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Abstract

Neoclassical tearing modes (NTMs) can lead to disruption and loss of confine-

ment. Previous analysis of these modes used large aspect ratio, low β (plasma pres-

sure/magnetic pressure) approximations to determine the effect of NTMs on tokamak

plasmas. A more accurate tool is needed to predict the onset of these instabilities. As

a follow-up to recent theoretical work, a code has been written which computes the

tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A.

Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute ∆′, the resistive mag-

netohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID

routines in NIMROD [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747

(1999)] for Dnc, DI and DR [C. C. Hegna, Phys. Plasmas 6, 3980 (1999); A. H. Glasser

et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and

the ideal and resistive interchange mode criterion, respectively. In addition to these

components, the NIMROD routines calculate αs −H , a new correction to the Pfirsch-

Schlüter term. Finite parallel transport effects were added and a National Spherical

Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium

was analyzed. Another program takes the output of PEST-3 and allows the user to



specify the rational surface, island width, and amount of detail near the perturbed

surface to visualize the total helical flux. The results of this work will determine the

stability of NTMs in an spherical torus (ST) [Y.-K. M. Peng et al., Nucl. Fusion 26,

769 (1986)] plasma with greater accuracy than previously achieved.



I Introduction and Motivation

Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement [1]. The

stability of this phenomenon in a Spherical Torus (ST) plasma [2] is insufficiently determined.

Previous experimental analysis relied on the island evolution equation [3]

dw

dt
= 1.22

ηnc
µ0

(
∆′ + 4.6

Dnc +DR

w

)
. (1)

Here, w is the full island width, ηnc is the neoclassical resistivity, ∆′ is the jump in logarithmic

derivative of ψ over the rational surface, DR is the resistive interchange parameter (see

Eq. 3), and Dnc represents the bootstrap current contribution. Dnc is destabilizing (positive)

wherever q′ and pressure derivative p′ have opposite signs, where ′ indicates a derivative with

respect to ψ, the poloidal flux function labeling the magnetic surfaces. As pressure almost

always decreases away from the magnetic axis and q usually increases in a tokamak and ST,

Dnc is typically destabilizing. While DR is typically negative and therefore stabilizing, the

resistive interchange effect is usually much smaller than the neoclassical tearing mode drive

in conventional high aspect ratio tokamaks (Dnc � DR). However, at low aspect ratio, these

two effects can become comparable [3]. This implies that through plasma shaping or current

profile modification, it may be possible to use the beneficial effect of DR to make STs less

susceptible to neoclassical tearing modes.

Originally formulated by Kotschenreuther et al. [4], this theory has recently been rederived

for arbitrary aspect ratio and β [5], thus adding applicability to ST plasmas. This new more

general formula is:

k0

η∗
dw

dt
= ∆ ∗ +

k1

w

(
Dnc +

DR

αs −H

)
. (2)

In this case, η∗ is the resistive diffusion coefficient in flux space, and w is in the same units
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as ψ. Other components of (2) are [5, 6]

∆∗ = ∆′ |w/2|−2αl
√−4DI

αl,s = 1/2 ∓√−DI

DR = DI + (H − 1/2)2

DI = E + F +H − 1/4

(3)

It should be noted that as β goes to zero, ∆∗ reduces to the original result of ∆′. In these

equations, E, F , and H are functions of magnetic field, pressure, safety factor q, and ψ,

first derived by Glasser, Greene, and Johnson [6]. k0 and k1 are constants depending on the

pressure and flux function profiles. (Exact expressions for Dnc, k0, k1, and η∗ can be found

in Ref. [5], along with a more accurate definition of ∆′. Useful expressions for DI and H

are found in Ref. [7].) The αs − H factor, which asymptotes to unity as β tends to zero,

diminishes the stabilizing effect of the Pfirsch-Schlüter term, and calls back into question

how stable ST plasmas truly are to NTMs.

Another effect of some concern is coupling between singular layers with a common toroidal

mode number. Focusing on the intermediate regime of the ideal magnetohydrodynamic

(MHD) instability spectrum, modes with wavelengths short compared with machine size but

long compared with a gyroradius, Dewar and Glasser employ a modified version of WKB

theory to examine this coupling in Ref. [8]. A numerical model for a tokamak with a

strong toroidal ripple shows coupling to be very weak for low-order modes, though this is

not necessarily the case in an ST geometry. Thus both single and multiple helicity code

packages are eventually desirable, however this work focuses on the single helicity case.

A program, ANTYEM, calling PEST-3 [9] and routines from NIMROD [10] has been devel-

oped in order to obtain a more accurate calculation of the right hand side (RHS) of Equation

2. PEST-3, a linear MHD stability code, is used to compute ∆′, and the NIMROD routines,
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specifically FLUXGRID, calculate DI , DR, Dnc, αl,s, and H. FLUXGRID reads in equi-

librium data and performs the mappings required to have the data on a specified R(ψ,θ),

Z(ψ,θ) grid while maintaining numerical accuracy.

Also, a new visualization program, HELUX, takes the output of PEST-3 and allows the user

to specify island width, rational surface, and amount of detail near the perturbed surface to

view the total helical flux as a contour plot.

II Derivations and Normalizations

For completeness, the necessary steps to derive the final expressions of growth rate and

helical flux used in the above programs are listed here.

II.A Normalizations

For ease of use, w, ∆∗, and dw/dt have been normalized to the absolute value of the total

flux, ψt, in the above programs as follows:

ψt = |ψ(a)− ψ(0)|

w̄ =
w

ψt

∆̄ = ψt∆∗ = ψ2µ
t ∆′

(
w̄

2

)−1+2µ

2µ

dw̄

dτ
= ψt

k0

η∗
dw

dt

(4)

where a labels the last closed flux surface, ψ(0) is the flux on the magnetic axis, and µ =
√−DI .
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II.B Helical flux for HELUX

The helical flux function is a magnetic field line invariant that labels the flux surfaces in the

presence of an isolated magnetic island chain. It is defined as:

ψh =
1

2π

∫ ψ

ψs

∮
dψdθJ∇α · B (5)

where J is the Jacobian

J =
1

(∇ψ ×∇θ) · ∇α (6)

and angle coordinate

α = ζ − qsθ (7)

corresponds to the helical angle of the resonant perturbation we will introduce [5]. qs is the

q = m/n of the chosen rational surface, ζ is the toroidal angle, and θ the poloidal angle. It

should also be noted that q is solely a function of ψ, and likewise qs corresponds to ψs.

The equilibrium magnetic field is then given by

B0 = ∇ψ ×∇ (qθ − ζ) = ∇ψ × [(q − qs)∇θ−∇α] . (8)

We consider a magnetic perturbation of the form

B̃ = ∇θ ×∇Ã (9)

where the perturbed vector potential magnitude Ã can be expressed as
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Ã =
∑
m

Am(ψ)ei(mθ−nζ) =
∑
m

Am(ψ)ei[(m−ms)θ−nα]. (10)

This describes a symmetry-breaking “radial” magnetic perturbation at the rational surface

qs. The total magnetic field may now be written as

B = ∇ψ × [(q − qs)∇θ −∇α] + ∇θ ×∇Ã. (11)

As a field line invariant, the helical flux function must obey the equation

B · ∇ψh =
1

J [
∂ψh
∂θ

+ (q − qs − ∂Ã

∂ψ
)
∂ψh
∂α

+
∂Ã

∂α

∂ψh
∂ψ

] = 0 (12)

Integrating this equation over θ eliminates the first term as well as the θ dependence of the

other terms, setting m = ms. To an arbitrary constant, the real solution to this equation is

then

ψh =
∫ ψ

ψs

dψ(q − qs) − Amscos(nα). (13)

This is the general expression for helical flux throughout an initially axisymmetric toroidal

plasma. We will now specifically examine the area outside the island region, where ideal

MHD theory is assumed to hold, and explicity use Equation 5. The perturbed field here is

B̃ = ∇× (ξ × B0) (14)

where ξ, the perturbed displacement, can be written

ξ =
∑
m

ξ�(ψ)ei(mθ−nζ) =
∑
m

ξ�(ψ)ei[(m−ms)θ−nα] ξz = ξ · ∇z (15)
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The helical flux may then be written as

ψh = ψh0 + ψ̃h (16)

where ψh0 corresponds to the equilibrium helical flux associated with B0 and ψ̃h is the

perturbed helical flux from B̃. It is then found that

∇α · B0 = J −1(q − qs) (17)

and so

ψh0 =
∫ ψ

ψs

dψ(q − qs). (18)

For the perturbed part

J∇α · B̃ = J∇ · [(ξ ×B0) ×∇α] + J (ξ × B0) · ∇ × ∇α

= J∇ · [ξαB0 − J −1(q − qs)ξ]

= ∂
∂ψ

[(qs − q)ξψ] + ∂
∂θ

[ξα + (qs − q)ξθ] + ∂
∂α

[0].

(19)

Now, because m − ms is an integer, and for m = ms, the dependence of ξ on θ through

(m−ms)θ disappears

∮
dθ
∂ξ

∂θ
= 0. (20)

So
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ψ̃h =
1

2π

∫ ψ

ψs

∮
dψdθ

∂

∂ψ
[(qs − q)ξψ] = (qs − q)ξψms

e−inα (21)

and

ψh = ψh0 + Acos(nα) A = −Ams = (qs − q)ξψms
. (22)

(As only the ψ component of ξ is relevent, the superscript of ξms will be dropped from here

on.) Now, approaching a rational surface but still outside the island [9]

ξms ≈ Cx−
1
2
−µ (23)

where C is an arbitrary constant determined by the island width and x = ψ−ψs. Assuming

small islands, or w̄ � 1,

q ≈ qs − q′sx ψh0 ≈ q′s
2
x2. (24)

At the separatrix, ψh(x = w
2
, nα = π) = ψh(0, 0), so

q′s
2

w2

4
− A0 ≈ A0 ⇒ A0 ≈ q′s

w2

16
(25)

where A0 is the value of A at the boundary. We also know from Eqs. 22 and 23 that

A ≈ −q′sxCx−
1
2
−µ. (26)

Due to pressure flattening over the island, at the separatrix DI → −1/4, so µ → 1/2 [9].

Thus a singularity at the rational surface is avoided, as
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A→ A0 ≈ −q′sC (27)

and comparing with Eq. 25,

C = −w
2

16
(28)

so, rewriting ξms as Cξ̂ms , outside the island

ψh =
∫ ψ

ψs

dψ(q − qs) +
w2

16
(q − qs)ξ̂mscos(nα). (29)

Inside the island, for the purposes of visualization HELUX assumes A in Eq. 22 equals

constant A0, though, particularly for large β, it is likely to be a more complicated function.

III Transport Effects

Due to the finite parallel thermal conductivity of the plasma, particles may diffuse across

an island on the same time scale that they follow the field line around it, thus enhancing

the pressure gradient over the island [11]. This is a stabilizing effect not covered in Hegna’s

theory, and it modifies the bootstrap term’s 1/w on the RHS of Eq. 2 to w/(w2 + w2
d). In

its original formulation by Fitzpatrick for large aspect ratio and low β, taking w in units of

length [11]

wd = 1.8rs

√
8

εsssn

(
χ⊥
χ‖

)1/4

(30)

where rs is the minor radius of the rational surface under consideration, εs=rs/R0, ss is

local magnetic shear (r∂rq/q)rs, n is the toroidal mode number, and χ⊥ and χ‖ are the
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perpendicular and parallel thermal conductivities, respectively. Ref. [11] also gives general

forms

χ⊥ ∼ a2

6τe
and χ‖ ∼ vteλ‖ (31)

where a is the minor radius of the outermost flux surface, τe is the global energy confinement

time, vte is the electron thermal velocity, and λ‖ ≡ r2
s/(εsssnwd) [12] is the parallel wavelength

of the helical perturbations. Eq. 30 may then be rewritten as:

wd = 1.8
√

8rs

(
w

rs

1

ssεsn

χ⊥
rsvte

)1/4

. (32)

To apply the above expression to this paper’s definition of w, and take into account the more

shaped nature of ST flux surfaces, it is assumed that ψ is roughly proportional to r2 in any

direction away from the magnetic axis. Thus, the following substitutions are made:

rs in front → 2ψs

ss → 2s̄s, s̄s = (ψq′/q)ψs

w

rs
→ w

2ψs

(33)

The remaining rs in the denominator of Eq. 32 is estimated as the geometric mean of as

and bs, or
√
asbs, where these two quantities are half the maximum horizontal and vertical

displacement of surface ψs. The resulting expression may then be normalized with a division

by ψt, yielding:

w̄d = 7.2

(
ψs
ψt

)3/4 (
w̄

1

s̄sεsn

χ⊥
rsvte

)1/4

(34)
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Finally, multiplying Eq. 2 through by ψt and including transport effects as per Refs. [11]

and [13], it may be rewritten in completely dimensionless form as follows:

dw̄

dτ
= ∆̄ + k1


 w̄

w̄2 + w̄2
d

Dnc +
1√

w̄2 + 0.65w̄2
d

DR

αs −H


 . (35)

Finite transport effects tend to eliminate the neoclassical drive as the island width becomes

smaller than wd. Recent work by Lütjens, Luciani, and Garbet suggests that the resistive

term scales differently than the neoclassical term when the island width is smaller than the

critical width [13]. Namely, the interchange term asymptotes to a non-zero value as the

island width goes to zero. When the island width greatly exceeds wd, Eq. 35 is consistent

with Eq. 2.

IV Demonstration

IV.A ANTYEM

To demonstrate the function of these programs on a large ST, National Spherical Torus

Experiment (NSTX) [14] shot #103698 at 192ms is analyzed. It has a q on axis of 1.08 and

a βt of 16.1%. Figure 1 shows growth rate dw̄/dτ , as given in Eq. 35, as a function of w̄

for the qs=3/2 and qs=4/3 rational surfaces. Both of these curves are negative everywhere,

indicating that these modes are stable. Dnc + DR/(αs − H) is greater than zero, meaning

the neoclassical tearing drive overcomes the stabilizing Pfirsch-Schlüter term, however the

presence of this term reduces the drive enough that transport effects can stabilize the island.

A notable clarification is that precise knowledge of the numerical factor k1 is important in

quantitative predictions of neoclassical tearing mode stability. Because the analytic theory is

based upon asymptotic arguments, it is difficult to predict precise numerical factors of order

unity. Therefore k1 needs to be experimentally determined. The value of k1=1.7 has been

10



used, along with (less critical) values Te=400eV and τe=30ms. This k1 was determined by

matching to the observed island saturation width in Tokamak Fusion Test Reactor (TFTR)

discharges [15] . The conducting wall in PEST-3 was set as 20% of the midplane minor

radius away from the outermost flux surface.

It is also of note that the calculated ∆′ in these cases does not follow the approximation

used in previous analysis of high aspect ratio, low β tokamaks, that is rs∆
′ ≈ −2m. [3]

If rs is appropriately averaged over the corresponding rational surface, becoming 〈rs〉 with

units of [ψ2µ], then for the 3/2 surface 〈rs〉∆′ is calculated to be -9.03, and -10.98 on the

4/3 surface. Another important topic is the means by which ∆′ was determined from the

output of PEST-3, which is covered in the Appendix.

IV.B HELUX

Figure 2 shows a visualization of ψh as defined in Eq. 29 for rational surfaces 3/2 and 4/3 on

NSTX shot #103698, 192ms with imposed island widths w̄ = 10% and w̄ = 15% respectively.

HELUX allows one to specify any w̄ in any toroidal equilibrium for any rational surface one

wishes, though it should be noted that the larger w̄ is, the less accurate Eq. 29 is likely to

be.

V Summary

Using the best available theoretical and computational models, a new tool has been created

which determines neoclassical tearing mode growth rates more accurately than previously

achieved for high β and low aspect ratio. An NSTX equilibrium has been analyzed, and

the stabilizing effects of the Pfirsch-Schlüter current and finite parallel conductivity were

determined to be competitive with the neoclassical tearing drive. Also, using an expression

for helical flux derived in Section II.B, another tool has been created which allows one to
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visualize magnetic islands of any size for any toroidal equilibrium. Finally, the convergence

properties of PEST-3’s ∆′ have been examined. The numerical computation of ∆′ was

shown to be significantly different from the large aspect ratio analytic prediction in NSTX’s

parameter regime. The accuracy of this value can be critically important to determining

overall stability to NTMs.

Recommended future work includes a more general theory for the effects of finite parallel

thermal conductivity and either derivation of a more explicit formula for k1 or experimental

determination of the constant. Also, a more complete theory would include a more accurate

expression for helical flux within a neoclassical island for arbitrary β.
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Appendix: ∆′ Convergence with PEST-3

For the computation of ∆′, the latest version of the PEST-3 code has been used. Recently,

PEST-3 underwent significant changes to improve its ease of use. The code can now be

invoked as a UNIX command with input parameters specified as command arguments. More

importantly, PEST-3 now has the ability to interface directly to various equilibrium file

formats and codes, including EFIT, TRANSP, JSOLVER, ESC, and CHEASE. Also, the

code can now connect directly to existing MDSPlus databases. This version is freely available

from http://w3.pppl.gov/NTCC.

The scheme used in PEST-3 to determine ∆′ and other matching data is based on computing
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the difference between two energies, one involving the small solution and the other the large

solution [9]. Since these two energy components often are comparable but of opposite sign,

care should be taken to ensure that the computed ∆′ is accurate. In particular, highly

accurate equilibria are required since the large solution depends on higher order derivatives

of equilibrium profiles. In general, ∆′ calculations tend to be more sensitive to equilibrium

inaccuracies than ideal stability calculations for this reason.

PEST-3 uses linear (hat) functions, or ∧, as radial finite elements. To ensure that ∆′

converges quadratically in the inverse number of radial elements mm−1, the mesh must

be packed in the neighborhood of rational surfaces where the numerical (small) solution

∼ |ψ − ψs|−1/2+µ is singular. It can be shown [16] that the optimal node distribution near ψs

for µ �= 1/2 is ψi = ψs+
∣∣∣ i−is
mm

∣∣∣1/µ where i is the node index and is the index of the node at the

rational surface, while for µ = 1/2 a uniform mesh is appropriate. Although we have dealt

here with a single helicity mode, the code PEST-3 allows for several resonant surfaces with

mesh packing applied (automatically) on each rational surface where reconnection occurs.

The treatment of multi-resonant surfaces could be of importance when modes with different

helicity have comparable rotation speed, which can lead to mode locking. In this study, mm

was typically varied from 70 to 299. The final, chosen ∆′ was obtained after extrapolating

to infinite mm and assuming convergence with mm−2. Figure 3 shows a convergence plot

for the 3/2 mode of NSTX shot #103698 at 192 ms; the extrapolated value is ψ2µ
s ∆′=-3.38.

For the 2/1 mode in NSTX, however, we found that the convergence often failed to yield

a unique, infinite resolution ∆′ because the mode was close to the ideal marginal stability

point, as verified by PEST 2 [17] for the above equilibrium. Recall that at marginal stability,

∆′ transitions through a pole (positive on the stable side, negative on the unstable side) and

is thus ill defined. In this case it would be preferable to work using 1/∆′ matching data,

which is well behaved across the ideal marginal point. For plasmas on the stable side of the

ideal marginal stability point, ∆′ tends to be large and positive as is often observed for the

13



2/1 mode. This should drive the mode unstable. We can only speculate why higher order

modes (3/2, 3/4 etc.) tend to be more often observed experimentally than the 2/1. One

possibility is that the asymptotic matching method does not apply for large ∆′. Another

possibility is that quasi-linear stabilization terms play an important role [18]. These issues

can only be resolved by performing nonlinear NTM simulations.
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FIG. 1: 3/2 and 4/3 modes, dw̄
dτ

vs. w̄ for NSTX shot #103698 at 192ms, which has a

q on axis of 1.08 and βt of 16.1%. These modes appear stable, pending a more accurate

determination of constant k1 in growth rate Equation 35.

FIG. 2: 3/2, w̄ = 10% and 4/3, w̄ = 15% simulated island structures for NSTX shot #103698

at 192ms.

FIG. 3: Convergence of normalized ∆′ for the 3/2 mode vs. the inverse square of the number

of radial finite elements for NSTX shot #103698 at 192 ms.
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