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We consider the effects of trapped electron precession shear on the microturbu-
lence. In a similar way the strongE�B shear reduces the radial correlation length of
ambient fluctuations, the radial variation of the trapped electron precession frequency
can reduce the radial correlation length of fluctuations associated with trapped elec-
trons. In reversed shear plasmas, with the explicit dependence of the trapped electron
precession shearing rate onB�, the sharp radial gradient ofTe due to local electron
heating insideqmin can make the precession shearing machanism more effective, and
reducethe electron thermal transport constructing a positive feedback loop for theTe
barrier formation.

I. Introduction

There is accumulating evidence[1] that theE�B shear induced decorrelation of
turbulence[2, 3] is responsible for the formation of internal transport barriers (ITB)
in ion thermal transport channel. However understanding different behavior of elec-
tron thermal transport still remains one of the most challenging problems in tokamak
confinement physics. While there has been revived interest in small scale electron
temperature gradient (ETG) turbulence recently, qualitative difference in nonlinear
simulation results[4] and the implications of the high-k fluctuation data[5] from ex-
periments cast lingering doubts on the dominance of ETG turbulence driven transport
in tokamaks.

The particular channels exhibiting ITB formation often respond to theE�B shear
andq profiles differently[6]. In some cases, with reversed magnetic shear, the barriers
in Ti; ne andTe form simultaneously at the same location where theE�B shearing
rate is high [7]. In many cases, the strong barriers inTi andne can form with only
a weak or no barrier inTe[8]. In ion-heated plasmas,Te is typically most resistant to
forming ITBs.
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StrongTe ITBs are in general associated with strong electron local heating and
reversed magnetic shear[9] sometimes with high triangularity[10]. Therefore it is nat-
ural to seek a mechanism other than theE�B shear, which is effective in reducing
�e significantly when the following experimental conditions are realized.
i) Te > Ti and low collisionality such that the collisionless trapped electron mode
could be important; typical of low density electron heated plasmas,
ii) reversed magnetic shear in the core typical of LHCD, and ECCD discharges.
Often relatively long wavelength density fluctuations which are measured by reflec-
tometry tend to decrease (rather than completely quenched) either in radial correlation
length[11] or in amplitude[12] whenTe ITB is formed. These observations motivate
us to seek a robust nonlinear mechanism which is relatively insensitive to the details
of linear stability of specific modes, and which is applicable to plasmas ranging from
near circular low-� plasmas such as Tore Supra to strongly shaped high-� plasmas.
We consider the effects of trapped electron precession shear on the electrostatic fluc-
tuations in the range ofk?�i � 1.

II. Radial Decorrelation
due to Trapped Electron Precession Shear

Following the previous work[13] on the trapped electron dynamics, we start from an
electrostatic bounce averaged drift kinetic equation in which the non-adiabatic part of
the perturbed trapped electron distribution functionÆH � Æfe �

e�

Te
F0 is convected by

the precession driftVde, and the fluctuatingE�B velocity ~VE,

(@=@t+Vde � r+ ~VE � r)ÆH = if!�e(1+ �e(�=Te � 3=2)) � !g
e�

Te

F0; (1)

where ~VE = B � rÆ�=B2, other notations are standard.We note thatVde � r =
ik? �Vde � i!De � !D�@�: Here, the trapped electron precession frequency!D� is
related to more commonly used one!De by !De = n!D� wheren is the toroidal mode
number.

The two-point correlation evolution equation is then derived following the stan-
dard procedure of symmetrization with respect to ( 1; �1; �1; �1) and ( 2; �2; �2; �2)
followed by an ensemble average.
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Here, the radial shear of the precession frequency in toroidal direction is given by
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Additionally, the variations of precession frequency in energy and pitch angle variable
are characterized by
� and
� respectively. In Eq. (2),S2 =< ÆH(1)S(2) > + <
ÆH(2)S(1) > is the source term for the two-point correlation function and theE�B

nonlinearity is approximated as a turbulent diffusion along the perpendicular direction
which vanishes at zero separation[14]. The decorrelation dynamics due to the coupling
of the precession shear in phase space and turbulent diffusion can be studied by taking
various moments of the left hand side (lhs) of Eq. (2). By calculating the eddy lifetime
which is a function of the initial separation between two nearby points, one can derive
that The radial correlation length�rt � � =RB� , is reduced by the flow shear
relative to its value�r0 � � 0=RB�, determined by ambient turbulence alone:

�
� 0
� 

�2
= 1 +

!2PS
�!2T

: (4)

Therefore, we expect that fluctuation suppression occurs when the decorrelation rate
of the ambient turbulence�!T is exceeded by the precession shearing rate,!PS :
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(5)
whereG(�) is the pitch angle dependence of the precession frequency which varies
from 1 for deeply trapped particles to�1 for particles near trapped-passing boundary.
We note that this mechanism works for both resonant and non-resonant (interchange-
type) trapped electron driven turbulence, without relying on the linearly stabilizing
influence of the trapped electron precession reversal[15]. In reversed shear plasmas,
with the explicit dependence of!PS onB�, the sharp radial gradient ofTe due to local
electron heating insideqmin can make!PS higher, andreducethe electron thermal
transport constructing a positive feedback loop for theTe barrier formation.
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