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Abstract. The knowledge of plasma pressure is essential for many physics ap-
plications in the magnetosphere, such as computing magnetospheric currents
and deriving mag-netosphere-ionosphere coupling. A thorough knowledge of
the 3-D pressure distribution has however eluded the community, as most
in-situ pressure observations are either in the ionosphere or the equatorial
region of the magnetosphere. With the assumption of pressure isotropy there
have been attempts to obtain the pressure at different locations by either (a)
mapping observed data (e.g. in the ionosphere) along the field lines of an
empirical magnetospheric field model, or (b) computing a pressure profile in
the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in
force balance with the magnetic stresses of an empirical model. However, the
pressure distributions obtained through these methods are not in force balance
with the empirical magnetic field at all locations. In order to find a global
3-D plasma pressure distribution in force balance with the magnetospheric
magnetic field we have developed the MAG-3D code, that solves the 3-D force
balance equation J×B = ∇P computationally. Our calculation is performed
in a flux coordinate system in which the magnetic field is expressed in terms
of Euler potentials as B = ∇ψ×∇α. The pressure distribution, P = P (ψ, α),
is prescribed in the equatorial plane and is based on satellite measurements.
In addition, computational boundary conditions for ψ surfaces are imposed
using empirical field models. Our results provide 3-D distributions of mag-
netic field, plasma pressure as well as parallel and transverse currents for both
quiet-time and disturbed magnetospheric conditions.

Introduction

The magnetospheric plasma pressure is a quan-
tity essential to many physical processes. In partic-
ular, plasma pressure regulates the magnetospheric
currents, thus strongly affecting the magnetosphere-
ionosphere (M-I) coupling through the change in the
field-aligned currents.

Significant effort in space physics research have
generally been concentrated on the magnetospheric
magnetic field, which has been subject to extensive
observations and modeling. Among the magneto-

spheric field models developed, probably the most
popular are the empirical models, in which one pos-
tulates the structure of the magnetospheric currents,
and the model parameters are obtained by fitting the
model field to an array of observations. Those ob-
servations represent data collected by many space-
craft at different locations and at different times,
and thus the empirical models describe large-scale
time-averaged magnetospheric states rather than in-
stantaneous “snapshots” of the magnetospheric field.
Among the better known empirical models we men-
tion those by Olson and Pfitzer [1974]; Ostapenko
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and Maltsev [1997]; Tsyganenko [1987, 1989, 1995,
2002]; Tsyganenko and Stern [1996]. As opposed to
the rather extensive observations and studies of the
magnetic field, the magnetospheric plasma pressure is
much less known. Direct measurements of the pres-
sure over a large domain are scarce, yet the knowledge
of the pressure is extremely important from a phys-
ical point of view, especially in regions such as the
plasma sheet where the plasma parameter β (the ra-
tio of plasma pressure to magnetic pressure) has very
large values [e.g., Borovsky et al., 1997]. Because in
regions of large β the pressure critically determines
the magnetic field, it is of crucial importance to know
the global pressure distribution. One way of obtain-
ing such a global distribution, starting from scarce
pressure data, will be presented in this study.

We start our paper by a succinct review of sev-
eral pressure observations, both at low altitudes (in
the ionosphere) and further in the plasma sheet in the
magnetospheric tail. We then briefly describe the way
these observations have commonly been used in space
physics research, mostly in conjunction with empiri-
cal magnetic field models. Then, we put forth the
theoretical and numerical background of our method
of obtaining force-balanced magnetospheric configu-
rations. Finally, we present computational results for
both quiet and active-time magnetosphere, with both
isotropic and bi-Maxwellian plasma pressure distribu-
tions.

Plasma pressure — observations and
modeling

Pressure observations

In the magnetosphere, the plasma pressure ten-
sor has generally only two distinct diagonal compo-
nents, corresponding to directions perpendicular and
parallel to the ambient magnetic field. Their val-
ues can straightforwardly be obtained once the par-
ticle distributions are known, being given by (ignor-
ing the flow effects) P⊥ = 1/2

∫
mv2f(v) sin2 β d3v

and P‖ =
∫
mv2f(v) cos2 β d3v, respectively, where

f(v) is the velocity distribution function of the parti-
cle population, while m and β represent the particle
mass and pitch angle, respectively. When the par-
ticle distribution is isotropic, such is the case in the
plasma sheet (see below), the plasma pressure can be
described by a scalar: P = P⊥ = P‖.

Quite a few plasma pressure measurements have
been performed using observations of particle distri-
bution functions in the plasma sheet, a region which

plays a very important role, due to its large β, in
the dynamics of the magnetosphere. Both in situ ob-
servations [Stiles et al., 1978; Nakamura et al., 1991]
and theoretical studies [Noetzel et al., 1985; Hill and
Voigt , 1992] overwhelmingly suggest that the pressure
in the plasma sheet is isotropic. Among plasma sheet
pressure measurements at distances |X| > 10 RE, we
mention observations using ISEE spacecraft: ISEE1
[Huang and Frank , 1994] and ISEE2 [Spence et al.,
1989; Angelopoulos et al., 1993]. Closer to Earth,
where plasma pressure is generally bi-Maxwellian, we
mention AMPTE/CCE [Lui and Hamilton, 1992; De
Michelis et al., 1999] and AMPTE/IRM [Angelopou-
los et al., 1993] measurements. Finally, probably the
most extensive observations of plasma sheet pressure
are those of the GEOTAIL mission [e.g., Hori et al.,
2000]. Besides in situ plasma sheet measurements,
a novel technique [Wing and Newell , 1998] has al-
lowed imaging of plasma sheet ions by analyzing their
precipitation at low altitudes in the ionosphere. The
theoretical background of the method relies on the
isotropization of plasma sheet ions when the ratio
of their gyroradius to the magnetic field curvature
exceeds a certain value [Sergeev et al., 1993]. Ob-
serving the distribution of field-aligned precipitating
ions in the ionosphere one thus obtains an accurate
reflection of their isotropic distribution function in
the plasma sheet. Based on the theory of Sergeev
et al. [1993], Wing and Newell [1998] have inferred
the plasma sheet pressure contribution due to pro-
tons by observing particle precipitation in the iono-
sphere at latitudes higher than the so-called “isotropy
boundary.” Their method relies on the technique,
commonly employed in the space physics community,
of relating the 2-D pressure measurements to differ-
ent points in space (thus obtaining a 3-D distribution)
by “mapping” the pressure using empirical magnetic
field models. The implicit assumptions in such an ap-
proach are: i). the plasma pressure is assumed to be
isotropic; and ii). the observed pressure is considered
to be in force balance with the magnetic stresses of
the empirical model field.

Plasma pressure and empirical field models;
lack of force balance

Another series of approaches actually goes further
than using empirical model fields for mapping ob-
served plasma pressure distributions and try to infer
the pressure from the empirical model itself, by at-
tempting to calculate the pressure values that would
be in force balance with the model fields in 1-D along
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the Sun-Earth axis [e.g., Spence et al., 1987; Lui et al.,
1994] or in 2-D in the equatorial plane [Horton et al.,
1993; Cao and Lee, 1994]. One important question
poses itself with regard to this approach, and the
question is “Can the empirical model fields be equili-
brated by plasma pressure of a certain pressure tensor
form ?” Partially answering the question, Zaharia
and Cheng [2002] have shown that the field of the
T96 empirical model cannot be balanced globally with
isotropic plasma pressure. Their findings show that
while in 1-D along the Sun-Earth axis the Lorentz
force |J×B| is a good approximation to the observed
values of |∇P |, in more than 1-D the quiet-time T96
field cannot be in equilibrium with an isotropic pres-
sure. Other studies have shown that anisotropic pres-
sure profiles in equilibrium with empirical magnetic
fields can only be found on a maximum of two planes
[Horton et al., 1993; Cao and Lee, 1994], as the prob-
lem is over-determined in 3-D. With the lack of global
force balance, the use of empirical field models in con-
junction with observed pressure profiles can give rise
to physical errors [Zaharia and Cheng , 2002].

Possible solutions to the force balance
problem

As pointed out by Stern [1994], the most probable
reason for the lack of equilibrium in the empirical field
models is the loss of accuracy in the derivatives of the
model magnetic field B — while the model field can
provide a good approximation to the observed field
through least-square fitting, the comparison between
the derivatives of the model and observed field, re-
spectively, will not present such a good correlation.

An alternate method is then needed to obtain
force-balanced magnetospheric states. One such method
that computes a 3-D magnetospheric equilibrium is
the “ballistic” frictional approach [Hesse and Birn,
1992, 1993; Toffoletto et al., 2001], in which an em-
pirical magnetic field structure is used as an initial
state in a modified-MHD simulation. The approach
usually seeks to find force-balanced states in which
the magnetic field is not very different from the ini-
tial empirical field [Toffoletto et al., 2001]. The fi-
nal force-balanced magnetospheric state in the fric-
tional method is not unique however, depending on
the choice of the polytropic index γ [Hesse and Birn,
1993].

While the “ballistic” frictional method obtains 3-
D force-balanced states in a large spatial domain,
it does not reproduce the very large β values com-
monly observed in the plasma sheet, especially dur-

ing disturbed magnetospheric times. Such β values
are however reproduced by the method presented in
this paper, which consists in numerically solving the
3-D equilibrium equation in a flux coordinate sys-
tem. In the computation we use observation-based
pressure profiles and realistic boundary conditions as
input. The results we present in this paper are ob-
tained using plasma pressure in the plasma sheet from
GEOTAIL observations [e.g., Hori et al., 2000], or
along the midnight meridian in the equatorial plane,
from the so-called Spence-Kivelson formula [Spence
and Kivelson, 1993], as well as anisotropic pressure
closer to Earth obtained from AMPTE/CCE mea-
surements [Lui , 1993; Lui et al., 1994; De Michelis
et al., 1999]. The computation is performed inside a
domain defined by magnetic flux boundaries obtained
from Tsyganenko’s T96 and T01 empirical field mod-
els [Tsyganenko, 1995; Tsyganenko and Stern, 1996;
Tsyganenko, 2002].

Calculation of 3-D quasi-equilibrium

In the rationalized EMU unit system, the equilib-
rium with isotropic pressure P can be expressed as

J×B = ∇P (1)

It is generally believed that such an equilibrium
exists in the “slow-flow” region of the magnetosphere
(the inner and middle magnetosphere and on closed-
field lines) at all times [Wolf , 1983], except during
periods of very explosive magnetospheric activity such
as substorm onset and expansion phases.

Euler potential representation of B; flux
coordinate system

From ∇ ·B = 0, the vector B can be expressed as

B = ∇ψ ×∇α, (2)

where ψ and α are called Euler potentials [e.g., Stern,
1967]. Obviously B · ∇ψ = B · ∇α = 0 and thus
the intersection of constant ψ and α surfaces defines
the magnetic field lines. Our 3-D equilibrium com-
putation will be made in a flux coordinate system in
which two of the coordinates are chosen to be the
Euler potentials defining the magnetic field. There
is freedom however in the choice of the third coordi-
nate, χ, representing the position along the field line.
A particular choice for this coordinate is equivalent
to choosing a specific form for the Jacobian of the
(ψ, α, χ) system, J = [(∇ψ ×∇ζ) ·∇χ]−1 [Cheng
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et al., 1993; Cheng , 1995]. Our choice for χ in this
study will be the “equal arc length” [Cheng , 1995; Za-
haria and Cheng , 2002], such that equal dχ variations
correspond to equal length variations ds along a field
line.

Equilibrium equations in flux coordinate
system

In the flux coordinate system {ψ, α, χ}, by con-
sidering the components of the equilibrium equation,
Eq. (1), in the directions of (B×∇ψ) and (B×∇α),
respectively, one has:

J ·∇ψ = ∇ ·
[
(∇ψ)2∇α− (∇α ·∇ψ)∇ψ

]
= −∂P

∂α
,

(3)

J ·∇α = ∇ ·
[
(∇α ·∇ψ)∇α− (∇α)2∇ψ

]
=
∂P

∂ψ
,

(4)

as obtained before [e.g., Birn et al., 1977; Cheng ,
1995; Zaharia and Cheng , 2002]. In the work pre-
sented here, the equations (3) and (4) are solved nu-
merically using an improved version of the MAG-3D
code [Cheng , 1995], by considering observation-based
pressure distributions P (ψ, α) and realistic boundary
conditions for ψ obtained from empirical field models.

The two coupled equations above are second-order
inhomogeneous elliptic partial differential equations
(PDEs) for α and ψ in the (α, χ) and (ψ, χ) coordi-
nate spaces, respectively, and they admit unique solu-
tions if boundary conditions and the inhomogeneous
terms on the right-hand sides (RHS) are prescribed.
Besides the boundary conditions, one also needs to
specify the inhomogeneous terms in equations (3) and
(4), i.e. ∂P/∂ψ and ∂P/∂α. While Cheng [1995] used
analytical profiles P = P (ψ) to calculate near-Earth
magnetospheric configurations, such a choice is not
too realistic for the plasma sheet farther than about
10RE from Earth [Zaharia and Cheng , 2002]. In this
paper we present results with P (R, φ, Z = 0) from
observations as input (R, φ and Z in this paper de-
fine the usual cylindrical coordinate system, with the
Earth in the center). The P (R, φ, Z = 0) functional is
kept fixed, i.e. we are interested in finding a magnetic
field configuration in equilibrium with given 2-D pres-
sure profile in the equatorial plane. To do this, the
function P (ψ, α) will be changed at each iteration as
ψ and α change, in order to maintain the input pres-
sure profile fixed in space.

Field-aligned currents

The field-aligned currents can be calculated numer-
ically once the magnetic field is known, from Am-
pere’s law: J‖ = (∇×B)×B/B. This method how-
ever presents accuracy problems due to the large val-
ues of the magnetic field close to the Earth’s surface.
A more accurate computation of the field-aligned cur-
rents can be performed by noting that in a quasi-
equilibrium state with isotropic P , the component of
the electric current parallel to the magnetic field, J‖,
can be obtained from the charge neutrality condition
∇ ·J = 0 by the so-called Vasyliunas relation [Vasyli-
unas, 1970, 1984]:

B ·∇
(
J‖
B

)
=

∇B2 ×B ·∇P

B4
=

2B · (∇P × κ)
B2

.

(5)

An integration of Eq. (5) along the field line read-
ily provides J‖ if the quasi-equilibrium magnetic field
configuration is known. The calculation of J‖ using
Vasyliunas relation was performed before by Cheng
[1995], in a computed 3-D magnetospheric state in
force balance with a P (ψ) profile. The reverse prob-
lem was considered by Antonova and Ganyushkina
[1996], who obtained ∇P at the ionosphere by us-
ing observed J‖ there [Iijima and Potemra, 1976] and
empirical magnetic fields.

Numerical method; boundary
conditions and pressure input

Computational domain

Our computational domain is a topologically closed
region, delimited by the inner and outer magnetic flux
surfaces, ψin and ψout, which are kept fixed through-
out the computation. In this work the ψin and ψout
surfaces are obtained by field-line mapping using the
latest empirical models, T96 and T01. The advan-
tage of using these models is the possibility of quan-
tifying the level of activity of the magnetosphere, by
a proper choice of the solar wind parameters: PSW

(solar wind dynamic pressure), BIMF (interplanetary
magnetic field) and DST index — that enter as input
in the models. We note again that even though the
inner and outer flux boundaries are being kept fixed
during the computation, the magnetic field lines are
never fixed, even on those surfaces, as they have the
ability to move along the surfaces throughout the it-
erative process.
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Ideally, one would start the magnetic field line
mapping from the Earth’s surface, such that the com-
putational domain would be closed by a band repre-
senting the surface of revolution of the arcs of circle
of the Earth’s surface between the lower and higher
latitudes corresponding to ψin and ψout, respectively.
The inner and outer flux surfaces delimiting a typical
closed domain can be seen in Fig. 1.

While this choice of starting points can be con-
sidered in some cases (when the outer flux boundary
considered is not very far from Earth), generally if
one wants to include the mid- and far-tail regions of
the plasma sheet then computational problems may
appear with such a choice. Specifically, if the domain
extends too far in the magnetotail, the discrepancy
between the very strong magnetic field at the Earth’s
surface and the weak field in the tail, coupled with
the strong deformation of the flux coordinate system
in real space leads to huge values and steep gradi-
ents in the Jacobian J [e.g., Becker et al., 2001], giv-
ing rise to numerical problems in the computation.
Therefore, in those cases we do not extend the do-
main down to the Earth’s surface, but instead only
down to a sphere of radius r > 1RE enveloping the
Earth but close enough to it that the deviations of
the field on the surface of the sphere from a dipole
field are not significant.

Inverse representation; iterative
computational method

The two coupled equilibrium equations (3) and (4)
are solved numerically in a computational flux coor-
dinate system (ρ, ζ, θ) using an inverse iterative tech-
nique [Cheng , 1995]. We consider a numerical grid in
this system, made of Nψ × Nα × Nχ computational
grid points. When the equilibrium is reached, the Eu-
ler potentials ψ and α defining the magnetic field are
only functions of ρ and ζ, respectively. In our ap-
proach, the magnetic field configuration is expressed
in “inverse form”, i.e. we compute r(ρ, ζ, θ). In order
to have a large grid density in regions of interest, the
computational points are generally not equidistant in
real space. Instead, ρ is chosen such that equal ρ in-
tervals correspond to equal dr intervals in real space
along the midnight axis in the equatorial plane; ζ is
chosen such that a large grid point density is con-
centrated in the vicinity of midnight local time (the
area of largest plasma β). The third computational
flux coordinate is obtained from the equal arc length
choice: θ = χ.

In the above computational flux coordinate sys-

tem, the boundary conditions that need to be spec-
ified for the 2 equations, (3) and (4), are values of
α and ψ on the boundaries of the (ζ, θ) and (ρ, θ)
domains, respectively. Specifically, for Eq. (3) for α,
the boundary conditions in the ζ coordinate are sim-
ply prescribed by periodicity. In the θ coordinate,
the boundary conditions for α are obtained from the
knowledge of the values of α at the ends of each field
line. This knowledge comes from the fact that the
magnetic field at the Earth’s surface can be assumed
to be overwhelmingly due to internal Earth sources
[Tsyganenko, 1990]. By only taking into account the
highly-dominant dipole term on the Earth’s surface,
we simply have α ≡ φ on the Earth’s surface [e.g.,
Stern, 1970]. This boundary condition is approxi-
mately correct even when we do not extend the do-
main down to the Earth’s surface, but only to a sphere
of radius r enveloping the Earth, with r not too large.
Now for Eq. (4) for ψ, again boundary conditions in
the θ coordinate means knowing the value of ψ at
both ends of a field line. If those are on the Earth
surface and again consider the field there to be dipo-
lar, their value of ψ is then analytically known [e.g.,
Stern, 1967; Cheng , 1992, 1995]: ψ = −BDRE

2 sin2Θ,
where BD and RE are the equatorial dipole field on
the Earth’s surface and the Earth radius, respectively,
while Θ represents the colatitude. Finally, the bound-
ary condition for ψ in the ρ coordinate is obtained
from empirical field models by mapping magnetic field
lines with footpoints on the Earth’s surface corre-
sponding to the inner and outer flux surfaces, ψin
and ψout.

A configuration r(ρ, ζ, θ) is needed as the start-
ing point in the iterative procedure, and usually we
take this to be the configuration given by the empir-
ical model. The inverse iterative technique consists
in the following steps: (1) on the constant ψ = ψ(ρ)
surfaces, Eq. (3) is solved for α in the (ζ, θ) space,
with the inhomogeneous term ∂P/∂ψ kept constant;
(2) the result of the previous calculation is a function
α(ρ, ζ, θ); based on this solution, new α = α[ζ(x, y, z)]
= constant surfaces are obtained by moving the grid
points in (ζ, θ) space on each ψ surface using cubic
spline interpolation; (3) on each α(ζ) = constant sur-
face, Eq. (4) is solved in (ρ, θ) space, keeping the in-
homogeneous term ∂P/∂α fixed; (4) new ψ[ρ(x, y, z)]
= constant surfaces are obtained by moving the grid
points in (ρ, θ) space on each constant α surface. A
procedure typically needed in iterative equilibrium
calculations to ensure numerical stability is the so-
called “blending” [e.g., Hudson et al., 2002], a pro-
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Figure 1. Inner and outer flux (ψ) surfaces enveloping the computational domain (obtained here by field line
mapping of quiet-time T01 model). The inner surface, seen through a cut in the outer flux surface, is almost a
torus, due to the quasi-axisymmetry in magnetic field so close to Earth’s (the Earth, not visible in the figure, is
at [X,Y,Z] = [0,0,0]). The outer surface however is highly asymmetric, due to magnetic field stretching in the
magnetotail. Constant χ lines and α lines (the latter also representing the B field lines) are also shown on both
flux surfaces.

cess through which some fraction of the solution of
the previous iteration is “blended” into the latest it-
erative solution: ψ(n+1) ← γψψ

(n) + (1 − γψ)ψ(n+1);
α(n+1) ← γαα

(n) + (1 − γα)α(n+1), where γψ and γα
are the blending parameters.

The iterative steps described, with blending pa-
rameters chosen empirically for maximum conver-
gence rate, are repeated until the α = constant and
ψ = constant surfaces converge to some tolerance.
One simple criterion for convergence is represented
by the cumulative difference between the values for
α or ψ between two consecutive iterations n and
n − 1 (e.g. for α: Σ(αn) = Σi,j,k|α(n)

i,j,k − α
(n−1)
i,j,k |).

A more physical measure of the convergence is the
value of the force “imbalance” at iteration n, de-
fined in a manner similar to [Toffoletto et al., 2001] as
‖F ‖ =

∫ |J× B −∇P |dV/ ∫
dV . We normalize this

force imbalance to the initial imbalance, ‖F0‖, by con-
sidering the quantity fn = ‖Fn‖/‖F0‖ and following
its decrease throughout the iterations.

Results with different pressure profiles

In this section we present several computed quiet-
and active-time 3-D magnetospheric quasi-equilibria,
in which the magnetic fields are in force balance
with different observed pressure distributions: the
so-called Spence-Kivelson formula [Spence and Kivel-
son, 1993], plasma sheet pressure from the GEOTAIL
satellite, as well as anisotropic pressure profiles ob-
served near Earth by AMPTE/CCE [Lui and Hamil-
ton, 1992; De Michelis et al., 1999]. In all cases pre-
sented in this paper, we take the tilt of the Earth’s
magnetic axis to be zero for simplicity.

Quiet-time computation with P input from
Spence-Kivelson empirical formula

The Spence-Kivelson empirical formula (hereinafter,
the SK formula) was obtained for quiet-time condi-
tions along the midnight meridian in the equatorial
plane by Spence and Kivelson [1993], who employed
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non-linear least-square fitting of quiet-time pressure
data, mainly from ISEE-2 observations. The explicit
form of the SK formula is P (nPa) = 89e−0.59|X| +
8.9|X|−1.53. It has been shown [Zaharia and Cheng ,
2002] that the pressure values given by the SK for-
mula are very close to values obtained by integrating
the J×B force of the quiet-time T96 empirical model
along the equatorial midnight meridional line. Since
the SK formula is only valid along that line, addi-
tional assumptions have to be made with regard to
the azimuthal (local-time) dependence of the equato-
rial plane pressure before we can employ the formula
in our 3-D code. In this paper we present results with
equatorial P (R, φ, Z = 0) = P (R,Z = 0), where R
is the distance from Earth in the equatorial plane.
This should not be an unreasonable choice, since ob-
servations [e.g., Wing and Newell , 1998] report the
pressure further than about 7RE to vary little in the
azimuthal (φ) direction. Closer to Earth on the other
hand, the plasma β generally tends to be quite low,
and therefore the pressure does not influence much
the magnetic field configuration. It has to be men-
tioned that even with this pressure choice, the com-
puted magnetospheric state is still non-axisymmetric,
due to the lack of axisymmetry (tail stretching) in the
boundary conditions. Other code runs, not presented
in this paper, with a small azimuthal (φ) dependence
lead to to magnetic field configurations very similar
to the P (R, φ, Z = 0) = P (R,Z = 0) case presented
here, with the only significant differences in the field-
aligned current configurations.

In order to portray a quiet-time magnetosphere,
the ψin and ψout flux boundaries of our domain are
obtained by field mapping using the T96 model, pa-
rameterized by DST = −5 nT, PSW = 2.1 nPa,
ByIMF = 0 and BzIMF = 1 nT, representing aver-
age solar wind parameters during quiet times as ob-
tained from the OMNI solar wind database. The com-
putational domain is limited by a sphere of radius
r = 4RE enveloping the Earth, in order to avoid nu-
merical problems, as described before. The latitudes
chosen for tracing the inner and outer flux surfaces
are such that the field lines mapped using the model
at midnight eventually intersect the equatorial plane
at X = −5RE and X = −23RE, respectively. The
initial field configuration considered in the computa-
tion is the one given by the T96 model with the solar
wind parameters specified above. This configuration
is not in equilibrium with an isotropic pressure profile
[Zaharia and Cheng , 2002].

The final force-balanced state is achieved by the
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Figure 2. (a) The decrease with iteration number n
of the following quantities in the SK case: normalized
force imbalance fn (top); cumulative ψ change be-
tween consecutive iterations (middle); and cumulative
α change between consecutive iterations (bottom).

code after typically less than 20 iterations. Figure 2
shows the decrease in the normalized force imbalance
fn defined before vs. the iteration number n, as well
as decreases in the ψ and α “errors” previously de-
fined. The decrease with n is monotonic for all three
quantities, and is quite steep during the first itera-
tions. The force imbalance in the final state is down
to about 1/50 of its initial value (which is normalized
to be 1). Most of the decrease takes place during the
first 10 iterations, after which the force imbalance al-
most reaches a plateau. With further iterations, the
force imbalance does not decrease much, however the
computational “errors” for ψ and α continue to de-
crease at a significant rate. This can be due to the
non-linear nature of the computation, whereby the
plateau reached by fn approaches the minimum value
of force imbalance reachable in the finite-difference
computation with the number of grid points consid-
ered. Our number of grid points, N = 201×65×101,
seems however to be more than adequate for accu-
rately computing a force-balanced state, as seen in the
significant decrease of the the force imbalance fn [c.f.
Toffoletto et al., 2001]. Inspection of several physical
parameters of the magnetospheric state throughout
the iterations reinforces this conclusion, with the con-
vergence actually setting in after iteration n = 7, as
the physical parameters do not change more than 5%
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Figure 3. (a) Profiles along the Sun-Earth axis for P , |B| and β in the quiet-time 3-D equilibrium with Spence-
Kivelson pressure; the dashed line in the second plot represents |B| from the T96 model; (b) Noon-midnight
and equatorial plane cross-sections of constant flux surfaces in the north-western quadrant for the computed 3-
D equilibrium; dashed lines show semi-circles of radius 4RE, corresponding to the sphere at the inner domain
boundary.
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Figure 4. (a) Contours of constant transverse current J⊥ in the noon-midnight and equatorial planes for the quiet-
time 3-D equilibrium with Spence-Kivelson pressure; the dotted lines represent constant ψ contours; (b) Contours
of field-aligned current J‖ in the ionosphere (at 1RE, computed by assuming J‖/B = const. between 1 and 4RE).
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Figure 5. (a) Sun-Earth axis profiles of P , |B| and β for the disturbed-time computation; the dashed line in the
top plot represents the SK pressure used in the previous case, while the dashed lines in the middle plot show |B|
from the T96 model; (b) Noon-midnight plane cross-sections of constant flux surfaces for the Tsyganenko field and
the computed 3-D disturbed-time equilibrium field, respectively.

between n = 7 and the final state at n = 15.
Several physical quantities along the Sun-Earth

axis characterizing the computed equilibrium state
are presented in plot (a) of Fig. 3: the pressure P (ba-
sically the SK formula), together with the magnetic
field magnitude B and plasma β. One observes that
B decreases while β increases monotonically with |X|
on the night side. The very large values of β are only
attained for |X| > 20RE, with a maximum of around
150 at 23RE. In the B plot we also show by dashed
lines the value of the magnetic field of the T96 model,
seen to be close to the computed value. This fact is
not surprising, considering that the SK pressure pro-
file agrees very well [Zaharia and Cheng , 2002] with
the integral of J × B along the equatorial midnight
meridian in quiet-time T96.

Plot (b) of Fig. 3 shows the north-western quadrant
of the closed field-line magnetospheric domain under
consideration, with constant ψ contours of the com-
puted equilibrium state plotted in the noon-midnight
and equatorial planes. The electric currents of the
computed 3-D equilibrium are presented in Fig. 4.
Plots (a) and (b) in the figure show contours of con-
stant transverse current J⊥ (J⊥ ·B = 0) in the noon-
midnight and equatorial planes, respectively. The

current reaches a maximum of 2.6 nA/m2 at around
7RE, its spatial location is rather broad in the Z
direction and extends to all local times. The con-
tours also show that the ring current gradually trans-
forms into cross-tail current at larger distances from
Earth, without a definite boundary between the two
current systems. Plot (c) of Fig. 4 shows the field-
aligned currents (FACs) as computed from Vasyliu-
nas relation, Eq. (5) in the obtained force-balanced
state. The FACs are mostly of region-2 sense, with a
maximum current density of around 0.25µA/m2. The
total Region-2 sense current is found by integration to
be 2.8 MA. While this latter value is rather typical for
a quiet-time magnetosphere, the current density is a
bit on the low side. This is most probably an artifact
of the P (R,Z = 0) pressure dependence considered.
Other code runs where a φ-dependence was intro-
duced in the pressure profile lead to a significant in-
crease in the field-aligned current. The Region-1 cur-
rent is almost non-existent, its total value amounting
to only 0.09 MA. The fact that there are no significant
Region-1 currents (which again, might be changed by
introducing a φ dependence in P ) does not mean that
they could not be present in the plasma sheet at 20RE
away from midnight for example, just that they are
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not included in our computational domain.

Disturbed-time computation

In order to obtain a quasi-equilibrium state charac-
teristic of a disturbed magnetospheric time the pres-
sure profile used in the quiet-time case (the SK for-
mula) is modified such that pressure values close to
Earth (between 5 and 8RE) are increased, consistent
with observations [e.g., Lui et al., 1987; Kistler et al.,
1992] showing larger plasma pressure and Earthward
pressure gradients during periods of magnetospheric
activity. The modification, which models both of the
above observed features, is to consider the equato-
rial P of the form P (R,Z = 0) = P0[1 + tanh(X1 −
R)/∆1]+PSK [1+tanh(R−X2)/∆2], where PSK is the
corresponding pressure profile at distanceR, while P0,
x1, x2, ∆1, ∆2 are constants. In this paper we choose
P0 = 5 nPa, X1 = 8, X2 = 9.25, and ∆1 = ∆2 = 2.5.
The pressure profile, shown at the top of Plot (a) in
Fig. 5, reaches a value of 2PSK tailward at distances
significantly farther than 9RE, twice the correspond-
ing quiet-time pressure at the same distances. The
pressure values are however more than twice their
quiet-time value between 5 and 10RE, consistent with
observations. The inner and outer flux surfaces for
this case are again obtained by field-line mapping us-
ing the T96 empirical field model, however with dif-
ferent parameters: DST = −40 nT, PSW = 5.0 nPa,
ByIMF = 0 and BzIMF = −2 nT, typical for active
magnetospheric times.

Besides pressure P , the left plot of Fig. 5 presents
Sun-Earth axis profiles of other physical parameters
in the computed magnetospheric equilibrium. The
value of the equilibrium magnetic field B is seen to
first decrease monotonically with increasing |X| at
midnight, however B soon reaches a local minimum
of about 15 nT at a distance of 7RE. The dip in the
B-field value also corresponds to a peak in plasma β,
with β ' 100 around 7RE. Finally, looking at Plot
(b) of the same figure, we remark a striking difference
between the computed flux surfaces (bottom picture)
vs. the flux surfaces in the T96 model (top picture)
(since at midnight α = φ, the constant ψ contours
portrayed in plot (b) in Fig. 5 also represent the field
lines). Specifically, the field line curvature in the com-
puted magnetospheric state in the region between 7
and 10RE on the nightside is much larger than the
curvature of the T96 field lines in the same region.

The large curvature suggests a strong current sheet
in that region, which can indeed be seen in Plot (a)
of Fig. 6, which shows the noon-midnight meridional

plane contours of constant J⊥. The maximum current
value, of about 15 nA/m2 at 7RE, is almost an or-
der of magnitude larger than the corresponding quiet-
time picture. The current sheet has a limited extent
in Z and also in azimuth, as can be seen in Plot (b) of
the same figure. The existence of such current sheets
has been observationally confirmed during disturbed
magnetospheric times, such as a substorm growth
phase. Understanding their appearance and features
is crucial to hot research topics, from substorm onset
mechanisms to space weather. A more detailed study
of the disturbed-time current sheets is relegated to a
future paper. Plot (c) of the figure shows the field-
aligned currents in this case, which are predominantly
of Region-1 sense. The maximum value of the cur-
rent density is 2.6µA/m2, typical of values measured
in the ionosphere for disturbed times. The total cur-
rent values for the Region-1 and Region-2 currents
are 1.18 MA and 0.27 MA, respectively. Again, an az-
imuthal dependence in the pressure distribution could
change the J‖ results.

Pressure input from GEOTAIL

While in the previous two cases presented the α-
dependence of P (ψ, α) was dictated by the choice
P = P (R,Z = 0), in this section we present results
with a more realistic 2-D pressure input in the equato-
rial plane from GEOTAIL satellite data. The GEO-
TAIL data represent spatial and temporal averages
of plasma pressure (considered isotropic) at different
points in a 2-D spatial domain in the nightside, de-
limited by the GEOTAIL apogee of about 30RE and
perigee of 10RE. The data at each point is the average
in space of 1-minute time-averaged pressure observa-
tions in a rectangle of dimensions 1 RE in the X di-
rection and 2 RE in the Y direction, centered around
that point. Further, the GEOTAIL data is sorted ac-
cording to magnetospheric activity as a function of
Kp. In this section we present results obtained us-
ing low-activity data, defined by 0 < Kp < 1. This
pressure data is presented in Plot (a) of Fig. 7.

Before using the GEOTAIL data as input into the
code, a certain degree of smoothing is necessary. Be-
cause of very high β values in the plasma sheet (for
example, the plasma β as measured by GEOTAIL can
exceed 100), even slight variations in P can lead to
dramatic changes in the magnetic field configuration
in force balance with the pressure. The raw GEO-
TAIL data is generally characterized by sharp gradi-
ents, which cannot be equilibrated by any equilibrium
magnetic field configuration. The very sharp gradi-
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Figure 6. (a) Contours of constant transverse current J⊥ in the noon-midnight and equatorial planes for the
disturbed-time equilibrium; the dotted lines represent constant ψ contours; (b) Contours of field-aligned current
J‖ in the ionosphere (at 1RE in our model).

ents do not necessarily have a physical meaning, their
existence being more likely due to the limited amount
of data, which might be insufficient for completely av-
eraging out the time variations (note that the data for
any two adjacent cells among those shown in Fig. 7
may come from different orbits of the satellite, sepa-
rated time-wise by more than five days). A solution
to the problem is applying standard image processing
techniques to the raw pressure data, however such a
method is not very objective — while sharp gradi-
ents will indeed be smoothed, no physical measure
exists as to what degree of smoothing is necessary
such that vital information about the spatial depen-
dence of the pressure is not lost. For the above rea-
son, we employed a more phenomenological approach,
by employing a least-square fit of the GEOTAIL data
against a chosen 2-D function. We only considered the
data in the spatial domain delimited by −20 < X <
−8RE and −10 < Y < 10RE (this restrained spatial
domain was chosen for reasons of numerical conver-
gence). There were 183 rectangles of 1RE × 2RE
size containing data points in this domain. The fit-
ting function was taken in the form P (R, φ, Z = 0) =

(A + Be−CR + DRE) · ∑m Fm sin(mφ). The fit is
thus non-linear in R and φ, and has 14 parameters:
A,B, C,D, E and the different Fm, with 0 ≤ m ≤ 8.
The angle φ was defined as φ = arcsin(Y/R), such
that φ has opposite signs in the eastern vs. the west-
ern hemisphere, and the series above is able to re-
produce the observed dawn-dusk asymmetry in the
pressure. The resulting fit is quite accurate, as de-
scribed by its correlation coefficient R = 0.92. While
only nightside GEOTAIL pressure was used for the
least-square fit, we nevertheless employ the obtained
P (R, φ, Z = 0) function on the dayside as well in our
3-D equilibrium code. While of course there are no
guarantees about the accuracy of the formula when
applied to dayside, the low dayside plasma β (gener-
ally < 1) makes any pressure inaccuracies unable to
change much the magnetic field configuration there.

Plot (b) of Fig. 7 shows the profiles along the Sun-
Earth axis for pressure, magnetic field and plasma
β in the computed equilibrium with the pressure fit-
ted vs. the GEOTAIL data taken as input (the inner
and outer flux surfaces were obtained by T96 field-line
mapping, with the same T96 parameters as in the SK
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case; due to considerations of numerical stability, the
outer surface was chosen to extend only to −18RE
in the nightside however). It is seen that the mag-
netic field of the computed equilibrium is lower in the
nightside beyond 11RE than the corresponding T96
field, showing that the field lines of T96 might not
be stretched enough to equilibrate observed plasma
pressure gradients. Due to the smaller B, the plasma
β is larger compared to the SK case.

The electric current densities, both transverse and
parallel, are shown in Fig. 8. While there is no pres-
sure information from GEOTAIL outside the plasma
sheet (in this case, for |X| < 8RE)) and therefore
there is no ring current in the figure, one can see
however that the contours of the cross-tail current
are closed on the Earth side, suggesting that in this

case, as opposed to the SK case, the ring and cross-
tail currents are distinct. As opposed to the previous
two cases, in which both pressure and boundary con-
ditions have an east-west symmetry, in this case the
computed transverse current exhibits a dawn-dusk
asymmetry, with the current density actually larger
on the dawn side (the maximum value being at around
1:00 local time). This feature is related to the particu-
lar dawn-dusk asymmetry (values higher on the dawn
side than on the dusk side at R ≈ 12RE in Plot (a) of
Fig. 7) in the Geotail pressure data, and that asym-
metry is presently not well understood. Since the
plasma sheet is typically observed to be thinner on
the dusk side, it may be that some of the lower pres-
sure values in the evening sector in the data do not
actually belong to the plasma sheet. This would war-
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rant in the future both a refinement in the pressure
data values considered for the computation, as well as
a relaxation of the dawn-dusk symmetry in the com-
putational boundary conditions in our model. Plot
(c) of Fig. 8 depicts the field-aligned currents. While
our computational domain in this case corresponds
to a narrow region in the polar plot, the FACs in
this case are less structured than before, due to the
more complex pressure input. The FACs, which reach
maxima of around 1.93µA/m2 (typical for quiet-time
field-aligned current values), are of both Region-1
and Region-2 sense, and overlap in intricate ways.
While the current densities are significantly higher
than in the SK case (probably due to the azimuthal
dependence of the pressure P ), the total Region-1 and
Region-2 currents are only 0.2 and 0.23 MA, respec-
tively, due to the limited extent of the computational
domain considered in this case.

Anisotropic pressure input from
AMPTE/CCE

The 3 cases presented so far consider the pres-
sure to be isotropic, i.e. described by a scalar P.
However, at distances close to Earth (generally for
r < 15RE) the pressure has generally been found to
be not isotropic but bi-Maxwellian, with the degree
of anisotropy P⊥/P‖ exceeding 2 very close to Earth
[Lui and Hamilton, 1992]. For a more accurate de-
scription of the near-Earth magnetosphere it is impor-
tant therefore to obtain a magnetic field structure in
force balance with observed anisotropic pressure dis-
tributions. The extension of our approach to include
anisotropic pressure is straightforward and will not be
presented here. The only modifications in the equilib-
rium equations 3 and 4 appear on the right-hand side
for the inhomogeneous terms. In the computation
for this case, we use bi-Maxwellian pressure profiles
and degrees of anisotropy based on AMPTE/CCE
observations [Lui and Hamilton, 1992; De Michelis
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et al., 1999]. The 2-D profiles obtained by De Miche-
lis et al. [1999] exhibit as a main feature an azimuthal
asymmetry in pressure, with higher values at mid-
night and dusk than at dawn, and the highest pres-
sure at noon local time. On the other hand, the de-
gree of anisotropy is lowest at midnight and higher at
other local times, but again with a maximum at noon.
For this computation we use the polynomial empirical
formula obtained by Lui et al. [1994] for the degree
of anisotropy on the midnight meridional line from
AMPTE/CCE observations, and we add a simple de-
pendence of the form 2+cosφ to model its azimuthal
variation, in accordance with the qualitative behav-
ior found by De Michelis et al. [1999]. With regard
to the pressure values, the “average” pressure (defined
as 〈P 〉 = (2P⊥+P‖)/3) obtained from AMPTE/CCE
on the nightside [Lui and Hamilton, 1992] has been
shown [Zaharia and Cheng , 2002] to be very close to
the isotropic P values of the SK formula. Therefore,
on the equatorial plane we obtain P⊥ and P‖ from
the system of equations P⊥(R)/P‖(R) = A(R, φ = 0)
and 2P⊥ + P‖ = 3PSK(R). Finally, we also assume a
φ dependence in 〈P 〉, also of the form 1+a sinφ, with
a chosen to model the qualitative azimuthal depen-
dence of pressure describe above. In order to model
the dawn-dusk asymmetry we choose a = −0.2 in

the western hemisphere and a = 0.33 in the east-
ern hemisphere. Plot (a) of Fig. 9 shows contours in
the equatorial plane of constant perpendicular pres-
sure, P⊥. Once P⊥ and P‖ are known in the equatorial
plane, their values along the field lines are uniquely
determined from energy and magnetic moment con-
servation [e.g., Cheng , 1992].

The ψin and ψout surfaces delimiting our computa-
tional domain are obtained in this case using the T01
empirical field model [Tsyganenko, 2002]. The advan-
tage of the T01 model vs. T96 is that the former has
much better data coverage of the near-Earth region
we investigate here. Since the T01 model is only valid
for X > −15RE, we choose the outer flux surface
ψout to only extend to 15RE on the nightside. The
parameters we choose in the T01 model are the same
as in our previous quiet-time case: DST = −5 nT,
PSW = 2.1 nPa, ByIMF = 0 and BzIMF = 1 nT. Plot
(b) of Fig. 9 shows profiles along the Sun-Earth axis of
several quantities describing the computed 3-D equi-
librium: perpendicular plasma pressure and β, P⊥
and β⊥, as well as degree of anisotropy (defined here
as A = P⊥/P‖− 1) and the magnetic field magnitude
B.

The electric currents obtained in the computed 3-D
equilibrium in this case are presented in Fig. 10. The
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Figure 10. (a) Perpendicular current J⊥ contours in the noon-midnight and equatorial planes for a 3-D equilibrium
with anisotropic pressure; the dotted lines represent constant ψ contours; (b) Contours of constant J‖ in the
ionosphere (at 1RE).

most interesting feature appears in Plot (a) of the
figure, showing the fact that the azimuthal (toroidal)
current is peaked away from the equator, a result pre-
viously obtained for the 2-D case by Cheng [1992].
The maximum transverse current appears in twin re-
gions, above and below the plane, and thus the cur-
rent is maximum in this case in regions which do not
have the maximum field curvature. The field-aligned
currents, shown in Plot (c) of Fig. 10, are mostly of
Region-2 sense in the nightside, and of Region-1 sense
on the dayside. This is consistent with a quiet-time
and a domain limited to |X| < 15 RE. The maximum
value of the current density is 0.1 nA/m2, however the
currents exist in a very large region, spanning many
degrees of latitude. This makes the total value of the
field-aligned currents to quite significant, at 1.33 MA

and 1.15 MA for the Region-1 and Region-2 currents,
respectively.

Summary and conclusions

In addition to knowing the magnetic field vec-
tor, the knowledge of the 3-D magnetospheric plasma
pressure distribution is needed for many physical ap-
plications. There are however no global synoptic ob-
servations for the pressure, with most measurements
being limited either to low altitudes in ionosphere or
to the plasma sheet region. While using the scarce
pressure observations in conjunction with empirical
field models has been a popular practice in the com-
munity, the lack of force balance in those models
[Zaharia and Cheng , 2002] poses problems for some
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applications. Consequently, it is imperative to ob-
tain 3-D force-balanced states in which the pressure
distribution is in equilibrium with the Lorentz force
J × B. Using the pressure observations as input for
calculating the state would effectively yield 3-D global
pressure distributions once the force-balance state is
found.

A method to find force-balanced magnetospheric
configurations is presented, and it consists in solving
the 3-D force-balance equation numerically with com-
putational boundary conditions obtained from empir-
ical field models (T96 or T01) and observation-based
pressure profiles as input. We present results for both
quiet- and active-time magnetospheres, with a choice
of either isotropic or anisotropic (bi-Maxwellian) pres-
sure distributions. All pressure distributions used are
based on observations. The level of magnetospheric
activity is parameterized by the values of the solar
wind parameters in the empirical models determin-
ing the boundary conditions, as well as by changes
in pressure distributions used as input. The resulting
3-D force-balanced states successfully reproduce the
large observed values of the plasma β in the plasma
sheet. The knowledge of the force-balanced states is
even more important in regions of high plasma β, as
at those locations small variations in pressure can lead
to very large changes in the magnetic field configura-
tion.

When comparing the obtained states with the em-
pirical magnetic field structures from the Tsyganenko
models, we note that while during quiet times the
force-balanced configuration is not too different from
the field predicted by the empirical model, for dis-
turbed magnetospheres this is not true anymore, as
the equilibrium configuration can be radically differ-
ent from the empirical Tsyganenko field. For the
disturbed time with isotropic pressure presented, we
find that a thin cross-tail current sheet appears in
the near-Earth plasma sheet (around 7RE), with im-
portant implications for substorm onset mechanisms.
Another interesting feature also involving the trans-
verse electric current is found when anisotropy in
pressure is considered: the region of maximum cur-
rent value is no longer on the equatorial plane, but
instead two regions above and below the plane ap-
pear.

The 3-D force-balanced states obtained by our
model yield the pressure at all locations of our com-
putational domain, and thus our approach represents
a rigorous method for obtaining a 3-D global pres-
sure distribution. The 3-D code results have recently

been used as background configurations for comput-
ing field-line resonances in the magnetosphere [Cheng
and Zaharia, 2003], and the model should also be of
great use for other applications where a 3-D force-
balanced magnetospheric state is essential, such as
stability analyses, plasma wave and particle simula-
tion studies.
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