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Abstract

A renormalization procedure for the numerical loading of a Maxwellian probablity dis-
tribution function (PDF) is formulated. The procedure, which involves the solution of three
coupled nonlinear equations, yields a numerically-loaded PDF with improved properties for
higher velocity moments. This method is particularly useful for low-noise particle-in-cell
simulations with electron dynamics.
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1 Introduction

The collective behavior of a hot collisionless plasma is described in kinetic theory by the evolution
of the distribution functions of its species fe (x, z, t) and fi (x, z, t) in continuous phase space.
In the particle-in-cell (PIC) technique one returns to a discrete representation of the plasma in
terms of a small sample of 104 to 108 ‘particles’ (or markers) [1].

The most common (and natural) initialization of the simulation particles is to load the
particle velocities, for example, with random numbers having the desired distribution. This
method has obvious advantages; in particular it is in agreement with our physical intuition (that
is the numerically-loaded probabliblity distribution function (PDF) for the markers ressembles
the random distribution of actual particles). However, one disadvantage of random loading is
that higher-order velocity moments are not well represented, and this may impact the long term
behavior and the noise level of the simulated plasma.

Recently it has been pointed out by Manuilsky and Lee [2] that the implementation of electron
dynamics in existing δf (ion) PIC codes could be best achieved using the so-called split-weight
scheme. The basic idea behind the split-weight scheme is that the electron PDF is ‘split’ into
an adiabatic part and a nonadiabatic part; only the phase space evolution associated with the
nonadiabatic part of the PDF is dynamically evolved along the marker trajectories. The split-
weight scheme, however, requires the evaluation of higher-order velocity moments: the current
(first order velocity moment) in the electrostatic version [2]; as well as the pressure and heat
flux (second and third order velocity moments, respectively) in the electromagnetic case [3].

In this paper, we present a renormalization procedure which yields Maxwellian probability
distribution functions with improved properties for higher-order velocity moments. The paper
is organized as follow; in section 2, we discuss the (standard) random loading procedure and its
associated weaknesses; in section 3, we describe a renormalization procedure and its numerical
implementation; numerical results are presented and discussed in section 4.

2 Random Loading

Let us assume that a Maxwellian PDF, based on a set of N samples (markers), has been (numeri-
cally) generated using some arbitrary random technique; the method used can be straightforward
methods (for example, Neumann’s rejection technique) or more sophisticated methods, such as
those based on number theory [4,5]. Some methods based on random number generators tend to
introduce a ‘background noise’ that could be detrimental for the observation of low-amplitude
instabilities. Apart from the noise properties associated with the initial PDF, the accuracy of
higher-order velocity moments can be also important in some applications. This paper attempt
to address some of the issues associated with higher-order velocity moments (irrespective of the
loading method of the initial PDF).

The continuous (exact) Maxwellian distribution function FM(v) satisfies

〈
v2n+1

〉 ≡ ∫ +∞

−∞
v2n+1FM(v)dv = 0 (2.1)

for n = 0, 1, 2, .... The derivation of the even moments of the Maxwellian PDF are presented in
the Appendix. Now consider the moments of the numerically-loaded PDF. Since the loading is
random, it is sufficient to carry out the velocity space integration using Riemmann sums; the



velocity moment of order k, based on a set of N markers, is then defined as

M (k; N) ≡ 1

N

N∑
j=1

vj
k (2.2)

where k is a nonnegative integer and j labels the marker. For N 7→ ∞, we expect M(1, N) 7→ 0,
M(2, N) 7→ 1 and M(3, N) 7→ 0 and so on (see the Appendix for higher-order moments). The
set {vj; j = 1, .., N} will not, in general, satisfy the relations of 〈v〉 = 〈v3〉 = 0 and 〈v2〉 = 1. To
remedy to this situation, a simple renormalization through the first-order is often used; upon
evaluating

ξ =
1

N

N∑
j=1

vj (2.3)

a new set {Vj ; j = 1, .., N} is generated according to

Vj = vj − ξ (2.4)

for j = 1, ..., N . By construction, the new set of markers satisfies 〈V 〉 ≡ 0; however, the accuracy
of higher-order velocity moments is not guaranteed with this method.

3 Renormalization Procedure

In this paper, we propose a renormalization procedure of the PDF based on the polynomial given
by

Vj = vj − α − βvj − γvj
2 (3.5)

where α, β and γ are unknown parameters. Note that for β = γ = 0, we have α = ξ, where
ξ is given by Eq.(2.3). We demand that the parameters α, β and γ are chosen such that the
relations

〈V 〉 =
1

N

N∑
j=1

Vj = 0

〈
V 2
〉

=
1

N

N∑
j=1

Vj
2 = 1 (3.6)

〈
V 3
〉

=
1

N

N∑
j=1

Vj
3 = 0

are satisfied (see Appendix). Substituting Eq.(3.5) in Eq.(3.6) one gets after some algebra a set
of 3 coupled, nonlinear equations for the parameters α, β and γ

F (α, β, γ) = 0

G (α, β, γ) = 0 (3.7)

H (α, β, γ) = 0



where

F (α, β, γ) ≡ (1 − β) 〈v〉 − α − γ
〈
v2
〉

(3.8)

G (α, β, γ) ≡ α2 − η 〈v〉+ µ
〈
v2
〉− θ

〈
v3
〉

+ γ2
〈
v4
〉− 1 (3.9)

and

H (α, β, γ) ≡ −α3 + λ 〈v〉 − ϕ
〈
v2
〉

+ ξ
〈
v3
〉− ω

〈
v4
〉

+ κ
〈
v5
〉− γ3

〈
v6
〉

(3.10)

In Eqs.(3.8-3.10) we have the following definitions

η = 2α (1 − β)

µ = 1 + β2 − 2β + 2αγ

θ = 2γ (1 − β)

λ = αη + α2 (1 − β)

ϕ = α2γ + η (1 − β) + αµ

ξ = ηγ + µ (1 − β) + θα

ω = αγ2 + µγ + θ (1 − β)

κ = θγ + γ2 (1 − β)

The renormalization procedure is implemented as follows; for a given set of N markers, one
computes the moments 〈vp〉 for p = 1, · · · , 6 that enter the definitions of the functions F , G
and H. Then, starting from an initial guess {α0, β0, γ0}, a new set of coefficients is generated
through a set of random increments ∆α, ∆β and ∆γ; the sequence takes the general form

αk+1 = αk + ∆α

βk+1 = βk + ∆β

γk+1 = γk + ∆γ

for k = 0, 1, 2, ... (We denote the asymptotic solution as {α∞, β∞, γ∞} although in practise
the sequence has a finite number of terms). The new set of coefficients is tested against the
constraint χ (α, β, γ) ≡ |FGH| < ε (where ε is a small tolerance parameter). This algorithm
yields a trajectory in ‘phase space’, as shown in Figure 1. Although there exists more powerful
root finding techniques, the computing time required to determine an appropriate set {α, β, γ}
represents, in practise, a small fraction of the total computing time of a global PIC simulation.
We have compared various other constraints such as

|F | < ε1 ; |G| < ε2 ; |H| < ε3 ,

where ε1, ε2 and ε3 are (in general, independent) smallness parameters. As it turns out, the same
fixed point in Figure 1 has been found (indicating that the root solution is a strong attractor).

4 Numerical Results

The algorithm described in the previous section has been parallelized using the Message Pass-
ing Interface (MPI) for maximum efficiency. In a typical PIC simulations, the computation of



the set of coefficients {α∞, β∞, γ∞} is carried out once. Most PIC codes are based on parallel
algorithms, and it is therefore meaningful to exploit this parallelism when determining the coef-
ficients necessary for the renormalization of the probability distribution function. The markers
are distributed across all processors (PEs), with an equal (or almost equal) number of parti-

cles per PE; in the same spirit, one can distribute M different values of α
(p)
J , β

(p)
J and γ

(p)
J , for

p = 1, · · · , M in the phase space volume element

α : α
(p)
J ∈ [αk − ∆α/2, αk + ∆α/2]

β : β
(p)
J ∈ [βk − ∆β/2, βk + ∆β/2]

γ : γ
(p)
J ∈ [γk − ∆γ/2, γk + ∆γ/2]

Here J = 0, · · · , NPE −1 labels the processor, and NPE is the total number of processors. There-
fore the quantity χ (α, β, γ) can be evaluated independently on NPE processors; communication
between processors is only required in the last step of the computation

χmin = MIN{χJ ; J = 0, · · · , NPE}

In Figures 2-4, the dotted (plain) line show the value of the velocity moments before (after) the
renormalization procedure. In order to illustrate the features of the renormalization procedure,
we have varied the number of markers N . As expected the properties of the random initialization
improve (on average) as the number of markers is increased; although this is true for the first-
order moment (Figure 2), the third-order moment (Figure 4) does show strong departure from
the exact value. The velocity moments for the remormalized PDF, however, gives a much better
agreement with the exact values for all 3 moments.

Figure 5 shows the exact (plain) and the approximate (dotted) Maxwellian PDFs for a set
of N = 216 = 65536 markers. The differences between the exact and approximate PDFs occur
mostly for a group of low-velocity markers (|V | ≤ 0.5) and a small group of suprathermal
(|V | > 2) markers.

The renormalization procedure can be generalized so that higher order velocity moments are
accurately represented. Furthermore, although the case of a Maxwellian PDF has been consid-
ered here, other probability distribution functions can also be renormalized using similar ideas;
of course, one must have a knowledge of the analytical expressions of the velocity moments of
the continuous (exact) PDF (for a Maxwellian PDF, these moments are given in the Appendix).
As discussed above, the root finding procedure can be easily implemented into existing par-
allel PIC algorithms; furthermore, it is easy to code and and, at the same time, has a good
computation/communication performance ratio.

5 Concluding Remarks

We have a presented a simple renormalization procedure for a numerically loaded Maxwellian
probabiblity distribution function. The method amounts to a root searching procedure for a
set of three coupled nonlinear equations. In the spirit of modern global PIC simulations, the
method can be easily implemented as a parallel algorithm; numerical simulations do confirm that
higher-order velocity moments are accurately reproduced even for small numbers of markers.
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Appendix: Velocity Moments of a Maxwellian Probability

Distribution Function

In this Appendix, we present a method to calculte the velocity moments of a one-dimensional
Maxwellian PDF. The one-dimensional Maxwellian distribution function (for particle species j)
is

FMj

(
v||
)

=
n0√

2πVthj

exp

(
− v2

||
2V 2

thj

)
(A.1)

where Vthj =
√

Tj/mj is the thermal velocity. Letting x ≡ v||/
(√

2Vthj

)
one has

FMjdv|| =
n0√
π

exp
(−x2

)
dx . (A.2)

Define

J (α) ≡
∫ +∞

−∞
exp

(−αx2
)
dx (A.3)

for positive α. Using the change of variable y =
√

αx one obtains

J (α) =
1√
α

∫ +∞

−∞
exp

(−y2
)
dy =

√
πα−1/2 (A.4)

Differentiating Eq.(A.3) with respect to α, we note that

dJ

dα
= −

∫ +∞

−∞
x2 exp

(−αx2
)
dx

and

d2J

dα2
=

∫ +∞

−∞
x4 exp

(−αx2
)
dx

from which one can deduce the relation of recurrence given by∫ +∞

−∞
x2p exp

(−αx2
)
dx = (−1)p dpJ

dαp
(A.5)

for p = 1, 2, .... From Eq.(A.4) we note that dJ/dα = −1/2
√

πα−3/2, d2J/dα2 = 3/4
√

πα−5/2, or

dpJ

dαp
=

√
π (−1)p (2p − 1) (2p − 3) ...(5)(3)(1)

2p
α−(2p+1)/2 (A.6)

for p = 1, 2, .... Substituting Eq.(A.6) in the right-hand side of Eq.(A.5) we obtain∫ +∞

−∞
x2p exp

(−αx2
)
dx =

√
π

(2p − 1) (2p − 3) ...(5)(3)(1)

2p
α−(2p+1)/2 (A.7)

With these preliminary calculations, we are ready to calculate the velocity moment of order k,
defined as

Mj (k) ≡
∫ +∞

−∞
FMj

(
v||
)
vk
||dv|| (A.8)



The change of variable x ≡ v||/
(√

2Vthj

)
and the relation FMjdv|| = n0π

−1/2 exp (−x2) dx show
that the velocity moment (A.8) can be written as

Mj(k) =
n0√
π

∫ +∞

−∞

(√
2Vthj

)k

xk exp
(−x2

)
dx = n0

(√
2Vthj

)k

I (k) (A.9)

where

I (k) ≡ 1√
π

∫ +∞

−∞
xk exp

(−x2
)
dx (A.10)

Clearly I (2k − 1) = 0 for k = 1, 2, 3, .... We use Eq.(A.7) to show that

I(2) =
1

2

I(4) =
3

4

I(6) =
15

8

I(8) =
105

16

I(10) =
945

32

I(12) =
10395

64

I(14) =
135135

128
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Figure 1: The renormalization procedure requires the computation of an optimal set {α, β, γ}.
A typical trajectory in parameter space is shown.



Figure 2: First-order velocity moment 〈V 〉 as a function of number of markers N before (dotted
line) and after (plain line) the renormalization procedure. The exact answer corresponds to the
〈V 〉 = 0 line.



Figure 3: Second-order velocity moment 〈V 2〉 as a function of number of markers N before
(dotted line) and after (plain line) the renormalization procedure. The exact answer corrresponds
to the 〈V 2〉 − 1 = 0 line.



Figure 4: Second-order velocity moment 〈V 3〉 as a function of number of markers N before
(dotted line) and after (plain line) the renormalization procedure. The exact answer corrresponds
to the 〈V 3〉 = 0 line.



Figure 5: Exact (plain line) and renormalized (dotted) Maxwellian probability function for a set
of N = 216 = 65536 markers.
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