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Kinetic Effects on the Stability Properties of

Field-Reversed Configurations: I. Linear Stability

Elena V. Belova, Ronald C. Davidson, Hantao Ji, Masaaki Yamada

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

New computational results are presented which advance the understanding of the stability

properties of the Field-Reversed Configuration (FRC). We present results of hybrid and

two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism

and growth rate reduction mechanisms are investigated in detail including resonant particle

effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the

Hall effect determines the mode rotation and the change in the linear mode structure in

the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor

radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation,

(b) the kinetic parameter S∗, which is proportional to the ratio of the separatrix radius to the

thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to

the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits

are regular in long configurations when S∗ is small. A stochasticity condition is found, and a

scaling with the S∗ parameter is presented. Resonant particle effects are shown to maintain

the instability in the large gyroradius regime regardless of the separatrix shape.
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I. INTRODUCTION

The field-reversed configuration (FRC) is a unique confinement approach that offers an

attractive fusion reactor potential because of its compact and simple geometry, translation

properties, and high plasma beta1,2. One of the most important issues is FRC stability with

respect to low-n (toroidal mode number) magnetohydrodynamic (MHD) modes. According

to an empirical scaling3, based on the experimental data for prolate FRCs, stability with

respect to global MHD modes is observed for S∗/E ∼< 3 − 4, where E is the separatrix

elongation, and S∗ is a kinetic parameter which measures the number of thermal ion gyro-

radii in the configuration.

Despite more than two decades of effort, these results are still lacking a satisfactory

theoretical explanation. Magnetohydrodynamic models (S∗ → ∞ limit) predict strong in-

stabilities in prolate configurations (E > 1), particularly, with respect to the n = 1 internal

tilt mode. Simple semi-analytical estimates of finite Larmor radius (FLR) effects and Hall

stabilization effects, as well as more accurate calculations employing a variational approach,

give a stability threshold for S∗/E ∼< 1 − 2, which is lower than the observed stability

threshold by a factor of two to four, and is applicable only to elliptic configurations4–6. The

discrepancy is even stronger for configurations with large E and racetrack-like separatrix

shapes7. Moreover, several self-consistent numerical calculations8–11, including FLR or Hall

effects, as well as a fully kinetic ion description, find that the n = 1 tilt mode remains linearly

unstable even in the highly kinetic regime: S∗/E ∼ 1.

Previous hybrid simulations, utilizing a linearized version of a three-dimensional (3D)

hybrid and MHD simulation code (HYM)10, have shown a significant reduction in the
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growth rates due to kinetic effects, but not complete linear stability. Recent nonlinear

HYM simulations12, on the other hand, have demonstrated that the n = 1 tilt instability

can saturate nonlinearly. The unstable configuration has been shown to evolve nonlinearly

into a new quasi-equilibrium with smaller S∗, larger E, and an increased separatrix beta, so

that in the saturated state S∗/E ∼ 1 and βs ∼> 0.4. The nonlinear stabilization of the n = 1

tilt mode explains the observation in the low S∗/E experiments of initial n = 1 tilt motion

that does not result in a total loss of confinement13. However, the reported FRC stability

for larger values of S∗/E has not been explained so far.

Here we present the results of hybrid and two-fluid (Hall-MHD) simulation studies of the

stability properties of prolate FRCs. This paper is concerned only with linear stability; the

nonlinear results are presented in a companion paper. The linearized simulations are used

to clarify the relative role of various competing kinetic effects, without the complications of

a nonlinear model. Understanding of the linear instability mechanisms is also necessary for

the understanding the nonlinear behavior of the unstable modes.

In order to assess the importance of different stabilizing factors and driving forces on

the n = 1 tilt mode, we have focussed on three kinetic effects: finite-Larmor-radius effects,

the Hall effect, and resonant ions. The first two effects are stabilizing, whereas the third one

can be destabilizing, and tends to obscure the FLR and Hall stabilization in fully kinetic

calculations. The effects of the Hall term have been investigated in a two-fluid approximation,

using a Hall-MHD version of the HYM code. Other kinetic effects have been studied using

a hybrid version of the same code, in which electrons are described as a cold fluid, and a

fully kinetic (particle) description is used for the ions. The hybrid version of the HYM code

employs the delta-f particle simulation method, which greatly simplifies the linearization of
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the Vlasov equation. This method also allows for a detailed study of weak kinetic instabilities,

which otherwise would be obscured by the large numerical noise present in conventional

particle-in-cell simulations.

Two classes of equilibria have been considered: equilibria with an arbitrarily chosen

pressure profile, which, for large E, usually correspond to a configuration with a racetrack-

like separatrix shape; and equilibria with large E and an elliptical separatrix shape with the

special pressure profile proposed by Barnes14. The methods for computing these equilibria

are described in Refs. [10] and [14]. Equilibrium ion rotation is neglected.

The FRC parameters used throughout this paper are defined as follows: the separatrix

elongation is the ratio of the separatrix half-length to its radius, E = Zs/Rs; the kinetic

parameter, S∗ = Rs/λi, is the ratio of the separatrix radius to the ion skin depth, based on

the maximum density, n0; another useful kinetic parameter s̄ is defined by

s̄ =
∫ Rs

R0

rdr

Rsρi
,

where R0 is the magnetic null radius, and ρi is the local ion Larmor radius. The parameter

s̄ is approximately equal to the number of ion Larmor radii between the magnetic null and

the separatrix, whereas, from pressure balance Vth,i ≈ VA, and therefore S∗ ≈ Rs/ρext, which

is the ratio of the separatrix radius to the ion gyroradius in the external field. For most

equilibria of practical interest, the two kinetic parameters are related by S∗ = (4 − 8)s̄,

depending on the elongation and shape. The characteristic Alfvén velocity VA is computed

using the external field, Bext, and the maximum density; and the Alfvén time is defined as

tA = Rc/VA, where Rc is the radius of the flux conserving shell.

The outline of this paper is as follows. Section II describes the results of the Hall-
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MHD simulations. The effects of FLR and profile effects are studied in Sections III and IV,

respectively. The equilibrium characteristics and, in particular, stochasticity of ion orbits

for various FRC parameters and profiles are considered in Section V, and resonant particle

interactions with the n = 1 tilt mode are discussed in Section VI. The conclusions are

presented in Section VII.

II. EFFECTS OF THE HALL TERM

Ideal MHD models predict instability of the n = 1 internal tilt mode in prolate FRCs

with a growth rate of order γmhd ≈ CVA/Zs, where C ≈ 1− 2 is a constant which depends

on the equilibrium profile. Inclusion of the Hall term into the MHD model results in a phase

shift between the perturbations of the magnetic field (frozen into the electron fluid) and the

ion flow velocity, which, in turn, is expected to reduce the instability growth rate4,6,9 at low

S∗.

The effects of the Hall term have been considered using a variational approach for

Hill’s vortex equilibrium, with a set of trial functions4. A stability condition of the form

S∗/E ≤ 1 has been obtained. The Hall stabilization effect has also been studied for long

elliptical FRC equilibria using an expansion in the inverse elongation6. For long elliptical

profiles, a similar stability condition (local) was found, and it has been argued that the global

stability condition can be close to the one experimentally observed. Earlier self-consistent 3D

simulations9, on the other hand, have found a reduction in the growth rate and a change in

the linear mode structure, but no complete stabilization even in cases with S∗/E < 0.6. The

simulations in Ref. 9 were performed for FRCs with a racetrack separatrix shape, which could

possibly account for the disagreement with the variational studies4,6. We were motivated to
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study the Hall-MHD stability for a class of elliptic configurations, which have been suggested

to have favorable stability properties14.

To isolate the Hall effects from other kinetic effects, we have performed two-fluid (Hall-

MHD) simulations of the n = 1 tilt instability. The MHD version of HYM code has been

modified to include the Hall term in the Ohm’s law,

E = −ve ×B/c + ηJ, (1)

where ve = (Ji − J)/ene is the electron flow velocity, Ji is the ion current, J is the total

current, ne is the plasma density, and the electron pressure has been neglected (Te = 0).

Sub-cycling in the induction equation has been used to assure numerical stability.

Calculations for an equilibrium with E = 6.25, xs = Rs/Rc = 0.8, and an elliptical

separatrix shape show a reduction in the instability drive for small S∗ values. Figure 1

shows the growth rate and the absolute value of the real frequency of the most unstable

mode as function of the parameter 1/S∗. The unstable mode has a negative real frequency,

and it rotates in the direction opposite to that of the equilibrium current (in our model,

the external magnetic field has a negative sign, the equilibrium current is in the positive

φ̂ direction, and the ion rotation has been neglected). The toroidal phase velocity of the

unstable mode is about one-half of the electron equilibrium flow velocity V0e, and it scales

approximately linearly with 1/S∗ (Fig. 1). This behavior of the real frequency is consistent

with the approximation, ω(ω − kφV0e) + γ2
mhd = 0, to the dispersion relation for the Hall-

MHD system. The measured reduction of the growth rate, however, is not as strong as would

follow from this simple relation, and the mode remains unstable even in cases when the real

frequency is comparable to the ideal MHD growth rate.
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Figures 2 and 3 compare the linear mode structure obtained from the MHD and Hall-

MHD simulations performed for the same equilibrium profile. It is seen that the inclusion

of the Hall term modifies the structure of the most unstable mode. As S∗ decreases, the

tilt mode becomes more strongly localized radially and axially. The most unstable mode

in the Hall-MHD simulations with small S∗ has an extra node both in the radial and axial

directions, compared to that of the MHD simulations.

Figure 1 shows that the tilt mode remains unstable even in the highly kinetic regime

with S∗/E = 0.8, and that the reduction in the growth rate is to a value less than one-half

of the MHD growth rate. Simulations performed for elliptic equilibria with larger elongation

E = 11.6 have shown similar results - there is no significant reduction in the tilt mode growth

rate for S∗/E ∼> 1.5. These results are in agreement with previous numerical simulations9,

and demonstrate that Hall stabilization alone cannot account for the experimentally observed

stability.

III. FINITE LARMOR RADIUS EFFECTS

Finite Larmor radius effects can be studied within a fluid description by including the

gyroviscous force in the ion momentum equation. Divergence of the results at the magnetic

null and X-points, where the magnetic field vanishes, can be avoided by including collisional

viscosity8. However, this description implies an FLR expansion, which is not valid in the

large-Larmor-radius, kinetic regime. Thus, for S∗/E = 2, and assuming that E ∼ 5, we have

s̄ ≈ 1.3 − 2, which means that the ratio of the ion Larmor radius to the pressure gradient

scale length is of the order of unity, with ρi/L = 0.5 − 0.8. Moreover, even for relatively

large S∗ cases, an FLR-fluid description may not be adequate for long elliptic equilibria due
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to the very sharp field line curvature near the FRC ends.

In order to separate the FLR effects from the Hall-term effects, we have chosen to

perform hybrid simulations including the full ion dynamics, but turning off the Hall term

in the Ohm’s law. Instead of using Eq. (1), the perturbed electric field has been calculated

using

δE = −δvi ×B0/c + ηδJ. (2)

The disadvantage of this approach is that other kinetic effects, such as parallel ion dynamics

and resonant particle effects, are retained, which potentially can obscure the FLR physics

at low values of S∗.

Configurations with an elliptical separatrix shape and zero ion rotation have been con-

sidered. The equilibrium ion distribution function is taken to be F0 = N0 exp(−ε/T0), where

ε = miv
2/2 + eϕ0 is the particle energy, ϕ0 is the unperturbed electrostatic potential, and

T0 is the uniform ion temperature. The equilibrium current is assumed to be carried by the

electrons, and from the force balance condition, enE0 = ∇pi = J0 ×B0.

Figure 4 shows the results of these simulations for an equilibrium with E=4. The

normalized growth rate of the n = 1 tilt mode (Fig. 4a) and the real frequency (Fig. 4b)

are shown as compared to those obtained from full hybrid simulations that include the Hall

effects. It is seen that, although the Hall term contributes to the stabilization, the reduction

in the growth rate for S∗ ∼< 10 is mostly due to FLR effects. In simulations without the Hall

term, the mode rotates in the positive (ion diamagnetic) direction, and the structure of the

mode is similar to that of the ideal MHD model. Full hybrid simulations including the Hall

term, on the other hand, show that the mode structure is similar to that of the Hall-MHD
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mode, and the real frequency of the tilt mode is negative for small S∗. For S∗ ∼ 10, the

mode frequency is ωr ≈ −VA/Zs, which is comparable to the Hall-MHD result (Fig. 1). The

unstable mode rotates in the electron direction with a toroidal phase velocity about one-half

of the electron flow velocity. For example, for S∗ = 8, the peak electron flow velocity and the

wave phase-speed are Ve = −0.42VA and Vph = −0.23VA. The low-S∗ estimate for the mode

rotation frequency, ωr ≈ −VA/Zs, also agrees with the experimentally-measured values15.

A comparison of these results with the results in Sec. II demonstrates that the Hall

effects are responsible for the the change in the linear mode structure, as well as the mode

rotation in the electron direction, whereas the reduction in the tilt mode instability growth

rate is caused mostly by FLR effects.

It is instructive to compare the hybrid simulation results with those based on the FLR-

fluid description. Self-consistent calculations of the tilt mode instability, including FLR

effects through Braginskii’s gyroviscosity have been carried out in Ref. 8. For S∗/E = 4,

the gyroviscous model predicts instability with growth rate γ ≈ 0.52γmhd. For the same

parameters, the hybrid simulations without the Hall effects give a growth rate γ ≈ 0.59γmhd

[for a full hybrid simulation, γ ≈ 0.41γmhd]. Therefore, both FLR models, while in the

reasonable agreement with each other, fail to explain the experimentally-observed stability

threshold [however, the stability is expected to be further improved by the ion sheared flows,

which have not been included in the FLR models]. Another common feature of the hybrid

and gyroviscous calculations, is that the tilt mode growth rate remains finite at small S∗.

Since the FLR expansion is suspect at low S∗, the reasons for the tilt mode remaining

unstable in the FLR-fluid description are not clear. In the fully-kinetic ion model, on the

other hand, other kinetic effects such as resonant particle excitations can play a role.
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IV. PROFILE EFFECTS

A number of MHD calculations10,14,16 have shown that the commonly assumed scal-

ing of the tilt instability growth rate with elongation, γmhd ∼ 1/E, is applicable only to

configurations with an elliptical shape. For racetrack equilibria, the growth rate becomes

independent of elongation, when the elongation is large enough, with E ∼> 5, say. This

difference is related to the differences in the mode structure: in elliptic configurations, the

tilt mode is always a global mode with a maximum amplitude near the midplane, whereas

in racetrack configurations, the tilt mode is localized near the ends, where the curvature is

large. The scaling of the MHD growth rate with respect to elongation defines a condition

for the transition to the kinetic regime7. In particular, FLR effects are likely to significantly

modify the growth rate provided γmhd/ω
∗ ∼< 1, where ω∗ is the diamagnetic frequency. This

condition depends on the ratio S∗/E when elliptic configurations are considered, but it is

a function of the S∗ parameter for long racetrack equilibria. Therefore, the elliptic equilib-

ria, while providing good agreement with observed profiles, are also more likely to fit the

experimentally observed stability scaling with respect to S∗/E.

We have studied the effects of elongation in kinetic FRCs for a range of S∗ values

using linearized delta-f hybrid simulations. The equilibrium ion distribution function has

been taken to be the same as in Section III, and elliptical equilibria with uniformly slow

z variation have been studied14. Figure 5 shows the dependence of the normalized growth

rate on the parameter S∗/E for three different equilibria with elongations E = 4, 6.25,

and 11.6. It is seen that for all elongations, the growth rate of the tilt mode is indeed

a function of S∗/E alone, at least when the value of S∗/E is not too small (S∗/E > 2).

(In contrast, this scaling is not observed for the more general case of arbitrary pressure
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profile and racetrack-like shape.) The vertical dashed line in Fig. 5 denotes the empirical

experimentally-observed stability threshold at S∗/E = 3.5. The region to the right of this

line corresponds to the parameter regime where experimental stability has been reported. It

is seen that linear theory, while predicting reduced instability, does not explain the observed

macroscopic stability threshold.

Figure 5 demonstrates that the growth rate scaling with the S∗/E parameter is valid

everywhere except in the strongly kinetic regime with S∗/E < 2. This deviation suggests

that factors other than two-fluid effects are important in highly kinetic configurations.

V. ANALYSIS OF THE PARTICLE ORBITS

A. Numerical Results

The complexity of the ion orbits in the FRC configuration arises from the lack of a

strong toroidal field, so that the magnetic field magnitude vanishes at the field null and at

the X-points. It also results from a relatively large thermal ion gyroradius in the experimental

configurations, where the particle gyroradius often exceeds the local radius of curvature of the

magnetic field lines. This causes the breakdown of µ (magnetic moment) conservation, and

the particle motion often exhibits only two invariants: energy, ε, and the toroidal canonical

angular momentum, pφ. Ergodic behavior, therefore, is a common simplifying assumption

in FRC and Ion Ring (IR) stability studies17. In some cases the third invariant does exist

in part of the particle phase-space, and then, a fraction of the ions have regular orbits. For

long FRCs, in which the radial betatron frequency is large compared to the axial betatron

frequency, ωR � ωz, the third invariant related to the particle radial motion has been

calculated18,19.
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Linear stability theory for confinement systems in which particles have a full set of

invariants and regular orbits is fairly well developed. For the FRC, new techniques taking

into account the stochasticity of the ion orbits are needed. In order to assess the role of

resonant wave-particle interactions in determining FRC stability properties, we have studied

the stochasticity of ion equilibrium orbits for a range of FRC parameters and different

separatrix shapes.

In the earlier studies, it has been shown that the occurrence of ergodic behavior in

particle orbits in FRC configurations is very model dependent20. Here we consider prolate

equilibria with elliptic and racetrack separatrix shapes and large elongations E ∼> 5. In con-

trast to previous work18,20,21, self-consistent equilibria are used with a non-zero equilibrium

electric field (produced by the electron current through E = −Ve×B), and the statistics of

the ion orbits for a distribution of ions with F0 = N0 exp(−ε/T0) is considered.

For long FRCs, we have ωR/ωz ≈ 2E � 1, and the resonances between the radial

and axial equilibrium motions of the particle can be neglected. The stochasticity of the

ion motion in these cases is due to the end curvature of the magnetic field lines, which is

especially large for long elliptic configurations. The orbits sampling the FRC end regions

are likely to be stochastic, whereas those confined near the magnetic null, are likely to be

regular18. (There is a small fraction of regular orbits, trapped in the magnetic minima at

the ends, but our analysis shows that these particles have little effect on the instability,

therefore this class of particles is not important for our purposes.) Since the radial motion of

the particles is very fast compared to all other time scales of interest, including the typical

instability growth times, the radial motion “averages out”, and the condition for a particle

to be in resonance with the low-frequency wave is independent of ωR. In general form, this
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condition can be expressed as12:

ω − nΩ = ±lωz, (3)

where ω is the real oscillation frequency, n is the toroidal mode number, Ω is the particle

toroidal rotation frequency, and l is an odd or even integer, depending on the mode symme-

try. This condition describes a resonance between the wave frequency in the particle frame

rotating with frequency Ω, and the axial betatron frequency. For the n = 1 tilt mode, l must

be odd.

Figure 6a shows the typical trajectory of a periodic-orbit particle, and the time evolution

of the particle toroidal and axial betatron frequencies is shown in Fig. 6b. Figure 7 contains

analogous plots for a stochastic trajectory for an elliptic equilibrium with E = 6.25 and

xs = 0.8. The axial betatron frequency has been calculated by measuring the time intervals

between the particle’s subsequent crossing of the mid-plane (z = 0). The toroidal rotation

frequency has been calculated as a time average of the particle’s instantaneous toroidal

rotation rate, and for particles with a small Larmor radius it corresponds to the toroidal

drift frequency. It is seen that for a regular orbit, the characteristic frequencies, Ω and ωz,

remain nearly constant for many periods of the particle motion (Fig. 6). For the stochastic

orbit, however, there are large variations in both of these frequencies. The time dependence

of Ω(t) and ωz(t) allows the particle to stay in the resonance with the mode only for a short

time. Therefore, a strong stochasticity of the equilibrium orbits will have a stabilizing effect

on the resonantly-driven modes.

The growth rate of the resonant instability depends on the ergodic behavior of the

ion orbits, but it also depends on the number of particles that can satisfy the resonance
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condition (3). Figure 8 shows the distribution of particles in the (Ω, ωz) plane, calculated for

a set of elliptical equilibria with E = 6.25 and different values of the kinetic parameter S∗.

These scatter plots have been obtained by following the test particle equilibrium trajectories

in a prescribed self-consistent equilibrium. The test particles have been loaded with the

equilibrium distribution function f0(ε), and their trajectories have been followed for more

than 100 Alfvén times. It is seen that for a large value of S∗ (S∗ ≈ 75 and S∗/E ≈ 12, say),

the distribution of particles in the (Ω, ωz) phase-space is very narrow, and very few particles

can satisfy the resonant condition for the n = 1 tilt mode. Therefore, for this large values of

S∗, resonant wave-particle interactions are negligible (but the configuration is MHD unstable

with γ ≈ γmhd). As the value of the S∗ parameter decreases (Fig. 8b and 8c), the particle

distribution widens along the Ω-axis, and the number of resonant particles increases. For

S∗ = 9.4 (S∗/E = 1.5), a significant fraction of the ions can be in the resonance with the

mode.

For present purposes, we are not concerned whether or not the particle orbit is periodic

in a strict sense, but rather whether its toroidal and axial frequencies remain the same on

the time scale of interest. Therefore, we define an orbit as “periodic”, if the corresponding

frequencies do not change significantly during the simulation time (equal to several instability

growth times), and define it as a “stochastic” orbit otherwise.

The color in the scatter plots in Fig. 8 is used to mark periodic-orbit (green) and ergodic-

orbit (red) particles. The ergodicity of the orbits has been determined in the following way:

the values of the equilibrium frequencies for each particle have been stored at four different

times during the simulation, and the orbits with a significant variation in Ω or ωz values

have been considered to be ergodic, whereas orbits with nearly constant frequencies have
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been considered to be periodic. The criteria used in the periodicity checks are

|∆Ω|
max{|Ω|, 〈Ω〉} < 0.05, and

|∆ωz|
ωz

< 0.01, (4)

where 〈Ω〉 is the toroidal frequency averaged over all particles. This method, although not

exact, gives a convenient description of the gross behavior of the distribution of particles.

The plots in Fig. 8 exclude particles that are not confined, or have crossed the midplane

fewer than two times during the simulation.

Figure 8 shows that particles with small ωz or negative Ω (rotation opposite to current)

are most likely to be ergodic. It is also seen that the number of regular orbits increases as

the configuration becomes more kinetic (smaller S∗). This is in contrast with the findings

for oblate configurations, where the degree of ergodicity was found to increase with the

particle energy20. Figure 9 shows the fraction of regular orbits Nregular (out of all confined

orbits) plotted as a function of the 1/S∗ parameter for elliptical equilibria with xs = 0.8, and

E = 6.25 (solid) and E = 11.6 (dashed). It is evident that Nregular increases almost linearly

with 1/S∗, independent on the elongation. Results for racetrack equilibria with xs = 0.64

and E = 7.2 are also shown in Fig. 9 (dotted line). For these equilibria, Nregular is also found

to increase with the 1/S∗ parameter, and for the same value of S∗ the number of particles

with periodic orbits is larger than that in the elliptical configuration. In general, the fraction

of the regular orbits can be as large as 60-70% of all confined particles for S∗ ∼ 10.

B. Stochasticity Condition

A simple condition which allows us to distinguish between regular and stochastic orbits

in (ε, pφ) phase-space can be derived by considering test-particle motion in the equilibrium

fields. The radial profiles of the flux function ψ and the electrostatic potential ϕ are shown

15



in Figs. 10a and 10b for an elliptical FRC with E = 6.25 and S∗ = 19, where ψ is defined

by B = ∇φ×∇ψ, and Bext < 0. Particle motion in the (R,Z)-plane with constant pφ and

ε is equivalent to the motion in the effective potential Veff (R,Z). For normalized values

(ε→ miV
2
A , and pφ → miV

2
A/ωci), we have pφ = Rvφ−ψ, and ε = (v2

R + v2
Z)/2+Veff , where

Veff (R,Z) =
(pφ + ψ)2

2R2
+ ϕ. (5)

Depending on the value of pφ, three different types of Veff are possible. For pφ < 0 (Fig. 10c),

the effective potential does not have a minimum inside the separatrix, and the particle cannot

be confined. For 0 < pφ < |ψ0| (Fig. 10d), the potential has a double-well structure with a

central maximum with value V0 ≈ V (R0, 0) = (pφ + ψ0)
2/2R2

0, where ψ0 is the flux value at

the magnetic null (ψ0 < 0). For pφ ≥ |ψ0| (Fig. 10e), the potential has a single-well structure

without a central maximum. In the double-well case, the particle is confined away from the

center (magnetic null), if its energy is smaller than V0. The orbit in this case is confined

between two ellipses in the (R,Z) plane, and is similar to that shown in Fig. 7a. In other

cases, pφ ≥ |ψ0| or pφ < |ψ0| with ε > V0, the particle orbit can pass near the center, similar

to the orbit shown in Fig. 6a.

We conclude that orbits confined in a double-well, away from the center, will be ergodic,

whereas the orbits passing through the center will be regular, for the following reason. In

the one-dimensional (1D) limit (E → ∞), an orbit with ε < V0 is confined in one of the

wells to the right or to the left of the center (Fig. 10d), and it is regular. The small 2D

corrections (∼ 1/E) will qualitatively change the orbit behavior, allowing the particle to

jump from one well to another at the ends of the configuration, and therefore, introducing

the stochasticity. In contrast, for the particles passing trough the center, the 1D well will
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become an elongated 2D well when E is finite, but their orbits will remain regular, because for

these orbits adiabatic invariance theory based on the ωz/ωR ∼ 1/E expansion is applicable.

Therefore, a condition for a particle orbit to be regular can be written as ε > V0, or

|ψ0|+R0

√
2ε > pφ > |ψ0| −R0

√
2ε, (6)

where the upper bound for pφ is simply the condition for an orbit to exist (i.e. ε > min(Veff )),

and the lower bound corresponds to a transition boundary between the regular and ergodic

orbits. (The above condition is not applicable for end-trapped particles, or for very low

energy particles, for which µ is conserved, which are not the cases considered here).

Figure 11 shows the particle distribution in the (ε, pφ) plane, where the regular-orbit

particles are marked in green, and the ergodic ones are in red. It is seen that the condition

in Eq. (6) describes the boundary between the regular and ergodic orbits remarkably well.

Some inaccuracy is associated with the estimate V0 ≈ Veff (R0, 0), and is also due to a finite

simulation time, which does not allow a distinction between very slow regular particles and

the stochastic particles when ε ≈ V0. Note that the boundaries of the particle distribution

in (ε, pφ) space in Fig. 11 are due to ε > min(Veff ) and the confinement condition. Similar

results and a good agreement with the condition in Eq. (6) have also been obtained for

racetrack equilibria with E = 7.2 and S∗ ∼> 10.

Now it is evident why the fraction of regular orbits is larger for smaller values of S∗ (see

Fig. 9). Since the value of |ψ0| scales as ∼ R2
0, and for the class of elliptical equilibria |ψ0| ≈

BextR
2
0/4, the condition in Eq. (6) can be written as |pφ/|ψ0| − 1| < 4

√
2ε/R0 ≈ 8

√
ε/S∗ (in

dimensionless variables). Therefore, the width of the regular-orbit region in the pφ-direction

in Fig. 11, and approximately the fraction of regular orbits, are proportional to 1/S∗.
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The regularity condition in Eq. (6) is independent of the value of the electrostatic

potential, because ϕ vanishes at the magnetic null ϕ(R0) = 0. The equilibrium electric field

has been found to have little effect on the confinement and ergodicity of the ion orbits for

S∗ > 10. Its effect becomes significant when the value of ϕ at the separatrix is comparable

to the first term in Eq. (5), i.e., for S∗ < 8
√

4πp0/B2
0 ln(p0/ps) ≈ 8. For smaller S∗, the

structure of the effective potential is modified by the equilibrium electric field, in a such a

way that (a) for pφ < 0, Veff has a minimum between the magnetic null and the separatrix

at R0 < R < Rs; (b) for 0 < pφ < |ψ0|, the relative value of the central maximum V0 is

reduced; and (c) the double well becomes non-symmetric with smaller value of the min(Veff )

on the outer side, R > R0. This results in a new type of the particle orbit, which is confined

away from the magnetic null, on the outer side of the configuration (i.e., at R > R0), and

which is found to be regular. The number of the ergodic orbits reduces compared to that

predicted by the regularity condition in Eq. (6). Therefore, we find that for S∗ < 8−10, the

equilibrium electric field improves particle confinement, and further reduces the stochasticity

of the ion orbits.

VI. RESONANT PARTICLES EFFECTS

Numerical simulations of the tilt instability for various FRC equilibria and separatrix

shapes have shown that common to all cases is the change of the instability from a reactive

one (with γ � |ω|), to a weakly unstable one with γ/|ω| � 1, as the value of S∗ decreases.

The linear growth rate is reduced by a factor 5 to 10 compared to the MHD growth rate for

S∗/E ∼ 1, but it nonetheless remains finite10.

It is well known that the Vlasov-fluid (Maxwellian) plasma has the same marginal sta-
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bility condition as the MHD model, and therefore, that FLR effects cannot totally stabilize,

but can only reduce the growth rates of the unstable modes22,23. The residual instability

is due to resonant-particle destabilization of FLR-stabilized MHD modes. For the FRC

equilibria considered here, the n = 1 MHD mode with ω < 0 (in the ion frame) is a negative-

energy wave, which can be driven unstable by Landau damping on the resonant ions when

∂f0/∂ε < 0. The growth rate of this resonant instability depends on the number of resonant

particles, the slope of the ion distribution function f0, and the stochasticity of the ion orbits.

Analysis of the particle orbits (Section V) has demonstrated that, contrary to the usually

assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits (up to 60%)

can be regular in elongated kinetic configurations withE > 5 and S∗ ∼< 20. Since a significant

number of particles also can satisfy the resonant condition in Eq. (3), resonant wave-particle

interactions are likely to play an important role in determining n = 1 tilt mode stability

properties at low S∗.

The linearized hybrid simulations presented here employ the delta-f method for numeri-

cal noise reduction. In this method, the equilibrium ion distribution function f0 is assumed to

be known analytically, and the equation for the perturbed distribution function δf = f − f0

is integrated along the equilibrium particle trajectories. Each simulation particle is assigned

a weight w = δf/f , which is evolved in time using the equation:

dw

dt
= −e(v · δE)

∂(ln f0)

∂ε
. (7)

Large-weight particles indicate regions in the phase space, where the change in the ion

distribution function is the largest, and where the resonances are likely to occur.

Simulation results show that particles with the largest values of w usually have regular
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orbits, and their toroidal and axial betatron frequencies satisfy the condition in Eq. (3).

Figure 12 shows scatter plots of particles in the [w = δf/f , (Ω − ω)/ωz ] plane obtained

in three simulations with an elliptical separatrix with E = 6.25, and different values of

S∗. It is evident that the resonances occur when the frequency ratio is an odd integer with

(Ω−ω)/ωz = 1, 3, 5. The resonances are not seen at negative values of (Ω−ω), because most

of these orbits are stochastic (Fig. 8). Also, in agreement with the results in Section V, for

large S∗ (MHD-like regime, Fig. 12a), very few particles are in resonance with the mode. As

the configuration size (S∗) reduces, the particle distribution in frequencies broadens (Fig. 8),

and the number of particles in resonance increases (Fig. 12b,c).

Table 1 shows the values of the characteristic time scales normalized to the Alfvén time

tA = Rc/VA for the set of simulations shown in Fig. 12. It is evident that, in general, the

time scales associated with particle equilibrium motion are longer than the typical instability

growth times. The three time scales become comparable when S∗ is small.

The resonance condition in Eq. (3) can be understood as follows. The perturbed distri-

bution function [or w in Eq. (7)] is proportional to the change in the particle energy, which

is proportional to (v · δE) ≈ vzδEz. For the n = 1 tilt mode, δEz is symmetric relative to

the midplane z = 0, and it can be written as δEz = δÊz(z
2) exp(−iωt + inφ), where the

radial dependence is assumed to be averaged out. Therefore, the time dependence of δEz

along a periodic orbit with z ≈ z0 sin(ωzt) and φ ≈ Ωt can be expanded as

δEz =
∑
k

δEz,k exp[−i(ω− nΩ− 2kωz)t], (8)

where k is an integer. For a particle to be in resonance with the mode, the phase of the

product of vz = dz/dt and δEz must be constant. This results in Eq. (3) with l = 2k + 1,
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corresponding to an odd value of l. [Note that for a mode with opposite symmetry, i.e.,

with antisymmetric δEz, the condition Eq. (3) is the same, but the resonances occur for

even values of l. Such modes are seen in the racetrack configurations, and have been called

“even” modes, based on the VR symmetry10.] The condition in Eq. (3) generalizes the

betatron resonance condition given by Finn and Sudan24 for ion rings.

The importance of the resonances is also seen from energy balance, which shows that

a relatively small number of resonant particles (a few percent) contributes significantly to

the total energy balance. First, it can be shown that for t � 1/γ, the linear growth rate is

calculated to be

γ =
−e∑

mwm(v · δE)m∂ ln f0/∂ε∑
m w2

m

, (9)

where
∑

m denotes summation over all simulation particles. The numerator in Eq. (9) is

proportional to
∫
δji · δE d3x, and the denominator is proportional to ∆E = T0/2

∑
mw

2
m,

which plays the role of the perturbed particle energy, and can also be written as ∆E =

(T0/2)
∫
δf2/f0 d

3xd3v, where f0 ∼ exp(−ε/T0) with T0 =const has been used. Assuming

that the resonant particles are those with large weights, for example with |w| ≥ 0.3max(w),

their number and contribution into γ and ∆E can be estimated. In the simulations with E =

6.25 and S∗=8-10, the number of large-weight particles is ∼>4-4.5%, and their contribution

to the energy balance is larger than 46-50%. The expression in Eq. (9) can also be used

to determine the effects of various groups of particles on the instability. We have found, in

particular, that the contributions of the particles on open field lines (non-confined orbits),

as well as of the end-trapped particles, were negligible.

The effects of elongation and separatrix shape on the tilt mode have been discussed in
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Section IV, where it was found that the growth rate depends only on the S∗/E ratio when

the equilibrium is elliptical and provided that S∗/E ∼> 2. In the more strongly kinetic cases,

the growth rate depends on both E and S∗, and for a given S∗/E value, γ is smaller for the

longer configuration (Fig. 5). This result can be understood by assuming that for S∗/E < 2

the instability is a resonantly-driven one. Then a larger E implies a larger S∗ value, and for a

larger S∗ both the number of regular orbits and the number of resonant particles are reduced

(Section V); therefore, the configuration is less unstable. Thus for S∗/E = 1.2, for example,

the number of regular orbits in the configuration with E = 11.6 is nearly twice as small as

for E = 6.25 (Fig. 9), and accordingly, the value of the growth rate is also almost twice as

small (Fig. 5). It appears that long elliptical equilibria have better stability properties, not

only in the fluid regime6, but even more so in the kinetic regimes (S∗/E < 2).

We have studied the effects of the racetrack separatrix shape on the resonant interactions

and stability of configurations with E = 7.2. Figure 13 shows a scatter plot of particles in the

[w, (Ω−ω)/ωz ] plane from the simulations performed for S∗ = 8. A comparison with Fig. 12

(elliptical equilibria) shows that the particle distribution in equilibrium frequencies is much

wider for the racetrack configuration, and therefore a large number of resonances are possible.

This appears to be a typical feature of racetrack equilibria, which is related to relatively

larger elongations of the internal flux surfaces in racetrack FRCs. For the simulation shown

in Fig. 13, the calculated growth rate of the tilt mode is γ = 0.13γmhd, and we estimate

the fraction of resonant particles to be about 4%, with a corresponding contribution to the

total particle energy change of about 63%. For this equilibrium, in addition to the n = 1 tilt

mode, another mode with n = 1, but different symmetry (“even mode”10) has been found

to be unstable with a comparable growth rate. Since multiple resonances [i.e., with many
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l-values in Eq. (3)] are possible in the racetrack configuration, we conclude that in the kinetic

regime such configurations are more unstable than the elliptical ones.

A resonant instability can be avoided, if the equilibrium ion distribution function is flat-

tened in the region of the phase space where the resonances occur. This resonant region can

be determined by considering the distribution of resonant particles in the (ε, pφ) plane. Fig-

ure 14 shows a scatter plot of the simulation particles with large weights, |w| > 0.4max(w),

obtained in a hybrid simulation with E = 6.25 and S∗ = 10 and an elliptical separatrix. Here

the value of l corresponds to that in the resonance condition in Eq. (3). It is evident that

all of the resonant orbits are regular [i.e., satisfy the condition in Eq. (6)]. The resonances

are also highly localized in phase-space, especially the primary one with l = 1, which shows

an approximately linear relation between the resonant ε and pφ values. We have found that

such is not the case in the racetrack configuration, where the distribution of resonant par-

ticles in (ε, pφ) is much broader, which probably implies that the corresponding equilibrium

frequencies (and therefore the resonance condition itself) depend on the value of the third

invariant of motion.

So far we have studied FRC kinetic stability properties assuming a Maxwellian ion

distribution function f0. For the case shown in Fig. 14, a small change in f0 will be sufficient

to stabilize the mode. Therefore, a linearly-stable, small-S∗/E configuration is possible for

a non-Maxwellian f0. The localization of the resonant particles in phase space also suggests

that the instability can saturate nonlinearly through a modification of the initially unstable

distribution function. This saturation has indeed been observed in hybrid simulations with

E = 4 and an elliptical separatrix, as reported previously12.
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VII. SUMMARY AND CONCLUSIONS

We have studied the importance of different stabilizing effects and driving forces on the

linear stability behavior of the n = 1 tilt mode. Two-fluid simulations have demonstrated

that Hall stabilization alone cannot account for the experimentally-observed stability re-

gardless of the equilibrium profiles. It has been shown, at low S∗, that the Hall effects are

responsible for the change in the linear mode structure, as well as the mode rotation, whereas

the reduction in the growth rate is caused mostly by FLR effects. In the kinetic regime, the

unstable mode is shown to rotate in the electron direction (assuming zero ion rotation) with

a toroidal phase velocity equal to about one-half of the electron velocity. The real oscillation

frequency is measurable in experiments, and can serve as an additional diagnostic of the

kinetic tilt instability.

Hybrid simulations, performed for elliptical equilibria with uniformly slow z variation14

and a wide range of E values (E = 4− 12), have shown for this class of equilibria that the

tilt mode growth rate is a function of S∗/E parameter alone. This supports the empirical

stability scaling3 with the parameter S∗/E, which is based on experimental data, and it also

suggests that this class of equilibrium profiles is realized in the experiments. The scaling

γ = γ(S∗/E) is valid for the two-fluid regime with S∗/E > 2. In more highly kinetic regimes

(i.e., S∗/E < 2), the effects of resonant ions become important, and the kinetic growth rate

γ/γmhd is shown to reduce with elongation.

Analysis of the particle orbits in long configurations for different values of S∗ have

produced a new and unexpected result. Contrary to the large degree of stochasticity of

the ion orbits usually assumed in analyses of the FRC, we have found that a significant

fraction of orbits (up to 60-70% of all confined orbits) is regular in configurations with
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E ∼> 5 and S∗ ∼< 20. Although the magnetic moment is not conserved for most of these

orbits, another adiabatic invariant, based on the smallness of the ωz/ωR ratio, is conserved.

A regularity condition has been found, and it has been shown to agree with the numerical

results remarkably well. Furthermore, the number of regular orbits has been demonstrated

to scale approximately linearly with 1/S∗ (Fig. 9), so that the number of regular orbits

increases from ∼<10% to ∼60% as the configuration size is reduced from S∗ ≈ 80 to S∗ ≈ 10.

The results in this paper also show that ergodic behavior is not a suitable assumption

for long kinetic FRCs with S∗ ∼< 20 − 30, and in the most general case the ion distribution

function depends on all three integrals of motion. This conclusion is different from previous

findings for field-reversed ion ring systems20, where the orbits become ergodic as the particle

energy is increased. However, in these systems E ∼ 1, and the ergodic behavior results from

an overlap of the islands, corresponding to low-order resonances between the radial and axial

motion. In the present case, such resonances can be neglected, and the ergodic behavior is

due to the large curvature of the magnetic field lines near the FRC ends.

A large number of regular orbits in kinetic FRCs suggests that resonant wave-particle

interactions play a significant role in determining stability properties. A resonance condition

has been obtained that is suitable for MHD modes of arbitrary symmetry, which general-

izes the betatron resonance condition of Finn and Sudan24. For a Maxwellian equilibrium

distribution and low values of S∗, it has been shown that a large number of ions can be in

resonance with the n = 1 tilt mode, regardless of the FRC equilibrium profiles. The anal-

ysis of energy balance has demonstrated that the resonant particles are responsible for the

instability drive in cases where the FLR and Hall effects stabilize the MHD-unstable modes.

The localization of the resonant particles in phase space suggests that the instability will
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saturate nonlinearly through modification of the initially unstable distribution function. A

linearly stable, small S∗/E configuration is, therefore, possible for a non-Maxwellian f0.

In this paper, we have investigated the linear stability properties of prolate FRCs. The

results of nonlinear simulations, particularly, the nonlinear evolution of the tilting instability

in large-S∗ FRC configurations, and the nonlinear saturation of the instability for low values

of S∗, will be discussed in a companion paper.
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TABLE I. Characteristic time scales obtained from the hybrid simulations shown in Fig. 12

S∗ Tβ = 2π/〈ωz〉 [tA] TΩ = 2π/〈|Ω|〉 [tA] 1/γ [tA]

80 10.5 30. 2.4

40 10.1 22. 3.8

20 10.5 11.4 6.8

10 11. 7.8 10.9
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FIGURE CAPTIONS

FIG.1. Growth rate and negative real frequency of the tilt mode from Hall-MHD sim-

ulations with E = 6.25 and xs = 0.8; both quantities are normalized to γ0 = VA/Zs.

FIG.2. Linear structure of the most unstable mode from MHD and Hall-MHD sim-

ulations of the elliptical equilibrium with E = 6.25. Vector plots of poloidal velocity; in

Hall-MHD simulations S∗=5.

FIG.3. Contour plots of axial velocity at the midplane for the same simulations as in

Figure 2.

FIG.4. Hybrid simulations with and without the Hall term, for elliptical equilibria with

E = 4. Both the growth rate (a) and the real frequency (b) are normalized to γ0 = VA/Zs.

FIG.5. Normalized growth rates obtained from linear hybrid simulations of the n = 1

tilt mode instability for three different elliptic FRC equilibria with E=4, 6.25, and 11.6.

FIG.6. Plots of (a) the poloidal projection of the trajectory of the periodic-orbit particle;

and (b) the time evolution of the particle toroidal and axial frequencies.

FIG.7. Plots of (a) the poloidal projection of the trajectory of the stochastic-orbit

particle; and (b) the time evolution of the particle toroidal and axial frequencies.

FIG.8. Scatter plots of the particle distribution in the toroidal rotation and axial beta-

tron frequencies (Ω, ωz) for three elliptical equilibria with E = 6.25 and different values of

S∗. The solid lines correspond to the resonances (Ω− ω)/ωz = 1 and (Ω−ω)/ωz = 3. Color

is used to mark the regular-orbit (green) and ergodic-orbit (red) particles. All frequencies

are normalized to the ion cyclotron frequency in the external field.

FIG.9. Plot of the fraction of regular orbits versus 1/S∗ for elliptical equilibria with

E = 6.25 (solid line) and E = 11.6 (dashed line), and for racetrack equilibria with E = 7.2
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(dotted line).

FIG.10. Radial profiles at the midplane for the normalized (a) flux, (b) electrostatic

potential, and (c)-(e) effective potential Veff for different values of the toroidal angular mo-

mentum corresponding to (c) pφ = 0.1ψ0, (d) pφ = |ψ0|/3 (solid) and pφ = |ψ0|/2 (dashed),

and (e) pφ = |ψ0| (solid) and pφ = 1.5|ψ0| (dashed). Here ψ0 is the value of flux at the

magnetic null, R0 = 0.7Rs.

FIG.11. Scatter plot of the particle distribution in (ε, pφ) phase-space obtained from

the simulation shown in Fig. 8b. Color is used to mark the regular-orbit (green) and ergodic-

orbit (red) particles. The solid line corresponds to the condition in Eq. (6). Dimensionless

variables are used.

FIG.12. Scatter plot of the particle distribution in weight w = δf/f (arbitrary units)

and frequency (Ω − ω)/ωz , obtained in the linearized hybrid simulations for the same pa-

rameters as in Fig. 8.

FIG.13. Scatter plot of the particle distribution in weight w = δf/f (arbitrary units)

and frequency (Ω − ω)/ωz, obtained in the linearized hybrid simulations for the racetrack

configuration with E = 7.2 and S∗ = 8.

FIG.14. Scatter plot of resonant (large-weight) particles in (ε, pφ) phase-space obtained

in hybrid simulations with E = 6.25 and S∗ = 10. The dashed line marks the boundary

between regular and stochastic orbits as defined in Eq. (6).
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