ε2) to the fast ion toroidal current

calculated using the drift-kinetic approximation for different values of the injection velocity

v0, and the pitch-angle parameter λ0.

FIG.8. Contour plots in the poloidal cross section of the fast ion (a) density, (b) toroidal

current, (c) and (d) poloidal current. Contours of constant ψ are shown with dashed lines.

FIG.9. Radial profiles at the equatorial plane of the normalized (a) fast ion density, (b)
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fast ion toroidal current, (c) fast ion poloidal current, and (d) total and bulk plasma toroidal

current. Vertical lines indicate the position of the magnetic axis.

FIG.10. Plot of the q profile for the calculations shown in Figs. 9 and 10 with beam ion

density nb =5% (solid line), and q profile for MHD equilibrium (dashed line).

FIG.11. Radial profiles of (a) parallel and perpendicular components of the fast ion

pressure, and (b) total pressure and fluid pressure for λ0 = 0.8 and nb/n0 = 0.05.

FIG.12. Dependence on the fast ion density of (a) the position of the magnetic axis R0,

and (b) the value of qaxis.
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