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Global Extended MHD Studies of Fast Magnetic
Reconnection

J. A. Breslau and S. C. Jardin
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

Abstract
Recent experimental and theoretical results have led to two lines of thought regarding the
physical processes underlying fast magnetic reconnection. One is based on the traditional
Sweet-Parker model but replaces the Spitzer resistivity with an enhanced resistivity caused
by electron scattering by ion acoustic turbulence. The other includes the finite gyroradius
effects that enter Ohm’s law through the Hall and electron pressure gradient terms. A 2D
numerical study, conducted with a new implicit parallel two-fluid code, has helped to clarify
the similarities and differences in predictions between these two models and provides some
insight into their respective ranges of validity.

1 Introduction

It is now generally accepted that two-dimensional magnetic reconnection can occur at rates
that substantially exceed those predicted by the classical theory of Sweet and Parker.1 Sig-
nificant progress has been made in recent years in advancing the theoretical understanding
of this fast magnetic reconnection. Contributions have come both from dedicated experi-
ments such as the TS-3 device2 and the Magnetic Reconnection Experiment (MRX);3 and
from many numerical studies carried out to test theoretical concepts.

There remain, however, two competing paradigms for explaining fast reconnection. One
invokes enhanced “anomalous” resistivity and the geometrical effects that follow from it.
This picture aims to explain the accelerated reconnection within the bounds of resistive
MHD.4,5 It is a collisional model in which a mechanism is invoked to elevate the resistivity
in the reconnection current sheet to several times the Spitzer value. Because the magnitude
of the resistivity and its gradient in this region determine the rate of reconnection in the
MHD description, one can match any observed reconnection rate given a sufficiently large
local resistivity.

The challenge of explaining fast reconnection in extremely high Lundquist number
regimes such as the solar corona has led to an alternate, collisionless model. Critical to
this model are finite gyroradius and electron inertia effects beyond the scope of MHD (but
generally capable of being incorporated into so-called “extended MHD” fluid models). These
new terms in the equations result in the creation of an inner region within the current sheet
where the ions are unmagnetized and the governing electron MHD equations bring whistler
physics into play. This can result in rapid reconnection flow rates that are essentially inde-
pendent of the resistivity.6

The collisionless model’s severe scale separation poses a considerable challenge to the
numerical modeler, even beyond the usual one encountered in reconnection studies. Two
numerical approaches are in common use for addressing the separation of scales in the
standard reconnection problem between the outer quasi-ideal region and the inner diffu-
sive region. One approach7 is to restrict attention to the diffusion region only. This has the
advantage of allowing very efficient solutions, but the disadvantage of requiring the specifica-
tion of boundary conditions for the plasma inflow and outflow rates. The second approach8

is to model the global plasma using the equations of reduced MHD, which contain a greatly
reduced number of time advancement variables and timescales. This avoids the boundary
condition difficulty but omits a number of potentially important physical effects.

The approach described here is to address the reconnection problem with a new implicit
parallel algorithm that is efficient enough to allow solution of the global problem while
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advancing the full set of extended MHD equations with enough detail to fully resolve the
inner region.9 In Section 2 below, we describe the nature of the algorithm and the conditions
of our simulations. Section 3 briefly describes an application of this method to reconnection
in the relatively well-understood MHD regime. In Sections 4 and 5, we set forth some new
results relating to “anomalous” resistivity and Hall reconnection respectively and connect
these with previous work.

2 Numerical Method

We use the 2D Magnetic Reconnection Code (MRC) in this work.9 It is based on a parallel
implicit algorithm that time-advances either the two-fluid extended MHD equations or their
single-fluid resistive MHD subset on a fixed, non-uniform, two-dimensional rectangular mesh.
The geometry may be either cylindrical, with mesh coordinates R and z (and angle φ
considered ignorable) to model spheromak or tokamak-like configurations; or Cartesian,
using coordinates x and z, with y ignorable. Typical mesh dimensions are approximately
100 zones in the x̂ direction, and between 500 and 1000 in ẑ, with z spacing in the current
sheet region approximately one-fourth that of the quasi-ideal region. Fig. 1 illustrates the
kind of resolution that can be achieved with these values.

2.1 Equations

The complete set of normalized equations advanced by MRC includes:

continuity:
∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

force balance:

ρ

(
∂v
∂t

+ v · ∇v
)

= J ×B −∇p+ ν∇2v + MH (2)

low-frequency Maxwell’s equations:

∂B
∂t

= −∇× E (3a)

J = ∇× B (3b)

∇ ·B = 0 (3c)

generalized Ohm’s law:

E + v × B = ηJ +
J× B−∇pe

ne
+ RH (4)

electron and ion pressure equations:

∂pe

∂t
+ ve · ∇pe = −5

3
pe∇ · ve +

2
3

[
η|J|2 + ∇ ·

(
miκe∇pe

ρ

)
−Q

]
(5)

∂pi

∂t
+ v · ∇pi = −5

3
pi∇ · v +

2
3

[
ν ||∇v||2 + ∇ ·

(
miκi∇pi

ρ

)
+Q

]
. (6)
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Figure 1: Resolution of global region and boundary layer in co-helicity MHD reconnection,
Cartesian geometry: poloidal flux and toroidal current density contours. Successive plots
are magnified 10× in the z direction. The dashed line is the separatrix.
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Here ρ is the mass density, ve = v − J/ne is the electron fluid velocity, p = pe + pi is the
sum of the electron and ion fluid pressures, ν is the viscosity, η is the resistivity, κe,i are
the thermal conductivities, and Q represents the transfer of heat between the two species as
specified by Braginskii.10 With the exception of the “anomalous resistivity” cases discussed
in Section 4, the transport coefficients are isotropic and constant in time and space.

The terms MH ∝ −∇4v and RH ∝ −∇2J are fourth-order dissipative terms added
to the momentum and Ohm’s law equations to provide small artificial hyper-viscosity and
hyper-resistivity that prove necessary to damp out grid-scale oscillations associated with the
whistler mode introduced by the Hall term. Scaling studies have been conducted9 on these
terms to ensure that their inclusion does not significantly alter the physics of the problem,
except as noted below.

2.2 Initial and boundary conditions

MRC has been constructed to model, in a somewhat idealized way, laboratory experiments
such as TS-32 and MRX3 that were designed to investigate magnetic reconnection in the
context of merging spheromaks. Its initial conditions consist of a pair of spheromaks (in the
cylindrical geometry case) or straight flux cylinders (in the Cartesian case) with parallel out-
of-plane currents that tend to draw them together. The merging is classified as “co-helicity”,
“counter-helicity”, or “null helicity” according to the relative orientations of the out-of-plane
magnetic fields of the flux tubes: parallel, anti-parallel, or identically zero, respectively. A
third flux tube with oppositely directed out-of-plane current is initially inserted between the
two that are to reconnect in order to provide an initial equilibrium. An analytic description
of this three-island equilibrium determines the initial state of the plasma.

In the co-helicity case, a force-free Taylor state11 that satisfies the equilibrium require-
ment in the absence of pressure gradients is employed. (In this case, the out-of-plane field
plays the role of a pressure during the reconnection process.) In the other two cases, the
in-plane fields and out-of-plane currents are identical to those of the co-helicity case. In the
case of null helicity, there is no out-of-plane field, so the equilibrium condition in Cartesian
geometry becomes

∇p = −∇2ψ∇ψ (7)

(where ψ is the poloidal flux function, which is kept zero on the computational boundary),
which can be satisfied by setting p(ψ) = p0 + λ2ψ2/2, along with

∇2ψ = −λ2ψ. (8)

In the counter-helicity case, equal and opposite out-of-plane fluxes satisfying the Taylor
state are used for the upper and lower islands, while the central island has no flux and uses
the above pressure formulation instead.

To initiate merging, the central island is destroyed rapidly by applying an artificially
elevated resistivity to the region it occupies. (This resistivity is dependent on the sign of ψ,
which is positive for the central island and negative for the other two. The resistivity is high
and constant in the ψ > 0 region, and low and constant in the ψ < 0 region, with a smooth
transition for 0 < ψ � 1 in between.) Once the central island has vanished, which takes
less than a single Alfvén time, the other two islands begin to coalesce under conditions of
constant resistivity. This initial phase is illustrated in the first two frames of Figs. 7 and 8.

Conducting wall boundary conditions are used in this work. These are implemented by
applying E× n̂ = 0 and v · n̂ = 0 at the boundary, where n̂ is the local normal. In addition,
we find that numerical stability for the two-fluid cases is improved by the use of an elevated
viscosity in the vicinity of the walls. This viscosity has a typical normalized value of 0.1
and falls off exponentially with distance from the walls with a scale length of about 5% of
the system size, making it wholly negligible in the diffusion region.
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3 Resistive MHD Reconnection

The resistive MHD equations are the subset of (1)–(6) formed by dropping the term propor-
tional to 1/ne from (4) and summing (5) and (6) to get a single equation for the pressure.
The behavior of a reconnecting plasma obeying the equations of resistive MHD is well
established.1 The reconnection, if unforced, occurs on a timescale that is asymptotically
the geometric mean of the resistive and advective timescales, i.e., at a rate proportional to
S−1/2, where S is the Lundquist number,

S =
τR
τA

=
LvA

η
, (9)

L being the characteristic scale length of field gradients, and vA the Alfvén speed. This
initial baseline study consists of a scan over resistivity from 10−5 to 10−3 and over viscosity
from 10−4 to 10−1 to study resistive MHD reconnection in Cartesian geometry for all three
relative helicities. The key quantity to be tracked is the total reconnection time trec, defined
here as the time elapsed between the formation of the X-point within the current sheet when
the central island has vanished; and its disappearance as the other two islands complete their
merging.

3.1 Laminar Results

The results of this baseline resistive MHD study are shown in Figs. 2, 3, and 4 and are sum-
marized in Table 1. For co-helicity merging (Fig. 2), the reconnection time scales with the

Table 1: Reconnection rates shown in Figs. 2–4 scale as η−xνy.
Helicity x y

co-helicity 0.6 0.3
counter-helicity 0.40 – 0.48 0.26 – 0.34

null helicity 0.3 0.23 – 0.26

resistivity as trec ∝ η−0.60 and with the viscosity as trec ∝ ν0.3. The three fits shown in Fig. 3
for the null helicity reconnection show that the reconnection time scales as trec ∝ η−0.3.
This implies that at small values of the resistivity, the null helicity reconnection time can
be considerably faster than that for the corresponding co-helicity case. The scaling for the
reconnection time for the counter-helicity configuration, as shown in Fig. 4, is intermediate
between those of the corresponding co- and null helicity rates shown in Figs. 2 and 3.

The expected MHD scaling of reconnection rates, including the effects of viscosity, is12

ψ̇ ∝ η1/2 (1 + ν/η)−1/4 (10)

for a Sweet-Parker-type (elongated) reconnection layer. Given that ν and η are of the same
order in our study, putting it in between the two asymptotic regimes defined by (10); and
that our model is fully compressible, unlike Sweet-Parker, our results show reasonably good
agreement with this prediction.

3.2 Tearing Instability

In addition to reconnection rates, current sheet geometries show strong agreement with
Sweet-Parker predictions: the sheet thickness δ in the inflow direction is proportional to
η1/2, while its width L in the outflow direction remains macroscopic, and is determined by
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Figure 2: Scaling of co-helicity compressible reconnection time with resistivity and viscosity.
Cartesian geometry.

Figure 3: Scaling of null helicity reconnection time with resistivity and viscosity. Cartesian
geometry.
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Figure 4: Scaling of counter-helicity reconnection time with resistivity and viscosity. Carte-
sian geometry.

the scale length of the field gradient (Fig. 1). For sufficiently small aspect ratio δ/L in the
null helicity and co-helicity cases, the current sheet is broken up by a tearing instability. The
X-point divides into a pair of X-points separated by an O-point (Fig. 5). The island around
the O-point quickly saturates, backing up the reconnection inflow, and causing the rate to
drop to the resistive time scale. The assumed symmetry of the problem domain prevents
the island from being swept outward (which would result in “patchy” reconnection14). The
critical value of η necessary for the onset of the instability is consistent with the quasi-
empirical criterion

L/δ > 7 coth
(

8
S1/2

)
(11)

set forth by Lee and Fu in 1986.15

4 Anomalous Resistivity Study

4.1 Motivation

The experimentally observed values of the reconnection rate are significantly larger than
those predicted in Table 1. Since the reconnection rate has been shown to be proportional
to the resistivity to some power, it has been postulated that the fast reconnection is simply
due to an anomalously large value of the effective resistivity.

Evidence of enhanced resistivity is provided by recent results from the Magnetic Re-
connection Experiment (MRX). Direct measurement of the ratio of electric to magnetic
fields in that device yields an effective perpendicular resistivity that may exceed the Spitzer
value by as much as a factor of ten.4 Based on this effective resistivity, Ji and co-workers
have found a good fit to the Sweet-Parker theory, suitably modified to include the effects of
compressibility and downstream pressure.

The prevailing theoretical model of enhanced resistivity is one in which high electron drift
velocity is limited by the onset of localized microinstabilities associated with ion acoustic
turbulence.16 The effect of these instabilities would be a local increase in the effective resis-
tivity in proportion to the amount by which the drift speed exceeds the ion sound speed.
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Figure 5: Poloidal flux contours during the stagnation phase of patchy null helicity MHD
reconnection. η = 10−5, ν = 10−4.
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Figure 6: The resistivity model employed in the anomalous resistivity study.

Based on this theory, we construct a simplified model in which

η = η(JT ) =




η0, |JT | ≤ Jcrit

η0 + (ηmax − η0)
(|JT | − Jcrit)

Jcrit
, |JT | > Jcrit

(12)

where JT is the local toroidal current density, η0 � ηmax is the “background” resistivity,
Jcrit is the current density at which the drift velocity is equal to the ion thermal speed, and
ηmax = c2/ωpe in appropriate units (see Fig. 6).

A simple two-dimensional analysis by Kulsrud5 has shown that, whereas under the stan-
dard Sweet-Parker assumptions the predicted reconnection inflow rate for this model would
be

vin/vout = δ/L ∝ J−1
crit (13)

(since Jcrit ∝ B0/δ and L and B0 are fixed), a more general, Petschek-like picture predicts
something quite different.
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Table 2: Data from the anomalous resistivity study. All quantities are evaluated at the peak
reconnection rate.

Jcrit δ L vout δ/L (δ/SeffL)1/3 vin/vout

21.96 0.0575 0.16 0.856 0.36 0.58 0.61
43.92 0.0535 0.16 1.03 0.33 0.53 0.40
87.83 0.037 0.17 1.04 0.22 0.45 0.33

131.70 0.026 0.18 1.04 0.14 0.38 0.34
263.50 0.014 0.21 0.982 0.067 0.29 0.27
439.20 0.0075 0.235 0.846 0.032 0.23 0.19
527.00 0.006 0.235 0.778 0.026 0.22 0.17

In the original Petschek model,17 the sheet width L′ in the outflow direction may be
much smaller than the system size L so that the sheet becomes microscopic while its aspect
ratio δ/L′ approaches unity. The reconnecting plasma is not, in this case, constrained to flow
through the microscopic sheet but instead flows across standing shocks extending outward
from its edges. The rate vin/vout, however, is still proportional to the aspect ratio.

Kulsrud’s analysis begins with the Petschek supposition L′ � L. The variation in the
strength of the reconnecting field in the outflow direction is assumed to be quadratic about
the X-point, while the resistivity varies linearly with the current density in this region. From
the assumption of stationarity Ḃ = 0 it then follows that

ηmax

Jcrit

v2
outL

′

δ2L2
≈ voutvin

L′ (14)

so that L′/L ∝ (Jcrit/L)1/3 and

vin

vout
≈

(
δ

SeffL

)1/3

∝ J
−1/3
crit (15)

where Seff ≡ LvA/ηmax. Thus in this model the presence of a resistivity gradient enhances
the reconnection rate above the Sweet-Parker prediction by causing additional bending of
the field lines, similar to what occurs in the Petschek theory.

4.2 Results

A series of simulations were run to distinguish between the two possibilities set forth above.
All cases followed co-helicity reconnection with a fully compressible, single-fluid version of
the code. The initial electron number density was held constant over the study at n =
2 × 1020 m−3 and the normalized pressure at p = 0.5, which together mandate a peak
resistivity of ηmax = 0.0730. The “background” resistivity for all cases was η0 = 10−4,
while the viscosity was ν = 0.04. The value of Jcrit was varied systematically between 21.96
and 527.0. The results are summarized in Table 2.

The current sheet thickness δ was found to vary as J−1
crit as expected. The thicker

current sheet corresponds to a wider opening angle of the X-point, allowing plasma to pass
through the diffusion region more rapidly. However, the reconnection rate, as characterized
either by the ratio vin/vout during the quasi-steady reconnection phase, or the value of ψ̇
at the X-point during this phase, is proportional to J−1/3

crit , agreeing both qualitatively and
quantitatively with the Kulsrud prediction. This study thus confirms the Kulsrud result that
enhanced resistivity can substantially increase the reconnection rate, but the process is not
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initial state middle island gone reconnecting decaying

Figure 7: Poloidal flux contours during successive phases of co-helicity Hall reconnection.
Cartesian geometry, η = 10−4, ν = 10−2, χ = 2.277× 10−2.

described by a mere enhancement of the effective resistivity within a simple Sweet-Parker
model. However, it should be noted that these results cannot be taken as a confirmation of
the original Petschek model, as the observed current sheets lack the two most conspicuous
features of that model: they are macroscopic in the outflow direction (Fig. 12b) and are not
associated with shocks of any kind.

5 Two-Fluid Effects

The two-fluid equations (1)–(6) can be expected to yield different results from those of
resistive MHD if there is any region of the plasma in which the Hall and/or electron pressure
gradient terms in Ohm’s law become comparable in size to the other terms. In such a region,
the field lines will become decoupled from the bulk plasma flow (which, because of the mass
ratio, is essentially the ion flow) but will remain frozen into the electron fluid except in
a much smaller region where dissipative or electron inertia effects become important. The
strength of the Hall term, and thus the size of the region in which it dominates, is determined
by the size of the 1/ne coefficient in front of it. When translated into the normalized units
of the code, this becomes a dimensionless quantity (which we label “χ”) equal to the ratio
of the ion skin depth to the system size. To be consistent with the work described above, χ
must take on a value of approximately 2.3× 10−2.

Co-helicity and null helicity two-fluid cases were run with initial conditions identical to
those of the studies described above. The initial pressure distribution was partitioned such
that Ti = Te.

5.1 Co-helicity Results

With the inclusion of the Hall term, several qualitative changes are immediately evident,
as shown in the flux contours in Fig. 7. One is a change in symmetry, leading to a tilt in
the orientations of the islands with respect to one another. More signficantly, we see from
comparing Figs. 1a and 7c that the region of contact between the merging islands is no
longer an elongated flat current sheet as in the resistive MHD case, but instead has become
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initial state middle island gone reconnecting decaying

Figure 8: Toroidal field contours during successive phases of co-helicity Hall reconnection.
Cartesian geometry, η = 10−4, ν = 10−2, χ = 2.277 × 10−2. The third figure is shown in
grayscale to emphasize the quadrupole structure.

a single point of osculation. The current spike about this point has an aspect ratio of unity
and a thickness intermediate between the Sweet-Parker and anomalous resistivity values.
The out-of-plane magnetic field, as shown in Fig. 8, has a novel characteristic during the
reconnection phase: it exhibits a quadrupolar perturbation about the X-point. The wide
opening angle of the X-point leads to an outflow region substantially thicker than the current
sheet itself (Fig. 10). The outflowing plasma in this region reaches a peak velocity twice
that of the local Alfvén speed and shows significant viscous heating.

The starkest contrast between this and the resistive MHD cases can be seen in the out-
of-plane electric field during the quasi-steady state phase of the reconnection. During this
phase, Ḃz = −∂xEy ≈ 0. The various contributions to Ey in the Ohm’s law equation
(4) are illustrated in Fig. 9 as a function of the coordinate x along the midplane z = 0.
Whereas the resistive (ηJy) term necessarily plays the dominant role in the current sheet
in Sweet-Parker reconnection, here it is everywhere negligible. The primary balance seen in
the figure is between the convective (v×B) term, dominant in the outflow region; and the
Hall term, dominant about the X-point except at the very center, where dissipative effects
are needed to break and reconnect the field lines and so the hyper-resistivity plays a small
but fundamental role. (We surmise that electron inertia would take over this role were that
term included in our treatment).

5.2 Null Helicity Results

The qualitative behavior of null helicity reconnection is similar to that of co-helicity recon-
nection. This similarity extends to the quadrupolar toroidal field, the magnitude of which
is of the same order as that of the reconnecting poloidal field despite the fact that there is
no initial toroidal field for these cases. This indicates that the decoupling of electrons and
ions has the effect of strongly twisting the field into the out-of-plane direction. The outflow
of the two fluids occurs on two different spatial scales, as shown in Fig. 10: the electrons
flow out of the region much more rapidly (at approximately the whistler wave speed for a
wavelength corresponding to the layer thickness) and in a narrower stream than the ions.
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Figure 9: Out-of-plane electric field along the midplane during co-helicity Hall reconnection,
by component. η = 10−4, ν = 10−2, χ = 2.277× 10−2. Cartesian geometry.

Figure 10: Contours of jR (dark lines) and vR during null helicity Hall reconnection. η =
10−4, ν = 10−2, χ = 2.277× 10−2, t = 5.5. Peak vi = 1.6vA; peak ve = vi + 7.3vA.
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Figure 11: Comparison of MHD and two-fluid rate scalings of null helicity reconnection.
Cartesian geometry.

The overall reconnection rate for both configurations is highly accelerated compared to
that of resistive MHD. As indicated in Fig. 11, the dependence of the rate on the resistivity
is also broken in the low-η limit, making this “fast reconnection” by definition. We also
note that while the rate is highly sensitive to the value of the Hall parameter, it is quite
insensitive to the size of the hyper-resistivity. So long as the diffusion region defined by
the dissipative terms is smaller than an ion skin depth, the reconnection rate is determined
by the Hall parameter. The current density in the diffusion region adjusts itself to the
dominant dissipative parameter, in this case the hyper-resistivity, so as to keep the electric
field constant in space.

5.3 Interpretation

The results in this section can be interpreted in terms of the two-fluid theory of collisionless
reconnection.18,6 In this theory, the region of the plasma sufficiently close to the X-point
obeys the equations of electron MHD. The reconnecting field lines are thus frozen into the
electron fluid, which is carrying the strong out-of-plane current. The sharp peaking of this
current about the X-point indicates a strong shear in the out-of-plane electron velocity,
resulting in a bending of the reconnecting in-plane field into the quadrupolar out-of-plane
structure seen in Fig. 8c. In the steady state, this bending is balanced by convection of
the out-of-plane field away from the X-point by electron flow in the outflow direction. The
result of balancing these effects is that the out-of-plane field is of the same order as the
reconnecting field; and the electron outflow occurs at the whistler speed based on the sheet
thickness, while the inflow rate is independent of this thickness. Topological change (field
line breaking) occurs within the much smaller region defined by the hyper-resistivity (or
presumably, in a real collisionless plasma, by the electron inertial length); conventional
resistivity does not come into play at all.
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Figure 12: Typical out-of-plane current densities near the X-point during quasi-steady-state
2D reconnection. η0 = 10−4 for all cases. a. MHD. b. Anomalous resistivity, Jcrit = 132.
c. Two-fluid effects, χ = 2.3× 10−2.

6 Discussion

From the results of the foregoing sections, it is evident that either anomalous resistivity or
the Hall term on its own is fully capable of giving rise to fast reconnection. In order to
determine which (if either) of these two effects is playing the dominant role in a particular
physical system, it is useful to compare the detailed predictions made by each study.

Anomalous resistivity accelerates reconnection in part by expanding the thickness δ
of the current sheet (Fig. 12b). The Hall effect, in contrast, achieves a similar increase
in aspect ratio by contracting the sheet width L (Fig. 12c). Anomalous resistivity is a
collisional effect, and its dissipative nature is manifested in the coarse structure seen in
the figure. The collisionless reconnection that takes place in the two-fluid case results in
fine-scale structures, including a microscopic current sheet with X-shaped extensions, and
a quadrupolar out-of-plane magnetic field. Diagnosing the out-of-plane field and measuring
the shape of the current sheet in reconnection experiments are thus critical to resolving the
question of which effect is predominant.

We note that while it is now clear that an enhanced resistivity can increase the re-
connection rate substantially, the experimental justification of such a resistivity remains
uncertain. Careful measurements of fluctuations in the MRX current sheet, for example,
seem to indicate that the lower hybrid drift instability in that device, a priori the most
promising candidate as a theoretical explanation of the enhancement, is not correlated with
reconnection behavior and is unlikely to play a significant role in collisionless reconnection.19

Additional non-turbulent physics should therefore be pursued.

7 Summary and Conclusions

We have presented simulation results obtained by solving the full set of extended MHD
equations over a global domain but with enough resolution to fully resolve the inner re-
connection region. These results support and extend conclusions reached based on previous
local or reduced studies. Sweet-Parker reconnection is the correct result for two-dimensional
constant-resistivity single-fluid MHD at moderate Lunquist numbers. At higher S, tearing
instabilities set in and resistive MHD reconnection becomes slow or patchy. Standard resis-
tive MHD is therefore inadequate for explaining fast reconnection.

In the presence of high, current-dependent resistivity within the MHD model, the X-
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point tends to open up and the Kulsrud scaling is observed. The resulting reconnection rate
can be significantly higher than that predicted by the Sweet-Parker model, even taking the
higher resistivity into account. Because the enhanced resistivity is postulated to depend
on collisions, however, this model may have limited application in very high temperature
plasmas.

Results were obtained for the global reconnecting plasma problem with the full two-
fluid equations in the high Lundquist number regime. The results presented here bear
out claims previously made about collisionless reconnection mechanisms based on reduced
equation20 or boundary layer6 studies. Reconnection in this regime was shown to be rapid
and independent of the plasma resistivity. The current sheet exhibits fine structures that
differ qualitatively from those in the other two models. Simulations aimed at modeling
bulk plasma phenomena on resistive time scales must include two-fluid effects to predict
reconnection rates accurately.

Careful measurements will be required to adjudicate between the collisional and colli-
sionless fast reconnection models in physical systems. Assessing the shape of the current
sheet should provide the clearest indication of which effect predominates.
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