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Abstract

While microwave reflectometry has proven to be a sensitive tool for measuring electron density

fluctuations in many circumstances, it has also been shown to have limited viability for core mea-

surements and/or conditions of strong turbulence. To this end, a new instrument based on 2-D

imaging reflectometry has been developed to measure density fluctuations over an extended plasma

region in the TEXTOR tokamak. Laboratory characterization of this instrument has been per-

formed using corrugated reflecting targets as an approximation to plasma reflections including 2-D

turbulent fluctuations of various magnitude and poloidal wavenumber. Within this approximation,

the imaging reflectometer can recover the spectral and spatial characteristics of the reflection layer

lost to or otherwise inaccessible to conventional techniques.

PACS numbers: 52.35.Ra,52.55.Fa,52.70.Gw
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I. INTRODUCTION AND BACKGROUND

Microwave reflectometry has been extensively employed in tokamak plasmas for the de-

tection of turbulence, due to its relatively simple implementation and its high sensitivity

to small perturbations of electron density. Despite its widespread and long-standing use,

however, the interpretation of reflectometry data from fluctuations remains an outstanding

issue, due to the effects of interference betweeen components of the reflected waves [1, 2].

For the simple case of 1-D fluctuations (radial only), it has been shown that the fluctuating

component of the signal phase is given by the approximation of geometric optics [3]

φ̃ = k0

∫ rc

0

ε̃(r)√
ε0

dr (1)

as long as the radial fluctuation wavenumber satisfies the condition kr < k0/(k0Lε)
1/3, where

Lε = (dε0/dr)−1
r=rc

is the scale length of the plasma permittivity at the plasma cutoff r = rc

and k0 is the wavenumber of the probing beam.

Within this approximation, the power spectrum of φ̃ as a function of the power spectrum

of the density fluctuations is given by

Γφ(kr) = πM
k0

2Ln

|kr|
Γn(kr) (2)

where Ln = n/(dn/dr)r=rc
is the scale length of the electron density n, M ≡ (ndε/dn)r=rc

(≈ 1 for the ordinary mode and ≈ 2 for the extraordinary mode), Γφ(kr) is the power

spectrum of the measured φ̃ (considered to be a function of rc), and Γn(kr) is the power

spectrum of the relative plasma density fluctuation ñ/n [1].

In the presence of 2-D turbulent fluctuations, the interpretation of reflectometry becomes

considerably more complex. Unfortunately, this is precisely the case of interest for tokamak

plasmas, which exhibit both radial and poloidal fluctuations. The difficulty arises from

the fact that when the plasma permittivity fluctuates perpendicularly to the direction of

propagation of the probing wave, the spectral components of the reflected field propagate

in different directions. This can result in a complicated interference pattern on the detector

plane, from which it is difficult to extract any information about the plasma fluctuations.

In essence, the measurement of the fluctuations is limited by the fluctuations themselves.

The study of the effect of 2-D turbulence on reflectometer measurements, both on TFTR

and in a series of numerical simulations, led to the development of the Microwave Imaging
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Reflectometry (MIR) concept [3, 6, 7]. In this technique, large-aperture optics at the plasma

edge are used to collect as much of the scattered wavefront as possible and optically focus

an image of the cutoff layer onto an array of detectors, thus restoring the integrity of the

phase measurement. A detailed description of the MIR technique is provided in Refs. [6]

and [7].

An important result from the numerical simulations in Ref. [3] which is critical to the

implementation of the MIR technique is the demonstration of a “virtual cutoff” surface,

located behind the actual cutoff surface, from which the reflected waves appear to have

originated (to an observer at the plasma edge). The location of the virtual cutoff can be

heuristically described as the intersection of the asymptotes of the ray trajectories of the

probing wave before and after reflection, shown schematically in Fig. 1. If the reflected

rays are collected by a large-aperture optical system with its object-plane located at the

virtual cutoff, the spatial structure of the density fluctuations at the actual cutoff layer can

be determined by the detected phase at the image plane.

n<1 n=1

cutoff (n=0)

virtual

cutoff

FIG. 1: Heuristic description of the virtual cutoff layer. Rays refract near the plasma cutoff layer

(n < 1), reaching a turning point at the cutoff (n = 0). The ray asymptotes meet at a common

location, where, to an outside observer, the radiation appears to have originated.

The distance between the actual and virtual cutoff layers was calculated to lowest order

for planar geometry in Ref. [6], and is given by

∆r ≈
∫ rb

rc

1 −
√

ε(r)
√

ε(r)
dr. (3)

A practical approximation for this distance has been calculated for cylindrical geometry,

as a function of the radius of the cutoff surface rc and the scale length of the plasma
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permittivity Lε at the cutoff:

∆r ≈ aLε
b (4)

where a = 1 − 0.89 exp(−0.43 rc), b = 1 − 0.66 exp(−0.45 rc), and all dimensions are in

[m]. To derive this expression, the virtual cutoff was calculated over the range 0.01 m ≤
Lε ≤ 0.5 m and 0.1 m ≤ rc ≤ 5.0 m. The density scale-length near r = rc was imposed

by using the form ε(r) = erf((r − rc)/Lε) where erf(x) ≡ 2/π
∫ x
0 exp(−t2)dt is the error

function (this form was chosen because it is linear near the cutoff, and smoothly approaches

unity as r → ∞). For TEXTOR parameters of rc = 0.3 m and Lε = 0.4 m, this results in

∆r ≈ 15 cm.

A MIR instrument of this type has been developed for the TEXTOR tokamak. The

details of this instrument are presented in a separate paper [8], and only a brief overview is

outlined here. In the TEXTOR instrument, shown in Fig. 2, the primary focusing optical

set is comprised of two large cylindrical mirrors, arranged to tailor the illumination beam

wavefront to match the toroidal cutoff surface. The MIR system has been combined with

an Electron Cyclotron Emission Imaging diagnostic [9], which shares the 42 cm × 20 cm

vacuum window and large front-end optics, enabling simultaneous measurement of ñe and

T̃e fluctuations in the same plasma volume.

1 m

a

b

c

d

e

f

g

FIG. 2: TEXTOR poloidal cross-section with the MIR/ECEI combined system.

The TEXTOR MIR instrument, installed initially at a fixed-frequency of 88 GHz, covers a

<∼ 15 cm poloidal region of the cutoff surface with a spatial resolution of ∼ 1 cm, leading to a

theoretical kθ resolution of 0.4 cm−1 ≤ kθ ≤ 3 cm−1. It is important to specify the distinction
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between making reflectometric measurements in the presence of poloidal fluctuations and

making reflectometric measurements of the poloidal fluctuations. While the majority of

this paper focuses on the validity of measurements in the presence of poloidal fluctuations,

in fact the MIR project represents the first use of simultaneous, localized reflectometry

measurements to produce a time-resolved mapping of kθ. With this in mind, the stated kθ

resolution of the TEXTOR MIR system refers to that which can actually be resolved by

the instrument. Measurements can be made in the presence of arbitrarily low kθ, down to 0

cm−1.

In this paper we explore the issue of reflectometry interpretation through the experimental

characterization of the TEXTOR imaging reflectometer. Namely, we present a series of

experiments which use corrugated reflecting targets to approximate a fluctuating plasma

cutoff, and demonstrate the point of failure of 1-D reflectometry and the recovery of phase

data through 2-D imaging using the TEXTOR MIR instrument, as well as the capability

of the imaging reflectometry technique to recover poloidally localized phase information for

quantitative determination of poloidal spatial mode structure. Sections II and III contain a

description of the experiments, which were used to assess the performance of the TEXTOR

MIR instrument. Section IV presents a series of calculations relating to the target-reflector

experiments, which illustrate the primary dependencies of the experimental results. Section

V presents an exploration of the impact of these findings to correlation-length measurements.

A discussion of the results follows in Sec. VI.

II. CHARACTERIZATION OF THE TEXTOR MIR INSTRUMENT

A laboratory characterization of the TEXTOR MIR instrument was performed using cor-

rugated reflecting targets of known shape to simulate the fluctuating plasma reflection layer.

This approach was chosen to augment the plasma measurements due to the unavoidable com-

plexity of any new plasma data; implementation of a new instrument is made more reliable

by first making controlled laboratory reference measurements. This study also included a

performance characterization of a conventional reflectometer arrangement, consisting of a

Gaussian launching horn and a simple detector horn with no imaging optics, also arranged

to measure the reflected signals from the corrugated targets. This type of target-reflector

arrangement has been used in the past to simulate doppler-shift measurements of poloidal
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rotation with reflectometry [10], and even to investigate the effects of 2-D fluctuations on

reflectometry measurements [11], though in the latter case only the effects on total collected

power using a 1-D configuration were considered.

The laboratory arrangements of the MIR and 1-D configurations are schematically shown

in Figs. 3(a) and 3(b), respectively. The target reflectors were constructed from an inner

wheel 60 cm in diameter and 20 cm wide, with a sinusoidally-corrugated flexible aluminum

strip wrapped around the circumfrence. The corrugation wavelength λcorr (labeled 2π/kθ in

Fig. 3) and corrugation height (labeled hcorr) were both precisely imposed upon construction

via the spacing and height difference of alternating high and low shims supporting the flexible

outer surface.

d

d

hcorr

2π/kθ

(a)

(b)

FIG. 3: Schematic illustration of the characterization test setup, showing the MIR and 1-D con-

figurations (a and b, respectively). The target reflectors were constructed with various imposed

values of corrugation wavelength (labeled 2π/kθ) and and corrugation height (labeled hcorr), and

measurements were taken over a range of separation distances d.

Measurements were taken with each of the reflectometer systems for a series of targets

covering a range of kθ and hcorr, and for geometries covering a range of distances from

the instrument to the target surface. This distance, labeled d in Fig. 3, is defined as the

distance between the target surface to the first mirror in the case of the MIR system, and

as the distance between the target surface and the launch/receive horns in the case of the

1-D system. The focal distance of the MIR system d0 ≡ d(image focus) is 235 cm. For

each configuration, the measurement was taken by simply spinning the target wheel and

collecting a time-trace of the quadrature signals from the reflectometry system.

In order to form a reference measurement to which the reflectometer measurements could
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be compared, each target surface was independently measured using Leica “Laser Tracker”

[12], a visible-laser interferometer with 10 µm precision.

A result from this off-line study is shown in Fig. 4, in which the measurements from the 1-

D and MIR systems are compared to the reference measurement. The target in this case had

corrugations of kθ = 1.25 cm−1 and depth ≈ 1.7 mm = λ0/2, where λ0 is the wavelength of

the probing microwave beam, leading to a nominal phase fluctuation of ∆φ ≈ 2π. Using Eqn.

2 and nominal TEXTOR parameters of Ln = 46 cm and kr = 1.0 cm−1, this corresponds

to 〈ñe〉/ne ≈ 1%. In the figure, the gray curves represent the reference measurement of the

corrugation shape scaled by 4π/λ0, corresponding to the ideal phase shift induced on the

reflected beam. The black curves represent the reflectometer measurements.

4

0

-4

-2

2

[r
a
d
]

(a)

4

0

-4

-2

2

[r
a
d
]

(b)

4

0

-4

-2

2

[r
a
d
]

(c)

[rad]

0.10.0 0.40.30.2 0.5 0.80.70.6

FIG. 4: Waveforms from the 1-D system (a,b) and MIR system (c), from measurements of a target

reflector having corrugations of kθ = 1.25 cm−1 and depth ≈ 1.7 mm, leading to ∆φ ≈ 2π. The

solid curves are the reflectometer measurements, and the gray curve is the reference measurement.

Plots (a) and (b) are measurements taken with the 1-D system at distances of 10 cm and 30 cm,

respectively, and (c) is a measurement taken with the MIR system located at the focal distance of

235 cm.

Figures 4(a) and 4(b) correspond to measurements taken with the 1-D system at distances

of 10 cm and 30 cm, respectively. Figure 4(c) corresponds a measurement taken with the

MIR system located at d0, at the focal distance of 235 cm.
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Clearly from Fig. 4(a), the 1-D configuration produces a close match to the reference

curve, although it appears that some minor level of interference has reduced the measured

level of phase modulation compared to the actual surface. Despite this, the majority of the

spectral power is contained in the fundamental kθ of the target wheel. The 1-D measure-

ment at 30 cm, (Fig. 4(b)), however, is quite distorted, no longer representing the target

surface. Clearly a significant fraction of the spectral power in this plot is contained in higher

harmonics of kθ, and the target shape (representing the fluctuations at the plasma cutoff),

cannot be inferred from the reflectometer data in this case. It should be pointed out that

this experiment represents a simplified case of one single poloidal mode, chosen to illustrate

the effect of 2-D fluctuations in the simplest possible manner. The inclusion of a more re-

alistic spectrum containing many modes would distort the measured pattern even further

(depending, of course, on the shape and magnitude of the kθ spectrum), and is revisited in

Secs. IV and V.

The MIR waveform (Fig. 4(c)) represents the cleanest measurement of the wheel surface,

despite being physically the furthest removed from the target. Even the small irregularities

in the reference curve (due to construction irregularities in the target wheel) are accurately

reproduced by the MIR instrument.

In order to quantify the degree to which the reflectometer measurements accurately re-

produce the reference surface, the cross-correlation coefficient ρXY was calculated between

the power spectra of the reflectometer and reference curves for measurements over a wide

range of d, the distance between the instrument and the target surface. The cross-correlation

coefficient is defined in the standard way (e.g. Ref. [13]):

ρXY =
RXY√

RXXRY Y

(5)

where the cross-correlation function RXY ≡ ∫

X(k)Y (k)dk, and in this case X(k) ≡
[

∫

φref(t)e
iktdt

]2
is the power spectrum of the reference curve and Y (k) ≡

[

∫

φdata(t)e
iktdt

]2

is the power spectrum of the reflectometer measurement. These data, plotted for both the

1-d and MIR systems, are shown in Fig. 5(a). In the figure, triangles represent the 1-D

measurements, and squares represent the MIR measurements.

For the 1-d case, the correlation is nearly unity for d=10 cm, and falls sharply as the

distance is increased to 30 cm or more. As was seen in Fig. 4(b), measurements at or beyond

30 cm no longer represent the actual surface, demonstrated by the ≤ 0.5 cross-correlation
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FIG. 5: (a) Cross-correlation between the reflectometer and reference power spectra for target

reflector with kθ = 1.25 cm−1 and ∆φ ≈ 2π, plotted for both the 1-D (triangles) and MIR (squares)

configurations. (b) Relative amplitude modulation for each reflectometer measurement.

figure. Interestingly, after reaching a minimum value of ≈ 0.05, the cross-correlation figure

increases to nearly 0.5 at distances between 60 and 90 cm. This is interpreted as a spurious

effect based on the simplicity/periodicity of the target, and can be qualitatively observed

in Fig. 4(b). While the waveform in Fig. 4(b) does not represent the actual surface, it

does exhibit some degree of periodicity in common with the surface, which gives rise to

the finite cross-correlation. In a more realistic configuration indluding two or more poloidal

wavenumbers, this periodicity is broken, and the cross-correlation would remain low in the

region of wave interference. This situation is specifically addressed in section IV.

The MIR values are similarly near-unity in the vicinity of the MIR focus, falling off at

d ≈ ±10 cm with respect to the focal plane location. This 20 cm range represents the

distance over which multi-radial (multi-frequency) data could be collected simultaneously

with a fixed set of imaging optics. This plot serves to illustrate the fundamental advantage of

the MIR technique, which is that the “proximity focusing” of the 1-D system for data taken

immediately next to the reflecting surface is transferred to a remote focal plane, physically

accessible to a detection system. In this case, the MIR data are taken with the instrument

at a distance of over 200 cm from the reflecting surface, in exactly the configuration used

for TEXTOR measurements.

Plotted in Fig. 5(b) is the mean absolute deviation of the amplitude, expressed as a
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fraction of the mean amplitude. These data are important only as a corroboration of the

data from Fig. 5(a), with the implication that phase distortion is generally accompanied by

strong amplitude modulation of the reflected signal, both of which are direct consequences

of wave interference. The most notable feature of this plot is the MIR data, which exhibit a

suppression of amplitude fluctuations at the focal point. At the minimum, the fluctuations

are ∼20%. For the 1-D case, the minimum fluctuation level is ∼30%, increasing to 40% or

more for d>50 cm. Ideally, the modulation level would drop to zero at the focal location.

The minimum modulation in this case is nonzero due to imperfections in the focal quality

of the optical set, as well as the fact that in any real optical system, only a finite solid-angle

of the reflected radiation is collected. It should be noted that a higher quality mirror set (to

be used in the identical configuration) is being constructed for the TEXTOR installation.

Similar data were taken for a target reflector with identical kθ = 1.25 cm−1 but with

∼ 50% lower corrugation depth (∆φ ≈ 1.3π), and are shown in Fig. 6. Figures 6(a) and (b)

represent measurements taken with the 1-D system at d = 10 cm and 95 cm, respectively,

and 6(c) represents measurements taken with the MIR system at the focal plane. A notable

difference between Figs. 4(b) and 6(b) is that the former was recorded at d = 30 cm while

the latter was recorded at d = 95 cm. The cross-correlation between the power-spectra is

plotted in Fig. 6(d).

Clearly from the waveforms and the correlation plots, the response of both the 1-D and

MIR systems is improved over the previous case. Both reflectometry configurations exhibit

near-unity cross-correlation between the measured and reference power spectra, indicating

that for these conditions, the measurement of fluctuations approaches the 1-D problem,

and is relatively free from interference effects. Indeed, for the case of Fig. 6, the need for

imaging is largely eliminated. The only data point to exhibit significant decorrelation from

the reference curve is the measurement at d = 100 cm, which contains a high percentage of

phase-ambiguities which result in spurious phase excursions in the waveform reconstruction.

Relative to the other cases considered here, however, this effect is only observed at quite a

large distance from the target.

Data were also collected for a target reflector with kθ = 2.5 cm−1, higher than the preced-

ing two targets by a factor of two, and corrugation depth leading to ∆φ ≈ 0.7π, somewhat

lower than either of the preceding two targets. Data from this target are shown in Fig.

7. Figures 7(a) and (b) represent measurements taken with the 1-D system at d = 10 cm
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FIG. 6: Measurements of a target reflector having kθ = 1.25 cm−1 and ∆φ ≈ 1.3π. (a,b) Wave-

forms from the 1-D system at d = 10 cm and 95 cm, respectively. (c) waveforms from the MIR

system at the focal plane. The gray curve is the reference measurement, and the black curves

are the reflectometer measurements. (d) Correlation comparison versus target distance for both

configurations.

and 25 cm, respectively, and 7(c) represents measurements taken with the MIR system at

the focal plane. Again, it should be emphasized that Fig. 7(b) was recorded at d = 25

cm, which represents the furthest distance that a coherent waveform was obtained, but is

closer than the distances presented in Figs. 4(b) and 6(b). The cross-correlation between

the power-spectra is plotted in Fig. 7(d).

Clearly, the data from this target are degraded by comparison to the previous targets with

lower kθ. For both the 1-D system and the MIR system, the optimum waveform (Figs. 7(a)

and 7(c)c, respectively) is perceptibly different than the reference. Additionally, the “depth

of field” of acceptable levels of cross-correlation is reduced for both configurations. As in

the previous cases, the similarity between the focal depth of the 1-D system and the MIR
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FIG. 7: Measurements of a target reflector having kθ = 2.5 cm−1 and ∆φ ≈ 0.7π. (a,b) Waveforms

from the 1-D system at d = 10 cm and 25 cm, respectively. (c) waveforms from the MIR system

at the focal plane. The gray curve is the reference measurement, and the black curves are the re-

flectometer measurements. (d) Correlation comparison vs. target distance for both configurations.

system is apparent, though the MIR focal plane is transferred away from the target surface.

As will be discussed in Sec. IV, reflectometer signal quality can degrade very quickly as kθ

is increased.

III. MULTIPOINT MEASUREMENTS TO RESOLVE POLOIDAL WAVENUM-

BER

Measurements of the poloidal wavenumber of the target reflectors were taken by simul-

taneously recording multiple localized MIR signals as the target was spun through the focal

plane. The relative phase of each sinusoidal signal was then plotted against the location of

each channel, with the measured kθ of the target determined by the slope of these points.

12



The results of this experiment are plotted in Figs. 8(a) and 8(b), which show the relative

phase difference plotted against channel position for targets having kθ = 1.25 cm−1, ∆φ ≈
1.3π and kθ = 2.5 cm−1, ∆φ ≈ 0.7π, respectively. Each plot also includes a best-fit line

through the central eight channels, which produced the cleanest signals. In the case of

Fig. 8(a), this represents ∼ 2π sampling of the poloidal corrugations, and in the case of

Fig. 8(b), this represents ∼ 4π coverage (i.e. two full corrugation wavelengths). While

the central eight channels were used to determine the poloidal wavenumber for the shorter

wavelength corrugations, the full coverage of sixteen channels will be required to resolve

the longest poloidal wavelengths. Fortunately this is precisely the configuration (i.e. long

wavelength corrugations, in which the reflectometry configuration reverts to the 1-D case),

in which the outer eight channels should be the cleanest, enabling such measurements.
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(a)

(b)
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d
]

position [cm]
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slope = 1.26±0.05 cm-1

slope = 2.49±0.09 cm-1

FIG. 8: Multipoint measurements of target reflectors to determine poloidal wavenumber. (a) Phase

vs. position for target having kθ = 1.25 cm−1 and ∆φ ≈ 1.3π. (b) Phase vs. position for target

having kθ = 2.5 cm−1 and ∆φ ≈ 0.7π. The slope of each dataset successfully recovers the poloidal

wavenumber to well within the instrumental uncertainty.

The horizontal bars in Fig. 8 represent the Gaussian width (in the poloidal direction) of

each reflectometer channel, approximately 0.8 cm, which is the largest source of uncertainty

in the linear fit, and can be considered the poloidal spatial resolution of the instrument.

The measured kθ values derived from Fig. 8 are 1.26 ± 0.05 cm−1 and 2.49 ± 0.09 cm−1,

for corrugated targets of nominal wavenumbers 1.25 cm−1 and 2.5 cm−1, respectively. The
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slope of each dataset recovers the poloidal wavenumber to well within the instrumental

uncertainty.

IV. NUMERICAL SIMULATION OF LABORATORY RESULTS

In order to better understand the details of the target reflector measurements, the re-

flected field was analytically calculated using a solution to Maxwell’s equations in cylindrical

geometry.

Starting with the stationary wave equation

(

∇2 + k0
2
)

E(r, θ) = 0 (6)

the general solution for the electric field is given by

E(r, θ) = ẑEz(r, θ)

= ẑ
∞
∑

n=−∞

Cn (Jn(k0r) + iYn(k0r)) einθ (7)

The particular solution for a given configuration can be obtained by imposing a boundary

condition at the wheel surface to determine the Cn’s, corresponding to the illuminating beam

and the wheel corrugations. The boundary condition can be defined in terms of Fourier

components, as follows:

Ez(r0, θ) =
∞
∑

n=−∞

ane
inθ (8)

where

an =
1

2π

π
∫

−π

Ez(r0, θ)e
−inθ . (9)

For the case of the laboratory target reflectors, the boundary condition can be explicitly

defined by treating the surface as a sinusoidal phase perturbation to a Gaussian-shaped

illumination intensity profile. Equation 9 can then be explicitly calculated using

Ez(r0, θ) = e−(θ/∆)2eiφ (10)

where ∆ is the half-width of the illuminating Gaussian beam. Here,

φ(θ) = A cos(pθ + θ0) (11)

where p = kθr0, kθ = 2π/λcorr, A = 2πhcorr/λ0, θ0 is the wheel rotation angle, and r0 is the

wheel radius.

14



In the case of 1-D illumination, where the illuminating beam can be treated as spreading

from a point source, an additional phase factor is introduced at the wheel surface due to the

variation in the path length of the probing beam from the source to each position on the

wheel. In this case, Eqn. 11 is replaced with

φ(θ) = A cos(pθ + θ0) + φcurv(θ) (12)

where

φcurv(θ) = k0

√

r0
2 sin2(θ) + (d + r0(1 − cos(θ))2 (13)

and d is the distance between the source and closest point on the reflecting surface.

The full solution of the reflected complex electric field is then given by

Ez(r, θ) =
∞
∑

n=−∞

an
(Jn(k0r) + iYn(k0r))

(Jn(k0r0) + iYn(k0r0))
einθ (14)

with the an’s determined via Eqns. 9-12.

Using this formulation for the reflected field, a direct comparison can be made between

the simulated reflected field waveforms and the measured reflectometer signal, using the

actual parameters from the laboratory setup. Data from such a comparison are shown in

Fig. 9, using the parameters of the first target wheel (i.e. data from Figs. 4(a) and (b))

with kθ = 1.25 cm−1 and hcorr = 1.4 mm. In the figure, the lefthand column contains output

plots from the model (alternating amplitude and phase), and the righthand column contains

the corresponding laboratory measurements. Figures 9(a)-(d) represent d = 10 cm, Figs.

9(e)-(h) represent d = 20 cm, and Figs. 9(i)-(l) represent d = 30 cm.

The model represents the data quite accurately, even in the case at d = 20 cm, where

the amplitude waveform is quite complicated and the phase waveform begins to exhibit

visible distortion, and at d = 30 cm, where both the amplitude and phase waveforms are

quite distorted due to interference effects. Even at the closest measurement, at d = 10

cm, the model precisely reproduces the amplitude modulations and the subtleties of the

phase waveforms. It should be noted that it is not particularly surprising that the model

is accurate; one expects reliable analytical solutions to Maxwell’s equations. That said, it

is critical to establish that the complicated waveforms measured with the 1-D system are

indeed a fundamental product of the interference from the corrugations on the target, and

not merely a spurious experimental artifact.
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Model Data
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FIG. 9: Comparison of model to laboratory waveforms for the 1-D system and the wheel shown

in Fig. 4. The lefthand column contains output plots from the model (alternating amplitude and

phase), and the righthand column contains the corresponding laboratory measurements. (a)-(d)

represent d = 10 cm, (e)-(h) represent d = 20 cm, and (i)-(l) represent d = 30 cm.

One interesting difference between the model and the data can be seen in Figs. 9(k)

and 9(l). Here, the data match the model for certain intervals, but appear to more closely

match plot 9(g) for other intervals. By looking at the corresponding amplitude waveform,

it can be seen that the high-harmonic “dropouts” in the phase waveform appear between

points where the amplitude drops to near zero, and there is a fundamental ambiguity in the

subsequent phase interpretation. The small nonuniformities in the target wheel construction

can therefore have a dramatic effect on the reconstruction of the phase. These should not

be interpreted as merely spurious “phase jumps” which can be removed or corrected, but

rather a fundamentally ambiguous result of destructive wave interference. As will be seen

in Fig. 12, the complication of additional modes makes it nearly impossible to positively
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identify the location of the phase ambiguities for waveforms exhibiting strong interference

effects.

It should be reiterated that the reconstruction of the details of the phase waveform for

these cases is only possible by knowing the exact shape of the reflecting surface beforehand.

Additionally, each of the cases studied contains only a single, clean mode. The addition

of additional modes or a realistic kθ spectrum further complicates the resulting waveforms.

These situations are specifically addressed at the end of this Sec. (for two modes) and in

Sec. V (for a realistic spectrum of modes).

The broad implication from the target wheel tests is that for sufficiently low kθ and hcorr,

imaging is unnecessary and 1-D reflectometry can be expected to produce valid fluctuation

measurements. If either (or both) of these quantities is increased, however, the degradation

of the signal quality due to wave interference becomes an important consideration. It is

interesting, then, to use the formulation from Eqn. 14 to explore the dependencies of the

wave field on these two parameters.

Figures 10(a)-(c) show the modeled reflected field amplitude from a target having kθ =

1.25 cm−1 and hcorr = λ0/8, λ0/2, and λ0 (∆φ = 0.5π, 2π, and 4π, respectively). Figure

10(b) also shows, drawn to scale, the collection solid angle of the MIR system compared to

that of a typical 1-D detection horn. In the figure, the corrugated wheel surfaces are also

drawn to scale.

In the case with the lowest corrugation amplitude (Fig. 10(a)), clear striations are visible

due to the focusing effect of each concave region of the target. Even at the right-most edge

of the simulation space (at d = 50 cm), the degree of amplitude modulation is relatively

low, and, though not shown in the figure, the phase measurement is generally intact. As the

corrugation amplitude increases, however, the amplitude modulations are more pronounced,

and higher order harmonics of the corrugations are visible in the field pattern. In Fig. 10(c),

the interference patterns are quite intricate, including several harmonic orders, even quite

close to (within ∼ 10 cm of) the reflecting surface. As was seen in the target wheel tests

and in Fig. 9, the phase waveforms in these cases become distorted and ambiguous.

Similarly to the parameter scan of hcorr at constant kθ shown in Fig. 10, it is infor-

mative to perform a parameter scan of kθ at constant hcorr. Figures 11(a)-(c) show the

modeled reflected field amplitude from a wheel having hcorr = λ0/2 (∆φ = 2π), and

kθ = 0.5 cm−1, 1.0 cm−1, and 2.0 cm−1, respectively. As in Fig. 10(b), Fig. 11(b) also
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(a)

(b)

(c)

FIG. 10: Parameter scan of hcorr (∆φ) at constant kθ. Modeled reflected field amplitude from a

target having kθ = 1.25 cm−1 and ∆φ = 0.5π, 2π, and 4π, respectively. Also shown is the collection

solid angle of the MIR system compared to that of a typical 1-D detection horn. The corrugated

wheel surfaces are also drawn to scale.
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shows the collection solid angle of the MIR and 1-D configurations.

(a)

(b)

(c)

FIG. 11: Parameter scan of kθ at constant hcorr (∆φ). Modeled reflected field amplitude from a

target having ∆φ = 2π, and kθ = 0.5 cm−1, 1.0 cm−1, and 2.0 cm−1, respectively.

For the case with lowest kθ (11(a)), there are only minor focusing effects on the reflected

field intensity, which leaves the phase information intact. As kθ increases to 1−2 cm−1, how-

ever, the field mapping becomes extremely complicated, exhibiting a multitude of harmonic
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orders, even in the close vicinity of the reflecting surface.

Again, the complexity of these field patterns, when sampled at field points located 10,

20, and 30 cm from the reflecting surface and simulated as a function of wheel rotation

angle to produce a modeled waveform, precisely match the actual waveforms measured in

the laboratory, as shown in Fig. 9.

An important point to consider when comparing the target reflector tests to a more

realistic plasma turbulence scenario is the effect of multiple kθ modes on the collected phase

information. The intention of the target reflector tests was to investigate the effect of

interference on reflectometer signals in the simplest manner possible, and therefore the

corrugation patterns on each reflector contain a relatively pure single kθ value. Clearly, the

imposition of additional kθ components, even at levels much lower than the dominant mode,

will further complicate the waveforms.

As a simple example, the effect of adding a single additional mode to one of the previous

cases is investigated here. Figure 12(a) shows the modeled waveform from a target reflector

of kθ = 2.5 cm−1 and ∆φ ≈ 0.7π, recorded with the detector at a distance of d = 25 cm. This

is exactly the configuration of the laboratory measurements shown in Fig. 7(b). The gray

curve in 12(a) represents the corrugations at the reflector, and the black curve represents

the modeled phase at the detector. It should be noted that, as in the previous examples, the

modeled waveform in Fig. 12(a) is a close match to the corresponding data in Fig. 7(b). The

power spectra for the detected and reference waveforms is shown in Fig. 12(b). Immediately

noticeable in the power spectrum are the appearance of multiple harmonic orders, with the

first harmonic approaching the power level of the fundamental. The interference pattern is

quite periodic, however, due to the exact periodicity of the reflector, and as a result each

harmonic order in the power spectrum is relatively clean and distinct from the others.

Figure 12(c) shows the result of adding a single additional kθ component, at a level of

40% of the original mode. Again, the gray curve is the corrugation pattern on the target

reflector (i.e. the 1-D phase pattern), and the black curve is the simulated measurement

at d = 25 cm. Because the precise periodicity of the reflector is now broken, the quasi-

periodicity of the interference pattern disappears. A relatively small change in the shape of

the reflector (even while keeping the average phase deviation
√

〈(∆φ)2〉 at the wheel surface

virtually unchanged) results in a dramatic change in the detected interference pattern, which

has become relatively chaotic. This is corroborated by Fig. 12(d), which shows the power

20



phase (gray = 1D phase) power spectrum

4

-4

-2

2

0

4

-4

-2

2

0

10

10

10

10

10

0

-8

-6

-4

-2

10

10

10

10

10

0

-8

-6

-4

-2

[cm-1]

0 5 10 15 20

(a)

(d)(c)

(b)

FIG. 12: (a) Modeled waveform from a target with kθ = 2.5 cm−1 and ∆φ = 0.7π (i.e. Fig. 7(b)),

measured at the target surface (gray curve) and at d = 25 cm (black curve). (b) Corresponding

power spectra. (c) Modeled waveform from a target with an additional kθ component, at a level

of 40% of the original mode, at the target surface and at d = 25 cm. (d) Corresponding power

spectra.

spectra of the reflector and the detected signal for this case. The addition of the second

kθ component is clearly visible on the gray reference curve, while the black measurement

curve has become almost noise-like. This example serves to demonstrate that in the cases

where interference plays a significant role, modeling the effect of interference by looking at

a single kθ mode can be overly optimistic. Even in cases where a single mode produces an

interference pattern which appears to be quasi-periodic and only contain relatively clean

higher harmonics, the addition of even a single additional kθ component can destroy the

signal behavior, and thus the ability to infer the characteristics of the reflecting surface

based on the detected signal. At the same time, any direct quantitative comparison of

absolute fluctuation levels between the target-reflector tests and realistic plasma conditions

is necessarily imprecise, since in the former case all of the spectral energy is in a single mode,

and in the latter case the energy is spread over the kθ spectrum.

It should also be noted that, while the TEXTOR instrument is configured for extraordi-

nary mode (X-mode) polarization, the effects of interference and the implications of optically

focusing the radiation with a MIR instrument are equally valid for ordinary mode (O-mode)

polarization.
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V. IMPLICATIONS OF MIR ON CORRELATION LENGTH DETERMINATION

One of the most interesting uses of reflectometry for fluctuation measurements in plasmas

is that of correlation reflectometry, in which measurements are made at multiple locations,

enabling a map of cross-correlations between adjacent points to be used to derive a tur-

bulence correlation length [14]. Previously, this type of measurement has been performed

using multiple probing frequencies to probe closely spaced cutoff layers and derive radial

correlation lengths.

While the use of imaging reflectometry, which provides localized poloidal measurements,

extends the use of correlation reflectometry to the poloidal direction, it also has a direct

implication for the measurement of radial correlation lengths.

It was shown in [1] that the spectral coherence between pairs of reflected electric field

measurements is related to the corresponding spectral coherence of the geometric phase by

the following:

γE ≈ Ei(σφ
2γr) − ξ − ln(σφ

2γr)

Ei(σφ
2) − ξ − ln(σφ

2)
, (15)

where γE is the spectral coherence between the measured reflected wave fields, Ei is the

exponential integral, σφ =
√

〈∆φ2〉, ξ = 0.577 is the Euler number, and γr = exp(−r2/2σr
2)

is the radial component of the spectral coherence of the geometric phase fluctuations. For

σφ � 1, γE ≈ γr, enabling a direct linear relationship between the correlation lengths of the

measurements and the correlation lengths of the density flutuations. For σφ
>∼ 1, however,

the relationship between γE and γr is no longer linear, leading to a signal correlation which

may be significantly lower than the corresponding correlation of the fluctuations. This

effect leads to a shortening of the correlation length of the measurements with respect to

the correlation length of the fluctuations, which becomes more pronounced as σφ increases.

The target reflector measurements as well as the graphical results in Figs. 10 and 11

further reconfirm this established result, while illustrating the use of imaging to overcome

this difficulty.

VI. DISCUSSION

The laboratory results presented here serve two primary purposes; to characterize the

TEXTOR instrument in advance of actual tokamak experiments, and to experimentally ex-
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plore the fundamentals of 2-D effects on reflectometry measurements in a controlled manner.

In short, the results demonstrate the circumstances which impose a limitation on the inter-

pretation of standard reflectometry, and the recovery of the measurements using imaging

techniques.

It is important to reiterate that the studies presented here represent a simpler scenario

than actual plasma measurements, which include finite refraction effects, particularly near

the cutoff. The modeling results of Sec. IV were configured to best represent the phase-

screen experiments, and therefore also do not include plasma effects. With this in mind, it

is important to recall that detailed modeling of reflectometry including full-wave solutions

to Maxwell’s equations, plasma refraction effects, realistic spectra of turbulent modes, and

complete 2-D effects, have been previously published in Refs. [3] and [6], and have indeed

guided the development of the MIR technique. The results from these detailed numerical

studies, originally performed for plane waves in planar geometry, were later verified for

Gaussian beams in cylindrical geometry.

Both the results from the target wheel studies as well as the previous detailed numerical

work bear out the strong dependencies of reflectometer data on the two quantities kθ and

∆φ, consistent with the expression for the diffraction distance from a phase-grating [3],

defined as Ddiff ≈ 2 k0/[(1 + σφ
2)∆kθ

2], where σφ ≈
√

〈(∆φ)2〉 and ∆kθ is the width of the

poloidal mode spectrum. As a rough guide, one can expect interference to play a significant

role in the reflected field pattern if measurements are taken beyond Ddiff .

It is also worth mentioning a particular previous study on this subject, in which cor-

relation length measurements taken with a conventional reflectometer were compared with

Langmuir probe measurements in the edge of the LAPD linear device [15]. In this study,

close agreement was found between the probe array and the 1-D reflectometer results. While

this study has occasionally been used (mistakenly) as an example to demonstrate the ab-

sence of 2-D effects on reflectometry measurements, in fact the author specifically states that

these measurements were taken within the diffraction distance, and therefore do not address

the validity of conventional reflectometer measurements in the presence of 2-D interference

[16].

Similarly, reflectometric measurements of long-wavelength fluctuations such as MHD phe-

nomena, with poloidal wavenumber kθ � 1, will fall well within the 1-D approximation, and

are expected standard reflectometer horns, and are expected to be unaffected by the 2-D
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interference effects addressed here.

Acknowledgments

The authors would like to thank the TEXTOR team for their continuing support of this

project. This work was supported by U.S. DOE contracts DE-AC02-76CH03073, DE-FG02-

99ER54523 and the U.S. DOE Fusion Energy Postdoctoral Fellowship.

[1] E. Mazzucato and R. Nazikian, Phys. Rev. Lett. 71, 1840 (1993).

[2] R. Nazikian and E. Mazzucato, Rev. Sci. Instrum. 66, 392 (1995).

[3] E. Mazzucato, Rev. Sci. Instrum. 69, 1691 (1998).

[4] E. Mazzucato and R. Nazikian, Plasma Phys. and Contr. Fus. 33, 261 (1991).

[5] R. Nazikian, J. Mod. Opt. 44, 1037 (1997).

[6] E. Mazzucato, Nucl. Fus. 41, 203 (2001).

[7] E. Mazzucato, T. Munsat, H. Park et al., Phys. Plasmas 9, 1955 (2002).

[8] T. Munsat, E. Mazzucato, H. Park et al., Rev. Sci. Instrum. 74, 9999 (2003), to be published.

[9] B. Deng, C. Domier, N. C. Luhmann, Jr., D. Brower, A. Donné, T. Oyevaar, and M. van de
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