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Abstract: The Current Drive eXperiment – Upgrade (CDX-U) at the Princeton Plasma
Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter.
CDX-U is a compact (R=34cm, a=22 cm, Btoroidal = 2 kG, IP =100 kA, Te(0)~100 eV,
ne(0)~ 5 × 1019 m-3) short-pulse (<25 msec) spherical torus with extensive diagnostics.
The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and
width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the
lower limiting surface for the discharge. Heating elements beneath the tray are used to
liquefy the lithium prior to the experiment.  Surface coatings are evident on part of the
lithium. Despite the surface coatings, tokamak discharges operated in contact with the
lithium-filled tray show evidence of reduced impurities and recycling.  The reduction in
recycling is largest when the lithium is liquefied by heating to 250 oC.
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  The use of flowing liquid metals, and in particular liquid lithium, as plasma-

facing components (PFCs) in a tokamak reactor offers many potential benefits over

conventional solid PFCs. These include high heat removal capability, self-healing,

pumping of hydrogenics (including tritium, to limit the inventory captured in PFCs),

possibilities for pumping helium ash, and enhanced magnetohydronamic (MHD) stability

if the liquid metal flow velocity is sufficiently high. Experiments to test the use of liquid

lithium as a PFC are presently underway at the PISCES-B divertor simulator facility,[1]

the T11-M tokamak,[2] and the Current Drive experiment – Upgrade (CDX-U) at the

Princeton Plasma Physics Laboratory. Tests of large area free-surface liquid lithium PFCs

are presently underway in the CDX-U.[3] Previous experiments with lithium systems in

CDX-U utilized a rail limiter [1,4] with a lithium-wet mesh which had a surface area of

approximately 300 cm2; the area of the limiter wet by the plasma was approximately 40

cm2. The rail limiter experiments provided a first indication that liquid lithium could be

successfully and safely employed as a plasma facing component, with no deleterious

effects on the discharge. The ejection of small scale lithium droplets from the limiter due

to MHD forces was observed, but the effect of these droplets on the discharge was

minimal.[4] Following these tests, a circular tray 34 cm in radius, 10 cm wide, and 0.5

cm deep was mounted on the bottom of the CDX-U vacuum vessel and loaded with

lithium. The lithium area was therefore increased to a maximum of 2000 cm2. The area

wet by the plasma varied, but was on the order of several hundred cm2. Figure 1 is a

photograph of the interior of CDX-U with the tray limiter installed.

The tray limiter is fitted with resistive disk heaters clamped to the lower surface,

which are capable of heating the tray to 400 oC (lithium melts at 180 oC). The tray is
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constructed in two halves, with a single toroidal electrical break. The two halves of the

tray are connected to separate high current vacuum feedthroughs, so that the tray may be

electrically grounded or floated with respect to the vacuum vessel. During operation of

CDX-U, the tray serves as a fully toroidal limiter for the discharge, and hence forms a

principal PFC for CDX-U.

The tray has been loaded with approximately 200 cm3 of solid lithium. The

loading operations were performed under vacuum or dry argon to minimize oxidation of

the lithium surface. We note that the tray has not been uniformly wet and filled by the

lithium. This may be due in part to surface coatings acquired by the tray during plasma

operations after the tray was installed, prior to lithium loading, and in part to the 400oC

limit on operating temperature of the austenitic stainless steel tray. Recent experiments at

UCSD indicate that higher temperatures (in excess of 500oC) are needed for the initial

wetting process.[5] For the experiments described here approximately 50% of the tray

was covered with lithium to a maximum depth of approximately 5 mm. The lithium

exhibits varying degrees of coating, which can only be partially removed by glow

discharge cleaning.

During initial operation of tokamak discharges with the lithium tray limiter

numerous unipolar arcs to the surface of the lithium fill were observed with a fast (10,000

frames per second) camera in the discharge scrape-off layer (SOL). These arcs ejected a

lithium particulate, with a scale size of 1 mm or less, radially outward, which corresponds

to the Jarc ×  Btoroidal direction. This particulate was deposited on the lower vessel heat

shield (visible as semicircular plates in Figure 1), and has had no effect on plasma

operations. The incidence of unipolar arcing dropped as plasma operations continued, an
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indication that the lithium surface was being discharge cleaned. Unipolar arcing has not

been observed on clean lithium surfaces which lack an insulating oxide coating.

Even with a partially filled tray which is subject to surface coatings, changes in

the plasma edge and global effects on plasma performance have been observed. Figure 2

is a plot of the peak plasma current obtained versus line-averaged density for plasmas

limited by the bare stainless steel tray, the room-temperature (solid) lithium filled tray,

and the liquid lithium filled tray at 250oC. In each case the tray or fill surface was

conditioned for several hours by argon glow discharge cleaning before tokamak

discharges commenced. Higher plasma current is indicative of a hotter, cleaner discharge,

since CDX-U operates with fixed loop voltage rather than plasma current feedback. It is

clear that slightly higher current discharges were obtained with liquid lithium in the tray.

This change in global performance is underscored by the observation that little or no

conditioning is required to reach peak operating current in CDX-U when the lithium in

the tray is liquefied. Prior to the installation of the toroidal lithium limiter, several hours

of operation (involving dozens of discharges) at lower current were required before peak

operating current was obtained.

  Reduced impurity levels, particularly of oxygen, have a beneficial effect on

discharge performance. Spectroscopy indicated significant changes in the edge impurities

local to the tray. Figure 3 shows the effect of solid and liquid lithium limiting surfaces on

the oxygen impurity in the plasma. There is a good correlation between higher plasma

current and reduced oxygen levels. Note the segregation of the data; nearly all the

discharges with a solid lithium limiter show lower oxygen than the discharges which are
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limited by a bare stainless steel tray, and the discharges limited by liquid lithium show

further reductions.

One indication of hydrogen pumping by the liquid lithium during these

experiments (CDX-U uses deuterium as a working gas) is that the plasma density

obtained with liquid lithium in the tray was lower than for solid lithium or the bare

stainless steel tray, for similar gas puffing rates. Operation with liquid lithium also

reduced recycling. A comparison between Dα emission from the SOL at the tray surface

for operation with solid and liquid lithium is shown in Figure 4. Virtually all the

discharges with liquid lithium in the tray show reduced Dα emission compared to the

discharges with solid lithium. This result agrees with previously obtained data indicating

that the recycling coefficient for hydrogenic species on liquid lithium is very low.[1] It is

necessary that the lithium be liquid in these experiments so that the high mobility of

hydrogenic species in liquid lithium diffuses deuterium out of the ion implantation zone,

which only extends a few tens of Angstroms from the surface.  It should also be stressed

that while the viewed area represented in Figure 4 is primarily covered with lithium, parts

of the stainless steel tray are still exposed and some of the lithium is oxide coated.

Therefore, the residual recycling seen in the data with liquid lithium may be due to

viewing of a small bare area on the tray, or a coated area on the lithium fill. The Dα

emission data also shows the same correlation with plasma current evidenced by the

oxygen emission data.

Reduced recycling is one hallmark of the enhanced performance modes observed

in TFTR through the use of lithium pellets or coatings.[6] Global recycling data is not

available for CDX-U, but a comparison of the area of the tray to the area of the
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centerstack (visible in Figure 1 as the cylindrical column in the center of the device) and

other room-temperature surfaces which contact the plasma indicates that the tray

represents less than 40% of the total area of PFCs in CDX-U. In light of the limited area

of the tray and the incomplete coverage of the tray by lithium, the tray cannot produce

more than a 20% reduction in total recycling. It is not yet clear whether the enhanced

performance seen with liquid lithium PFCs in CDX-U is due to a reduction in recycling

or a reduction in impurities such as oxygen.

In Figure 5 we display the lithium emission as a function of plasma current. It can

be seen that while lithium light is significantly higher in the liquid case, as compared to

the solid, there is no negative correlation with plasma performance.

The CDX-U experiments provided a strong indication that liquid, rather than

solid, lithium is required for low recycling PFCs. It can be seen from Figure 4 that liquid

lithium provides a lower recycling surface than solid lithium. There is also evidence that

a fresh, cold coating of lithium does not eliminate recycling. Data collected immediately

after an accidental coating of the entire CDX-U vacuum vessel and centerstack with

lithium due to a localized temperature excursion of the tray system indicate that recycling

on the centerstack was in general somewhat higher. This may be indicative of the ejection

of loosely bound deuterides from the surface of the lithium coating during the discharge. 

To summarize, discharges struck on the lithium-filled limiter tend to outperform

discharges struck on the bare stainless steel tray. Furthermore, discharges struck on a

liquid-lithium filled limiter outperform those limited either by the bare stainless steel tray

or by the solid lithium-filled tray. This effect is observed despite the fact that the tray is
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only partially filled with lithium, and is at least partly coated with oxide and hydroxide

layers.

The enhancement in performance is correlated with a strong reduction in both

oxygen impurities and recycling at the lithium-filled limiter tray. The data on oxygen and

Dα emission reveal that nearly all the discharges limited on liquid lithium show lower

emissions than nearly all the discharges limited on solid lithium. Thus liquid lithium

appears to be much more effective at removing oxygen and eliminating recycling than

solid lithium. Solid lithium coatings are not effective at reducing recycling in CDX-U.

Upcoming experiments on CDX-U will utilize new filling techniques for the tray,

developed in collaboration with the PISCES-B group at the University of California at

San Diego, and new radio-frequency discharge cleaning techniques. The objective is to

obtain full coverage of the tray with a uniform fill of lithium, and to develop improved

techniques for removing surface oxide coatings. During 2003 a recirculating liquid

lithium limiter is planned for installation in CDX-U.

This work was supported by USDOE Contract No. DE-AC02-76-CHO3073.



- 8 -

References

[1] S. Luckhardt et al., Proc. 19th IEEE/NPSS Symposium on Fusion Engineering,

Atlantic City, NJ (2002)

[2] V. A. Evitkhin et al., in Proc. 18th IAEA Fusion Energy Conf., Sorrento, Italy 4-10

October 2000, paper IAEA-CN-77/EXP4/21

[3] R. Kaita et al., 6th Int. Symposium on Fusion Nuclear Technology, San Diego, CA

(2002). To be published in Fus. Eng. Des.

[4] G. Antar et al., to be published in Fus. Eng. Des.

[5] M. Baldwin, personal communication

[6] D. K. Mansfield et al., Phys. Plasmas 3, 1892 (1997).



- 9 -

Figure Captions

Figure 1. Photograph of the interior of CDX-U following installation of the tray limiter.

Figure 2. Plasma current – line averaged density operating space for CDX-U with an

empty stainless steel tray limiter, a solid lithium fill, and a liquid lithium fill. The

horizontal grouping of the density data is due to a binning algorithm.

Figure 3. Oxygen II emission at the surface of the tray, for discharges limited by the

empty tray, a solid lithium fill, and a liquid lithium fill.

Figure 4. Dα emission at the lithium filled tray, for solid and liquid lithium limited

discharges.

Figure 5. Lithium I emission at the lithium filled tray, for solid and liquid lithium limited

discharges.
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Figure 1. Photograph of the interior of CDX-U following installation of the tray limiter.
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Figure 2. Plasma current – line averaged density operating space for CDX-U

with an empty stainless steel tray limiter, a solid lithium fill, and a liquid lithium fill. The

horizontal grouping of the density data is due to a binning algorithm.
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Figure 3. Oxygen II emission at the surface of the tray, for discharges limited by the

empty tray, a solid lithium fill, and a liquid lithium fill.
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Figure 4. Dα emission at the lithium filled tray, for solid and liquid lithium limited

discharges.
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Figure 5. Lithium I emission at the lithium filled tray, for solid and liquid lithium limited

discharges.
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