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Monte Carlo sampling of negative-temperature plasma states

John A. Krommes∗ and Sharadini Rath†
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543

(Dated: August 12, 2002)

A Monte Carlo procedure is used to generate N -particle configurations compatible with two-
temperature canonical equilibria in two dimensions, with particular attention to nonlinear plasma
gyrokinetics. An unusual feature of the problem is the importance of a nontrivial probability den-
sity function P0(ϕ ), the probability of realizing a set {ϕ} of Fourier amplitudes associated with an
ensemble of uniformly distributed, independent particles. This quantity arises because the equilib-
rium distribution is specified in terms of {ϕ}, whereas the sampling procedure naturally produces
particles states Γ; {ϕ} and Γ are related via a gyrokinetic Poisson equation, highly nonlinear in
its dependence on Γ. Expansion and asymptotic methods are used to calculate P0(ϕ ) analytically;
excellent agreement is found between the large-N asymptotic result and a direct numerical calcu-
lation. The algorithm is tested by successfully generating a variety of states of both positive and
negative temperature, including ones in which either the longest- or shortest-wavelength modes are
excited to relatively very large amplitudes.

PACS numbers: 52.30.Gz, 52.65.Pp, 02.50.Ng, 05.10.Ln

I. INTRODUCTION

In the present paper we will show how to generate N -
particle configurations compatible with two-temperature
canonical equilibria in two dimensions. The method
could be used for testing nonlinear gyrokinetic simula-
tions of plasmas; more generally, the problem raises inter-
esting issues involving equilibrium statistical mechanics
and asymptotic analysis.

Particle simulations (often called molecular-dynamics
experiments in the literature on neutral fluids) are widely
used for studying the equilibrium and nonequilibrium be-
havior of nonlinear systems [1–4]. Such methods are
quite natural when the discreteness of the many-body
system is important, but particle simulations have also
been employed as viable alternatives to more conven-
tional spectral or finite-difference approaches to the in-
tegration of partial differential equations in the contin-
uum approximation. This is particularly true in plasma
physics [3], where collective nonlinear, neutral-fluid-like
phenomena—essentially independent of the details of the
microscopic velocity distribution—are often driven by
wave–particle interactions strongly dependent on such
details. The conservative nature of the Vlasov or closely
related gyrokinetic equation [5] is difficult to handle with
conventional techniques because phase-space elements
can be stretched and otherwise distorted to scales that
are arbitrarily small (in the absence of collisions [6]). Par-
ticle simulation deals with this situation efficiently by fol-
lowing the particle or gyrocenter trajectories exactly in
an electromagnetic field that is coarse-grained to a finite
resolution in space.

∗Electronic address: krommes@princeton.edu
†Present address: 20 Akashganga, Ganeshkhind, Pune 411 007,
India.

Recent interest in plasma physics has focused on
nonequilibrium gyrokinetic phenomena [7, 8]. The non-
linear gyrokinetic equation [5], appropriate for low-
frequency, long-wavelength fluctuations, is derivable from
the magnetized Vlasov equation by Hamiltonian trans-
formations [9]1 that analytically remove the rapid gy-
romotion in favor of appropriately defined gyrocenters
whose characteristic equations of motion are the gener-
alizations of the familiar drift equations to the case of
finite ion gyroradius. In the quasineutrality condition
that replaces Poisson’s equation, a key role is played
by the polarization charge density of the ions (see Ap-
pendix A), proportional to the z component of the vor-
ticity of the cross-field E × B velocity. The resulting
nonlinear equations display phenomena closely related
to the well-known, unusual behavior of two-dimensional
(2D) neutral fluids [10]. For example, the Hasegawa–
Mima equation [8, 11], an important limit [9] of the gy-
rokinetic system that is appropriate for adiabatic elec-
trons and vanishing ion temperature, possesses both an
energy- and an enstrophy-related invariant and there-
fore displays all of the interesting phenomena associated
with two-parameter canonical (Gibbsian) equilibria [10]
of the (finitely truncated) set of Fourier amplitudes of
the electrostatic potential ϕ (or ion gyrocenter density, to
within a simple wave-number-dependent scale factor). In
the presence of dissipation or antidissipation (e.g., when
nonadiabatic electron response is reinstated), those in-
variants are broken, but the tendency of the nonlinear
terms to relax fluctuations to thermal equilibrium is still
manifested through the dual cascades [12]—of energy E,
toward the long wavelengths, and of (potential) enstro-
phy Ω, toward the short wavelengths—that can be ex-

1 A review of some of the formal aspects of the derivation of the
nonlinear gyrokinetic Poisson system can be found in App. C of
Ref. [8].
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cited [13] for forcing at intermediate wave numbers.

A standard test in the development of gyrokinetic par-
ticle simulations should therefore be to check that the
Hasegawa–Mima limit relaxes to the two-temperature
canonical spectrum based on the initial values of en-
ergy and enstrophy. Somewhat surprisingly, this has
not been done, although the analogous exercise is stan-
dard for Vlasov codes [3], where one verifies the thermal-
equilibrium spectrum 〈δE2〉(k)/8π = 1

2T/(1 + k2λ2
D)

(T being the temperature and λD being the Debye
length), and has also been performed for simulations of
the full gyrokinetic equation with finite k‖ [14]. (The
thermal-equilibrium fluctuation properties of the gyroki-
netic system are discussed in Refs. [15–17].) One expla-
nation for this omission involves the difficulty of achiev-
ing random initial particle distributions with specified E
and Ω. It is, of course, possible to begin with an arbitrary
initialization (e.g., particle positions that are completely
independent and uniformly distributed, or alternatively
a “quiet start” [18]), calculate the associated E and Ω
and the predicted equilibrium spectrum, then check for
relaxation toward that equilibrium, and that certainly
provides a nontrivial test of the code. However, reliance
on just one or two standard initializations and the arbi-
trariness of any particular initial state imply that one has
no systematic way of exploring the extremes of the E–
Ω space, including in particular the interesting regimes
of negative temperature. For example, it is notewor-
thy that the simplest random 2D initialization, in which
the particle positions are sampled from a homogeneous,
correlation-free distribution, has mean energy and en-
strophy compatible with a canonical distribution with
positive (and equal) temperatures. (We will derive this
result in Sec. II C.)

In addition to the gyrokinetic initialization problem,
the generation of negative-temperature particle states is
interesting in its own right as a nontrivial problem in
statistics. Therefore, in this paper we propose2 and the-
oretically analyze a method of generating 2D particle-
state realizations of canonical equilibria for arbitrary val-
ues of the invariants (equivalently, for arbitrary tem-
peratures). The (Monte Carlo) procedure employs the
Markov-chain algorithm of Metropolis et al. [19, hence-
forth called M(RT)2] originally (and still [20]) used for
investigating the thermodynamic properties of dense liq-
uids. Although the present application is essentially
straightforward, it does not appear to have been pre-
viously used in this particular context. The subtlety in
the calculation is that in the present case the random
variables that are canonically distributed are the Fourier
amplitudes, whereas one desires realizations of particle
positions, which are related to the Fourier amplitudes
via a nontrivial nonlinear functional dependence. An

2 The initial account of this work was given by J. A. Krommes,
Bull. Am. Phys. Soc. 37, 1590 (1992).

additional complication is that typically there are many
more particles than retained Fourier amplitudes, so the
relation between the particle states and the potentials is
many-to-one. In the standard application to statistical
mechanics, on the other hand, the natural variables of the
Gibbs distribution are just the particle phase-space co-
ordinates themselves; no functional relation is involved.
Thus in conventional M(RT)2 the successive states of the
Markov chain are used for the calculation of analytically
intractable ensemble averages over a highly non-Gaussian
distribution. In the present case the equilibrium spec-
trum is purely Gaussian in the Fourier amplitudes, so
analytical calculations of arbitrary (static) moments of
the amplitudes are straightforward; however, the deter-
mination of compatible particle realizations is nontrivial.

For notational convenience, we will denote by ϕ both
the field ϕ(x) and the set of M retained Fourier ampli-
tudes ϕ ≡ {ϕkν | ν = 1, . . . ,M}.

The necessity for dealing simultaneously with two sets
of random variables, namely the particle states Γ and
the Fourier amplitudes ϕ, means that a nontrivial transi-
tion probability enters the formalism. In standard Monte
Carlo algorithms that deal just with particle probabili-
ties, the basic function T0( Γ′ | Γ ) describes the proba-
bility of proposing state Γ′, given initial state Γ. Usually
this function is just a constant. However, in the present
application we begin with a particle state Γ [to which
corresponds the set of Fourier amplitudes ϕ(Γ)] and, ef-
fectively, propose an amplitude state ϕ′(Γ′). The rele-
vant transition probability T0(ϕ′ | ϕ ) can be related to
the probability density function (PDF) P0(ϕ ) of achiev-
ing a particular set of Fourier amplitudes by distributing
particles uniformly on a lattice; this function depends
nontrivially on ϕ. We devote considerable effort to cal-
culating P0 asymptotically and to analyzing its role in
the appropriately modified Monte Carlo algorithm.

The organization of this paper is as follows. We devote
Sec. II to a review of the form and properties of the stan-
dard two-temperature canonical equilibria. In Sec. III
we review the algorithm of M(RT)2 and describe how
to generalize it for application to the initialization prob-
lem. In Sec. IV we generate a variety of two-temperature
particle states in order to demonstrate the viability of
the method. We summarize and discuss our results in
Sec. V. Various details are relegated to appendices. In
Appendix A we present for completeness a brief deriva-
tion of the Hasegawa–Mima equation using gyrokinetic
methods. In Appendix B we derive a formula for P0(ϕ )
and present a few exact results. Finally, we devote Ap-
pendix C to a somewhat lengthy presentation of various
approximate calculations of P0 valid for a large number
of particles.

II. TWO-TEMPERATURE EQUILIBRIA

In essence, we are concerned with statistical sampling
from a particular, somewhat unusual canonical probabil-
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ity distribution. In this section we provide the necessary
background material. Our conventions for Fourier trans-
forms are introduced in Sec. II A (see also Appendix A
of Ref. [8]). Then in Sec. II B we introduce the two-
temperature equilibria relevant to the Hasegawa–Mima
problem and review their properties.

A. Fourier transform conventions

We work in a 2D box of sides Lx and Ly, area
V = LxLy, on which periodic boundary conditions
are imposed. (These are the standard boundary con-
ditions for many particle simulations.) The electro-
static potential is resolved on a rectangular lattice of
Mtot = Mx ×My points; e.g., xj = j∆x, ∆x .= Lx/Mx,
j = 0, 1, . . . ,Mx − 1 (we use the symbol .= for def-
initions). In practice we consider a square box with
Lx = Ly = L, Mx = My; however, we sometimes re-
tain the x or y labels for pedagogical purposes. The area
of the fundamental cell is ∆V = ∆x∆y. The associ-
ated Fourier components obey, e.g., kx = nxδkx, where
δkx ≡ kmin

.= 2π/Lx. Wave-number magnitudes are de-
noted as k .= |k| = (k2

x + k2
y)1/2. For arbitrary func-

tion A(x), the fundamental Fourier conventions are

Ak = V −1

∫
dx e−ik·xA(x), (1a)

A(x) =
∑

k

eik·xAk. (1b)

For points xj on the lattice, we interpret∫
dx . . . ≡

∑
j

∆V . . . (2)

and the pair (1) becomes the discrete Fourier transform,
with kn · xj = 2π(nxjx/Mx + nyjy/My). We sometimes
write Akn ≡ An; one has

A−n = AM−n = A∗n, (3)

the last equality holding for functions that are real in
x space. Although all operations on the lattice are dis-
crete, we often find the integral form of Eq. (2) to be a
convenient shorthand.

B. Two-temperature canonical equilibria

We consider a conservative nonlinear system of coupled
Fourier modes ψk. In the derivation of such equations
from continuum equations locally nonlinear in x space,
the mode coupling arises from the Fourier convolution
theorem and thus extends to ∞ in k space. We con-
sider instead a system truncated to a finite number M
of Fourier modes. This corresponds to the actual sit-
uation in the simulations and is also required theoret-
ically in order that a conventional statistical dynamics

can be introduced [10]. Generally the truncation is spher-
ical, kmin ≤ k ≤ kmax, so M < Mtot. It is assumed
that under such truncations two constants of the mo-
tion, the energy Ê and the enstrophy Ω̂, are preserved.
The hat denotes a function of the underlying random
Fourier amplitudes: Ê ≡ Ê(ψ ), Ω̂ ≡ Ω̂(ψ ), where
the braces denote the collection of all retained modes:
ψ ≡ {ψkν | ν = 1, . . . ,M}. Here ν denotes an ar-
bitrary labeling of the modes. Functions without hats
will denote the ensemble average, e.g., E .= 〈Ê〉. It is
then well known [8, 10, 21] that the real and imaginary
parts of the ψk (labeled by the subscripts r and i, respec-
tively) can be used as independent variables in standard
statistical-mechanics arguments that predict relaxation
of arbitrary perturbations to realizations drawn from a
microcanonical ensemble. In practice, the Gibbs distri-
bution is used more frequently:

P (ψ ) = Z−1 exp[−αÊ(ψ )− βΩ̂(ψ )], (4)

where Z is the appropriate normalization integral. The
parameters α and β serve as inverse temperatures for
energy and enstrophy, respectively, and are functions of
the ensemble-averaged E and Ω. For some ratios of Ω/E,
either α or β can be negative, as we will review in detail
shortly. In states of negative α, the longest-wavelength
modes are excited to relatively large levels; in states of
negative β, the shortest-wavelength modes are so excited.

In the application to Hasegawa–Mima dynamics, we
may choose ψ to be the appropriately dimensionless elec-
trostatic potential ϕ. The Hasegawa–Mima equation [11]
is briefly rederived for completeness in Appendix A; it is

(1−∇2
⊥)

∂

∂t
ϕ(x, t) + V∗

∂ϕ

∂y
+ VE ·∇(−∇2

⊥ϕ) = 0, (5)

where V∗ is the diamagnetic drift velocity (considered
to be a constant in this approximation), VE

.= cE ×
ẑ/B, E

.= −∇ϕ, and the perpendicular direction is with
respect to the constant magnetic field B = Bẑ. Upon
Fourier transformation in space, Eq. (5) becomes

(1 + k2)
∂ϕk

∂t
+ iω∗(ky)ϕk

=
1
2

∑
k+p+q=0

ẑ · (p × q)
(
χ∗q − χ∗p
1 + χk

)
ϕ∗pϕ

∗
q,(6)

where k ≡ k⊥, ω∗(ky)
.= kyV∗, and χk

.= k2
⊥. This

equation is conservative. The more physically relevant
model, in which both ω∗ and χ are replaced by com-
plex quantities including dissipative effects, is called the
Terry-Horton equation [22, 23]. See Sec. V for further
remarks on that equation.

The quadratic invariants of the Hasegawa–Mima equa-
tion are (

Ê(ϕ )
Ω̂(ϕ )

)
=

1
2

∑
k

(
1
k2

)
Êk, (7)
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where

Êk
.= (1 + k2)|Φ̂k|2. (8)

The term 1 in the factor (1 + k2) describes the adiabatic
response of the electrons, which stream rapidly along the
magnetic field lines and tend to short out charge fluctua-
tions. If that term is ignored (equivalently, if one consid-
ers the short-wavelength limit3), the resulting equation is
formally identical to the two-dimensional Navier–Stokes
equation, with ∇2

⊥ϕ playing the role of the z compo-
nent ωz of the vorticity.

The quantities (7) are invariant when k is summed
over all modes out to ∞. They remain invariant if one
removes from the convolution sum in Eq. (6) all triad
interactions with the magnitude of any leg larger than
some kmax; that corresponds to the spherical truncation
mentioned earlier. Later we will consider other trunca-
tions and/or weightings. All of those can be embraced
by introducing a non-negative weight function wk and
generalizing Eq. (7) to(

Ê(ϕ )
Ω̂(ϕ )

)
=

1
2

∑
k

wk

(
1
k2

)
Êk. (9)

With this definition, the effective number of modes is

M =
∑

k

wk. (10)

For modes interior to the boundaries of the truncated
k space, we consider only wk = 1; however, the weight-
ings of the edge or corner points may differ from 1, as we
will discuss later.

The thermal-equilibrium wave-number spectrum can
now be shown to be

Ek
.= 〈Êk〉 =

1
α+ βk2

. (11)

It is worth giving the derivation of this result in detail in
order to discuss and justify an annoying factor of 2. By
definition,

〈Êk〉 =
∫ (M∏

ν=1

dϕ(ν)
r dϕ

(ν)
i

)
(1 + k2) |ϕk|2

×Z−1 exp[−
∑′

k w
′
k

(1 + k
2
)(α+ βk

2
)
∣∣ϕk

∣∣2]; (12)

of course, |ϕk|2 = ϕ2
k,r +ϕ2

k,i. We have observed that ϕk

and ϕ−k are not independent, since by reality of ϕ(x)
one has ϕ−k = ϕ∗k. Therefore, the factor of 1

2
in the def-

inition (7) of the invariants has been eliminated in the

3 For some related discussion of the short-wavelength limit, see
M. Ottaviani and J. A. Krommes, Phys. Rev. Lett. 69, 2923
(1992).

exponent of Eq. (12) by replacing the unrestricted wave-
number sum in Eq. (7) by the appropriate

∑′
k over the

half space of independent modes. (We allow for the pos-
sibility that the appropriate weight function w′k for

∑′
k

may differ from wk on the boundary of the k space.) The
result (11) then follows readily, at least for the interior
modes, by performing a simple Gaussian integral. (Note
that the partition function Z factors.)

The discrete nature of the Fourier transform intro-
duces subtlety into the evaluation of the invariants. It
is numerically convenient to work with a square trun-
cation, i.e., to sum over all retained modes, as this
eliminates a time-consuming test to determine whether
a mode should be retained. However, because of the
symmetry properties (3) the special modes (nx, ny) ∈
{(0, 0), (1

2Mx, 0), (0, 1
2My), (1

2Mx,
1
2My)} are real. Since

we are interested in fluctuations, we exclude the (0, 0)
mode; however, the other modes must be counted appro-
priately. Now since the imaginary parts of those modes
vanish identically, those parts are not available as inde-
pendent coordinates for the canonical distribution. That
thus has the schematic form (with x and y referring to
the real and imaginary parts of any Ek)

P(M) ∼ exp
[
−
(
x2

1 + y2
1

2σ2
1

)
−
(
x2

2

2σ2
2

)]
, (13)

where the subscript 1 refers to an interior mode, 2 refers
to a boundary mode, x2

1 +y2
1 = Êk1, σ2

1
.= [2(α+βk2

1)]−1,
and σ2 must be determined such that the spectrum Ek is
a smooth function of k. Since Ek1 = 〈(x2

1 + y2
1)〉 = 2σ2

1

and Ek2 = 〈x2
2〉 = σ2

2 , one deduces that the real modes
must be weighted by a factor of 1

2 in the summation
∑′

that defines the invariants of the finite, discrete system.
Thus in Fig. 1 the independent modes are indicated by
squares and triangles; the triangles must be weighted
by 1

2 . The corresponding weight function w′k is thus
asymmetric when considered over the entire square; how-
ever, the reflection symmetries on the lattice guarantee
that the four corner points are identical and that edge
points are identical to appropriate points on the facing
edge. Theoretically, then, one can replace

∑′
k w

′
k by

1
2

∑
k wk, where wk corresponds to a weighting of the

interior modes by 1, the corner points by 1
4 , and the

other edge points by 1
2 (see Fig. 2). We will call this the

weighted truncation. Note that numerically it is more ef-
ficient to employ the asymmetric weights w′k; however,
the wk’s are easier to work with theoretically.

The spectrum (11) is identical to that for the 2D neu-
tral fluid, which has been discussed in depth by Kraich-
nan [24]. For our later work in Sec. III, it is necessary
to record here4 the portion of Kraichnan’s analysis con-
cerning the allowable values of α and β and the relation

4 A more concise version of this discussion can be found in
Sec. 3.7.2 of Ref. [8].
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FIG. 1: Representative mode space for Mx = 3. Independent
modes are indicated by the open n-gons. The squares are
weighted by 1, the triangles are weighted by 1

2 .

FIG. 2: The same mode space as in Fig. 1, but with
symmetrized weightings. The corner points (asterisks) are
weighted by 1

4 .

between {E,Ω} and {α, β} in a notation that empha-
sizes the discrete nature of the spectrum and allows for
arbitrary weight functions wk. It is useful to couch the
relations in terms of the energy and enstrophy per mode,

E
.= E/M, Ω .= Ω/M. (14)

It is also useful to define the dimensionless parameters

α
.= αE, β

.= βE, (15)

and the ratio

α̂
.= α/β = α/β. (16)

(This new use of the hat should cause no confusion in
context.) One can then write the definitions (7) in the
form (

E
Ω

)
=

1
2β

〈(
1
k2

)(
1

α̂+ k2

)〉
k

, (17)

where the notation 〈. . . 〉k denotes the average over the
discrete, truncated wave-number spectrum:

〈A〉k
.=

1
M
∑

k

wkAk. (18)

It is useful to define the ratio of enstrophy to energy, a
dimensionless quantity that should be thought of as the
square of a (dimensionless) wave number κ:

κ2 .= Ω/E = Ω/E. (19)

Then, upon adding and subtracting α̂ to the numerator
of the expression (17) for Ω, one finds the convenient
expression

κ2 = (2β)−1 − α̂, (20)

where

β =
1
2

〈
1

α̂+ k2

〉
k

. (21)

Equation (20) can be used to prove an important con-
straint that will be very useful in the subsequent Monte
Carlo calculations. Define

U
.= 2(αE + βΩ) (22)

[twice the average of the exponent of the Gibbs distribu-
tion P(ϕ ) ∝ exp(−αÊ − βΩ̂)]. One has

U = 2βE (α/β + Ω/E) (23a)
= 2β(α̂+ κ2). (23b)

Upon using Eq. (20), one finally finds

U = 1. (24)

This is a simple generalization of the result that for a 1D
PDF of the form P (x) ∝ exp(−αx2), one has 2α〈x2〉 = 1.
Its importance is that for a general non-Gaussian distri-
bution one will have U 6= 1, so the approach of U to 1 can
be used as a convenient (and in practice very sensitive)
diagnostic of the convergence of the Monte Carlo Markov
chain to the desired asymptotic equilibrium distribution.
(See Sec. III B.)

The parameter space can now be analyzed by demand-
ing that E, Ω, and Ek be non-negative. Considered
as a function of α̂, Ek is singular at α̂ = −k2

min and
α̂ = −k2

max, and one can determine that the region
−k2

max < α̂ < −k2
min is forbidden since one or more of

the Ek would be negative. To analyze the behavior in
the vicinity of α̂ = −k2

min, we write α̂ = −k2
min + ε/M.

Then β ∼ ε−1 → +∞ as ε→ 0+. For fixed E, which we
always assume in considering the various limiting cases,
one sees that also β → +∞. The behavior of α .= αE fol-
lows from α = α̂β = (−k2

min + ε/M)β ≈ −k2
minβ → −∞.

Also, κ2 → −α̂ → k2
min. Symmetrical behavior ensues

in the vicinity of α̂ = −k2
max − ε/M, with the roles of α
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and β, kmin and kmax reversed. The other interesting
points are α̂ = 0 and α̂ = ±∞. Define the special wave
numbers ka and kb according to

k2
a

.= 〈k−2〉−1
k , (25a)

k2
b = 〈k2〉k. (25b)

[That kb ≥ ka is a consequence of a Schwartz inequality
applied to the identity 〈(k2)(k−2)〉 = 1.] Then at α̂ = 0
one finds E = (2βk2

a)−1, Ω = (2β)−1, and κ2 = k2
a.

As α̂ → +∞ one obtains E = (2α)−1, Ω = (2α)−1k2
b ,

and κ2 = k2
b . Since for fixed E α remains finite, we

see that β → 0+ as α̂ → +∞. The point α̂ = −∞ is
obtained continuously from α̂ = +∞ as β passes contin-
uously through 0 from above. One thus identifies three
regimes:

Regime I: k2
min ≤ κ2 ≤ k2

a,
−k2

min ≤ α̂ ≤ 0,
−∞ ≤ α ≤ 0,
∞ ≥ β ≥ k−1

a ;

Regime II: k2
a ≤ κ2 ≤ k2

b ,
0 ≤ α̂ < ∞,
0 ≤ α ≤ 1/2,

k−1
a ≥ β ≥ 0;

Regime III: k2
b ≤ κ2 ≤ k2

max,
−∞ < α̂ ≤ −k2

max,
1/2 ≤ α ≤ ∞,

0 ≥ β ≥ −∞.

The qualitative features of this behavior are summarized
in Figs. 3 and 4. Those figures should not be used for
precise quantitative work, since they actually plot the
approximation obtained by assuming that the spectrum
is dense and spherically truncated [24],

M≈ π(k2
max − k2

min), (26a)

β ≈ 1
2

ln
(
α̂+ k2

max

α+ k2
min

)/
(k2

max − k2
min), (26b)

k2
a ≈

k2
max − k2

min

ln(k2
max/k

2
min)

, (26c)

k2
b ≈

1
2
(k2

min + k2
max). (26d)

Regime II is the most intuitively familiar regime of posi-
tive temperatures, bounded on the left by the enstrophy-
equipartition state α̂ = 0, Ωk = Ω = (2β)−1 = k2

aE
and on the right by the energy-equipartition state β = 0,
Ek = E = (2α)−1 = Ω/k2

b . Regime I corresponds to
negative-α states; symmetrically, regime III corresponds

^

FIG. 3: Important quantities for two-temperature equilibria,
plotted vs α̂

.
= α/β. The gray region is the forbidden zone

−k2
max < α̂ < −k2

min. Solid line, κ2(α̂); dash-dotted line,
α(α̂); triple dash-dotted line, β(α̂). The dashed lines indicate
the special noise case α̂ = 1, κ2 = κ2

1. The horizontal dotted
lines indicate, from bottom to top, the special cases κ2 =
(0, 1

2
, k2

a, k2
b ).

to negative-β states. States with highly negative α have
the longest wavelength modes excited to very high lev-
els. For states with highly negative β, the excitation is
concentrated at the shortest wavelength modes.

The precise numerical values of the characteristic wave
numbers ka and kb are not accessible from the continuum
approximations (26); they must be determined numeri-
cally as a function of the number of discrete modes. We
generally consider Mx = My = 2m. In Tables 1–3 we tab-
ulate the values of ka, kb, and the additional important
wave number κ1 [defined later; see Eq. (39b)] normalized
to kmin for representative m’s and the truncations defined
by

Spherical: wk =

{
1 1 ≤ k ≤Mx/2
0 otherwise,

Square: wk =


1


−Mx/2 ≤ kx ≤Mx/2
−My/2 ≤ ky ≤My/2
k 6= 0

0 otherwise,

Weighted: wk =


dk


−Mx/2 ≤ kx ≤Mx/2
−My/2 ≤ ky ≤My/2
k 6= 0

0 otherwise,

where

dk
.=


1 (interior point)

1/2 (edge but not corner)
1/4 (corner).

(27)
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FIG. 4: Important quantities for two-temperature equilib-
ria, plotted vs κ2 .

= Ω/E. Gray region: forbidden zone
−k2

max < α̂ < −k2
min. Solid line, α̂(κ2); dash-dotted line,

α(κ2); triple dash-dotted line, β(κ2). The dashed lines indi-
cated the special noise case α̂ = 1, κ2 = κ2

1. The vertical
dotted lines indicate, from left to right, k2

a and k2
b . The hor-

izontal dotted lines indicate, from bottom to top, the special
cases β(k2

b) = 0 and α(k2
a) = 1

2
.

For the spherical truncation one has kmax/kmin = 1
2
Mx =

2m−1; for the other truncations kmax is
√

2 times larger.
For given E and Ω, the associated α and β are deter-

mined as follows. We replace the set {E,Ω} by {E, κ2}.
The relation (20),

κ2 = κ2(α̂) = [2β(α̂)]−1 − α̂, (28)

can be inverted (numerically, in practice) to give α̂(κ2).
The function β(κ2) [Eq. (21)] is then known from Eq. (20)
as

β(κ2) =
1
2
[α̂(κ2) + κ2]−1. (29)

The function α(κ2) .= αE follows from

α(κ2) = α̂(κ2)β(κ2). (30)

Finally, the absolute inverse temperatures follow from
Eqs. (15).

Instead of specifying E and Ω, it is often desirable in
the applications to specifically select a particular tem-
perature regime, e.g., a state with highly negative α.
Then one first specifies κ instead of determining it by
computing the ratio of known values of E and Ω; one
then proceeds as before to determine α and β. The ra-
tio Ω/E = Ω/E is immediately given by κ2; if one re-
quires absolute values of E, Ω, α, or β, either E or Ω
must be additionally specified.

C. Equal-temperature equilibrium

One situation in which E and Ω are known arises when
one considers the noise in the common initialization in
which a finite number N of particles are distributed uni-
formly and independently in the box. The particle den-
sity as a function of continuous position x is n(x) =∑

` δ(x − x(`)), where on the lattice one must inter-
pret δ(xj) as ∆(xj), ∆(x) being the periodic delta func-
tion ∆(xj)

.= V −1
∑

k e
ik·xj obeying ∆(0) = ∆V −1.

The mean particle density is n = V −1
∫
dxn(x) = N/V ,

and the power spectrum of the density fluctuation δnk
.=

nk − n is readily determined to be

〈|δnk/n|2〉 =

{
N−1 (k 6= 0)
0 (k = 0).

(31)

In subsequent formulas it will be understood that we con-
sider only k 6= 0.

In Hasegawa–Mima dynamics the above density can
be identified with the density of ion gyrocenters. From
the gyrokinetic Poisson equation for adiabatic electrons
(Appendix A),

(1−∇2)ϕ = n(x)/n, (32)

one finds 〈|δϕk|2〉 = (1+k2)−2N−1, so the quantityEk
.=

(1 + k2)〈|δϕk|2〉 [see Eq. (8)] is

Ek =
(

1
1 + k2

)
1
N
. (33)

Upon comparing the result (33) with Eq. (11), one sees
that the spectrum of uniform random particle noise has
energy and enstrophy compatible with a canonical (and
Gaussian) equilibrium potential distribution with equal
and positive inverse temperatures

α1 = β1 = N. (34)

(Here the 1 subscript reminds one that for this state
α̂ = α1/β1 = 1.) However, it is very important to re-
alize that the full PDF of this noise is noncanonical and
non-Gaussian. That is, the probability density P0(ϕ ) of
realizing a set of Fourier amplitudes {ϕ} is not propor-
tional to

P(G)
0 ∝ exp[−

∑
kN(1 + k2)Êk], (35)

even though the mean Ek (proportional to the second
moment of the potential) is correctly predicted by the
Gibbsian and Gaussian result. The true P0 is much more
complicated because of higher-order correlations arising
from the complicated nonlinear form of the Poisson equa-
tion considered as a function of the particle positions,
and this observation has important consequences for our
subsequent application of the Monte Carlo method. The
correct P0(ϕ ) is computed in detail in Appendixes B
and C. Here we merely point out that the difference
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m # of modes ka k1 α kb kmax

2 12 (-0.2146) 1.309 (0.12355) 1.517 (0.038896) 0.477 (-0.0036536) 1.528 (0.035098) 2

3 48 (-0.018252) 2.069 (0.12404) 2.764 (0.033887) 0.431 (-0.0094577) 2.828 (0.030776) 4

4 196 (0.0097976) 3.546 (0.097497) 5.219 (0.017103) 0.318 (-0.012419) 5.617 (0.014927) 8

5 796 (0.0064147) 6.312 (0.074295) 9.496 (0.0075945) 0.172 (-0.0098883) 11.270 (0.0058683) 16

6 3208 (0.0018233) 11.477 (0.058483) 16.768 (0.0032807) 0.072 (-0.0055911) 22.603 (0.0015546) 32

7 12 852 (0.00099766) 21.157 (0.048752) 29.489 (0.0020646) 0.026 (-0.003904) 45.230 (0.00066221) 64

8 51 432 (0.00071381) 39.437 (0.041868) 52.501 (0.001531) 0.008 (-0.0030035) 90.476 (0.00039774) 128

TABLE I: Important parameters for a discrete spectrum in the spherical truncation. The parenthesized numbers are the
relative differences between the discrete results and the continuum approximation described by Eqs. (26). All k’s are normalized
to kmin.

m # of modes ka k1 α kb kmax

2 24 (-0.5) 1.624 (-0.094167) 2.028 (-0.22162) 0.478 (0.017304) 2.041 (-0.2254) 2.828

3 80 (-0.25) 2.505 (-0.071519) 3.588 (-0.19649) 0.438 (0.045849) 3.674 (-0.20651) 5.657

4 288 (-0.125) 4.149 (-0.061972) 6.472 (-0.15684) 0.343 (0.1001) 6.940 (-0.17857) 11.314

5 1088 (-0.0625) 7.216 (-0.060305) 11.487 (-0.1246) 0.204 (0.16034) 13.472 (-0.15858) 22.627

6 4224 (-0.03125) 12.960 (-0.062585) 20.013 (-0.10732) 0.093 (0.19825) 26.536 (-0.14688) 45.255

7 16640 (-0.015625) 23.768 (-0.066453) 34.858 (-0.10105) 0.035 (0.21727) 52.664 (-0.14058) 90.510

8 66048 (-0.0078125) 44.214 (-0.07068) 61.545 (-0.1) 0.012 (0.22781) 104.920 (-0.13732) 181.019

TABLE II: Important parameters for a discrete spectrum in the square truncation.

between P0 and a Gaussian distribution is intimately re-
lated to the difference between the random-phase approx-
imation and the assumption of Gaussian statistics. That
is, the characteristic function (moment generating func-
tion, or Fourier transform of the PDF5) for the random
variable ψ .= sin θ, where θ is distributed uniformly on
the interval [0, 2π), is Pk = J0(k), where J0 is the or-
dinary Bessel function of the first kind. Such a variable
has variance 〈δψ2〉 = 1

2 . The characteristic function for a
Gaussian with variance 1

2 is exp(−1
4k

2). Both this func-
tion and J0(k) behave as 1− 1

4k
2 +O(k4) for small k, but

differ in the terms of O(k4) and higher. Put another way,
the logarithm of Pk is the cumulant generating function
[25]:

lnPk =
∞∑
l=1

(−ik)l
l!

Cl. (36)

One readily obtains, for example, C2 = 1
2 and C4 = −3

8 ;
in general, the random-phase approximation has nonva-
nishing cumulants of all even orders. If ψ were Gaussian,
on the other hand, all cumulants higher than the second
would vanish. Unfortunately, “random phase” is often
used synonymously with “Gaussian” in many plasma-
physics discussions. Although in some cases this does not
matter, in general it is quite misleading. In the present
application, the difference is crucial.

5 An introduction (with references) to statistical methods can be
found in Ref. [8].

The precise energy per mode,

E =
1
N

〈
1

1 + k2

〉
k

, (37)

must be computed numerically as a function of the wave-
number cutoffs, but it is important to note that the nor-
malized quantities

α1 = β1 =
〈

1
1 + k2

〉
k

(38)

are of order unity (independent of N). The associ-
ated κ corresponds to that point κ1 in Fig. 3 where the
curves α(κ2) and β(κ2) intersect, namely,

α̂ = 1, (39a)

κ2
1 =

1
2

〈
1

1 + k2

〉−1

k

− 1. (39b)

The values of κ1 and the associated α1 = β1 = [2(1 +
κ2

1)]
−1 are tabulated in Tables I–III as functions of m.

III. DETERMINING AND SAMPLING FROM
THE PARTICLE PROBABILITY DISTRIBUTION

By definition, generating a particle state means sam-
pling from the N -particle PDF P (N)(Γ). Two ques-
tions arise: (1) What is P (N)(Γ)? (2) Given P (N)(Γ),
how does one construct an appropriate sampling algo-
rithm? As a trivial example, suppose that the particles
are to be distributed independently and uniformly in a
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m # of modes ka k1 α kb kmax

2 15 (-0.2) 1.421 (0.034988) 1.777 (-0.11148) 0.483 (0.0070936) 1.789 (-0.11612) 2.828

3 63 (-0.047619) 2.298 (0.012321) 3.270 (-0.11822) 0.448 (0.0239) 3.343 (-0.12785) 5.657

4 255 (-0.011765) 3.952 (-0.015118) 6.151 (-0.1128) 0.353 (0.066577) 6.570 (-0.13232) 11.314

5 1023 (-0.0029326) 7.031 (-0.035521) 11.201 (-0.10224) 0.210 (0.12659) 13.083 (-0.13355) 22.627

6 4095 (-0.0007326) 12.785 (-0.049804) 19.765 (-0.096126) 0.095 (0.17423) 26.137 (-0.13387) 45.255

7 16383 (-0.00018312) 23.603 (-0.059945) 34.638 (-0.095342) 0.035 (0.20303) 52.261 (-0.13395) 90.510

8 65535 (-4.5777e-05) 44.057 (-0.06739) 61.344 (-0.097068) 0.012 (0.22002) 104.514 (-0.13397) 181.019

TABLE III: Important parameters for a discrete spectrum in the weighted truncation.

box of volume V = Ld. Independence means P (N)(Γ) =∏
` P

(1)(x(`)), and homogeneity implies P (1)(x) = V −1,
so P (N)(Γ) = V −N . A straightforward sampling algo-
rithm consists of initializing each Cartesian component
of the x(`) with random numbers drawn from a distribu-
tion uniform on [0, L).

Unfortunately, as we have remarked, the present
problem differs from the conventional one of equi-
librium statistical mechanics in that we are given
P(M)(ϕ ) (the PDF of the Fourier components) rather
than P (N)(Γ) (the PDF of the particles). The ϕk’s
and x(`)’s are related via the Fourier transform of the
gyrokinetic Poisson equation (32),

(1 + k2
ν)ϕkν =

1
N

N∑
`=1

e−ikν ·x(`)
(ν = 1, . . . ,M), (40)

where the factor of N−1 is equal to (nV )−1, the V aris-
ing from the Fourier transform convention (1a). This
complicated nonlinear relation is a system of 2M real
equations involving dN Cartesian positions, where d = 2
is the number of spatial dimensions. For 2M = dN or
M = N one expects that it should be possible in gen-
eral to invert this relation and thus determine P (N)(Γ) in
terms of the Jacobian of the transformation (40). How-
ever, it is very unusual that M = N ; usually the desire
for low sampling noise dictates N �M, so the system is
underdetermined; many particle (micro-)states are com-
patible with a given set of Fourier amplitudes (macro-
state). Furthermore, even if the inversion were possible,
the resulting P (N)(Γ) would be extremely complicated,
so a suitable sampling algorithm would probably not be
apparent.

As we have suggested, it is possible to avoid these diffi-
culties by employing a Monte Carlo technique. However,
before turning to that we wish to discuss an alternative
possible procedure that, although flawed, provides addi-
tional insight and motivation.

A. An impractical but instructive procedure

The idea is based on two observations: (i) usually
N � M; (ii) P(M)(ϕ ) is Gaussian. Consider divid-
ing the particle population into G independent groups of

M particles each, choosing N such that N = GM. Then
consider the G systems

(1 + k2
ν)ψ

(g)
kν

=
1
N

∑
`∈g

e−ikν ·x(`)

(ν = 1, . . . ,M; g = 1, . . . , G), (41)

where
∑

`∈g means sum over the M particles in group g.
If one constructs

ϕk =
G∑
g=1

ψ
(g)
k , (42)

then ϕk obeys

(1 + k2)ϕk =
G∑
g=1

( 1
N

∑
`∈g

e−ik·x
(`)
)

(43a)

=
1
N

∑
`

e−ik·x
(`)
. (43b)

Therefore, if the x(`) exist the Poisson equation will be
satisfied. Furthermore, the variance of ϕk is related to
the variance σ2

k
.= 〈|ψk|2〉 by

〈|ϕk|2〉 =
∑
g,g′
〈ψ(g)

k ψ
(g′)
k

∗〉 (44a)

=
∑
g

〈|ψ(g)
k |2〉 (44b)

= Gσ2
k, (44c)

where we exploited the assumption that the systems are
independent. Therefore the variance of ψk is related in a
simple way to the desired variance of ϕk.

The proposal is now to sample, for each g, a collection
of M ψk’s from an appropriate PDF (independent of g)
whose variance is σ2

k. (Appropriate care must be taken
to satisfy the reality conditions.) This is easy with the
aid of standard numerical software packages. Then solve
the nonlinear system to obtain M x(`)’s. Those x(`)’s
are guaranteed to be compatible with the given variance
of the ϕk.

If the PDF for the ψ(g)
k were Gaussian, then since the

sum of Gaussian random variables is again Gaussian the
ϕk would be Gaussian and we would have constructed a
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valid particle realization. Unfortunately, Gaussian ψ
(g)
k

are not permitted. The modulus of Eq. (41) obeys

(1 + k2)|ψ(g)
k | = N−1

∣∣∑
`∈g

exp(−ik · x(`))
∣∣ ≤ G/N. (45)

If ψ(g)
k were sampled from a Gaussian distribution, there

would be a finite probability of obtaining a ψ such that
|ψ| > G/N . For such ψ, the solution of Eq. (40) will not
exist. One must therefore sample from a bounded PDF.
If that obeys appropriate constraints, one can appeal to
the central limit theorem to argue that ϕk is asymptot-
ically Gaussian for G � 1. In practice, this may not
be the regime of interest, since we often consider rela-
tively small numbers of particles. Furthermore, practical
difficulties are certain to ensue. For example, the usual
methods for solving nonlinear systems such as Eq. (41)
involve some sort of functional iteration. However, there
are no guarantees that such iteration will converge un-
conditionally. Nonconvergence may occur because of a
poor initial guess, the existence of multiple solutions,
and/or degeneracies associated with the regular nature
of the wave-number lattice. Although one might think
of solutions for each of these difficulties, it is clear that
the proposed method is cumbersome at best and difficult
to fully automate. Moreover, it suffers from the concep-
tual disadvantage that the realizations it generates are
statistically only approximately valid for fixed, finite N .

Fortunately, the deficiencies of the procedure suggest
a more fruitful line of approach. What is needed is a
way of selecting N -particle states that are as random as
possible consistent with the desired Gaussian statistics on
the Fourier amplitudes while guaranteeing unconditional
convergence to an acceptable sequence of states. These
criteria are satisfied by the Monte Carlo algorithm of
M(RT)2.

B. The M(RT)2 algorithm

Monte Carlo procedures [20, 26, 27] are often intro-
duced from the point of view of the evaluation of mul-
tidimensional integrals. Although we will not need to
evaluate such integrals explicitly, the application of com-
puting integrals does provide fundamental motivation.
Thus an integral I .=

∫
Ddx g(x) over a domain D whose

volume is V .=
∫
Ddx can be interpreted as an ensemble

average over a PDF f(x) that is uniform over the do-
main: f(x) = V −1, I = V

∫
Ddx g(x)f(x) = V 〈g〉, where

〈g〉 ≈ n−1
∑n
i=1 g(xi), the xi being sampled from f(x).

In statistical mechanics the prototypical application is to
the computation of the ensemble average of some quan-
tity Q(Γ) in the canonical ensemble:

〈Q〉 = Z−1

∫
dΓQ(Γ) exp[−H(Γ)/T ], (46)

where Z
.=
∫
dΓ exp[−H(Γ)/T ]. The difficulties with

straightforward Monte Carlo evaluation of this integral

by sampling from a uniform distribution, i.e., by identi-
fying g(x) → Q(Γ) exp(−H/T ), are twofold. First, the
integrand g varies rapidly with Γ and will be small for al-
most all random points, so a possibly prohibitively large
number of points would have to be sampled to ensure
accuracy. Second, the method requires the explicit nu-
merical value of the partition function Z, which can be
very large and difficult to evaluate.

A better procedure is to devise a way of sam-
pling directly from the canonical distribution P (Γ) =
Z−1 exp[−H(Γ)/T ]; then 〈Q〉 ≈ n−1

∑n
i=1Q(xi). (This

is a special case of so-called importance sampling, as
defined and discussed, for example, in Ref. [26].) The
algorithm of M(RT)2 accomplishes this by defining a
Markov chain that is guaranteed to converge asymptoti-
cally to P (Γ).

In reviewing the algorithm, we follow the lucid expo-
sition of Kalos and Whitlock [26]. The elegant tech-
nique of M(RT)2 is based on the fundamental Chapman–
Kolmogorov equation for Markov processes, which can
be written for a PDF f depending on a discrete timelike
variable n and a continuous spacelike coordinate or set
of (abstract or generalized) coordinates X as

fn+1(X) =
∫
dX T (X | X )fn(X). (47)

Here T is an arbitrary conditional probability density. If
we introduce the transition probability S according to

T (X | X′ ) = S(X | X′ )

+
(

1−
∫
dY S(Y | X )

)
δ(X −X′), (48)

one is led to the conventional master equation [28]

fn+1(X) =
∫
dY S(X | Y )fn(Y )

+
(

1−
∫
dY S(Y | X )

)
fn(X). (49)

Here the term S(X | Y ) describes the probability of leav-
ing the state Y ; the parenthesized term is the condi-
tional probability of remaining in the state. Note that
S is not a true conditional probability density since∫
dY S(Y | X ) 6= 1.
It is easy to see that if an asymptotic distribution ex-

ists, namely fn+1 = fn = f , then∫
dY S(X | Y )f(Y ) =

∫
dY S(Y | X )f(X). (50)

This is satisfied by the detailed-balance condition

S(X | Y )f(Y ) = S(Y | X )f(X). (51)

The M(RT)2 algorithm and its variants correspond to
particular convenient choices of S(X | Y ).

Specifically, the algorithm proceeds by proposing a
transition from state Y to a new state Y ′ generated from
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an arbitrary conditional probability T0(Y ′ | Y ). The
proposed state is then tested against an acceptance cri-
terion q and conditionally accepted (X = Y ′) or rejected
(X = Y ) in such a way that detailed balance is satisfied.
One has [26]

S(X | Y ) = A(X | Y )T0(X | Y ), (52)

where A is the acceptance probability. We will follow
M(RT)2 in choosing

A(X | Y ) = min(1, q(X | Y )), (53)

where

q(X | Y ) .=
T0(Y | X )f(X)
T0(X | Y )f(Y )

. (54)

Usually an algorithm is chosen such that

T0(X | Y ) = T0(Y | X ) (55)

(although we will discuss a generalization in Sec. III C 1).
In that case

q(X | Y ) → f(X)/f(Y ). (56)

One can then summarize the algorithm as follows. When
the given probability density at the new proposed state is
larger than that at the old state [q(Y ′ | Y ) > 1], the new
state is accepted unconditionally. Otherwise, the state is
accepted with probability q = f(Y ′)/f(Y ). If one writes

f(Y ) ∝ e−W(Y ), (57)

which is always possible for real W since f(Y ) is a PDF
and hence positive, then

q = e−∆W , (58)

where ∆W .= W (Y ′) − W (Y ); thus proposed states
with lower “energy,” ∆W < 0, are accepted uncondi-
tionally. It is easily shown that the choice (53) satisfies
detailed balance, and asymptotic theorems on Markov
chains guarantee that fn converges to f for reasonable T0.

In practice, the proposed state is usually generated
by first selecting one particle randomly, then examining
the consequences of changing its position by a random
amount ∆x = λξ, where the Cartesian components of ξ
are sampled from a distribution uniform on (−1

2
, 1

2
) and

λ (≤ L) is a parameter that is arbitrary, in principle.
That is,

T0(X | Y ) =

{
λ−d (|xi − yi| ≤ λ)
0 (otherwise).

(59)

(The average acceptance probability and thus the rate of
convergence depend on λ; see later discussion.) The effec-
tive energy W is then evaluated at the proposed state Y ′
and the increment ∆W is computed. If ∆W < 0, then
the proposed state is accepted as the next state in the

Markov chain. Otherwise, another random number p is
drawn from a distribution uniform on [0, 1). If p < q,
where q is defined by Eq. (58), the state is accepted
(X = Y ′); otherwise, the old state becomes the next
state in the chain (X = Y ). The role of p is to ensure
that states with q < 1 are accepted under a long-time
average with probability q.

C. Application of M(RT)2 to particle initialization

The application of the M(RT)2 algorithm to the parti-
cle initialization problem introduces both theoretical and
computational nuances.

1. Theoretical considerations

We will use the simple and efficient procedure de-
scribed in the last paragraph of Sec. III B to generate
a sequence of particle states Γi (and associated Fourier
amplitudes {ϕ}i). However, because the target PDF
P(M)(ϕ ) is couched in terms of the Fourier amplitudes,
not the particle state directly, one must be cautious. In
particular, although for generating particle states one
may choose X = Γ, f(X) = P (N)(Γ), the assertion
P (N)(Γ) = P(M)(ϕ(Γ)) is not correct because it over-
looks the nontrivial, nonlinear, many-to-one relation be-
tween the random variables Γ and ϕ. We will now ex-
plain how to take that relation into account. For nota-
tional brevity, we will henceforth write P (N)(Γ) ≡ P (Γ),
P(M)(ϕ) ≡ P(ϕ ). The underlying transition probability
associated with Γ states will be written T0, while the one
associated with ϕ states will be written T0.

It is important to realize that the particle states that
are generated by the Markov chain have no dynami-
cal significance. For example, they do not contain the
specific pair correlations that are associated with the
Coulomb interaction and that arise from the dynami-
cal relaxation on the fast time scale during which Debye
shielding is set up. There is no physical significance to
the averages of arbitrary thermodynamic quantities over
the Γi. Because the only information built into the calcu-
lation is (the single-time) P(ϕ ), one is allowed to average
only functions of ϕ itself. Let A(ϕ ) be an arbitrary such
function. Most directly, one has

〈A〉 =
∫
dϕP(ϕ )A(ϕ ). (60)

Alternatively, for a compatible P (Γ) one can write

〈A〉 =
∫
dΓP (Γ)A(ϕ(Γ)). (61)

The fundamental constraint relating P(ϕ) and P (Γ) is
that

P(ϕ ) = 〈δ(ϕ− ϕ(Γ))〉 (62a)

=
∫
dΓP (Γ)δ(ϕ − ϕ(Γ)). (62b)
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Since our only goal is to determine particle states
compatible with P(ϕ ) (but not necessarily the result of
physically realizable dynamics), we have wide latitude in
choosing P (Γ). We will argue that a reasonable choice is

P (Γ) =
1
C

P(ϕ )
P0(ϕ )

, (63)

where C is a normalizing factor (the volume of the
Γ space) and P0 is the probability density of realizing
the value ϕ from a uniformly distributed, statistically in-
dependent collection of particles. Note that the explicit
normalization C is never needed in the M(RT)2 algo-
rithm.

To arrive at Eq. (63), we argue that since only ϕ av-
erages are of interest, one can choose P (Γ) such that it
depends on Γ only through ϕ: P (Γ) = F (ϕ ) for some
function F . In the spirit of information theory [29], this is
the unique choice compatible with the lack of any further
information or constraints. Without loss of generality, we
can write

P (Γ) = P(ϕ )/Q(ϕ ), (64)

where Q(ϕ ) is to be determined. Upon inserting the
representation (64) into Eq. (62b), one obtains

P(ϕ ) =
∫
dΓ

P(ϕ(Γ))
Q(ϕ(Γ))

δ(ϕ− ϕ(Γ)) (65a)

=
P(ϕ )
Q(ϕ )

C

∫
dΓ

1
C
δ(ϕ− ϕ(Γ)), (65b)

or, upon cancelling P(ϕ ) from both sides and rearrang-
ing,

Q(ϕ ) = C〈δ(ϕ − ϕ(Γ))〉0, (66)

where 〈. . . 〉0 means the average over the PDF P0(Γ) =
C−1, i.e., over a distribution of uniformly distributed,
statistically independent particles. Thus Q(ϕ ) =
CP0(ϕ) and one recovers Eq. (63).

The form (63) is a generalization of the well-known
result that if y(x) is a monotonically increasing func-
tion of x, then PX(x)dx = PY (y)dy, or PX(x) =
PY (y)/|dx/dy|. This can be written as PX(x) =
PY (y)/P0(y), where P0(y) = |dx(y)/dy|. By setting
PX(x) = const, one sees that P0(y) is the PDF of y
associated with a uniform x distribution. In the present
application one may identify x→ Γ, y → ϕ; however, one
cannot simply introduce the Jacobian ∂(Γ)/∂(ϕ) because
the relation between ϕ and Γ is not one-to-one. The form
(63) reflects a particular, minimally constrained way of
handling the underdeterminism.

So far we have concentrated on generating particle
states Γi that are compatible with the given ϕ distri-
bution. An alternate approach that leads one to the
same PDF (63) is to directly consider a Markov chain
of ϕ states. Now we identify X → ϕ, f(X) → P(ϕ).
One has

q(ϕ′ | ϕ ) =
T0(ϕ | ϕ′ )P(ϕ′)
T0(ϕ′ | ϕ )P(ϕ)

, (67)

where T0(ϕ′ | ϕ ) is the conditional probability of achiev-
ing ϕ′, given ϕ, that is associated with the underlying
algorithm for generating new Γ states. The function
T0(ϕ′ | ϕ ) is nontrivial. However, one may use the defi-
nition of conditional probability to write in complete gen-
erality

T0(ϕ′ | ϕ ) = T0(ϕ′, ϕ )/P0(ϕ ), (68)

where P0(ϕ ) is the PDF for realizing ϕ at any step in the
chain. The great appeal of the M(RT)2 method is that
the joint probability T0(ϕ′, ϕ) need never be computed
explicitly since the ratio of the T0’s required in Eq. (54)
can be written as

T0(ϕ | ϕ′ )
T0(ϕ′ | ϕ )

=
T0(ϕ, ϕ′ )/P0(ϕ′ )
T0(ϕ′, ϕ )/P0(ϕ )

=
P0(ϕ )
P0(ϕ′ )

. (69)

Thus Eq. (67) becomes

q(ϕ′ | ϕ ) =
P(ϕ′ )/P0(ϕ′ )
P(ϕ )/P0(ϕ )

, (70)

where all the potentials are to be computed in terms of
the random particle positions.

From the point of view of generating ϕ statistics, P0 is
not unique; one must provide some information about
how the underlying Γ states are generated. The argu-
ments leading to Eq. (66) show that the minimally biased
choice for P0 is the PDF associated with an indepen-
dent, uniform distribution of particles. This important
function is considered in Appendixes B and C. There
asymptotic methods are used to show that for large N

P0(ϕ ) ∝ exp[−NΨ(ϕ )], (71)

where the exponent Ψ satisfies

Ψ(ϕ ) ≈
∑

k

(εk + 1
4 ε

2
k) (72)

for εk
.= (1 + k2)2 |ϕk|2 � 1 [see Eq. (C16)] and is deter-

mined from an implicit algorithm for larger fluctuation
levels [see Eqs. (C115)]. In the limit N → ∞, for which
the noise level approaches 0, ε is very small, the quar-
tic (in |ϕ|) correction in Eq. (72) is negligible, and one
sees that the result reduces to the Gaussian approxima-
tion (35); however, for finite N the result is substan-
tially more complicated. Note that even though εk � 1,
Nεk = O(1), so P0 is a nontrivial function that is not
well approximated by 1. (See Fig. 15 for a numerical
confirmation of this remark.)

Although the true form of Ψ is involved, its qualitative
role in the Monte Carlo algorithm can be understood by
considering the lowest-order result

P0(ϕ ) ∝ exp
(
−
∑

k

N(1 + k2)Êk

)
. (73)
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From the point of view of the general method of M(RT)2,
which attempts to converge to a distribution func-
tion f(X), the effective PDF in the present problem is

f(X) ∝ P(ϕ )/P0(ϕ ) (74a)

≈ exp
(
−
∑

k

[(α+ βk2)

−N(1 + k2)]Êk

)
. (74b)

For the special case of uniform, independent states, for
which we have shown in Sec. II C that α = β = N , the
lowest-order contribution from P0 cancels the (α+ βk2)
term, leaving one with f(X) ≈ const and q = 1. In
this approximation all states are accepted, which demon-
strates a necessary consistency: to the extent that the
particle states can be considered to be Gaussian (N suf-
ficiently large), the algorithm need “do no work.”

2. Computational algorithm

In addition to the appearance of the reference distribu-
tion P0, the unusual elements in the present application
are that the potentials are spatially nonlocal functions
of the microscopic particle state Γ and that the Fourier
spectrum is resolved only to a finite kmax whereas the
particles may occupy positions distributed continuously
in V . Given a proposed state Γ′, we proceed (in principle)
as follows. Following standard practice in plasma particle
simulations, the particles are collected onto the nearest
lattice point for the purpose of computing the potentials.
The resulting density distribution is (discrete-)Fourier-
transformed and the potential is determined from the
solution of Poisson’s equation (which is trivial in Fourier
space). The invariants Ê(Γ′) and Ω̂(Γ′) are then com-
puted, as is the change

∆W = [Ŵ (Γ′)− Ŵ0(Γ′)]− [Ŵ (Γ)− Ŵ0(Γ)], (75)

where Ŵ0(Γ) .= NΨ(ϕ(Γ)) and

Ŵ (Γ) .= αÊ(Γ) + βΩ̂(Γ). (76)

Finally, the state Γ′ is accepted or rejected according to
the M(RT)2 criterion with q = exp(−∆W ).

The procedure as just described is not yet optimal for
machine computations since it seems to require a time-
consuming 2D Fourier transform at each step in the chain
(which can be very long). That is unnecessary, however,
since only one particle is moved per step and Fourier
transformation is a linear operation. Because we use a
nearest-grid-point algorithm to collect the particles onto
the spatial lattice, it is clear that on the lattice the den-
sity of the proposed state Γ′ will either be identical to
that of Γ or will differ from it by a deficiency of one par-
ticle at the original point xj and an excess of one particle
at x′j . We can therefore calculate ϕ′k by adding to ϕk the

potential associated with a test particle at x′j and sub-
tracting that associated with a test particle at xj . The
potential increment due to a test particle at xj is [cf.
Eq. (40)]

ϕ
(j)
k = [(1 + k2)N ]−1 exp(−ik · xj); (77)

thus the calculation of ϕ′k involves the computation of
just two complex exponentials, or two cosines and two
sines. In principle, evaluation of such quantities must be
done at each step. However, run time can be decreased
at the expense of memory by computing all of the possi-
ble potentials (77) once at the beginning of the run and
storing them. Since there are Mx(1

2
My + 1) indepen-

dent complex Fourier modes and Mtot lattice points, one
must store approximately Y = 2(1

2Mtot)(Mtot) = M2
tot

real numbers. Usually we consider Mx = 2m for reason-
ably small m, so Y (m) = 24m. One has, for example,
Y (3) = 4K, Y (4) = 64K, Y (5) = 1M , Y (6) = 16M ,
Y (7) = 256M . Thus runs with m = 6, or a 64 × 64
lattice, reside comfortably on desktop workstations. For
the goal of testing gyrokinetic codes there is no reason to
work with larger grids.

In designing a satisfactory Monte Carlo run, it is im-
portant that the ratio of acceptances to rejections be nei-
ther too small nor too large. If the ratio is small, so that
almost all states are rejected, then one gains very lit-
tle new information at each step, the steps are highly
correlated, and the rate of convergence to the asymp-
totic distribution may be prohibitively slow. The same
remarks pertain to the other extreme where almost all
states are accepted. Common lore suggests an acceptance
rate of about 50%. In principle, this rate can be calcu-
lated analytically as a function of the parameters, e.g.,
{M, N, λ, κ, E}. Those results are somewhat tedious in
detail, being expressable as infinite Fourier integrals over
the characteristic function, which itself is known only as
an infinite series of Bessel harmonics; our work in this
area is incomplete. In practice, we proceed as follows.
First we choose a temperature regime by specifying an
appropriate κ. Next, we set the overall height of the tar-
get spectrum, e.g., by forcing the intensity of the longest-
or shortest-wavelength mode to be a specified percentage
of the reference noise level. Finally, with the aid of sev-
eral short trial runs we adjust λ, the size of the basic cell
for the transition probability T0, such that the rejection
rate is approximately 50%.

IV. EXAMPLES OF INITIALIZATION

The preceding considerations have been implemented
in a computer code whose input consists of the parame-
ters {m,N, λ, κ, E} and whose output consists of a suc-
cession of particle states that sample the canonical en-
semble (11).

The initial particle state is arbitrary, in principle. In
addition to the uniform, independent initialization al-
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ready mentioned, we also consider the well-known Fi-
bonacci “quiet start” defined by ([18], and references
therein)

xr =
(

2r + 1
2N

)
L, (78a)

yr = αn−1xr mod L, (78b)

where r = 0, 1, . . . , N − 1; n > 1 is an arbitrary integer
parameter; αn is the nth Fibonacci number defined by

α0 = 0, (79a)
α1 = 1, (79b)
αn = αn−1 + αn−2; (79c)

andN = αn. To expedite easy comparison of the random
and quiet starts, we generally choose N to be a Fibonacci
number. Unless we specifically state otherwise, we use
n = 17 (N = 1597).

The spectrum is resolved on a lattice corresponding to
m = 4 (Mx = My = 16). This number of modes reason-
ably approximates a continuum in wave-number magni-
tude, but is sufficiently small that desktop workstation
CPU time is not exorbitant. The results presented here
correspond to a box size of L = 43.3, or kmin ≈ 0.145,
kmax ≈ 1.64. These numbers are representative of other
medium-size simulations of the Hasegawa–Mima and sim-
ilar equations, but their precise values are not critical for
the application of testing relaxation to appropriate equi-
libria.

We present spectral information on 2D graphs of Ek

vs k .= |k|. On these graphs the noise level for the spe-
cial uniform, independent particle state “1”—i.e., Ek,1

.=
[N(1 + k2)]−1—is shown by a dashed line; the theoret-
ically expected spectrum, Ek = (α + βk2)−1, is shown
by a solid curve. At any step in the Markov chain, the
instantaneous levels Êk are indicated by a scatter plot
of small plus signs. The averages of the Êk’s over the
chain up to that point are indicated by a scatter plot of
larger squares that in some cases is superimposed over
the instantaneous data. It is convenient to measure time
in units of cycles, where a cycle is defined to be N steps.
(On the average, each particle is moved once in the course
of one cycle.)

It should be noted that if the number of particles N is
too small relative to the number of retained Fourier am-
plitudes, it may not be possible to successfully generate
arbitrary Fourier spectra (consider N = 1, for example).
In such cases the Monte Carlo algorithm fails to converge,
or converges to unusual spectra with U 6= 1. The time
dependences of U and the running time average U are
sensitive monitors of the convergence of the algorithm.

A. The reference noise spectrum

In the first experiment we verify that the code properly
converges to the preferred noise spectrum with α = β =

FIG. 5: Initial spectrum for a random start with α = β = N
(linear ordinate).

FIG. 6: Same as Fig. 5, but logarithmic ordinate.

N , specified by κ1. (Upon referring to Table III, we see
that κ1 = 6.151 for the present parameters.) In Figs. 5–
8, we show the initial random Fourier intensities for both
a random start (linear ordinate, Fig. 5; logarithmic ordi-
nate, Fig. 6) and a Fibonacci start (Figs. 7 and 8). In
Figs. 9–12, we show snapshots from a Fibonacci start of
the Markov chain at t ≈ 1, 20, and 200. Convergence
to the appropriate distribution is clearly seen, as is the
expected

√
t rate of convergence. The gross behavior of

the instantaneous amplitudes in the final state is quali-
tatively similar to the initial scatter plot for the random
start (Figs. 5 and 6), as it should be.

Convergence to the proper value U = 1 is illustrated
in Figs. 13 and 14. Convergence is already recognizable
from the fluctuating data in times of the order of several
cycles. For this particular case, the running time average
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FIG. 7: Initial spectrum for a Fibonacci start with α = β = N
(linear ordinate).

FIG. 8: Same as Fig. 7, but logarithmic ordinate.

has saturated to its correct value after about 10 cycles.
Convergence within about 10 to 25 cycles is typical for
the runs presented here.

Although we do not display the graphics here, it is
easy to check that the particle positions have been thor-
oughly mixed after a small number of cycles. (Color-
coding can be used to emphasize that the particles have
not just moved slightly from their initial positions.) A
comparison of the final particle states with a typical set
of random initial conditions shows no qualitative differ-
ences. The collected statistics verify that all states were
accepted for this case, in agreement with the argument
presented at the end of Sec. III C 1.

A scatter plot of the exponents U0 for the previous
run is shown in Fig. 15. Because the values are O(1) but
are not all equal, this figure emphasizes that P0(ϕ ) is a

FIG. 9: Reference-case spectra for t = 1 (linear ordinate).

FIG. 10: Reference-case spectra for t = 20 (logarithmic ordi-
nate).

nontrivial function, as was remarked after Eq. (72).
In Fig. 16 we show that the algorithm has no trouble

generating equal-temperature states with intensity one-
tenth of the reference noise level.

B. Enstrophy equipartition

Another reference case of importance is the enstrophy-
equipartition case α̂ = 0 (κ = ka). Although this is not
a negative-temperature state (it corresponds to α = 0
or an infinite energy temperature TE), it is qualitatively
similar to states of negative α (regime I) in that the long-
wavelength modes are excited to relatively high levels.
Working with a marginal state such as this affords a good
consistency check of the software routines that relate α,
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FIG. 11: Reference-case spectra for t = 200 (linear ordinate).

FIG. 12: Reference-case spectra for t = 200 (logarithmic or-
dinate).

β, and κ. Specifying a κ of 3.952 as indicated in Table III
should lead to an α of 0, as indeed it does to within nu-
merical roundoff error. For this case, we consider two
absolute levels. Define the parameter f to be the ratio
between the target intensity and the reference noise level
for the longest-wavelength mode. We first consider f = 5.
The state after 400 cycles is shown in Figs. 17 and 18.
As one expects, convergence is dominated by the time
for the longest-wavelength modes to achieve equilibrium.
Note that this case demonstrates that there is no diffi-
culty exciting some modes to a superthermal level while
suppressing others to a subthermal level.

Next we consider f = 10, thereby doubling the target
intensity from the previous case. As shown in Fig. 19,
this run achieves a quasi-steady state that well approxi-
mates the expected result (Fig. 20); however, after about

FIG. 13: Convergence to the noise state for a run with tmax =
200. Thin solid line, data sampled every 1.0 cycle; thick solid
line; running time average.

FIG. 14: Initial behavior of the convergence to the noise state.
Thin solid line, data sampled every 0.05 cycles; thick solid
line; running time average.

15 cycles an instability sets in. That this instability is of
the longest-wavelength modes can be seen in Fig. 21.

Experience shows that such instabilities are associated
with an inadequate number of particles. For lack of
space, we will not show the successful result of stabilizing
the present run by increasing N , but similar behavior is
manifested by the runs presented in Secs. IVC and IVD.
Note that cases with too small N need not always be un-
stable; sometimes the chain converges, but to states with
U 6= 1.
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FIG. 15: Scatter plot of the exponents U0 for the reference
case plotted in Figs. 9–14.

FIG. 16: Equal-temperature states with intensity one-tenth
of the reference noise level (dashed line).

C. Negative α

Now we generate a true negative-temperature state by
somewhat arbitrarily choosing κ = 1.5, a value deep in
the negative-α regime I. Such equilibria have the longest-
wavelength modes excited to relatively very large levels,
such as would (qualitatively) result from an inverse en-
ergy cascade. The spectrum after ten cycles is shown in
Fig. 22.

D. Negative β

In the final experiment, we generate a state of nega-
tive β (regime III). We arbitrarily choose κ = 10. For
the standard parameters m = 4, n = 17, the algorithm

FIG. 17: Enstrophy-equipartition run (α = 0) with f = 0.05
(snapshot at t = 400, linear ordinate).

FIG. 18: Same as previous figure, but logarithmic ordinate.

appears to be well converged at t = 100, but subse-
quently exhibits an instability of the shortest-wavelength
mode. Increasing n to 19 removes the instability; a well-
converged spectrum is shown in Fig. 23.

V. DISCUSSION

The calculations presented here meld two of the prin-
cipal avenues to the study of nonlinear phenomena in
plasma systems that exhibit strongly fluidlike behavior:
(gyro)fluid simulation with Fourier amplitudes, and ki-
netic simulation with particles (or gyrocenters). Each
has its strengths, but the two approaches should agree
exactly in the inviscid, undriven limit in which collisional
dissipation and the Landau resonance are ignored. Then
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FIG. 19: Enstrophy-equipartition run with f = 0.15, demon-
strating quasi-saturation but a long-term instability.

FIG. 20: Enstrophy-equipartition spectra in the quasi-
saturated regime of Fig. 19.

the spectrum predicted by either approach should nonlin-
early relax to the prediction of the appropriate canonical
ensemble. The Hasegawa–Mima equation is arguably the
simplest nonlinear equation with relevance to magnetized
plasma physics. Nevertheless, its canonical behavior (for
truncated Fourier spectra) is entirely nontrivial, includ-
ing the existence of negative-temperature states. In this
paper we showed how to construct particle realizations
compatible with those Fourier spectra by using a gen-
eralization of the well-known Monte Carlo algorithm of
Metropolis et al. [19]. The numerical aspects of the cal-
culation are straightforward. However, the calculation
of the nontrivial PDF P0(ϕ ) (the probability density
of achieving the set of Fourier amplitudes {ϕ} from a
uniform distribution of statistically independent gyrocen-

FIG. 21: Long-time spectra for the unstable case correspond-
ing to Fig. 19.

FIG. 22: A state of negative α. κ = 1.5; f = 10; n = 19
(N = 4181).

ters) presents an interesting problem in asymptotics, as
described in Appendix C.

A. Application to particle simulations

In the proposed application to particle simulations, is-
sues arise concerning both the interpretation of averaging
procedures as well as the practical implementation of the
required fluid limit.

1. Averaging procedures

We first consider the interpretation of averages over
the chain of states. In particular, we pose the following
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FIG. 23: A state of negative β. κ = 10; n = 19 (N = 4181).

questions: (i) What is the role of a single microstate?
(ii) Does an ensemble average yield any additional infor-
mation?

To answer these questions, one must be precise about
the distinction between time and ensemble averages. Let
r label one of R realizations, each initialized by a ran-
dom sample drawn from the canonical distribution with
specified E and Ω. Of course, Ê(r)

k (t = 0) .= Ẽ
(r)
k 6= Ek.

Each realization will evolve conserving its own Ê = Ẽ

and Ω̂, and one expects that the action of the nonlinear
terms will (on the average) readjust Êk(t) to the canon-
ical spectrum corresponding to Ê (not E). Within one
realization, the only sensible average to perform is the
time average; one expects

E
(r)
k (t) = Ẽ

(r)
k , (80a)

Ê(r)(t) = Ẽ(r). (80b)

Demonstration of correct time-averaged relaxation to
a variety of positive- and negative-temperature canoni-
cal states is probably the most stringent test that can be
performed on nonlinear simulation modules. Note that it
is unnecessary to perform a new Monte Carlo run before
each test of a simulation code or sequence of code up-
dates. A few representative cases can be computed once
and stored in disk files; they can then be used repeatedly
in relaxation tests. Although those will be restricted in
the numbers of particles N and Fourier amplitudes M,
that is probably not crucial because it is difficult (though
not impossible) to imagine software bugs that would not
show up with a randomly chosen N and M.

In order to demonstrate convergence to the specified E,
a true ensemble average must be performed:

E = 〈Ẽ〉 ≈ 1
R

R∑
r=1

Ẽ(r). (81)

To reduce the variance of this calculation, one should
not identify realizations with successive states along the
Markov chain but rather with states separated by at least
one correlation length. It is unlikely that such an ex-
periment will be performed routinely because it involves
many simulation runs and it is improbable that a bug
causing erroneous convergence at this stage would not
have been caught by the tests on individual realizations.

2. Practical considerations

The present paper presents the theory of generating
particle microstates compatible with the nontrivial ther-
mal equilibria of particular nonlinear fluid equations. Of
course, a complete particle simulation does not approxi-
mately integrate a fluid equation, but rather a nonequi-
librium kinetic equation. Therefore, achieving the invis-
cid, undriven fluid limit may not be trivial in practice.

In general, the physics contained in kinetic equations
includes wave–particle interactions (Landau damping).
To achieve the fluid limit, the Landau resonance must be
turned off by setting the parallel wave number k‖ to zero.
That is easy in unsheared slab geometry but not neces-
sarily trivial in the presence of magnetic shear, which
must be set to zero.

If one is to achieve the Hasegawa–Mima limit, one must
enforce adiabatic electrons and Ti = 0. Strictly speaking,
adiabatic electron response is not compatible with k‖ =
0, so one cannot merely employ a two-species code with
k‖ = 0. Rather, the electron response must be built into
the gyrokinetic Poisson equation (as in Appendix A), and
only the ions should be integrated explicitly. Usually
those ions are initialized by sampling from a Maxwellian
velocity distribution. Setting Ti = 0 in that distribution
may cause problems; however, it should be adequate to
simply use a small but nonzero ratio of Ti/Te.

One should also note that thermal-equilibrium spectra
apply only to homogeneous simulations (with, of course,
no macroscopic linear drive or damping). Turning off
linear drive is easy in two-scale formulations that incor-
porate the effects of background profile variations into
constant or slowly varying parameters; it may be more
difficult for global simulations with nonperiodic bound-
ary conditions. Note that such simulations are not ho-
mogeneous.

Finally, in modern simulation practice the full gyroki-
netic equation is not solved directly. Rather, the so-
called δf algorithm is employed, in which only the de-
viation δf from a Maxwellian is integrated explicitly (by
the method of characteristics). A description of that in-
trinsically low-noise method, references to the original
work, and some theoretical discussion of sampling noise
can be found in Ref. [30]. Although the basic method
would seem to be well suited to simulations of thermal-
equilibrium fluid noise, the long-time behavior of δf sim-
ulations may be unstable in the collisionless limit (which
is required for the Hasegawa–Mima spectra discussed in
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the present paper). The basic problem with that limit
(unbounded increase of an entropylike function) was elu-
cidated in Ref. [31], and a possible solution (involving
the use of a numerical “thermostat”) was advanced in
Ref. [6]. However, further research on both theory and
technique is required; therefore, we leave the demonstra-
tion of collisionless Hasegawa–Mima thermal-equilibrium
spectra in a δf simulation to future work.

B. Final remarks

Although our original motivation was the flexible ini-
tialization and robust testing of gyrokinetic simulation
codes, the physics and algorithms we have discussed may
be of more general interest. The δf algorithm mentioned
in Sec. VA2 is itself at core a Monte Carlo sampling
technique [30] that can be used for integrating a variety
of continuous partial differential equations, possibly un-
related to plasma physics. Gyrocenter motion has much
in common with 2D turbulence as well as the dynamics
of point vortices moving in two dimensions [32], which
can be treated both with particle-simulation techniques
[33, 34], fluid approaches [35, and references therein], and
specially designed laboratory experiments [36, and refer-
ences therein]. Finally, the way of handling the many-to-
one relation between the particles and the Fourier am-
plitudes, as well as the statistics issues surrounding the
determination of the basic PDF P0(ϕ), may be of interest
in a variety of contexts, including the use of maximum-
entropy methods in pattern recognition [37].
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APPENDIX A: GYROKINETIC DERIVATION OF
THE HASEGAWA–MIMA EQUATION

In an attempt to make the manuscript reasonably
self-contained, we present here a brief derivation of the
Hasegawa–Mima equation using the gyrokinetic formal-
ism [9]. Further details and discussion of the equation
can be found in the original references [11, 22], in Bow-
man’s dissertation [23], and in Ref. [38].

In a set of dimensionless variables in which density
is normalized to the mean density n, lengths are nor-
malized to the “sound radius” ρs

.= cs/ωci [where cs is
the sound speed (Te/mi)1/2 and ωci is the ion gyrofre-
quency qiB/mic], times are normalized to Ln/cs, where
Ln is the density scale length, and the electrostatic poten-

tial is normalized to (Te/e)(ρs/Ln), the continuity equa-
tion for the perturbed ion density is

∂ni
∂t

+ V∗
∂ϕ

∂y
+ VE ·∇ni = 0. (A1)

Here the diamagnetic velocity V∗
.= (cTe/eB)L−1

n is unity
in the present units, but is written symbolically for em-
phasis; the E × B velocity is VE

.= c ẑ × ∇ϕ/B. The
potential is determined by the quasineutrality condition,
appropriate for low-frequency, long-wavelength fluctua-
tions:

∇2
⊥ϕ = −(nGi − nGe ). (A2)

Here nGi and nGe are the gyrocenter densities; one has
nGe ≈ ne because the electron gyroradius is very small.
The Laplacian term describes the ion polarization charge
density ρpol. [The conventional Laplacian in Poisson’s
original equation is O(λ2

D/ρ
2
s ); this is small in the gy-

rokinetic ordering [15] and is neglected in the approxima-
tion of quasineutrality.] This is defined by the continuity
equation

∂tρ
pol + ∇ · jpol = 0, (A3)

where the ion polarization current is jpol = niqiV
pol,

with [39]

V pol =
1
ωci

∂

∂t

(
cE⊥
B

)
. (A4)

In the approximation of Hasegawa and Mima, the elec-
tron response is assumed to be adiabatic6:

ne = ϕ. (A5)

One then obtains the simplest form of the gyrokinetic
Poisson equation:

(1−∇2
⊥)ϕ = nGi . (A6)

If one substitutes this expression for ni into the continu-
ity equation (A1), one is led immediately to Eq. (5) of
the text.

When the more realistic case of nonadiabatic electron
response is considered, both the linear and nonlinear
terms are modified. The resulting equation is called the
Terry–Horton equation [22]. It conserves just one in-
variant [〈(δnGi )2〉, essentially the sum of the energy and
enstrophy], so its equilibrium statistical mechanics dif-
fers from that of the Hasegawa–Mima equation and, in
fact, is quite nontrivial. Nevertheless, we feel that our

6 In the more physically reasonable generalized Hasegawa–Mima
equation, electron response is taken to vanish for k‖ = 0 modes.
Further references to that model and aspects of the resulting dy-
namics were discussed by J. A. Krommes and C.–B. Kim, Phys.
Rev. E 62, 8508 (2000).
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fundamental concerns of testing gyrokinetic simulations
and exploring the generation of two-temperature equi-
libria are better served by concentrating on the simpler
Hasegawa–Mima equation, so we do not consider the
Terry–Horton equation further in this work.

APPENDIX B: CALCULATION OF THE
FUNDAMENTAL PROBABILITY DENSITY

FUNCTION P0(ϕ)

In this appendix we will use the notation ϕ instead of ϕ
to indicate the set of Fourier amplitudes (more specifi-
cally, the set of the real and imaginary parts of each ϕk).
The discussion in Sec. III shows that the quantity P0(ϕ )
plays a crucial role in the proposed Monte Carlo method.
Again, P0(ϕ ) is the PDF for the Fourier amplitudes of
the potentials arising from an ensemble of independent
gyrocenters, each of which is distributed uniformly.

In the calculations to follow, we will prefix formula
numbers from Abramowitz and Stegun [40] with AS, and
prefix ones from Gradshteyn and Ryzhik [41] with GR.

1. General expression

To compute P0, one may recall the standard result,
written first for a single real random variable ψ̃, that

P (ψ) = 〈δ(ψ − ψ̃)〉. (B1)

Of course, when the 〈. . . 〉 average is expressed in terms
of P (ψ) itself, Eq. (B1) is a tautology. However, when
the random properties of ψ̃ are expressed in terms of an-
other underlying variable X ≡ x̃ whose density is PX(x),
Eq. (B1) is nontrivial:

P (ψ) =
∫
dxPX(x)δ(ψ − ψ̃(x)). (B2)

It is often convenient to work with the Fourier transform
of this result, i.e., to compute the characteristic function

Pk =
∫
dψ e−ikψP (ψ) = 〈exp[−ikψ̃(x̃)]〉. (B3)

This average is analytically tractable if the relationship
between ψ̃ and x̃ is sufficiently simple.

To apply this procedure to the present problem, we
write formally

P0(ϕ ) = 〈δ(ϕ − ϕ̃)〉, (B4)

where the ensemble average is to be taken over the en-
semble of independent, uniformly distributed gyrocen-

ters. More explicitly,

P0(ϕ ) =
〈 M∏
m=1

δ(ϕ(r)
m − ϕ̃(r)

m )δ(ϕ(i)
m − ϕ̃(i)

m )
〉

(B5a)

=
∫

dp1

(2π)2
dp2

(2π)2
. . .

dpM
(2π)2

×
M∏
m=1

eipm·ϕm〈e−ipm·ϕ̃m〉, (B5b)

where

pm
.=

(
p
(r)
m

p
(i)
m

)
, ϕm

.=

(
ϕ

(r)
m

ϕ
(i)
m

)
, (B6)

and m ranges over all M Fourier modes: ϕm ≡ ϕkm . If
one defines, for any k,

ak
.= [(1 + k2)N ]−1, (B7)

then the gyrokinetic Poisson equation that relates the
potentials to the random gyrocenter positions is, from
Eq. (40),

ϕ̃k = ak

N∑
j=1

e−ik·x̃
(j)
. (B8)

One thus has

e−ip·ϕ̃ = exp
(
−iak p

(r)
N∑
j=1

cos(k · x̃(j))
)

× exp
(
iak p

(i)
N∑
l=1

sin(k · x̃(l))
)

(B9)

or

e−ipm·ϕ̃m =
N∏
j=1

R(j)
m (w(r)

m ) I(j)
m (w(i)

m ), (B10)

where w
.= ap and

R(j)
m (w(r)

m ) .=
∞∑

nr=−∞
Jnr (w

(r)
m )e−inrπ/2

×einrkm·x̃(j)
, (B11a)

I(j)
m (w(i)

m ) .=
∞∑

ni=−∞
Jni(w

(i)
m )einikm·x̃(j)

. (B11b)

Thus the Fourier transform of P0(ϕ ) is

P0(p1, . . . ,pm) =
〈 M∏
m=1

N∏
j=1

R(j)
m (w(r)

m ) I(j)
m (w(i)

m )
〉
.

(B12)
Note that in general the ensemble average does not com-
mute with the product symbols.
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To simplify Eq. (B12), let us first recall that the gyro-
centers are independent. Therefore

P0(p1, . . . ,pm) =
N∏
j=1

〈 M∏
m=1

R(j)
m (w(r)

m ) I(j)
m (w(i)

m )
〉
.

(B13)
It is not hard to see that for uniformly distributed gyro-
centers the Fourier amplitudes are independent. Then

P0(p1, . . . ,pm) =
M∏
m=1

P0(pm), (B14)

where

P0(p) .=
N∏
j=1

〈R(j)(w(r)) I(j)(w(i))〉 (B15a)

= 〈R(1)(w(r)) I(1)(w(i))〉N , (B15b)

since each gyrocenter has identical statistics. One has,
for any gyrocenter,

〈R(w(r))I(w(i))〉 =
∑
nr,ni

Jnr (w
(r))e−inrπ/2Jni(w

(i))

×〈exp[i(nr + ni)k · x̃]〉 (B16a)

=
∑
n

Jn(w(r))einπ/2Jn(w(i))(B16b)

= J0(w), (B16c)

where in the last step we employed Graf’s addition the-
orem (AS 9.1.79). Finally, then,

P0(ϕ ) =
M∏
m=1

P0(ϕm), (B17)

where (now writing ϕ instead of ϕm for convenience)

P0(ϕ) .=
∫

dp

(2π)2
eip·ϕJN0 (ap) (B18a)

=
1
2π

∫ ∞

0

p dp J0(|ϕ| p)JN0 (ap). (B18b)

Note that P0(ϕ) is the PDF for the two-component vec-
tor ϕ of real and imaginary parts; it is normalized such
that

∫
dϕP0(ϕ) =

∫
dϕ(r) dϕ(i) P0(ϕ) = 1. However, by

symmetry the result will depend only on ϕ = |ϕ|, so we
will frequently quote the magnitude PDF P0(ϕ), where
P0(ϕ) = 2πϕP0(ϕ). If one changes variables to

p
.= p/(1 + k2) (B19)

and defines

ϕ
.= (1 + k2)ϕ (B20)

(ϕ ≡ nGi ), then one obtains the final result

P 0(ϕ;N) = (2πϕ)P 0(ϕ;N), (B21a)

P 0(ϕ;N) .=
∫ ∞

0

pdp J0(|ϕ| p)JN0 (p/N). (B21b)

It is useful to note that the result (B21b) may also be
written in the interesting form

P 0(ϕ;N) = 〈δ(ϕ +
∑N

j=1kj)〉k, (B22)

where the k’s are effective wavevectors (not to be con-
fused with the k labels of the Fourier amplitudes) satis-
fying ∣∣kj∣∣ = N−1 (B23)

and 〈. . . 〉k denotes an average over all possible orienta-
tions of the k’s.

2. Exact results

The geometrical interpretation (B22) leads immedi-
ately to some interesting exact results. First, one has
the important conclusion that the integral (B21b) van-
ishes identically if ϕ > 1, for in this case it is impossible
to form a closed (N + 1)-sided planar figure (possibly
with crossed lines) with N of the sides constrained by
Eq. (B23):

P 0(ϕ) ≡ 0 (ϕ > 1). (B24)

Next, for N = 1 and N = 2 formula (B21b) can be
computed exactly. For N = 1 it is clear from the geo-
metrical interpretation that the integral vanishes unless
|ϕ| = 1; since the result is independent of orientation one
concludes that

P 0(ϕ; 1) = δ(ϕ− 1). (B25)

Consistently, this is just the joint PDF for a pair of ran-
dom variables ψ1

.= cos θ, ψ2
.= sin θ for θ distributed

uniformly on [0, 2π): P (ψ1, ψ2) = (2π)−1δ(|ψ|−1), where
|ψ| .= (ψ2

1 + ψ2
2)1/2. This is just the situation described

by the case N = 1, where we identify θ with the position
of the single gyrocenter and {ψ1, ψ2} with the real and
imaginary parts of the potential.

For N = 2 the effective wavevectors are constrained to
form a triangle of area A(ϕ,k1,k2), where

A(k0,k1,k2) =
1
2
|k0 × k1| δk0+k1+k2,0. (B26)

In the present case one has k1 = k2 = 1
2
, so from the

simple geometry of an isosceles triangle one obtains

A =
1
4
ϕ(1− ϕ2)1/2. (B27)

Since it is well known7 that

〈δ(k0 + k1 + k2)〉k1,k2 = [(2π)2A(k0,k1,k2)]−1, (B28)

7 The result (B28) is employed frequently in the reduction of wave-
number convolutions arising in the statistical theory of 2D ho-
mogeneous turbulence; see Ref. [8], Appendix A.
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one finally obtains

P 0(ϕ; 2) =


2

π(1− ϕ2)1/2
(ϕ ≤ 1)

0 (ϕ > 1).
(B29)

This result can also be obtained directly from formula
(B21b); see GR 6.522.11.

For N ≥ 3 it does not appear possible to obtain the
integral (B21b) in closed form. For modest N , numeri-
cal evaluation is feasible. It is convenient to drop some
numerical factors from Eq. (B21b) and thus to write

P0(ϕ) = (2πϕ)
(
N

π

)
I, (B30)

where

I(ε;N) .=
1
2

∫ ∞

0

p dp J0(
√
ε p)JN0 (p/

√
N). (B31)

Here

ε
.= N ε, (B32)

where

ε
.= ϕ2. (B33)

As we will verify later, this function is normalized such
that

I(0;∞) = 1. (B34)

Because of the rapid oscillations of J0(
√
ε p) for ε � 1,

straightforward adaptive numerical methods based on
grid refinement fail. Therefore, following the guidance
in the documentation for the NAG Fortran 77 Library
[42], we first evaluate the partial integrals Is defined
by integrating the integrand of Eq. (B31) between j0,s
and j0,s+1, where j0,s is the sth zero of J0(

√
ε p) (except

that j0,0 = 0). Then we consider the sequence {Sn} of
partial sums Sn

.=
∑n

s=0 Is and accelerate the conver-
gence of that sequence by means of Shanks’ transforma-
tion. The results for N = 2 through N = 7 are shown in
Fig. 24.

The results for N = 6 and N = 7 suggest the approach
to a limiting function (at least for ε� 1), which we will
show is e−ε. To address the case of large N (the usual
case in practice) a variety of asymptotic methods may be
employed. We turn to those in the next appendix.

APPENDIX C: ASYMPTOTICS OF P0

We now develop in considerable detail various asymp-
totic analyses of the fundamental PDF P0. In addition
to the central importance of P0 to the Monte Carlo pro-
cedure, the asymptotic analysis is interesting in its own
right, and comparison of a variety of approaches provides
important cross checks on the calculations.

FIG. 24: Numerical evaluation of I(ε; N). Solid line, N = 2;
dotted line, N = 3; short dashed line, N = 4; dash-dotted
line, N = 5; dash-triple-dotted line, N = 6; long dashed line,
N = 7. Each curve contains 200 line segments.

1. The limit N → ∞

It is simplest to begin by considering the limitN →∞.
Note that

lim
N→∞

JN0 (p/
√
N) = exp(−1

4p
2). (C1)

(This can be understood as a consequence of the central
limit theorem or can be proven directly.) Then

I(ε;∞) =
1
2

∫ ∞

0

p dp J0(
√
ε p) exp(−1

4p
2), (C2)

which is a standard form (AS 11.4.29):

I(ε;∞) = e−ε. (C3)

The normalization (B34) follows from this as a special
case.

The result (C3) is not in obvious agreement with the
exact result that P0 = 0 for ϕ > 1 (ε > N). However,
upon rewriting Eq. (C3) in terms of P0 = 2ϕNI, one has

lim
N→∞

P0(ϕ) = lim
N→∞

2ϕNe−Nε (C4a)

= 4ϕδ(ε) (C4b)
= 2δ(ϕ) (C4c)

[consistently normalized as
∫∞
0
dϕP0(ϕ) = 1].

Since ε = Nε, the result (C3) suggests plotting
J(ε;N) .= − ln I/N . That is done in Fig. 25 for N = 5
to 10. The form (C3) is seen to be a good approxi-
mation for ε . 0.5. For ε . 1, a noticeable depar-
ture from Eq. (C3) is seen; the upward curvature with
limε→1 J = ∞ is required in order to satisfy I = 0 for
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FIG. 25: Numerical evaluation of J
.
= − log I/N . Solid line,

reference case J = ε [Eq. (C3)]; dotted line, N = 5; short
dashed line, N = 6; dash-dotted line, N = 7; dash-triple-
dotted line, N = 8; long dashed line, N = 9.

ε > 1. Except for an overallN -dependent height, the cur-
vature near ε = 1 is seen to approach a limiting form. In
Sec. C 10 we will use a saddle-point method to reproduce
the large-ε behavior quite well.

2. Alternate representation of I(ε; N)

For later use it is convenient to revert to a double in-
tegral by recalling that, for any function F (p), where
p
.= |p|,

1
2π

∫
dp eip·ϕF (p) =

∫ ∞

0

p dp J0(|ϕ| p)F (p); (C5)

we identify

ε
.= |ϕ|2 . (C6)

[Of course, this was from where the form (B31) originally
came.] Thus

I(ε;N) =
1
4π

∫
dp eip·ϕJN0 (p/

√
N), (C7)

with I(ε;∞) following from the use of Eq. (C1).

3. Cumulant representation

We now collect some results valid for small ε and fi-
nite N . First, note that for the evaluation of I(ε;∞) one
can reproduce Eq. (C3) by replacing

1
2p J0(

√
ε p)→ δ(p − 2

√
ε ). (C8)

This result can be heuristically justified by appealing
to the form of Eq. (C7). As we will discuss in much
greater detail in Secs. C 9b and C 10, the integrand of
formula (C7) possesses principal saddle points at height
p = 2

√
ε cos θ (exact for N = ∞ and approximately true

for finite N and small ε) and θ = 0 on the imaginary
axes. The role of those saddle points in the value of the
final answer is subtle and will be discussed later; cer-
tainly their mere existence is not sufficient to rigorously
justify Eq. (C8). Nevertheless, the relation p = 2

√
ε cap-

tures the height of the saddle point for small ε, and the
delta function describes the fact that the integral over
the saddle along the contour of steepest descent is O(1).
Qualitatively, at least, one might hope that the repre-
sentation remains useful for finite N as long as ε is suffi-
ciently small. Later we will learn that “sufficiently small”
means ε� N . Assuming this result for the moment, we
may estimate the finite-N corrections to Eq. (C3).

If p = O(
√
ε ) and ε � N , then p = o(

√
N). In this

limit a cumulant expansion will be rapidly convergent.
Define

P̂ (p) .= JN0 (p/
√
N). (C9)

By definition, the lth-order cumulants Cl are defined by
the coefficients in the Taylor expansion of ln P̂ :

ln P̂ (p) =
∞∑
l=1

(−ip)l
l!

Cl, (C10a)

or

P̂ (p) = exp
( ∞∑
l=1

(−ip)l
l!

Cl

)
. (C10b)

Because J0(p/
√
N) is real for real p, the odd cumulants

vanish. Through fourth order, it is straightforward to
combine the results

J0(z) = 1− 1
4z

2 + 1
64z

4 + O(z6), (C11a)

ln(1 + z) = z − 1
2
z2 +O(z3), (C11b)

and lnJN0 = N lnJ0 to find

C2 = 1
2 , (C12a)

C4 = −3
8
N−1, (C12b)

C2n = O(N−(n−1)), (C12c)

or

P̂ (p) = exp[−1
4p

2 − 1
64N

−1p4 + O(p6/N2)]. (C13)

Upon invoking the delta-function “rule,” we estimate
that

I(ε;N) ≈
∫ ∞

0

dp δ(p− 2
√
ε ) exp[−1

4p
2 − 1

64N
−1p4

+O(p6/N2)] (C14a)
= exp[−ε− 1

4N
−1ε2 +O(ε3/N2)]. (C14b)
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The O(ε2) correction is important for ε & O(
√
N).

For ε = O(
√
N) the neglected cumulant terms are

O(N3/2/N2) = O(N−1/2) and are therefore small for
large N . They become important for ε = O(N).

A standard form emerges by defining

ε
.= ε/N = |ϕ|2 , (C15a)

I(ε;N) .= I(ε;N). (C15b)

Then our prediction is that

I(ε;N) ≈ exp[−N(ε+ 1
4ε

2)] (ε� 1). (C16)

In fact, Eq. (C16) is not merely qualitatively correct, as
the crudeness of the delta-function approximation would
suggest; it is quantitatively correct for large N . We now
proceed to demonstrate this systematically. In Secs. C 4–
C 6 we consider the regime of small ε in detail. Al-
though that material provides motivation, mathematical
insights, and consistency checks, it can be skipped on a
first reading. A more general asymptotic analysis valid
for large ε begins in Sec. C 7.

4. The truncated cumulant expansion

We temporarily restrict our attention to the small-
amplitude regime ε � 1 and consider the truncated cu-
mulant expansion to be exact:

I(ε;N) ≈ K(ε;N) (C17a)
.=

1
2

∫ ∞

0

p dp J0(
√
ε p)

× exp(−1
4
p2 − 1

64
N−1p4). (C17b)

Upon changing variables to t .= 1
4p

2, one finds the alter-
nate representation

K(ε;N) =
∫ ∞

0

dt J0(2
√
ε t) exp(−t − 1

4N
−1t2). (C18)

This truncated cumulant expansion is interesting in its
own right.

5. A trick for evaluating K(ε;N) for ε = O(
√

N )

The form (C18) is amenable to a trick. If one recalls
that exp(−at2) behavior results from the Gaussian aver-
age of an exponential,

(2πσ2)−1/2

∫ ∞

−∞
dλ e−λ

2/2σ2
eitλ ≡ 〈eitλ〉 = e−σ

2t2/2,

(C19)
one may identify σ2 = (2N)−1 and write

K(ε;N) =
〈∫ ∞

0

dt J0(2
√
ε t)e−(1−iλ)t

〉
. (C20)

The t integral can be performed (AS 11.4.29), and one
finds

K(ε;N) = − ∂

∂ε
K̂(ε;N), (C21)

where

K̂(ε;N) .= 〈e−ε/(1−iλ)〉 (C22a)

= e−ε
〈

exp
[
−ε
(
iλ − λ2

1 + λ2

)]〉
. (C22b)

Evidently the contributions to this integral come predom-
inantly from λ . O(σ) = O(N−1/2), so if we consider
ε = O(N1/2), then the λ2 terms in the second exponen-
tial are negligible and

K̂(ε;N) ≈ e−ε〈e−iελ〉 (C23a)

= e−εe−
1
2 ε

2σ2
(C23b)

= exp(−ε − 1
4N

−1ε2). (C23c)

Then from Eq. (C21),

K(ε;N) =
(
1 + 1

2
N−1ε

)
× exp(−ε− 1

4
N−1ε2) (C24a)

≈ exp(−ε− 1
4
N−1ε2). (C24b)

This important result is in exact agreement with the
heuristic prediction (C16).

A slight subtlety with this procedure is that if one
wants to recover the small-ε behavior correct through
terms of O(N−1), one must retain the λ2 terms ne-
glected in the previous calculations (although they may
be treated as small):

K̂(ε;N) ≈ e−ε〈exp[−ε(iλ − λ2)]〉 (C25a)
≈ e−ε〈1− ε(iλ − λ2) − 1

2 ε
2λ2〉 (C25b)

= e−ε[1 + (ε− 1
2 ε

2)σ2]; (C25c)

K(ε;N) = [1− σ2(1− 2ε+ 1
2ε

2)]e−ε

[ε = o(N1/2)] (C26a)
= (1− 1

2N
−1 + ε − 1

4N ε2)e−Nε

[ε = o(N−1/2)]. (C26b)

6. Attempts to evaluate K exactly

We will now describe attempts to evaluate K exactly.
Although those will not be wholly successful, they do
lead to an asymptotic expansion for the solution in in-
verse powers ofN and to simple results for the small-ε be-
havior. Although the details are particular to the special
form of K, for which certain functions can be determined
in closed form, and use of the truncated cumulant expan-
sion precludes us from obtaining corrections smaller than
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O(N−1), the methods are more general and could be ap-
plied to I itself if that were deemed important.

We proceed via the Laplace transform

K̂(z) .=
∫ ∞

0

dε e−εzK(ε). (C27)

(We suppress the N dependence temporarily.) It is con-
venient to use the form (C18). The ε integral is then a
standard form (AS 29.3.75):

Ĵ(z) .=
∫ ∞

0

dε e−εzJ0(2
√
ε t) (C28a)

= z−1e−t/z. (C28b)

Thus

K̂(z) = z−1

∫ ∞

0

dt exp[−(1 + z−1)t− 1
4N

−1t2)]. (C29)

Define

β(z) .=
√
N (1 + z−1), (C30)

and recall the definition of the complementary error func-
tion:

erfc(β) =
2√
π

∫ ∞

β

dτ e−τ
2
. (C31)

Straightforward algebra leads one to

K̂(z) =
√
πNz−1eβ

2(z) erfc(β(z)). (C32)

(It is this explicit representation in terms of standard
functions that is lacking in the general problem.) The
inversion theorem for Laplace transforms then gives

K(ε) =
∫
C

dz

2πi
eεzK̂(z), (C33)

where C is a vertical line in the right half of the z plane.
We can use the integral representation (C33) to de-

velop an asymptotic series for K(ε;N) in inverse powers
of N . To perform the inversion, it is convenient to inte-
grate over β instead of z. We first use Cauchy’s Theorem
to shift C to the left half-plane, but to the right of z = −1.
Then

K(ε) =
√
π

∫
C′

dβ

2πi
W (β/

√
N)eβ

2
erfc(β), (C34)

where

W (β) .= (1− β)−1 exp[−ε/(1− β)]. (C35)

If one writes z = a + ib, then the contours C and C′ are
shown in Figs. 26 and 27 for finite endpoints b = ±B,
−1 < a < 0. As B → ∞ one has an essential singularity
of the form exp[−ε/(|a| /B2)] → 0, so one can close off
the contour between points 1 and 5 without changing
the value of the integral, thereby obtaining a loop that

FIG. 26: Integration contour C for the inverse Laplace trans-
form used in Sec. C 6. Points 1–5 are reference values that
map to the transformed points in Fig. 27.

FIG. 27: Transformed integration contour C′ = β(C). As the
endpoints of contour C (Fig. 26) recede to ±i∞, points 1 and 5
become coincident.

encircles the origin. Since β is large on C′, one may use
the asymptotic expansion of eβ

2
erfc(β) (AS 7.2.14) to

find that

K(ε) =
∮
dβ

2πi
W (β/

√
N)

×
∞∑
m=0

(−1)m(2m)!
m! 22mβ2m+1

(C36a)

=
∞∑
m=0

(−1)m

m! (4N)m
W (2m)(0), (C36b)

where the residue theorem was employed in the last step.
To simplify the term W (2m)(0), we use (1 − β)−1 =
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∑∞
k=0 β

k
to arrive at

W (β) = exp
(
−ε

∞∑
k=0

β
k
)( ∞∑

l=0

β
l
)

(C37a)

= e−ε
∞∑
r=0

(
−ε
∑∞

k=1 β
k
)r

r!

×
( ∞∑
l=0

β
l
)
. (C37b)

One has (AS 24.1.2B)[ ∞∑
k=1

(xk
k

)
tk
]r

= r!
∞∑
n=r

tn

n!

∑
a

(n; a)∗xa1
1 . . . xan

n

× δ
[ n∑
n=1

nan, n
]
δ
[ n∑
n=1

an, r
]
, (C38)

where

(n; a)∗ .=
n!

1a1a1! 2a2a2! . . . nanan!
, (C39)

ai > 0, and δ[a, b] denotes the Kronecker delta δa,b. In
the present case one has xk = k and t = β, so one is led
to

eεW (β) =
∞∑
r=0

(−ε)r
∞∑
l=0

∞∑
n=r

β
l+n∑

a

δ [. . .] δ [. . .]
a1! . . . an!

.

(C40)
Upon differentiating 2m times, one obtains the factor

F
.= (l + n)(l + n− 1) . . . [l+ n− (2m− 1)], (C41)

so at β = 0 one must have

l + n = 2m, F = (2m)! , (C42)

and n ≤ 2m, which corresponds to l ≥ 0. Thus

eεW (2m)(0) = Pm(ε), (C43)

where

Pm(ε) .= (2m)!
2m∑
r=0

(−ε)r
2m∑
n=r

×
∑

a

δ [
∑
nan, n] δ [

∑
an, r]

a1! . . . an!
. (C44)

Finally, then,

K(ε;N) = e−ε
∞∑
m=0

(−1)m

m! (4N)m
Pm(ε). (C45)

As a simple consistency check, observe that if one retains
only the m = 0 term, one again obtains the result (C3)
for K(ε;∞).

One may exercise the form (C45) in several ways.
First, let us consider the series for K(0;N). One has

Pm(0) = (2m)!
2m∑
n=0

∑
a

δ [
∑
nan, n] δ [

∑
an, 0]

a1! . . .an!
. (C46)

However, the constraint
∑
an = 0 implies that every a

vanishes, which then means n = 0 and

Pm(0) = (2m)!, (C47)

so

K(0;N) =
∞∑
m=0

(−1)m(2m)!
m!(4N)m

(C48a)

= 1− 1
2N

−1 + 3
4N

−2 − · · · . (C48b)

This agrees with the alternate derivation

K(0;N) = lim
z→∞ zK̂(z;N) (C49a)

=
√
πNeN erfc(

√
N), (C49b)

which reduces to Eq. (C48a).
Next, we may compute K(ε;N) through O(N−1). It

is a straightforward exercise with the form (C44) to de-
termine that

P0(ε) = 1, P1(ε) = 2− 4ε+ ε2 (C50)

and therefore that

K(ε;N) = [1− 1
4
(2−4ε+ ε2)N−1]e−ε+O(N−2). (C51)

This agrees with Eq. (C26b). An alternate approach is
to define

K(ε, α) .=
∫ ∞

0

dt J0(2
√
ε t)e−αt, (C52)

so K(ε;∞) = K(ε, 1) and

K(e;N) ≈
∫ ∞

0

dt J0(2
√
ε t)e−αt (C53a)

× (1− 1
4N

−1t2) (C53b)

=
(

1− 1
4N

∂2

∂a2

)
K(ε, α). (C53c)

This can be reduced straightforwardly to Eq. (C51).
Finally, one may extract from Pm(ε) the terms of high-

est order in ε and sum the entire series (C45). Thus

Pm(ε)→ (2m)! ε2m
∑

a

δ [
∑
nan, 2m] δ [

∑
an, 2m]

a1! . . . an!
.

(C54)
The constraints are

2m∑
n=1

nan = 2m,
2m∑
n=1

an = 2m, (C55)
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which lead to
∑2m

n=2(n−1)an = 0. Therefore one deduces
that an≥2 = 0 and a1 = 2m, so Pm(ε) → ε2m and

K(ε;N) → e−ε
∞∑
m=0

(−1)mε2m

m! (4N)m
(C56a)

= exp(−ε− 1
4N

−1ε2). (C56b)

This reproduces the result (C24b).
By considering the structure of the series for eεK, one

can easily deduce that for ε = O(
√
N) the leading-order

terms in ε dominate and the previous calculation is cor-
rect. For larger ε, formerly subdominant terms also con-
tribute. We have been unable to sum the resulting series
in closed form, but in any event K is no longer a good
approximation to I for such ε. Therefore, in the next sev-
eral sections we return to I and consider approximation
techniques appropriate for large ε and large N .

7. Standard polar representation for I

We introduce ϕ and q by

ϕ
.=
√
N ϕ, p

.=
√
N q (C57)

and obtain from Eq. (C7) the standard form

I(ε;N) =
N

2π
Re
∫ π/2

−π/2
dθ

∫ ∞

0

q dq exp[NΦ(q; θ)],

(C58)
where

Φ(q; θ) .= iϕq(θ)q + lnJ0(q), (C59a)

ϕq(θ)
.= ϕ cos θ (C59b)

(the q subscript on ϕq reminds one that ϕq is the projec-
tion of ϕ onto the q vector, not onto a fixed Cartesian x̂).
We took advantage of the symmetry in θ to restrict the
integral to (−1

2π,
1
2π) at the expense of taking the real

part. [Because ϕx(θ) is even, I is also twice the inte-
gral from 0 to 1

2
π; however, for later use we prefer the

symmetrical integration domain.] For N →∞, one may
replace

lnJ0(q) → −1
4q

2. (C60)

8. The limit ε ≥ 1

First we will re-establish the remarkable result (B24)
that

I(ε;N) ≡ 0 (ε ≥ 1). (C61)

Now I is proportional to the integral

F (ϕ; θ) =
∫ ∞

0

q dq eNΦ(q,θ). (C62)

For real θ the integrand is analytic everywhere in the
finite complex q plane. An application of Cauchy’s the-
orem then leads one to 2i ImF = −C, where C is the
integral around a large semicircle in the upper half of
the q plane. If the integral vanishes on that semicircle
as its radius approaches infinity, one may then deduce
that ImF (θ) ≡ 0 for all θ between −1

2π and 1
2π. Since

F is an analytic function of θ, F itself must vanish. Now
for sufficiently large |q|, J0(q) ∼ (2/πq)1/2 cos(q − 1

4
π).

With q = x + iy, one has |cos q| = (cos2 x cosh2 y +
sin2 x sinh2 y)1/2, which can be reduced with the aid of
various identities to |cos q| = (cosh2 y − sin2 x)1/2 ≤
cosh |y|. Convergence is then controlled by

Re[i ϕ q + lnJ0(q)] = −ϕy + ln |J0(q)| (C63a)
= −ϕy + ln

∣∣cos(q − 1
4π)
∣∣

+
1
2

ln(2/π |q|) (C63b)

< −ϕy + lncosh y. (C63c)

The least-convergent case is for large y, where cosh y ∼
1
2
ey ; hence Reϕ < −ϕy + y = (1 − ϕ)y. Therefore,

for ϕ > 1 convergence is assured and the result (C61)
follows. It is easy to see that for sufficiently large N it
holds also for ϕ = 1.

9. Large N

It is noteworthy that the result (C3) is valid for all ε
in spite of the rapid oscillations of J0(

√
ε p) for large ε;

no asymptotics are involved. This is unfortunate, in a
way, because the case of large but finite N is not exactly
solvable and some asymptotic methods will be required.
It is therefore useful to give an alternate derivation of the
result (C3) in order to explain why the rapid oscillations
for large ε do not lead to a simplifying asymptotics and
to motivate later work. We will show that the result
(C3) can be considered to follow from a steepest-descent
calculation that is exact for the present case.

We may choose either a Cartesian (px, py) or polar
(p, θ) representation. Each has certain advantages. In
general, one expects the polar representation to be su-
perior because it makes explicit the symmetry that the
integral depends on only ϕ ≡ |ϕ|, not ϕx and ϕy sepa-
rately. However, the p integral runs from 0 to ∞, leading
to concerns about contributions from the vicinity of the
origin. In the Cartesian representation the contours run
from −∞ to ∞ and the px and py integrals behave quite
symmetrically; however, that representation obscures the
dependence on ϕ alone.

a. Cartesian formulation

We begin with the Cartesian formulation. Then

I(ε;∞) = X(ϕx)X(ϕy), (C64)
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where

X(ϕx)
.=

1
2
√
π

∫ ∞

−∞
dpx e

ipxϕx exp(−1
4
p2
x) (C65a)

=
1

2
√
π
e−ϕ

2
x

×
∫ ∞

−∞
dpx exp[−1

4(px − 2iϕx)2]. (C65b)

Upon introducing px
.= px − 2iϕx, one finds

X(ϕx) =
1

2
√
π
e−ϕ

2
x

∫
C
dpx exp(−1

4p
2
x), (C66)

where the contour C is a horizontal line a distance of 2ϕx
below the real axis. However, since the px integral con-
verges within the 90◦ cones centered on the real axis,
one may use Cauchy’s Theorem to deform C to the real
axis. The resulting integral, of a Gaussian with variance
σ2 = 2, is standard; one finds

X(ϕx) = e−ϕ
2
x . (C67)

Then

I(ε;∞) = e−ϕ
2
xe−ϕ

2
y = e−|ϕ|

2
= e−ε. (C68)

The oscillations were transformed away by the contour
deformation. That is, the original contour C may be de-
formed to the path of steepest descent that passes over
the simple saddle centered at px = 2iϕx (see Fig. 28).
Although the location of this saddle moves to i∞ as
ϕx ∼

√
ε → ∞, the contributions to the integral along

the path of steepest descent are sensibly independent of
that location, coming from a region of O(1) centered on
the saddle.

As is well known, this exact result for integration along
a contour of steepest descent over a simple saddle is iden-
tical to the result of the standard algorithm that writes∫

C
dz exp[NΦ(z)]

≈ eNΦ(z0)

∫
C
dz exp[ 12NΦ′′(z0)(z − z0)2] (C69a)

=
(

2π
N |Φ′′|

)1/2

eNΦ(z0), (C69b)

where ϕ′(z0) = 0 and we assume for this example that
Φ′′(z0) is real and negative. This suggests that in the
limit of large but finite N a steepest-descent calculation
will still be useful, though no longer exact.

In the limitN →∞ one thus observes that the integral
factors in a Cartesian representation and may be eval-
uated by performing two independent contour integra-
tions. Unfortunately, for finite N the presence of higher-
order terms [O(p4)] in the expansion of JN0 (p/

√
N) pre-

vents such a factorization. It is therefore desirable to
consider the polar representation in some detail.

FIG. 28: The simple saddle point for the Cartesian repre-
sentation with N = ∞. Dashed line, original contour; solid
line, path of steepest descent. Note that the contour of steep-
est descent is parallel to the abscissa for a simple quadratic
saddle.

b. Polar formulation

The form of the q integral in Eq. (C58) suggests the use
of the method of steepest descent, although we will see
that there are complications in the present case because
the q integral begins at q = 0, not q = −∞. Define

I±
.=
N

2π

∫ π/2

−π/2
dθ

∫ ±∞

0

q dq eNΦ, (C70)

so that I = Re I+. Since the integrand is an analytic
function of q, one may use Cauchy’s theorem to prove
that

I+ = I− + S, (C71)

where S is the contribution from the path S of steepest
descent. A representative contour plot of Φ(q) is shown in
Fig. 29. It reveals the existence of saddle points located
near the zeros of J1(q), and of sinks located at the zeros
of J0(q). The path of steepest descent is also shown in
Fig. 29. Further discussion of the saddle points is given
in Sec. C 10.

Unfortunately, by replacing q → −q in I− and noting
that J0(q) is an even function, one can easily prove that
I− = I∗+, so Re I− = Re I+. Upon taking the real part
of Eq. (C71), one therefore proves that ReS = 0 and
the steepest-descent contribution to I = Re I+ vanishes
when q is integrated over the entire path S from −∞
to ∞ (and when θ is integrated over the entire contour
running from −1

2
π to 1

2
π). Therefore introducing I− is

not helpful. It is more productive to note that

I+ = U + S′, (C72)
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FIG. 29: Contour plot of ϕ(q) for ϕ = 0.25. Saddle points
are at the centers of the squares. Solid lines, Re Φ = const;
dashed lines, ImΦ = const. Medium-thickness lines, branch
cuts; heavy curve, path of steepest descent.

FIG. 30: Alternate integration contour: U (vertical line) +S ′
(curved line).

where U is the contribution from the (uphill) path U
along the imaginary axis beginning at q = 0 and end-
ing at the central saddle point at q = iq̂ (q̂ being real),
and S′ is the integral over the right-hand half of S (see
Fig. 30). Because the horizontal symmetry has been bro-
ken, it is not true that S′ is purely imaginary; one has

I = ReU + ReS′. (C73)

Before attempting a general analysis, it is useful to
explicitly verify Eq. (C72) in the special case (C60), for
which all integrals can be performed exactly and one can
easily understand the sizes of the various contributions.

We thus consider

I+ =
N

2π

∫ π/2

−π/2
dθ

∫ ∞

0

q dq eNΦ, (C74)

where

Φ .= iqϕq −
1
4
q2. (C75)

With q = x + iy, the path of steepest descent is readily
seen to be horizontal, y = q̂ with

q̂ = 2ϕq . (C76)

Upon introducing the normalized horizontal distance p
from the saddle point by

q = iq̂ + (2/N)1/2p, (C77)

one has

S′ =
1
π

∫ π/2

−π/2
dθ e−εq

×
∫ ∞

0

dp (p+ i
√

2εq)e−p
2/2 (C78a)

= S′r + iS′i, (C78b)

where

S′r
.=

1
π

∫ π/2

−π/2
dθ e−εq , (C79a)

S′i
.=

1√
π

∫ π/2

−π/2
dθ e−εq

√
εq. (C79b)

Because εq = O(N) [for ϕ = O(1)], the imaginary part
of S′ is much larger in magnitude than the real part.
Explicitly,

S′r =
1
π

∫ π/2

−π/2
dθ e−ε cos2 θ = e−ε/2I0(1

2 ε) = O(ε−1/2).

(C80)
S′i is O(1). For both S′r and S′i, note that for large ε the
contributions to the integrals come from regions within
a distance of order

√
ε from the end points.

To evaluate U , we introduce the normalized vertical
distance p from the saddle point by

q = i[q̂ + (2/N)1/2p], (C81)

so that

U = − 1
π

∫ π/2

−π/2
dθ e−εq

∫ 0

−
√

2εq

dp (p+
√

2εq)ep
2/2. (C82)

The p dp integral can readily be done, yielding a contri-
bution

U1 = 1− S′r , (C83)
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where we noted the definition (C79a); the second of these
terms cancels the real part of Eq. (C78b). The √εq term
gives a contribution

U2 = − 2
π

∫ π/2

0

dθ e−ε cos2 θ
√

2ε cos θ
∫ √

2ε cos θ

0

dp ep
2/2.

(C84)
This can be evaluated exactly by introducing y

.=√
2ε sin θ. Then

U2 = − 2
π
e−ε

∫ √
2ε

0

dy ey
2/2

∫ √2ε−y2

0

dp ep
2/2. (C85)

The double integral can be interpreted as a 2D Cartesian
integral over a quarter circle of radius

√
2ε, so it is most

conveniently done in polar coordinates:

U2 = − 2
π
e−ε

∫ π/2

0

dβ

∫ √
2ε

0

ρ dρ eρ
2/2 (C86a)

= e−ε − 1. (C86b)

The −1 cancels against the 1 in Eq. (C83), so

U = e−ε − S′r (C87)

and, upon adding Eqs. (C78b) and (C87),

I = ReU + ReS′ = e−e, (C88)

in agreement with Eq. (C68).
Because the dominant term in S′ is imaginary, so does

not contribute to I, one might have hoped that I ≈ ReU .
Unfortunately that is not the case; since according to
Eq. (C79a) S′r = O(ε−1/2), the second term of Eq. (C87)
is much larger than the first, so there is a cancellation
of relatively large terms between S′ and U . This poses
a problem in the general case (C59), where the position
of the saddle point obeys an implicit equation and the
θ integrals that arise cannot be done analytically. There-
fore we will consider deformations of the θ contour and
show how to extract the correct answer from Eq. (C79b).
Ignore for a moment the constraint that the end points
of the θ integral are pinned to ±1

2π. One has explicitly

S′i =
( ε
π

)1/2
∫ π/2

−π/2
dθ cos θe−ε cos2 θ. (C89)

The contour plot of − cos2 θ in the complex θ plane is
shown in Fig. 31. Saddle points are found at θ = ±1

2
π

and at θ = 0. Consider in particular the integral from
q = i∞ to q = −i∞, which is along a contour D of
constant phase. With q = x+iy and cos θ = cos x cosh y−
i sinx sinh y, which reduces to cos θ = cosh y on D, one
has

S′i =
( ε
π

)1/2
∫ ∞

−∞
dy cosh y e−ε cosh2 y. (C90)

With z .= sinh y and cosh2 y = 1 + sinh2 y, this becomes

S′i =
( ε
π

)1/2

e−ε
∫ ∞

−∞
dz e−εz

2
= e−ε. (C91)

FIG. 31: Contour plot of − cos2 θ. Dashed lines, contours C;
solid line; contour D. Contours C can be deformed into any
curves that connect the indicated endpoints.

Thus one obtains the correct answer by integrating the
dominant q-saddle-point contribution along the θ con-
tour D of steepest descent. Note that although that in-
tegral can be done exactly in the present case, it can also
be recovered exactly by the standard procedure of Taylor
expansion near the saddle point θ = 0 and performing a
Gaussian integral.

Of course, S′i is integrated along the real axis R, not
along D. However, since the integrand is analytic, one
can write schematically

S′i =
∫
R
dθ =

∫
C
dθ+

∫
D
dθ, (C92)

where C is an arbitrary contour that connects θ = −1
2π

to θ = i∞ and θ = −i∞ to θ = 1
2π; see Fig. 31. Since

S′i is real by definition, one has Im
∫
C = − Im

∫
D. Thus

with
∫
R dθ =

∫
C dθ +

∫
D dθ, one has

I+ =
∫
R
dθ

∫
U

dq+
∫
R
dθ S′, (C93a)

I = Re
(∫

R
dθ

∫
U

dq +
∫
R
dθ S′r︸ ︷︷ ︸

I

+
∫
C
dθ iS′i︸ ︷︷ ︸
−I

)

+ Re
∫
D
dθ iS′i︸ ︷︷ ︸
I

. (C93b)

We have shown with the underbraces the values of various
terms. This procedure of extracting the steepest-descent
contribution to the θ integral can be viewed as adding
0 = −I + I to the first underbraced terms of Eq. (C93b).
However, that interpretation has the deficiency that one
could equally well add λ × 0 = −λI + λI, where λ is an
arbitrary real number; that would make the numerical
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coefficient of the D contribution uncertain. That λ = 1 is
seen more fundamentally from the decomposition (C93a)
(with no real part taken) and by the demonstration that
we obtain the correct answer for the special case (C60).

10. Saddle-point analysis of the limit ε . 1

By appealing to the results for the special N = ∞ case
treated in the last section, we will in the general case
thus approximate

I ≈ 1
2

(
N

2π

)∫
D
dθ

∫
S
q dq eNΦ. (C94)

The factor of 1
2 takes into account that we are to integrate

only over the right-hand half of the q saddle.
For the general structure of the complex q plane, we

refer again to Fig. 29. It is easy to verify the existence and
orientation of the saddle points for sufficiently small ϕq .
Stationary points are determined from the solution(s) of

0 =
∂

∂q
Φ(q; θ) = i ϕq −

J1(q)
J0(q)

. (C95)

The solutions of this transcendental equation determine
functions q̂(i) ≡ q̂(i)(θ), where we label the various roots
by i; again, the hat signifies dependence on θ. For
small ϕx, either J1 must be relatively small or J0 must be
relatively large. Since the Bessel functions are bounded
according to |Jν(z)| ≤ | 12z|

ν exp(|y|)/Γ(ν+1) for ν ≥ −1
2

(AS 9.1.62) and since for large z the asymptotic forms
Jν(z) = [2/(πz)]1/2[cos(z − 1

2νπ −
1
4π) + e|y|O(|z|−1)]

(AS 9.2.1) differ merely by a phase factor, the only pos-
sibility is that J1(q) is small, i.e., that q lies near the
zeros j1,s of J1. Therefore we write

q = j1,s + iδ (s = 0,±1,±2, . . .) (C96)

(j1,0 = 0). Then

J1(q) ≈ J1(j1,s)

+
1
2
[J0(j1,s) − J2(j1,s)]iδ (C97a)

=
1
2
[J0(j1,s) − J2(j1,s)]iδ (C97b)

and Eq. (C95) reduces to

δ =
2ϕq

[1− J2(j1,s)/J0(j1,s)]
. (C98)

Because the zeros of the Bessel functions interlace, it is
always the case that J2(j1,s)/J0(j1,s) < 0, so δ is always
positive. For s = 0 one has J2(j1,0) = J2(0) = 0, so we
recover Eq. (C76), q ≈ q̂(A) ≈ 2i ϕx.

To understand the orientation of these saddle points,
we compute

Φ′′ ≡ ∂2

∂q2
Φ(q; θ) = −R′(q), (C99)

where

R(q) .= J1(q)/J0(q). (C100)

With the aid of the identities J ′0(z) = −J1(z) and J ′1(z) =
J0(z)− J1(z)/z, one finds

R′(q) =
J0(q)J ′1(q)− J1(q)J ′0(q)

J0(q)2
(C101a)

= 1− 1
q

J1(q)
J0(q)

+
(
J1(q)
J0(q)

)2

. (C101b)

For the saddles, one may simplify Eq. (C101b) with the
aid of Eq. (C95) to

Φ′′s = −
[
1− ϕ2 +

(
yϕ

|q|2

)
− i

(
xϕ

|q|2

)]
. (C102)

Since ϕ < 1 and y > 0, one has ReΦ′′s < 0. For the
principal saddle at q̂(A) (x = 0), the path of steepest
descent is horizontal. The other saddles are somewhat
skewed, but the path of steepest descent is still basically
from left to right.

To determine which saddle point dominates, one may
formally carry out the saddle-point integrations. One can
verify that the principal root q̂(A)

x dominates for small ϕx.
One can also determine that this root continues to dom-
inate as ϕ→ 1.

For finite ϕ the principal root must be determined by
solution of the transcendental equation (C95). Symmetry
guarantees that q̂(A)

x is purely imaginary for all ϕ, so we
introduce the real number q by q = i q; thus one finds
the implicit equation for q(θ) to be

I1(q̂)/I0(q̂) = ϕq(θ), (C103)

where Iν is the modified Bessel function of the first kind
and q̂ is the specific q that solves Eq. (C103). [See
Fig. 32 for a graphical representation of the solution of
Eq. (C103).] Equation (C101b) becomes

R′(q) ≡ S(q) = 1− I1(q)
qI0(q)

−
(
I1(q)
I0(q)

)2

. (C104)

This function has the properties

S(0) = 1/2, (C105a)
S(∞) = 0, (C105b)
S(q) ≥ 0; (C105c)

it is graphed in Fig. 33. One may rewrite Eq. (C104) in
a form more efficient for numerical computation by using
Eq. (C103):

S(q̂(θ)) = 1− η(q̂(θ))− ϕ2
q(θ), (C106)

where

η(q(θ)) = ϕq(θ)/q(θ). (C107)
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FIG. 32: Illustration of the solution of the implicit equation
(C103). Solid curve, I1(q)/I0(q); horizontal dotted line, spec-
ified ϕq; vertical dotted line, derived q̂. As ϕ → 1, q̂ → ∞.

FIG. 33: The function S(q) [see Eq. (C104)].

We now proceed to analyze the θ integral. Upon in-
tegrating over the principal q saddle using the standard
Gaussian approximation, we find

1
2
S ≈ N

4π

∫
D
dθ iq̂(θ) exp[NΨ(θ)]

(
2π

N |Φ′′|

)1/2

,

(C108)
where

Ψ(θ) .= −ϕq(θ)q̂(θ) + ln I0(q̂(θ)). (C109)

To find the stationary points, we compute

Ψ′(θ) =
[
−ϕq(θ) + I1(q̂)/I0(q̂)

]
q̂(θ)

+ ϕ q̂(θ) sin θ (C110a)
= ϕ q̂(θ) sin θ (C110b)

since the term in brackets vanishes by definition of q̂ [see
Eq. (C103)]. This result has the same form seen in the
special case; we are led again to θ = 0 as the principal
root. At that point ϕq = ϕ and Ψ′′(0) = ϕ q̂, where
now q̂ ≡ q̂(0). Upon completing the θ integration by
integrating vertically downward on D using the Gaussian
approximation, one finally finds

I(ε;N) =
1
2

(
1

η(q̂)S(q̂)

)1/2

× exp(N [−ϕ q̂ + ln I0(q̂)]). (C111)

11. Summary of the results.

In summary, for any Fourier amplitude ϕk ≡ ϕ, the
natural intensity variable is

ε
.= |ϕ|2 (C112)

[see Eq. (C15a)], where

ϕ
.= (1 + k2)ϕ (C113)

[see Eq. (B20)]. The fundamental probability density
function P0(ϕ) is given from Eq. (B30) as P0(ϕ) =
2NϕI(ε;N). One has the exact result

I(ε;N) ≡ 0 (ε ≥ 1). (C114)

For ε < 1 and N large, one has approximately

I(ε;N) ≈
(

1
2[η̂(q̂)S(q̂)]1/2

)
exp[−NΨ(q̂)] (C115)

(upon introducing a minus sign into the formula to make
it look more like a conventional PDF), where

Ψ(q) .= q ϕ− ln I0(q), (C116a)
η(q) .= ϕ/q, (C116b)
S(q) .= 1− η(q)− ϕ2, (C116c)

and q̂ = q̂(ϕ) is to be determined by solution of the tran-
scendental equation

I1(q̂)/I0(q̂) = ϕ. (C117)

The need to solve Eq. (C117), which is conventionally
done by numerical iteration, means that the rigorous nu-
merical evaluation of P0 will be very slow. Fortunately,
we generally consider states of intensity sufficiently low
that the much simpler approximation (C16) is adequate.

Numerical verification of the result (C115) is virtually
impossible for realisticN (e.g., N = 1597) because of loss
of precision. Nevertheless, even physically very small N
may be asymptotically large. In Fig. 34 we compare a di-
rect numerical integration of J .= −N−1 ln I for N = 17
with the asymptotic result (C115). The agreement is seen
to be virtually perfect; the relative error (for I itself, not
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FIG. 34: Comparison of the asymptotic result (C115) with
an exact numerical evaluation of J

.
= −N−1 ln I for N = 17.

Solid line, exact (numerical) result; long dashed line, (C115)
(overlays exact result); dotted line, y1 (overlays exact result
for ϕ . 0.6); dashed line, y2 (overlays exact result for ϕ .
0.8); dash-dotted line, y3 (overlays exact result for ϕ & 0.45).
See the text for the definitions of the approximations yi.

its logarithm) is less than 0.5% over the entire domain.
Also plotted in these figures are various simpler approx-
imations yi, i = 1, 2, 3. The function y1 is Eq. (C3),
J ≈ ε; y2 is Eq. (C16), J ≈ ε(1 + 1

4 ε). The function y3 is
the result of the asymptotic solution of Eq. (C117) for
x
.= 1− ϕ� 1:

q ≈
(

2x(1− 1
2
x)
)−1

, (C118a)

J ≈
(
q +

1
4

)
x− 1

2
ln(2πq)

+
1

2N
ln(4ηS). (C118b)

This is seen to be an excellent approximation down to
about ϕ ≈ 0.5; it is actually used in the Monte Carlo
calculations for ϕ close to 1, where the library routine
that solves Eq. (C117) has difficulty converging.
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