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HOW TO PATCH ACTIVE PLASMA AND COLLISIONLESS SHEATH: PRACTICAL GUIDE 
Igor D. Kaganovich 

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, 08543, USA 
 
 

Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates 
separate calculations of the plasma and sheath.  The Bohm criterion provides the boundary 
condition for calculation of plasma profiles. To calculate sheath properties a value of electric field 
at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of 
the boundary electric field and robust procedure to approximately patch plasma and collisionless 
sheath with a very good accuracy are reported. 

 
 

I. Introduction 
 

The calculation of plasma profiles is nowadays a 
routine task. In most plasmas employed in applications the 
Debye length λD is small compared with the plasma half 
width L. Resolving the small Debye length throughout the 
whole plasma requires solving Poisson equation, which is 
challenging computationally because the electric field has 
to be obtained from small differences between the electron 
and ion densities. To avoid the inconvenience, the 
standard procedure is to separate the plasma and sheath 
regions, and to employ the quasineutrality condition in the 
plasma region instead of Poisson’s equation. The Bohm 
criterion – setting the ion velocity equal to the ion sound 
velocity - gives the boundary condition for the plasma 
region and uniquely defines plasma profiles. In contrast to 
the plasma region, the Bohm criterion is not sufficient for 
a unique determination of sheath properties.  

If the sheath potential is much larger than the electron 
temperature, it follows from the Boltzmann relation that 
the electron density in the sheath can be neglected, the  
plasma sheath boundary can be assumed infinitely thin, 
and the electric field at the plasma-sheath interface can be 
set to zero. This approach has been successfully applied 
for calculating sheath parameters in dc (Child-Langmuir 
law [1]) and rf discharges [2, 3, and 4].  

The relevant question is: is it possible to calculate 
sheath properties with higher accuracy? If all regions with 
a length of order λD and a potential drop order the electron 
temperature Te have to be resolved, an accurate patching 
between the plasma and the sheath region has to be 
performed. In general, it requires either a direct numerical 
solution of Poisson’s equation throughout the plasma and 
sheath regions or applying matched asymptotic 
approximations, as described in Refs. 5, and 6, and in 
references there in. Numerical simulation of Poisson’s 
equation for the whole discharge is computationally 
intensive and inefficient. The utilization of matched 
asymptotic approximations requires a great deal of 
mathematical expertise and is not very robust for 
engineering purposes. Therefore, there were a number of 
attempts to patch the plasma and sheath approximately.  

Poisson’s equation is a second order equation, and it 
requires two boundary conditions: the potential on the 
wall, and another condition set at the plasma-sheath 

interface. Because the position of the plasma-sheath 
interface is unknown a priori, the values of both the 
potential and the electric field have to be specified. In Refs. 
7 and 8 the value /( )e DsT eλ  was proposed for the electric 
field at the plasma-sheath patching point, where λDs is the 
Debye length corresponding to the plasma density ns at the 
plasma-sheath interface. This electric field has been utilized 
as the boundary condition to join the plasma and sheath in 
discrete plasma-sheath models and was used in the 
calculations of dc [7] and rf [3] sheaths. 

This approach has been recently criticized in Ref. 9, 
where it was claimed that such a procedure results in “the 
disjunction between the plasma and sheath”. In their 
response [10], the authors of Ref. 8 refuted this claim, and 
explained that the sheath solution in Ref. 9 was taken with 
zero electric field at the plasma-sheath boundary instead of 
/( )e DsT eλ .  

In this Letter, a new procedure for approximate 
patching is proposed. A new value for the electric field at 
the plasma-sheath boundary is determined from numerical 
calculations and the theory of the transition layer to be 

3/50.962[ /( )]( / )e Ds Ds sT e Z cλ λ , where Z is the ionization 
frequency, /s ec T M=  is the ion sound speed, and M is 
the ion mass. This value agrees with the theory of the 
transition layer between the plasma and sheath [5,6]. In 
addition, it was found that accounting for the small 
transition region between the plasma and sheath regions, 
which has a width of order 4/5( / )Ds DsLλ λ  and a potential 

drop of order 2/5( / )Ds eL Tλ , yields an approximate 
solution which is very close to the exact solution. These 
numerical findings verify the theory of the transition layer 
described in Refs. 5, 6, and 9.  

 
II. Basic equations 
 
We shall employ fluid equations in one dimension in 

the collisionless approximations. The same notation is used 
as in Ref. 9. These equations consist of the continuity 
equation 

( )i i e
d n v Zn
dx

= , (1) 

the ion momentum conservation equation  
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2( )i i i
d dVM n v en
dx dx

= − , (2) 

and the Boltzmann relation governing electrons density  

0 expe
e

eVn n
T

 =    . (3) 

Here, the subscripts i and e denote ion and electron 
quantities, respectively, and the subscript 0 corresponds to 
the central density values at x=0. V is the potential.  

The potential is given by Poisson’s equation 
2

2 4 ( )i e
d V e n n
dx

π− = − . (4) 

The boundary conditions for the system of Eqs.(1)-(4) 
are: at the symmetry axis ( 0x = ), 0, / 0V dV dx= = , 

0e in n n= ≡ ; at the wall ( x L= ), wV V= , where wV  
is the wall potential, see Appendix 1. The ionization 
frequency Z is an eigenvalue of the system of Eqs.(1)-(4). 

The system of Eqs.(1)-(4) is known to yield results 
very close to the exact ion kinetic approach [11, 12]. 
Because of its simplicity, it has been widely employed in 
theoretical and engineering studies.  

In the limit Ds Lλ << , the potential can be 
determined from the quasineutrality condition i en n= . 
Substituting the Boltzmann relation Eq. (3) into the 
quasineutrality condition yields the plasma potential: 

/ lne iV T e n= . Following Ref. 9, and normalizing 
Eqs. (1)-(3) in the plasma region ( e in n= ) with 

0/i iN n n= , 0/e eN n n= , / eeV Tφ = − , /i sU v c=  
gives [9] 

2
1

1iN e
U

φ−= =
+

, (5) 

2

2
1
1s

dU Z U
dx c U

+=
−

. (6) 

Equation (6) has the solution / 2arctansxZ c U U= −  
[5, 13]. Eq. (5) is singular at the point 1U = , meaning 
that the plasma can not overcome the ion sound velocity in 
this solution. Bohm showed that sheath can be patched 
with the plasma only if i sv c≥  [14]. Therefore, at the 
plasma-sheath interface (x=Lp) the Bohm criterion 
i sv c=  holds. From the Bohm criterion, one readily finds 
( /2 1) /s pZ c Lπ= − , and the plasma solution gives 

0 /2sn n=  and / ln2s eV T e= −  at the point 1U = .  
 
III. Patching sheath and plasma 
 

The Poisson equation (4) is a second order equation, 
therefore, it requires two boundary conditions. One is the 
value of the potential at the wall wV , and another 
boundary condition is determined from correct patching 
with the plasma. Using direct numerical integration of the 
system of Eqs. (1-4) for a wide range of parameters 

0 /D Lλ , where 0Dλ  is the Debye length corresponding to 
the central plasma density n0, it was determined that the 
value of the electric field at the point where i sv c=  agrees 
with the expression 

3/5
0 0( / ) /( )s e D DE T L eλ λ= , (7) 

to within 10% accuracy and is independent on the wall 
potential. The results of the simulations are gathered in 
Table 1.  

 λD0=λDrx
10  

λD0=λDr λD0=λDr/
10  

λD0=λDr/
10 

(λD0/L)3/5 0.102 0.051 0.0257 0.0130 

φw =1 0.102 
 

0.049 0.0240 0.0119 

φw =5 0.112 0.052 0.0243 0.0121 

φw =10 0.117 0.053 0.0244 0.0121 

Table 1. The value of normalized electric field 0 /D eeE Tλ  for 
different values of λD0/L and wall potentials. The reference value 
λDr/L=0.7071x10-2 was taken from Ref.9.  
 

Table 1 lists values of the normalized electric field 
0 /D eeE Tλ  at the point where i sv c=  for L=1, four 

different values of λD0/L (in a wide parameter range), and 
three values of the wall potentials Vw =-1,5,10Te. The 
reference value λDr/L=0.7071x10-2 was taken to be the same 
as in Ref. 9. The other values of λD/L include the value half 
an order of magnitude larger than the reference value, half 
an order of and an order of magnitude smaller than the 
reference value. The second line in Table 1 shows the value 
of 3/5

0( / )D Lλ . From Table 1, it is clearly seen that all the 
values in a given column are close to each other, meaning 
that the value of the normalized electric field 0 /D eeE Tλ  at 
the point where i sv c=  is close to the value given by 
Eq.(7) and is independent of the wall potential.  

Knowing the value of the electric field at the plasma-
sheath interface, the sheath properties can be determined. 
Neglecting the increase in the ion flux due to ionization in 
the bulk of the sheath region enables one to readily integrate 
Eqs.(1,2), giving 

1/22 ( )1

s
i

s
s

e

n
e V Vc
T

Γ=
 − +   

, (8) 

where sV  is the potential at the plasma-sheath interface and 
sΓ  is the ion flux in the sheath. Substituting the ion density 

Eq.(8) and electron density Eq.(3) into Poisson’s equation 
and integrating once gives:  
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Fig.1(a) Ion and electron density profiles and Fig. 1(b) ion 
flow velocity profiles calculated from the full system of 
equations (1)-(4) (solid lines), and approximate solutions in the 
sheath using Eq. (9) (dashed line for ion density and dotted line 
for electron density). Approximate solutions in the sheath with 
the electric field at the plasma-sheath boundary given by Eq.(7) 
and the location shifted from the point A (x=0.907) to the point B 
(x=0.921) are  practically indistinguishable from the exact 
solution. Prime denotes the sheath solution with the electric field 
at the plasma-sheath boundary /( )s e DsE T eλ= , as proposed 
in Ref.7. The plasma solution of Eqs.(5), and (6) is shown with 
the dash-dotted lines. The discharge conditions are the same as in 
Fig.1 of Ref.9 : λD0/L=0.7071x10-2, Vw =-5Te/e.  
 

( ) ( )

2 2

1/2

1 1
2 2

1 2 exp (1 )
s

d d
dy dy
η η

γ η η γ

     = +       

+ + − − +

, (9) 

where following the same notation as in Ref. 9, theses 
normalized quantities were introduced: 

( )/s Dsy x x λ= − , ( )/s ee V V Tη = − , 
/ | /s Ds s ed dy eE LTη λ= and 02 /s sn cγ = Γ . γ  is larger 

than unity, and accounts for the additional ionization in the 

transition layer and adjacent sheath region, (see appendix II 
for details).  Equation (9) is readily integrated, yielding ion 
and electron density profiles in the sheath, as shown in 
Fig.1(a).  

Fig.1 shows very good agreement between the exact 
and approximate sheath solutions, in contrast to the claim of 
Ref.9. In Ref. 9, zero boundary electric field at the plasma 
sheath interface was used, thus, producing an oversimplified 
patching, as described in Ref.10.   

Fig.2 depicts the electric field as a function of the 
normalized potential (-eV/Te). This figure is similar to Fig.2 
of Ref.9 but instead of patching the plasma solution Eq.(6) 
and the sheath solution Eq.(9) using 0sE = , sE  given by 
Eq. (7) was used. Apparently, such a patching of plasma 
and sheath solutions yields an electric field profile, which is 
very close to the exact solution, in disagreement with the 
claim of Ref. 9.  
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Fig.2 The variation in the electric field in units of /e DsT λ  as 

a function of the potential in units of (Te/e). The conditions are the 
same as in Fig.1. The finely dotted line corresponds to the sheath 
solution patched at the point where the plasma solution given by 
Eqs. (5) and (6) has the same electric field sE  as given by Eq. (7), 
corresponds to point A ( / 0.623eeV T− = ). The coarsely 
dotted line (practically indistinguishable from the exact solution) 
patches the sheath solution at the point B ( / 0.709eeV T− = ) 
with the patching position being shifted by 0.085 . The shifting 
distance corresponds to 1/2 0.085trδφ = , where trδφ  is given 
by Eq.(20). The plasma solution of Eqs.(5) and (6) is showed with 
dash-dotted lines. The dashed line corresponds to the sheath 
solution utilizing the value of the electric field at the plasma-
sheath boundary /( )s e DsE T eλ= , as proposed in Ref 7. 
 

The patching of the sheath solution of Eq. (9) with the 
plasma solution Eqs. (5) and (6) at point where E=Es 
apparently gives continuous of electric field profiles, 
because the electric field is assumed continous in the 
patching. This disagrees with the claim of Ref.9 [10]. At the 
same time, in accord with Ref.9 the value of the electric 
field /( )s e DsE T eλ=  (proposed for patching in Ref.7) 
corresponds to the point of exact solution V=-3Te which is 
far inside the sheath, namely at x=0.985 ,. Thus, it neglects 
part of the sheath (from x=0.907 to x=0.985) and 
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correspondingly neglects the potential difference (3-0.62) 
Te, as compared with the exact solution.  

From Fig.2, it is obvious that even patching using the 
value of electric field sE  in Eq. (7) does leave out a part 
of the exact solution. Shifting the patching point by a 
distance in potential ( )2/52 / /(2 )tr Ds s eV Z c T eδ λ=  
produces very good agreement between the approximate 
sheath solution Eq.(9) and the exact solution. This 
“disjunction” between the plasma and sheath clearly 
indicates the necessity of a special transition layer between 
plasma and sheath.  

 
IV. Transition layer 

 
The transition layer appears due to a sonic singularity 

in plasma equations. As shown by Bohm [14], the sheath 
electric field can be smoothly patched with the small 
electric field in the plasma (small compared with the 
sheath) only if the ion flow velocity at the plasma-sheath 
boundary is larger or equal to the ion sound velocity. 
Therefore, a transition through the ion sound velocity 
should occur in the plasma. It follows from Eqs.(6) that 
the ion sound velocity can not be exceeded in plasma with 
a slab geometry, and, therefore, the ion sound velocity 
must be reached at the boundary between the  sheath and 
plasma regions. The situation is different for non slab 
geometry. If plasma expands in some kind of plasma 
nozzle with cross-sectional area A(x). The continuity 
equations become instead of Eqs.(1) and (2) 

( )i i e
d n v A Zn A
dx

=  (10) 

2( )i i i
d dVM An v eAn
dx dx

= − , (11) 

and Eq. (6) describing plasma region is modified to  

2 2
1
1(1 ) (1 )

s

dU Z dAU U U E
dx c A dx

 − = + − +    , (12) 

where the electric field 1 ( ln / )e iE E T d N dx= − −  is the 
difference between the actual electric field and the electric 
field obtained with the quasineutrality assumption and the 
Boltzmann relation. From Eq.(12), it is obvious that a 
transition from subsonic to supersonic flow is possible 
only if a plasma channel is expanding, for example in 
cylindrical or spherical geometries. A necessary condition 
for avoiding the sonic singularity is that right hand of Eq. 
(12) equals zero where 1U = . In slab geometry it is only 
possible if 1 0E > . Transition through sonic speed in a 
slab geometry requires ( ln / )e iE T d N dx> − , i.e., 
breaking quasineutrality.  

Correspondingly, to obtain the mathematical structure 
of the transition layer one has to solve Poisson ‘s equation 
near the sonic point. In the sonic point ( sx x= , i sv c= ), 

0 /2in n≅ . Series expansion of the ion flux gives 

[ ]0 /2 ( )i s sn c Z x xΓ ≅ + − , (13) 

and the ion velocity becomes [making use of Eq.(2)]  
2 2( )/2 ( ) ( )i S s sM v c e V V Z x x− = − − − − , (14) 

yielding the space charge near the sonic point 

0 1 / ( )
2 1 2 2 / ( )

s s
i e

s s

Z c x xnn n e
Z c x x

φ

φ
− + − − = − + − − 

. (15) 

Expanding the space charge in Eq.(15) to the first 
nonzero term in φ  and sx x−  gives the  Poisson equation 
near the sonic point 

( )
2

22
02
1 ( )
2D s s

s

d Z x x
cdx

φ λ φ φ−  = − + −   
. (16) 

The same result can be obtained by differentiating the 
Poisson equation (4) and substituting the ion and electron 
density derivatives from Eqs.(1)-(3), which readily gives [5] 

( )3
2
03 2

2i
D

s

d d N Zee
dx c Udx U

φ
φφ φλ

−
− − 

 = − +  
. (17) 

Equation (17) is exact and describes both plasma and 
sheath regions. In the limit 0 /D sc Zλ << , the electric 
field can be determined by setting the right hand side of Eq. 
(17) is to zero. This procedure fails at certain sφ φ=  
where 2

iN U e φ−= . At this point ( sx x= ), the ion 
velocity is close to the ion sound velocity 1U ≈ , because 
the quasineutrality condition iN e φ−=  holds in the nearest 
vicinity of this point. In the neighborhood of sφ φ= , the 
left hand side of Eq. (17) must be also accounted for. 
Performing Taylor expansion near sφ φ= : 

2 2 2 2/ ( )/ 1/2[ ( ) 1] ( )i i se N U U e N U Uφ φ φ φ φ− −− = − ≈ − ≈ −
, Eq. (17) becomes  

( )
3

2
03 D s

s

d d Z
dx cdx

φ φλ φ φ−  = − +   
. (18) 

Integrating Eq.(18) yields Eq.(16). 
Equation (16) is a nonlinear, nonhomogeneous 

differential equation. The scaling of the solution for 
potential trδφ  and transition layer width trxδ  can be 
estimated from Eq. (16), looking for a solution in the form 

( / )s tr trF x xφ φ φ− = , where (1)F O= . Near the point 
sx x= , all terms of Eq. (16) should be of the same order, 

therefore 

( )22
02

1
2( )

tr
D tr

trx
δφ λ δφ
δ

−= , ( )2
1
2 tr tr

s

Z x
c

δφ δ= . (19) 

The solution of Eq.(19) is 
2/52 Ds

tr
s

Z
c
λδφ  =    , 

1/5

2
s

tr Ds
Ds

cx
Z

δ λ
λ

 =    . (20) 

This scaling Eq.(20) was received in matched solutions 
in Ref. 5, 6 and 13. Note that it is necessary to account for 
the ionization term (last term in Eq. (18),(16) in order to 
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receive a smooth matching of the plasma and sheath 
solutions [15]. The function ( / )trF x xξ =  is obtained 
from the equation 
2

2
2

d F F
d

ξ
ξ
= + . (21) 

The boundary condition corresponds to the 
quasineutral region at 0ξ <  

0 0, / 1/2F dF dξ ξ ξ= − − = −  where 0 1ξ− >>  is 
any large number. 

The plot of function ( )F ξ  is shown in Fig.3.  
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Fig.3 The plot of normalized potential and electric field in 

the transition layer ( / )s tr trF x xφ φ φ ξ− = =  and the 

normalized electric field ( / ) /tr trE x dF dφ ξ= . 
 

In Fig.3, one can see that the function ( )F ξ  breaks the 
quasineutral solution ( )plF ξ ξ= − −  at 1ξ > − . The 
sonic point corresponds to F(y)=0 (see Eq.(14), second 
term on the right hand side is small compared with the first 
term). At this point, / 0.962dF dξ =  and the value of 
electric field is therefore 0.962 /s tr trE xδφ δ= . 

Substituting scales for trδφ  and trxδ  from Eqs.(20) gives 

3/520.962 e Ds
s

Ds s

T ZE
e c

λ
λ

 =    . (22) 

Substituting ( )/2 1 /sZ c Lπ= −  for collisionless 
plasma gives the same value for the electric field at the 
sonic point as Eq.(7) but with a factor 

[ ]3/50.962 2( 2) / 2 0.907π − = . As can be seen from 
Table.1, the value of electric field in Eq.(7) reduced by a 
factor 0.907 agrees better with the numerical simulation 
results at small Debye lengths (see the last two columns).  

To summarize, the transition region is a distinct 
region, which can not be attributed to either the sheath or 
plasma regions. Indeed, though in this region the 

quasineutrality condition approximately holds (see Fig.1 
0.90 0.94x ≈ ÷ ), the electric field can not be determined 

from the quasineutrality condition. (see Eq.(16)). From the 
other side, even though Poisson’s equation is used to 
determine the properties of the transition region, this region 
is not a sheath if the Bohm concept of the sheath is used: a 
“region, characterized by negligible electron density” [14]. 

 
V. Conclusion 
 
An approximate procedure to patch sheath and plasma 

is proposed. The sheath and plasma are patched at the point 
where the value of the electric 
field ( )3/50.962 / 2 /s e Ds Ds sE T e Z cλ λ= , the transition 

layer is accounted simply by shifting the sheath solution 
from the patching point by a distance 

( )1/5/ 2 /tr Ds Ds sx Z cδ λ λ= and the potential by 
2/5(2 / ) /(2 )Ds s eV Z c T eδ λ= − . For most practical 

purposes, the value of eV Tδ <<  is very small compared 
with sheath potential and can be neglected. 
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Appendix I. Note on wall potential  
 

The wall potential is to be determined by equating the ion 
and electron fluxes. The ion flux is i s sn cΓ ≅ , from 
Eq.(13). The electron flux is given by an integral over the 
electron velocity distribution function (EVDF) for all 
electrons with velocity directed toward the wall 

1/2 2

0
exp

2 2
e e x

ew ew x x
e e

m m vn v dv
T Tπ

∞    Γ = −        ∫ . (A.I.1) 

Integrating yields  
1/2

2
e

ew ew
e

Tn
mπ

 Γ =    , (A.I.2) 

where the electron density at the wall ewn  is to be 
determined from the Boltzmann relation 

exp[ ( )/ ]w s s w en n e V V T= − . Therefore, equating the ion 
and electron fluxes at the wall gives 

ln
2 2
e

s w
e

T MV V
e mπ

 − =    . (A.I.3) 

Equation (AI.3) is correct for a collisionless sheath and 
either collisional or collisionless plasmas. For the case of a 
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collisionless plasma, / ln2s eV T e= − .  

Though in the present paper only the Boltzmann 
relation is used, it is necessary to note that the Boltzmann 
relation is not accurate for electrons leaving the plasma 
and being lost at the wall (so called loss cone). The 
Boltzmann relation requires a Maxwellian EVDF and that 
the electrons are trapped in a potential well. Because of 
fast losses to the wall, the EVDF is non-Maxwellian in the 
loss cone. Therefore, it is necessary to solve the kinetic 
equation for fast electrons to obtain a correct EVDF in the 
loss cone, and, subsequently, to predict the wall potential. 
Examples of such a calculation are given in Ref.16. The 
analytical solution of the EVDF in the loss cone is given in 
Ref.17.  
 
Appendix II. Ionization in the sheath region 
 

Ionization in the sheath region is determined by 
the integral  

( )
w

s

x

sh e
x

I Z n x dx= ∫ . (A.II.1) 

Changing the variable of integration from x to the 
normalized potential ( )/s ee V V Tη = − , the integral 
(A.II.2) becomes  

0
/

w

sh s DS
eI Zn d
d dy

η η
λ η

η

−
= ∫ , (A.II.2) 

where the normalized electric field  /d dyη  is given by 
Eq. (9). The function 
( ) ( )1/2 31 2 exp 2 /3η η η+ + − − ≈  at 1η , for that 
reason, the integral (A.II.2) diverges if 0sE =  
( 3/2/ 2/ 3d dyη η= ) [15]. Therefore, the main 

contribution to the integral is at small η . Numerical 
integration shows that within 5% accuracy 

0

1.3
/ /

w

s Ds

e d
d dy E L

η η
η

η λ

−
≈∫  (A.II.3) 

in the wide range / 0.01 0.3s DsE Lλ = − . Substituting 
this estimate for the integral Eq. (A.II.3) into Eq. (A.II. 2), 
one obtains an equation for 02 /s sn cγ = Γ , where 

0 0/2 /2s s tr shn c Zn x IδΓ = + + . Finally, we obtain  
1.3

1
/

tr Ds

s Ds s e

Z x
c eE T
δ λγ

λ
= + + . (A.II.4) 
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