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Guiding center equations in toroidal equilibria

Roscoe White, Leonid Zakharov
Plasma Physics Laboratory, Princeton University, P.O.Box 451,

Princeton, New Jersey 08543

Abstract

Guiding center equations for particle motion in a general toroidal
magnetic equilibrium configuration are derived using magnetic coordi-
nates. Previous derivations made use of Boozer coordinates, in which
the poloidal and toroidal angle variables are chosen so that the Jaco-
bian is inversely proportional to the square of the magnetic field. It is
shown that the equations for guiding center motion in any equilibrium
possessing nested flux surfaces have exactly the same simple form as
those derived in this special case. This allows the use of more spatially
uniform coordinates instead of the Boozer coordinates, greatly increas-
ing the accuracy of calculations in large beta and strongly shaped
equilibria.

PACS numbers: 52.20.Dq 52.65.Cc
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High energy particles in toroidal thermonuclear fusion devices, such as
fusion product alpha particles, or those due to neutral beam injection or ion
cyclotron heating, are well known to behave as independent test particles,
and their confinement can be analyzed to a high degree of accuracy using
the equilibrium field and the guiding center approximation. Guiding center
equations are important for simulations requiring the calculation of particle
motion for long periods of time, such as the study of alpha particle confine-
ment during the time it takes for the particles to slow to the energy of the
background plasma. It is advantageous to use magnetic coordinates for such
calculations, since the particle motion is to lowest order along the magnetic
field, and only to higher order (the drift motion) across the field.

In general toroidal coordinates ψp, θ, ζ
′ consider a magnetic field which

possesses nested toroidal flux surfaces labeled by ψp, with θ a poloidal angle,

and ζ ′ a toroidal angle. Since ~B is orthogonal to ∇ψp write

~B = ∇ψp ×∇V (1)

and choose V = q(ψp)θ − ζ ′ + λ(ψp, θ, ζ
′). Choose 2πψp to be the poloidal

flux inside the magnetic surface. The element of surface area in a poloidal
section is d~Sp = Jp∇θdζ ′dψp, giving

2πψp =

∫
~B · ∇θJ dψpdζ ′ =

∫
dψpdζ

′ −
∫ ζ′0+2π

ζ′0

∂λ

∂ζ
dψpdζ

′ (2)

for any ζ ′0, with the Jacobian given by J −1
p = ∇ψp · ∇θ×∇ζ ′, and thus λ is

periodic in ζ ′. Replace ζ ′ with ζ through ζ ′−λ = ζ and note that adding 2π to
ζ is equivalent to adding 2π to ζ ′, and thus λ is also periodic considered as a
function of ζ. In these “straight field line variables”, dζ/dθ = ~B ·∇ζ/ ~B ·∇θ =

q(ψ) along a field line, and we have the contravariant representation for ~B

~B = ∇ψ ×∇θ +∇ζ ×∇ψp (3)

with dψ/dψp = q(ψ). Now choose 2πψ to be the toroidal flux inside the

surface. The element of surface area in a toroidal section is d~St = J∇ζdθdψ,
giving

2πψ =

∫
~B · ∇ζJ dψdθ =

∫
dψdθ +

∫ θ0+2π

θ0

∂λ

∂θ
dψdθ (4)
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for any θ0, with the Jacobian given by J −1 = ∇ψ · ∇θ × ∇ζ = qJ −1
p ,

and thus λ is also periodic in θ. The surface labels ψ and ψp can be used
interchangeably, according to which is more convenient for the equilibrium
under study. For example, in a tokamak the minor radius is a single valued
function of both the toroidal and poloidal flux, but in a reversed field pinch
it is a single valued function only of the poloidal flux.

From the equilibrium condition

~j × ~B = ∇p (5)

with p = p(ψ) it follows that ~j · ∇ψ = 0. Write ~j = ∇ψ ×∇W , and choose
W = Ī ′(ψ)θ + ḡ′(ψ)ζ + α(ψ, θ, ζ). Then

~j = (Ī ′(ψ) + α′
θ)∇ψ ×∇θ + (ḡ′(ψ) + α′

ζ)∇ψ ×∇ζ (6)

with primes indicating derivatives with respect to the subscripted variable.
Choose 2πĪ to be the toroidal current inside ψ, and 2πḡ to be the poloidal
current outside ψ. Then as is the case with λ, α is periodic in θ, ζ. Then
∇× ~B = ~j gives the covariant representation for ~B

~B = δ∇ψ+ I∇θ+ g∇ζ (7)

with I(ψ, θ, ζ) = Ī(ψ)+σ′θ, and g(ψ, θ, ζ) = ḡ(ψ)+σ′ζ , and δ(ψ, θ, ζ) = σ′ψ−α.
These three flux functions q(ψ), ḡ(ψ), Ī(ψ) and the two functions of three

variables α(ψ, θ, ζ) and σ(ψ, θ, ζ) are further related. Dot the covariant and

contravariant expressions for ~B, giving B2J q = gq + I . Averaging in ζ
and θ we find q(JB2)00 = ḡq + Ī with f00 =

∫ 2π

0

∫ 2π

0
fdζdθ/(4π2). We also

obtain the magnetic differential equation for the 3-D function σ, qJB2 −
q(JB2)00 = qσ′ζ+σ

′
θ. Now use the equilibrium condition, Eq. 5. Substituting

the expression for ~j we find (Ī ′+α′
θ)+(ḡ′+α′

ζ)q = J p′q. Averaging in ζ and θ
we find that Ī, ḡ, and p′ are related through Ī ′+ ḡ′q = J00p

′q. Thus only two
of the three functions ḡ, q, Ī can be independently chosen. Further we find
the magnetic differential equation for the 3-D function α, α′

θ + qα′
ζ = J̃ p′q

with J̃ = J − J00. Primes here indicate derivatives with respect to ψ. An
equilibrium is thus deternined by two of the three flux functions ḡ, Ī, q, and
the two functions of three variables σ and α. Changing the flux variable to
ψp introduces factors of q in the derivative terms and in the change from J
to Jp.
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The guiding center Hamiltonian is

H(ρ‖, ψ, ζ, θ) =
ρ2
‖B

2

2
+ µB + Φ (8)

with µ the magnetic moment, ρ‖ = v‖/B the normalized “parallel gyro ra-
dius”, and Φ the electric potential. The field magnitude B and the potential
may be functions of ψ, (ψp), θ and ζ. The units are defined by the on-axis
gyro frequency (time) and the major radius (distance).

The Lagrangian can be put in the form[1, 2, 3]

L = [ψ + ρ‖I ]θ̇+ [ρ‖g − ψp]ζ̇ + µξ̇ −H, (9)

with ξ the gyrophase, and the canonical coordinates are ζ and θ with the
canonical momenta Pζ = ρ‖g − ψp, and Pθ = ψ + ρ‖I .

Note that to achieve this form the guiding center velocity along a field
line has been modified by a correction of the order of the gyroradius[3].
This change in the definition of the guiding center, essential to obtain the
Hamiltonian form given, does not modify the particle orbit, but only the
time it takes to complete the orbit. Without this modification the motion
does not satisfy the Liouville equation, and for some configurations can even
violate energy conservation.

The equations of motion are

ζ̇ =
∂H

∂Pζ
Ṗζ = −∂H

∂ζ

θ̇ =
∂H

∂Pθ
Ṗθ = −∂H

∂θ
(10)

Previous derivations of equations for advancing the variables ρ‖, ψ, ζ, θ, made
use of Boozer coordinates[4]. In this work we show that this restriction of
the coordinate system is not necessary.

The Hamiltonian is expressed in the variables yk = ρ‖, ψ, ζ, θ, but Hamil-
ton’s equations are given in xk = Pζ , Pθ, ζ, θ. Partial derivatives for this
change of variables are

∣∣∣∣∂xk∂yj

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∂ρ‖Pζ ∂ψPζ ∂ζPζ ∂θPζ
∂ρ‖Pθ ∂ψPθ ∂ζPθ ∂θPθ

0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
(11)
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The inverse is

M ≡
∣∣∣∣∂yk∂xj

∣∣∣∣ =
1

D

∣∣∣∣∣∣∣∣

∂ψPθ −∂ψPζ Tψζ Tψθ
−∂ρ‖Pθ ∂ρ‖Pζ Tζρ‖ Tθρ‖

0 0 D 0
0 0 0 D

∣∣∣∣∣∣∣∣
(12)

where Tγβ = ∂γPζ∂βPθ−∂βPζ∂γPθ. Note that the determinant D = gq+ I +
ρ‖(gI ′ψ − Ig′ψ) involves derivatives of I and g with respect to the variable ψ,
and none with respect to ζ or θ. In a general equilibrium of course both I
and g are functions of all three variables.

The equations of motion can be written

dxk
dt

= Skj
∂H

∂xj
(13)

with

S =

∣∣∣∣∣∣∣∣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣∣
(14)

which becomes in the variables yk

dyk
dt

= (MSMT )kj
∂H

∂yj
(15)

or

∣∣∣∣∣∣∣∣

ρ̇‖
ψ̇

ζ̇

θ̇

∣∣∣∣∣∣∣∣
=

1

D

∣∣∣∣∣∣∣∣

0 0 −∂ψPθ ∂ψPζ
0 0 ∂ρ‖Pθ −∂ρ‖Pζ

∂ψPθ −∂ρ‖Pζ 0 0

∂ψPζ ∂ρ‖Pζ 0 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∂ρ‖H

∂ψH
∂ζH
∂θH

∣∣∣∣∣∣∣∣
(16)

where we have used ∂ζPθ = ∂θPζ . In this matrix there are no derivatives
of the canonical momenta with respect to ζ or θ, and thus no derivatives
of I or g with respect to these variables appear in the equations of motion.
The equations of motion then have exactly the same form as they have using
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Boozer coordinates[3], where σ = 0 and g = g(ψ), I = I(ψ). However
this choice fixes both ζ and θ in terms of the equilibrium parameters, and
can lead to numerically inconvenient variables. The complication of general
coordinates consists in the fact that both g and I must be evaluated as
functions of all three variables in a fully 3D equilibrium, or in axisymmetric
equilibria, that I = I(ψ, θ).

We note in passing that these equations are easily generalized to include
time dependent perturbations which destroy the magnetic flux surfaces, so
the initial restriction of the existence of such surfaces is not a severe one.

We conclude that in a general equilibrium configuration with nested
toroidal flux surfaces expressed in any straight field line coordinates the form
of the equations of motion are exactly the same as those given using Boozer
coordinates. This fact is very useful for practical application. In Figs. 1,
2 are shown the coordinate systems for an axisymmetric National Spherical
Torus Experiment (NSTX) equilibrium[6] of 12% beta (the ratio of plasma
pressure to magnetic pressure) using Boozer coordinates and using the more
regular coordinates r(ψ, θ) =

∑
rm(ψ)eimθ, z(ψ, θ) = z0(ψ) + z1(ψ)sinθ used

by the Equilibrium and Stability Code (ESC)[7]. These coordinates coin-
cide with the Boozer coordinates near the magnetic axis but are much more
regular near the plasma edge. Clearly in using Boozer coordinates it is diffi-
cult to obtain a good representation of the field quantities near the outboard
midplane. Using the more uniform coordinates involves the numerical rep-
resentation of two functions of two variables, B(ψ, θ) and I(ψ, θ) instead of
only B, but this inconvenience is more than compensated by the increased
accuracy of the representation. In Fig. 3 is shown the dependence of the
magnetic field on θ for these two choices of coordinates, as well as the depen-
dence of the function I(ψ, θ) on θ, for five surfaces ranging from ψ = 0.55ψw
to ψw with ψw the outside bounding surface. The difficulty encountered nu-
merically in using the Boozer representation is due to the sharp behaviour
of B at the outer midplane. Note that on the other hand I(ψ, θ) in the ESC
coordinates is a very smooth function.

This work was supported by the U.S. Department of Energy Grant DE-FG03-94ER54271.
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Figure Captions
Fig. 1 NSTX equilibrium with β = 12% using Boozer coordinates.
Fig. 2 NSTX equilibrium with β = 12%, using ESC coordinates.
Fig. 3 Variation of B in Boozer and ESC coordinates, and I(ψ, θ) in ESC coordinates,

on five flux surfaces ranging from ψ = 0.55ψw to ψw.
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