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Abstract

Bursting modes are observed on the National Spherical Torus Experiment [M.

Ono et al., Nucl. Fusion 40, 557 (2000)], which are identified as bounce precession

frequency fishbone modes. They are predicted to be important in high current, low

shear discharges with a significant population of trapped particles with a large mean

bounce angle, such as produced by near tangential beam injection into a large aspect

ratio device. Such a distribution is often stable to the usual precession-resonance

fishbone mode. These modes could be important in ignited plasmas, driven by the

trapped alpha particle population.

PACS numbers: 52.35.Py 52.40.Mj
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I. Introduction

Resonant interaction of high energy particles with magnetic perturbations in toroidal de-

vices can produce large scale modification of the particle distribution, sometimes leading

to particle loss. A well known example of this is the fishbone mode1–4, first observed as a

resonance with the mean trapped particle toroidal precession, and later found to be possible

also as a resonance with passing particles at the transit frequency5–7. In this work we wish

to report the observation of a strong resonant fishbone interaction at the trapped particle

bounce frequency.

In Fig. 1 is shown a sequence of chirping modes observed on the National Spherical Torus

Experiment (NSTX)8 in shot number 108794. The colors of the contours indicate the toroidal

mode numbers, with black, red, green, blue and yellow representing n = 1 to 5, respectively.

The modes we wish to discuss are those at t = 0.145, 0.19, 0.24 and 0.26 sec which are

identified to have toroidal mode numbers of n = 1, 2, 3, 4 respectively. The strong frequency

chirping indicates that the mode frequency is determined by the particle distribution rather

than by equilibrium parameters alone, such as in the case of a Toroidal Alfvèn Eigenmode

(TAE)9, and are thus Energetic Particle Modes (EPM)10, which we identify as fishbone

modes. The black band between 0.11 and 0.18 s, and between 50 and 80 kHz are also

bursting, chirping modes. The fishbone activity is very commonly observed with neutral

beam injection in the early phase of NSTX discharges during the plasma current ramp (Fig.

2). Only the three strongest bursts are correlated with modest drops in the neutron rate.

The oscillations, particularly from the larger amplitude bursts, may be observed in the

soft x-ray emission. A cross section of the NSTX with the locations of the soft x-ray camera

chords and the poloidal array of the Mirnov coils is shown in Fig 3. In Fig. 4 a are shown

the soft x-ray data from the lower camera during the period 0.14 to 0.15s encompassing the

first large, lower frequency fishbone burst. The fluctuations are visible mainly on chords

viewing the plasma at about the half radius. For reference in Fig. 4b is shown the external

poloidal magnetic field fluctuation amplitude and in Fig. 4c are shown the chord integrated

2



soft x-ray emission profile and the inferred q profile from EFIT11. The (inverted) soft x-ray

emissivity profile is hollow, with a peak at a minor radius of about 0.2m and the emissivity

is very low outside a minor radius of about 0.4m. Thus the soft x-ray camera data is most

useful in the limited radial range between 0.2m and 0.4m. Over this limited range the soft

x-ray data indicates that the mode has a kink-like structure; the phase inversion at r = 0.2m

is likely due to the hollow emissivity profile.

There is no direct measurement of the field helicity q; it is inferred via fitting of the

magnetics data with the code EFIT11. The central q is estimated to be near or slightly less

than two at the first large fishbone burst (Fig. 2b-d at 0.142s). This numerical fit indicates

that the q profile is fairly flat in the core, and becomes progressively more so during the

period of these modes.

In Fig. 4c q is close to two over the region 0.2m < r < 0.4m, suggesting that the mode

has some significant m = 2, n = 1 component. However, strong coupling to higher m values,

as is generally the case for kink-like modes, is suggested by the relatively short poloidal

wavelength measured by the poloidal array of Mirnov coils. In Fig. 5 is shown the relative

phase shift vs. poloidal angle of the Mirnov coils for this mode. The array is incomplete, but

where present the phase shifts can be fit with an effective poloidal mode number of about

6 whereas the actual poloidal mode number could be much higher, indicating coupling to

higher m values.

The neutron production in NSTX is predominantly from beam-target reactions, thus

the neutron rate is a measure of the fast ion population. There is no detectable correlation

of neutron rate changes co-incident with most of the fishbone bursts, indicating that the

fishbones do not substantially impact the most energetic fast ion population, which produce

the bulk of the neutrons. However, as will be seen, the fishbones are predicted to mainly

interact with fast ions nearer to 20 keV (rather than the full energy fast ions of 80 keV).

Relatively few neutrons are produced by those lower energy beam ions.
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II. Mode Particle Interaction

The analysis of the resonant interaction of high energy particles with magnetohydrodynamic

(MHD) modes is well known12. Perturb the equilibrium field ~B with a perturbation of the

form ~b = ∇ × α~B and also introduce an electric perturbation Φ. Consider a particular

harmonic of the wave, of the form

α = αmne
i(nζ−mθ−ωt) Φ = Φmne

i(nζ−mθ−ωt). (1)

where θ and ζ are poloidal and toroidal angles, respectively and ω is the mode frequency.

We consider a MHD mode, in which case αmn and Φmn are related. Using ∇ × ~E =

−∂t
~B we find for the electric field ~E = −∂tα~B − ∇Φ = −iωαmne

i(nζ−mθ−ωt) ~B − ∇Φ. The

rapid mobility of electrons shorts out E‖ in a time short compared to the Alfvèn time, so

E‖ = −iωBαmne
i(nζ−mθ−ωt) − ~B · ∇Φ/B = 0. Using the Boozer13 representation for the

equilibrium field, ~B = g(ψ)∇ζ + I(ψ)∇θ+ δ∇ψ with ψ the toroidal flux, we find ωαmn =

(nq −m)Φmn/(gq + I). The resonant change in the kinetic energy of a particle due to the

wave is due to the drift motion, and can be written as

dE

dt
= i

[
−nζ̇d +mθ̇d

]
Φmne

i(nζ−mθ−ωt) − Φ′
mnṙe

i(nζ−mθ−ωt) (2)

with ζ̇d, θ̇d, ṙ the drift motion, r the minor radius, and prime indicates differentiation with

respect to r.

Although the bounce frequency ωb changes significantly with increasing bounce angle θb,

the bounce motion continues to be dominated by the fundamental harmonic θ = θbsinωbt.

For a pendulum the leading correction to the harmonic content is θ = (θb + ∆)sinωbt +

∆sin3ωbt with ∆ = θ3
b/192 while the correction to the bounce frequency is ωb = 1− θ2

b/16,

normalized to the small angle bounce frequency. Similarly, direct simulation shows that in

NSTX even for bounce angle of θb = 2.5 the higher harmonics are an order of magnitude

smaller than the fundamental.

Thus for trapped particles write θ = θbsinωbt, ζ = qθbsin(ωbt) + ωpt, r = r0 + ρbe
iωbt

with r0 the banana center, ρb the banana width, and note
〈
ζ̇d

〉
= ωp, the precession fre-
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quency, with 〈F 〉 indicating bounce averaging of F and use the usual Bessel expansion

eiaθ =
∑

l Jl(aθb)e
ilωbt to find for the bounce averaged energy change of a trapped particle

dE
dt

' −inωpΦmn

∑
l

Jl((nq −m)θb)e
iQl − iωbρbΦ

′
mn

∑
l

Jl((nq −m)θb)e
iQl+1 (3)

where Ql = nωpt+ lωbt−ωt. Resonance requires secularity, or Q ' constant. This condition

is strongly dependent on the equilibrium and the particle energy. The bounce frequency

is proportional to the particle velocity and inversely proportional to q. The precession

frequency is proportional to the particle energy and q, and inversely proportional to the field

strength, and also decreases and can even change sign due to the formation of a magnetic

well at high beta. Both frequencies are also strong functions of the bounce angle θb.

The dominant resonant frequency in this energy exchange is thus determined by the

particle distribution, the field strength, the radial dependencies of Φmn, q and the bounce

and precession frequencies. In previous observed cases the fishbone, which was primarily an

n = 1, m = 1 mode, has been dominated by the ωpΦmn term with l = 0, giving a resonance

at ω ' nωp, the precession frequency. However this term is also resonant at ω = nωp±ωb for

l = ±1, and the ρbΦ
′
mn term is also resonant at ω = nωp +ωb for l = 0. For trapped particles

with large bounce angle the value of J1 can be comparable to J0. Depending on thresholds,

growth rates, and the relative magnitudes of ωp, ωb, and Φmn, ρbΦ
′
mn the bounce averaged

energy transfer due to different terms can dominate the mode-particle energy exchange,

producing a mode with a frequency other than the precession frequency.

Assuming the resonance at ω = nωp + ωb dominates we have

dE

dt
= Asin(Q)

dQ

dt
= nωp + ωb − ω (4)

withA ' ωpΦmnJ1((m−nq)θb)+ρbωbΦ
′
mnJ0((m−nq)θb). Note that the ratio of the two terms

in A is independent of particle energy, depending only on equilibrium parameters, bounce

angle, particle position r, and mode structure. Expand dQ = ∂EQ(E − E0)dt about the

resonance nωp +ωb = ω, and use ∂Eωp = ωp/E, ∂Eωb = ωb/2E, giving an island in energy of

the form (E−E0)
2/2 = c−2kcosQ with k = EA/(2nωp +ωb) and all quantities evaluated at
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the resonance nωp+ωb = ω. This resonance island, existing in the energy variable, the radial

variable, and the frequency, causes nonreversible energy transfer between the wave and the

particle distribution, provided either energy or radial gradients exist in the distribution14.

III. Comparison with Experiment

We have used numerical equilibria and beam particle distributions generated by TRANSP15

and the guiding center code ORBIT16,17 to compare with the experimental results shown

above. TRANSP was used both to create the parameters for numerical equilibria represent-

ing the plasma at the times of the fishbone bursts, and also to provide a Monte-Carlo list of

energy, pitch, and location of ten thousand beam particles for each burst. The code ORBIT

was then used for an analysis of the particle distribution in these equilibria, determining

whether particles were passing or trapped, and finding bounce angles, bounce frequencies,

and precession rates for each trapped particle. The list of ten thousand beam particles gives

reasonably good statistics for the determination of the instantaneous properties of the beam

at the time of the fishbone. Particles above 50keV are practically all passing. In Fig. 6 is

shown the bounce frequency fb = ωb/2π and precession frequency fp = ωp/2π of the trapped

particle component of the beam at the time of the n = 1 burst, t = 0.145sec. The upper

envelope of the bounce frequency points is proportional to the square root of the energy as

expected. Seven percent of the beam is trapped, with a mean precession frequency of about

9kHz and a mean bounce angle of θb = 0.84. The lines are least square fits to the data sets.

The range of plasma frame mode frequencies during chirping matches the distribution of

precession frequencies. At this time q(0) = 2 and q = 3 occurs at r/a = 0.65. The low mode

frequency leads to an interpretation of this mode as a precession frequency fishbone with

n = 1, l = 0. The small value of the mean bounce angle for the distribution and relatively

large precession frequency make probable a dominant contribution of the ωpΦ11J0 term to

the energy exchange.

The bursts occurring later in the discharge, with n = 2,3,4, cannot be so interpreted. As
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the discharge evolves, the q profile becomes lower and flatter, the plasma beta increases, the

trapped particle fraction increases, and the mean bounce angle increases. The beam distri-

bution also has a larger population of high energy particles at later times in the discharge,

so the average beam energy increases. In Table 1 are shown the equilibrium, fishbone and

beam properties at the times of the bursts shown in Fig. 1. The toroidal mode numbers

and the frequency ranges of the fishbone bursts are taken from Fig. 1. The q profile is given

by TRANSP. The trapped fraction, mean bounce and precession frequencies, bounce angle,

and mean trapped particle energy 〈E〉 were calculated using the TRANSP supplied beam

particles and the code ORBIT.

In Fig. 7 are shown the bounce and precession frequencies of the trapped particle com-

ponent of the beam for the n = 4 burst at t = 0.26sec. At this time there are a large number

of negatively precessing particles, and the mean precession frequency is much smaller than

the bounce frequency. Intermediate times, t = 0.24sec and t = 0.26sec are almost linear

interpolations between Figs. 6 and 7.

By comparing the experimental mode frequencies with the range of bounce and precession

frequencies at the time of each fishbone, we identify the n = 1 mode to be a conventional

precession frequency fishbone mode, and the higher n modes to be bounce precession modes

with l = 1. The plasma rotation frequency is about 4.5kHz at the q = 2 surface, so this value

should be subtracted from the experimental frequencies. In Fig. 8 is shown for each mode n

the strength of the resonance at frequency f , with f = nfp + lfb. The bounce frequency fb

enters into each mode with l = 1, except for n = 1, where l = 0. The width of the vertical

column at a given height above each value of n is proportional to the energy transfer at that

frequency, given by the number density of beam particles resonant at that frequency times

the frequency. We used frequency intervals of 3kHz and determined the number of particles

in the Monte Carlo distribution with a resonant frequency in each interval. The width of

the column thus is proportional to the existing drive for an EPM mode at that frequency.

Because a fishbone is most unstable at high frequency, we expect the fishbone mode at each

n to chirp downward through that part of the column with substantial width. As that part
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of the distribution which is resonant at a particular frequency is flattened the mode moves

on to the free energy available at a slightly lower frequency, continuing this process until the

available free energy is depleted, either by induced particle loss or simply by local flattening

of the distribution. The frequency ranges obtained in this way are in good agreement with

the observed range of chirping seen in Fig. 1.

In Fig. 9 is shown the beam content vs energy for t = 0.26sec, using bins of 10keV each,

normalized to the total number in the low energy bin 0 < E < 10keV . We observe that

the mode can be driven only by the low energy beam particles and thus the expected loss

of particles should be from the population below 20 keV, which would not cause a drop in

neutron flux. This is also confirmed by the fact that the frequency chirping does not extend

to the bounce frequencies of particles above ∼ 40keV .

IV. Approximate Dispersion relation

Analytical insight concerning the detailed mode excitation can be obtained by assumingm '
nq > 1, weak shear, and keeping the finite banana width effect with respect to the radial scale

length. We thus may adopt the ballooning representation as an analytical approximation.

In this case the mode is well localized radially, and the ωbρbΦ
′
mnJ0 term should dominate

the energy exchange. The corresponding dispersion relation has been previously derived18

and is given by

−i ω
ωA

+ δWf + δWk = 0 (5)

where ωA = vA/qR, δWf is the usual incompressible ideal MHD fluid δW . Retaining only

the dominant bounce resonance due to the trapped energetic particles we have

δWk =
π2e2qR0B0

mc2s

∫ dEdµθ2
b Ω

2
pτbKF0

∆b(1 + ∆2
b)

3/2

ω − nωp

ω2
b − (ω − nωp)2

(6)

where E = v2/2, µ = v2
⊥/2B0, Ω2

p = (v2
⊥/2 + v2

‖)/ωcR0, τb is the bounce period, τb = 2π/ωb,

and ∆b = (θbkθρb)/2
3/2 denotes the finite banana width (ρb) effect. Here s = rq′/q is the

magnetic shear and KF0 = (ω∂E + ω̂∗)F0 with ω̂∗F0 = ~k × ê‖/ωc · ∇F0. Other notation
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is standard. In the present case, δWk is due to the energetic beam ions. Note that Eq.

5 takes the form of the generic fishbone dispersion relation3 and thus one can anticipate

similar stability properties, such as instability threshold when the drive due to the pressure

inhomogeneity ω̂∗F0 at the ω ' ωb + nωp wave bounce precession resonance exceeds the

dissipation due to the Alfven resonance absorption −iω/ωA. To be more specific, we take F0

to be a slowing down distribution with a single pitch angle and proximity to MHD marginal

stability, we then find the unstable mode has ωr ' 0.83(ωbm + nωp), and the threshold

condition is given by αE = q2R0β
′
E > αEc = 0.48s(ωbm + nωpm)/θbωA, with ωbm, ωpm the

bounce and precession frequencies evaluated at the maximum energy of F0 and βE the beam

beta. In the present case the above dispersion relation should correspond to local values

where the beam drive αE is a maximum, ie around q = 2. Thresholds and frequencies are

consistent with experimental observations. The fact that the threshold is proportional to

the shear, not the case for the usual precession frequency fishbone, probably contributes to

the dominance of the bounce frequency mode in these discharges, which have values of shear

less than one. Note that this condition makes the mode particularly important for high q

and low shear, commonly referred to as advanced tokamak operation.

V. Conclusion

Without more detailed knowledge of the form of the perturbation, obtained either from

experimental data or from a more detailed stability analysis, it is impossible to assess the

dominant mechanism for mode-particle interaction in a given case, ie to know which of the

Bessel function terms are most important, and to have clear predictions concerning stability

thresholds. In other discharges with higher values of q and lower field strength, the bounce

and precession rates are much more equal in magnitude. There appears to be a great variety

of possible frequencies for these modes.

We have carried out simulations of the effect of the modes on the beam distribution

at t = 0.26sec, using mode content of m/n = 1/1, and 2/1 rotating at 50kHz. Modes
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of amplitude δB/B = 10−3 do not produce any particle loss, only a modification of the

distribution. This could be due to the variation of ωb radially, causing particles to quickly

move out of resonance as they are moved outwards, or due to the fact that the particles

interacting with the mode are of rather low energy.

In an ignited plasma, with the alpha particles isotropic at birth, the mode should in-

stead be driven by and act upon the high energy alphas, which could produce a significant

redistribution of the alpha population.

This work was supported by the U.S. Department of Energy Grant DE-FG03-94ER54271 and under

contract number DE-AC02-76-CHO3073 and NSF Grant ATM-9971529.

10



REFERENCES

1. PDX Group, Princeton Plasma Physics Lab, Phys Rev. Lett 50, 891 (1983).

2. R. B. White, R. J. Goldston, K. McGuire, A. H. Boozer, D. A. Monticello, and W. Park Phys Fluids

26, 2958 (1983).

3. L. Chen, R. B. White, and M. N. Rosenbluth Phys Rev. Lett 52, 1122 (1984).

4. B. Coppi and F. Porcelli Phys Rev. Lett 57, 2272 (1986).

5. W. W. Heidbrink, K. Bol, D. Buchanauer et al Phys Rev. Lett 57, 835 (1986).

6. R. Betti and J. P. Freidberg Phys Rev. Lett 70, 3428 (1993).

7. Ya. I. Kolesnichenko, V. S. Marchenko, R. B. White Phys Plasmas 8, 3143 (2001).

8. M. Ono et al Nucl Fusion 40, 557 (2000).

9. C. Z. Cheng, L. Chen, and M. S. Chance, Ann. Phys. 161, 21 (1985).

10. L. Chen, Phys. Plasmas 1, 1519 (1994), F. Zonca and Liu Chen, Phys. Plasmas 3, 323 (1996), N. N.

Gorelenkov, C. Z. Chang, and W. M. Tang, Phys. Plasmas 5, 3389 (1998)

11. L.L. Lao, H. St. John, R. D. Stambaugh, A. G. Kellman, and W. Pfeiffer Nucl Fusion 25, 1611 (1985).

12. R.B. White, ”The theory of toroidally confined plasmas”, (Imperial College Press, London, 2001) p

237.

13. A. H. Boozer, Phys. Fluids 24, 1999 (1981).

14. T. O’Neil, Phys. Fluids 12, 2255 (1965).

15. R. V. Budny, M. G. Bell A. C. Janos et al, Nucl Fusion 35, 1497 (1995).

16. R.B. White and M. S. Chance, Phys. Fluids 27 2455 (1984).

17. R.B. White, Phys. Fluids B 2(4), 845 (1990).

18. S. T. Tsai and L. Chen Phys. Fluids B 5(9), 3284 (1993).

11



Table I. Fishbone and Beam Properties

time sec 0.145 0.19 0.24 0.26

toroidal n 1 2 3 4

range kHz 2− 10 30− 70 40− 110 50− 120

q(0) 2 1.5 1.3 1.2

r/a(q=2) 0 .6 .8 .9

% trapped 7 12 15 14

fb kHz 36 43 56 58

fp kHz 9 6.7 5.7 5.6

θb 0.84 1.1 1.2 1.2

〈E〉 keV 14.2 16.4 21 22
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Figure Captions

Fig. 1 NSTX fishbones seen at t = 0.145, 0.19, 0.24, 0.26 sec, with n = 1,2,3,4 respectively.

Fig. 2 Trapped particle bounce (red) and precession (blue) frequencies at t = 0.145sec.

Fig. 3 Trapped particle bounce (red) and precession (blue) frequencies at t = 0.26sec.

Fig. 4 Energy transfer between mode and beam particles at frequency f , with f = nfp + lfb

Fig. 5 Beam number vs energy, showing total and trapped fraction, at t = 0.26sec.

Table Caption

Equilibrium, burst information, and beam statistics for the fishbone modes seen in Fig. 1
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