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Abstract

A two-dimensional resistive Hall magneto-hydrodynamics (MHD) code
is used to investigate the dynamical evolution of driven reconnection in the
Magnetic Reconnection Experiment (MRX). The initial conditions and di-
mensionless parameters of the simulation are set to be similar to the ex-
perimental values. We successfully reproduce many features of the time-
evolution of magnetic configurations for both co- and counter-helicity recon-
nection in MRX. The Hall effect is shown to be important during the early
dynamic X-phase of MRX reconnection, while effectively negligible during
the late “steady-state” Y-phase, when plasma heating takes place. Based
on simple symmetry considerations, an experiment to directly measure the
Hall effect in MRX configuration is proposed and numerical evidence for
the expected outcome is given.
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1 INTRODUCTION

A large number of numerical studies have been undertaken in recent years in order
to better our understanding of the reconnection process and the detailed structure
of reconnection sites (see, for example [1, 2, 3, 4, 5, 6, 7]). Both 3D and 2D
geometries with various imposed symmetries have been investigated. And while
fully three dimensional reconnection remains poorly defined, there is now general
agreement on what the basic structure of two dimensional reconnection should
be [5, 6, 7, 8, 9, 10]. Localization of the reconnection region [10], achieved in
magneto-hydrodynamics (MHD) by including collisionless effects in the Ohm’s
law, seems to be responsible for the observed fast reconnection rates in the colli-
sionless regime [5, 6, 7, 9].

In particular, inclusion of the Hall term in the generalized Ohm’s law has been
shown to result in collapse of Y-shaped reconnection layer [11] to an X-point
structure with characteristic quadrupolar out-of-plain magnetic field (Hall mag-
netic field) arising around the reconnection site [5, 7]. Most recently, this theo-
retical prediction was confirmed by in situ measurements of Hall magnetic fields
at reconnection sites in the Earth’s magnetotail [12] and subsolar magnetopause
[13].

However, there is still a large gap in our understanding of even 2D magnetic re-
connection, as most of the numerical studies [1, 2, 3, 4, 6, 7, 8, 9] remain unrelated
to the experimental effort dedicated to reproducing and describing reconnection
in the laboratory setting [14, 15, 16, 17, 18, 19, 20, 21, 22]. It is easily observed
by comparing the results of numerical studies cited above, that initial and bound-
ary conditions applied to the problem greatly influence the time-evolution of the
structure of the reconnection region. Though such a conclusion cannot be surpris-
ing, it necessitates application of computational codes to specific experiments, to
both improve our ability to interpret and compare theoretical predictions against
experimental data. In one such effort, an earlier version of the same code as used
in the present study, was successfully adapted to the geometry of the Swarthmore
Spheromak Experiment [23, 24].

In this paper, we use Hall MHD to model both global and local reconnection
dynamics observed in the Magnetic Reconnection Experiment (MRX) [21]. In
Section 2, we describe the basic structure of the code, the initial conditions and
the time-evolution of the boundary conditions applied to the simulation domain.
In Section 3, resistive MHD simulation results are compared to experimental data.
In Section 4, symmetry properties of Hall MHD and its relevance to the MRX ex-
periment are discussed. In Section 5, results of the Hall MHD model are presented
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and a comparison of co- and counter- helicity reconnection configurations [21] are
made. Finally, based on the presented evidence, in Section 6 we propose a qualita-
tive description of Hall mediated dynamics of reconnection in MRX and propose
an experiment to directly observe the Hall effect in MRX.

2 Hall MHD model and MRX

We employ a two-dimensional axisymmetric resistive compressible Hall MHD
code – modified TRIangular Magneto-hydrodynamics (TRIM)[25], to simulate
the time-evolution of electro-magnetic fields, momentum density and plasma den-
sity in MRX. In doing so, we solve the following set of resistive Hall MHD equa-
tions in cylindrical geometry with no-slip perfectly conducting boundaries:����������
	�� ��
�������� (1)������ ������� (2)����� � 
��! �"#�%$'& ��( ")� (3)� � ��
*���� �+�,	�� ��
-
*���+"+$'&.� ��/�� ��0 �21 
3� (4)�54��� ��� �6	 7�8 ��9 1: � ;; ��<=/?> 
 �

�@$'&ACB D �!EGFIHKJLJNM (5)

In the TRIM implementation, the three components of the vector potential
�

,
the three components of the momentum density

��

, the density

�
and total energy4O�P��9 1NQ : ��R 1SQ : A B �+/ Q � ; ��<T� , are propagated in time on an unstructured

grid of triangles in the UV $ UW plane. The magnetic field
&

and current density
"

are calculated from the vector potential using
&
� � $X�

and
"Y� �K� $Z&[� Q A-B .

Cylindrically symmetric boundary conditions and initial configuration of electro-
magnetic fields, plasma density, plasma pressure and momentum density, together
with several constant parameters, such as the Lundquist number \ �^] 1_ A�B Q (�` _ ,
the Hall coefficient

 a��< Q�b�cd and viscosity
02��<e��f�g

determine the time evolution
of the calculated parameters [25].

In the present studies, we found it important to adjust the simple adiabatic
equation of state ( ; �ih Qkj ) by including the impurity radiation. In doing so,
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Figure 1: The computational mesh used by TRIM to model MRX.

we used polynomial fits [26] to calculate the local rate of energy loss
E�FIHlJmJ

as a
function of local temperature and plasma density. We assumed carbon to be the
dominant impurity at about 10% of plasma density.

To estimate the desired value of
 
, we use the average electron density in the

MRX reconnection layer of cd �on%$p<q��rmsqt�f�g , which corresponds to a normalized
value of

 ?u3� : MIvw$+<q�xf 1 . However, since in the modified TRIM code the Hall
effect is implemented explicitly, there is a severe restriction on the maximum sta-
ble time-step for a given spatial resolution, as a function of the

 yu
parameter. As

a result, for practical considerations, we limit
 zu

to no more than about
vZ$Y<e��f�g

.
Note that although the electron pressure term ��/�{ normally present in the Ohm’s
law (Eq.3) and generally considered to be of the same order as the Hall term, is
neglected in the present study in the low | { limit [5].

Figure 1 shows the geometry of the computational domain. The triangle mesh
density is on the order of

<q��}
per

] 1B , where
] B �~�?M���h=t is the major radius of the

device and the unit length in the simulation. About 2.5 times higher mesh density
is used in the region between the flux-cores, where reconnection itself takes place
and where most of the available experimental data in MRX comes from. The
boundary conditions implemented at the flux-cores allow for imposed tangential
electric field both in the toroidal U� direction and in the poloidal UV $ UW plane.

We initialize the simulation with constant and uniform plasma density and
pressure. The only initial magnetic field is a uniformly imposed R%� , provided
in the experiment by outside equilibrium field coils. As in the experiment, the
time-evolution of the simulation can be separated into three stages. (See Fig. 6
in [21]. Note that

���^�
time in the simulation, in the experiment corresponds to����< : � A�� in ref.[20, 21], and to

�3��<q�=� A�� in ref.[17, 18, 19].)
(1) Quadrupolar poloidal magnetic field is injected into the flux-conserver by
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setting ��� �����=�?M�hx� Q t at the flux-core boundaries from
���P�

to
����<e� j A-� .

Artificially high resistivity is used to model the pre-ionized gas in MRX.
(2) Co-/counter- directed toroidal magnetic field is injected at the two flux-

cores by imposing same/opposite directed poloidal tangential � -field ( �G����� �� Q �Z� : M���� Q t ) at
���o���?M�h A-� . (In the experiment, this process is also responsible

for creating the plasma [21].)
(3) Reconnection is induced by pulling the poloidal magnetic flux back onto

the flux-cores. To do so, we set � � �����?M�hx� Q t at the flux-core boundaries from���^< : � A-� to
�G� : h=n A�� . We also maintain a poloidal tangential � -field ( ������� �� Q ��� : M��x� Q t ) until

�w� <��ev�M�n A�� . At
�w� < : � A-� , we also reset the plasma

pressure and density to be uniform with dCB � : M : h2$Y<e��rms�t�f�g and / ���=� Q t2g .
The first two stages are only included to set up the initial conditions for the

third phase of the simulation, when the reconnection processes of interest take
place and when all the comparisons with experimental data can be made.

Following Watanabe et.al. [27], the resistivity just around the flux-cores is en-
hanced during the pull-reconnection phase to prevent the development of unphysically-
large induction currents in those regions:

( � ( u � <: ( u���� � b f*¡£¢¥¤K¦k¢�§m¨�©¡ © ¢ § ¨ © � b f*¡ª¢ © ¦k¢�§«¨�©¡ © ¢ § ¨ ©w¬ � (6)

where V r and V 1 are the distances to the centers of the two flux-cores, VT­ is the
minor radius of a flux-core, and

�3�
is the enhancement coefficient, taken to be��� � : �

. Otherwise uniform resistivity is used with ( u*�P< Q \ u®�P< Q <e�=��� . (We
take the Alfvén length scale to be the approximate length of the MRX current
layer

] _ �¯<qh=°�t
and the Alfvén time to be ` _ �P<=M j=j A�� so that the physically

meaningful value of the Lundquist number is \ � j : h .) It should be noted that
unlike Watanabe et. al., we restrict the region of enhanced resistivity to a very
limited area right outside of the flux-cores, which allows for much more realistic
modeling of the MRX experiment.

3 Resistive MHD vs. MRX

One of the aims of the simulation work described in this paper is to reproduce
and understand the results of the experimental measurements conducted in MRX
in its present setup. For the initial studies, we have chosen to eliminate the Hall
term from the evolution equations (i.e. set

 ��±�
in Eq.3), in order provide a

baseline for the subsequent studies. The effect of keeping this term is discussed
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Figure 2: Contours of poloidal magnetic flux overlaid on the color-map of toroidalR -field at
�²� :=: �?M�� A-� during counter-helicity reconnection.

in the next section. In this section, we also limit ourselves to presenting only
counter-helicity reconnection results, as most of the MRX data is taken in that
configuration. (We regard the experimental results referred to as “null-helicity”
because of apparent lack of the toroidal R -field during the late phase of MRX
reconnection (see ref.[17, 18, 19, 20, 21]), as counter-helicity, based on the initial
presence of opposing R � fields necessary to create the plasma.)

In Figure 2, we show contours of poloidal flux ³ overlaid on the color-map
of toroidal magnetic field R � over the whole computational domain during the
steady-state phase of reconnection at

�²� :=: �?M�� A-� . It is observed, that during this
phase the reconnection region takes the Y-shape of a long current sheet. The time-
evolution of the reconnection region is shown in Figure 3, where four snapshots
of the ³ contours can be compared to the experimental data in Fig.1(c) of Yamada
et. al.[18]. The time shift of about j h A-� between the MRX experiment and the
MHD simulation should be attributed to the slight difference in the implemented
time-sequence of the driving flux-core � -fields, which is due to our inability to
model plasma break-down.

We further concentrate on the current layer in Figure 4, where radial profiles
of toroidal reconnection current

� � and plasma temperature ´ across the layer at
three points in time are shown. These can be compared to Fig.2 of ref.[18] and
Fig.3.5 of ref.[19]. Slow radial inward movement of the current layer in the sim-
ulation is apparent in Figure 4. This movement is due to the toroidal nature of the
device. In the experiment it is controlled by the time varying external equilibriumR � field. We also include an external uniform R � field in the simulation, but are
unable to vary it in time, which results in the slow radial shift of the current layer.

6



-10 0 10

10

20

30

40

50

60

z-axis, cm

r-
a
x
is
, 
c
m

-10 0 10
z-axis, cm

-10 0 10
z-axis, cm

-10 0 10
z-axis, cm

Figure 3: The evolution of poloidal magnetic flux from X-point to Y-shaped re-
connection region during counter-helicity reconnection.
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Figure 4: The radial profiles of (a) current density (
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plasma temperature ( ´ B � : vzM�� b � ) through the center of the reconnection layer
at three instances during the resistive MHD simulation of counter-helicity recon-
nection.
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Figure 5: The time history of (a) radial position and width-to-length ratio of the
reconnection layer and (b) peak

� � and plasma temperature in the layer during the
resistive MHD simulation of counter-helicity reconnection (

� B ��<qn?M��=µz¶ Q t 1 ).
The time histories of the exact radial position and a measure of the shape of

the reconnection layer are shown in Figure 5(a). We calculate the width-to-length
ratio of the reconnection region by measuring the distances it takes poloidal flux³ to change by 1% from its X-point value in vertical and horizontal directions.
Peak

� � and layer averaged plasma temperature, are shown in Figure 5(b). The
two plots in Fig.5(b) can be compared to experimental data in Fig.4 of ref.[20] and
Fig.5 of ref.[18]. We observe that in the simulation, as well as in the experiment,
the growth of the reconnection

� � and the change in the shape of the layer occur
simultaneously and begin only as soon as the injection of the toroidal R -field is
terminated at

��·^<T��h A-� .
Comparison of the numerical results presented in Figures 2-5 to the published

MRX experimental data suggests that the TRIM implementation of resistive, com-
pressible MHD equations with radiative energy loss does a good job of reproduc-
ing the global characteristics of the MRX experiment. An X-point configuration
is observed to evolve into a Y-shaped current layer, correlated with the initial in-
crease of the peak

� � in the layer. Once the long thin “steady-state” current sheet is
established, the peak magnitude of

� � slowly decays, while strong plasma heating
in the layer is observed.

However, it should be noted that there are some experimental features that are
not reproduced in the simulation. MRX experimental data suggests significant ac-

8



cumulation of plasma density in the “steady-state” reconnection layer (see Fig.8
of ref.[20]). This is not observed in the resistive MHD simulation. Furthermore,
the collapse of the X-point reconnection to the Y-shaped current sheet (see Fig-
ure 3) observed both in the experiment and simulation, seems to take longer in the
resistive MHD model.

4 Hall current, MHD symmetry and reconnection

It is inherent in the single-fluid MHD approximation, that the addition of the Hall
current term to the resistive Ohm’s law is responsible for accounting for the ion-
electron mass difference in the limit

t { Q t2¸�¹ <
[28]. In fact, in the collisional

steady state limit, it is easy to show that the simple resistive Ohm’s law allows for
the masses of the positive and negative charges in plasma to be equal. However,
when the Hall current is included in the limit of

t { Q t2¸-º �
, velocities of the ion

and electron fluids can be separated and ion inertia is accounted for.
It is easily observed, that the set of single-fluid MHD equations with simple

resistive Ohm’s law is symmetric under the reversal of all electro-magnetic vari-
ables. That is, if

&»º ��&
,
"�º �G"

and
�¼º ���

, then pressure / , density�
and velocity field



remain unaffected. However, once the Hall current is in-

cluded (see Eqs.1 - 5 with non-zero
 

), this symmetry is destroyed. Now, lets
qualitatively inspect what happens to the out-of-plain plasma flow and magnetic
field components in 2D magnetic reconnection geometry under such a symmetry
transformation.

As discussed earlier, the Hall term in the generalized Ohm’s law has been
shown to be responsible for localization of the reconnection layer to an X-point
structure. The major signature of Hall mediated reconnection is the induced
quadrupolar configuration of the out-of-plain R�½ � FIF� -fields associated with poloidal
currents that result from the separation of ion and electron scales. The superposi-
tion of pre-existing out-of-plain magnetic fields and this self-generated quadrupo-
lar field is the effect we should investigate here.

To demonstrate, we apply our qualitative analysis to the MRX geometry. As
shown in Figure 6, there are two cases to be considered:

(1) counter-helicity reconnection, where initially present out-of-plain R � -field
is of opposite sense on the two sides of the reconnection site;

(2) co-helicity reconnection, where the out-of-plain guide R � -field is approx-
imately uniform.

For the first case, lets consider the particular orientation of poloidal and toroidal
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Figure 6: The schematic of toroidal flows resulting from various
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forces
in the MRX geometry: (a) counter-helicity MHD analysis; (b) co-helicity MHD
analysis; (c) additional magnetic fields, plasma currents and flows resulting from
the Hall effect and independent of the embedded toroidal R -fields.
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magnetic fields,
&À¿z� R � shown in Fig.6(a). A poloidal current,

"Á¿
is present, as-

sociated with the embedded toroidal R � -fields. As a result, the
"Â$Ã&

force, acting
in the opposite direction above and below the reconnection region, generates op-
posing toroidal flows. (Note, the description above is equivalent to that of the
slingshot effect given by Yamada, et.al.[29] and does not involve the Hall term.).

In the second case (see Fig.6(b)), the embedded toroidal R � -fields are such
that no radial current should be induced along the W �Ä�

symmetry axis by the
resistive effects alone. It follows, that in resistive MHD no significant toroidal
flow should be expected on the W �o� axis.

In Figure 6(c), we consider the additional toroidal R�½ � FªF� -fields and associated
poloidal

" ½ � FIF currents that are generated by the Hall term itself [7, 5]. These
are independent of the orientation of the imposed R � and

& ¿
and result in an

additional toroidal � "[$�&[� ½ � FªF� force. The toroidal flow
9 ½ � FªF� due to the interaction

of the Hall current with the reconnecting field should be co-directed in all of the
reconnection region and independent of R � embedded in the plasma.

The above analysis makes plausible the possibility of measuring and identi-
fying the effects of the Hall term in experimental devices such as MRX. By si-
multaneously reversing the directions of initially imposed R � and

& ¿
, two effects

should be observed:
(1) for counter-helicity reconnection, when the total embedded

&
-field is reversed,

the Hall driven toroidal flows should modify the otherwise unchanged radial pro-
file of the plasma flow along the symmetry axis,

9 � � V � W �Å�x� ;
(2) the superposition of embedded R � and Hall induced RÆ½ � FªF� should result in a
radial shift of the contours of the total measured R�Ç H ��� F� � V � W � up or down depend-
ing on the orientation of the embedded R � .

The existing measurements of toroidal plasma flow in MRX in co- and counter-
helicity configurations (see Fig.9 and Fig.10 of ref.[17]) are consistent with the
qualitative analysis above.

5 Hall MHD Simulation results

As discussed above, we are unable to include the full magnitude of the Hall effect
in our simulations of the MRX experiment. The results presented below are pro-
duced with

 �u�� j M : $Z<e��f�g , which is about 15% of the desired value. We address
the scaling of the physical effects of the Hall term with the

 
parameter later in

this section.
We observe the counter-helicity Hall MHD simulation to have qualitatively the
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Figure 7: Profiles of reconnection
� � and Hall current

� ½ � FIF� versus W at (a)
�À�<q�=h?M�h A�� and (b)

�[� :=: ��M�� A-� during the counter-helicity Hall MHD simulation
(
� B �6<qn?M��=µz¶ Q t 1 ). Note that different radial positions at different times are due

to the slow radial motion of the reconnection layer.

same global dynamics and time-evolution as the resistive MHD results presented
above. However, we also observe appearance of the Hall currents now embedded
in the resistive MHD field structure. In the figures below, we were able to specif-
ically extract the contribution of the Hall term to the total

&
and

"
, as shown in

Figure 6.
In Figure 7, we show the W -profiles of the reconnection current

� � and Hall
current

� ½ � FªF� inside the layer at two different times: early during X-point recon-
nection at

�²��<e��h?M�h A-� , and late in the Y-shaped layer at
�²� :�: ��M�� A�� . In Figure 8,

we also show radial profiles through the center of the reconnection layer of con-
tributions of ( " � and

 � "�$'&[� ½ � FIF� to the out-of-plain reconnection electric field��� at those same times.
Taking a ratio of peak magnitudes of the plasma currents shown in Fig.7(a),

we observe that during X-point reconnection the Hall current constitutes more
than 10% of

� � . Late in time, however, this ratio goes down to about 3% in
Fig.7(b). A similar trend is observed in Figure 8, where the contribution of the
Hall term to the total reconnection � -field relative to ( � � goes from almost 10%
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Figure 8: Radial profiles of the ( � � and
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�%� :=: �?M�� A-� during the counter-helicity Hall MHD simula-

tion ( � B ��<=M�� j h=µ�� Q t ).

to less than 2%. It should be noted, that in the MRX geometry the global evolution
of R -fields influence the shape of the reconnection layer. That is, the boundary
conditions at the flux-cores drive reconnection in such a way that late in time there
is a strong tendency to end up with a Y-shaped reconnection layer, rather than an
X-point, independent of the physical mechanism facilitating reconnection. Hall
reconnection, on the other hand, tends to transform the layer into an open X-point
configuration [7]. We, therefore, observe that the Hall effect is mediated during
the steady-state MRX reconnection phase by the forced global evolution of the
magnetic fields.

We now address the symmetry properties of Hall MHD, considered in the
previous section. In Figure 9, we present the radial profiles of toroidal plasma
flow calculated in two separate simulation runs, where we reverse all imposed
electro-magnetic initial and boundary conditions for one run with respect to the
other. In particular, in one run

& ¿
is oriented counter-clockwise (as in Fig.6(a)),
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magnetic initial and boundary conditions are reversed with respect to each other
(
9 B ��n��?M���µzt Q � ). The solid line is the difference of the two.

while in the other
&À¿

is clockwise. On the same plot we show the difference
between the two, which is twice the flow due to the Hall effect with all of the
slingshot flow having canceled out. In each run the radial location of the current
layer is identical and perfectly corresponds to the peak in the resulting

9 ½ � FIF� profile
(not shown).

We also attempted to conduct studies of the Hall MHD reconnection in the co-
helicity configuration. However, as in the experiment [17, 21], we do not observe
formation of a Y-shaped thin current layer during co-helicity reconnection. As
shown in Figure 10, the thick X-shaped reconnection region eventually becomes
O-shaped and turns into a spheromak. The Hall term is not seen to play any role
in this transition.

Finally, to the issue of scaling of the Hall effect with the
 

parameter. We have
completed simulation runs with three different

 u
values

 u �É<=M�na$Ê<q� f�g�Ë : MIv�$<q�xf�g Ë j M : $�<e��f�g . In Figure 11, radial profiles of R�½ � FªF� and
9 ½ � FªF� across the

counter-helicity reconnection layer for all three
 zu

values are shown late during
the Y-layer phase of the simulation. The magnitude of the Hall effect at

�²� : h�n A-�
is approximately proportional to the

 zu
parameter for those small values of

 zu
.

6 Conclusions

The two-dimensional resistive MHD model reproduces many features of the ex-
perimentally observed evolution of the magnetic fields and currents in MRX.
Transition to the Y-shaped current layer from the initial X-point configuration
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Figure 11: The radial profiles of (a) RÆ½ � FªF� at W �Ì� M�h�°St
( R B �¯<qh=�xÍ�Î�Ï �T� ) and

(b)
9 ½ � FIF� at W �^�=°�t (

9 B �^n=��M���µzt Q � ) for three values of the
 ?u

parameter each
very late during counter-helicity reconnection at

��� : h�n?M�� A-� .
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is correlated with the increase in the reconnection current and with the termina-
tion of toroidal R -field generation at the flux-cores. Significant plasma heating is
observed once the “steady-state” reconnection layer is established.

A careful comparison of the Hall MHD results to the baseline resistive MHD
simulation uncovers the role of the Hall term in MRX counter-helicity reconnec-
tion. As shown in Fig.7 and Fig.8, even with

 zu
of only 15% of the desired value,

the Hall effect is already responsible for about 10% of the out-of-plain electric
field in the center of the reconnection region during the X-phase of the process.
Although the exact scaling of the Hall effect with

 u
cannot be extrapolated from

Fig.11 during this early phase, it is apparent that the Hall effect should play a
major role in the X-phase of MRX reconnection.

The transition to the long Y-shaped reconnection layer, forced by the global
structure of the magnetic fields in MRX, is accompanied by the diminishing con-
tribution of the Hall term to the reconnection � � -field. Using the scaling of Fig.11,
we can estimate that late in time the Hall currents should only be about 10-15%
of the reconnection current and thus do not significantly influence the magnetic
structure or the effective resistivity.

As qualitatively described in Section 4 and numerically confirmed in Fig.9, we
propose to conduct a “symmetry experiment” in MRX, by independently revers-
ing the induced electro-magnetic fields and measuring the radial profiles of the
plasma flow for all four combinations of the poloidal and toroidal

&
-field config-

urations of the counter-helicity reconnection. By combining the profiles, a direct
measurement of the Hall effect in MRX should result.

In co-helicity reconnection, where the R � -field is observed to accumulate
in the reconnection region, the layer develops an O-point and evolves into a
spheromak. This is consistent with the experimentally observed evolution in this
configuration[18, 20].
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