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Abstract

Some results obtained with the one dimensional, all orders, full wave code mets,
which has been successfully employed in the past to describe a number of exper-
iments, are reported. By using massively parallel computers, this code has been
extended to handle non-thermal populations. Various physical situations, in which
non-Maxwellian species are expected to be encountered, are studied, such as simul-
taneous neutral beam injection and high harmonic fast wave electron heating or
ion cyclotron resonance heating in the presence of fusion products.

In magnetic confinement fusion experiments relying upon externally driven waves in
the ion cyclotron range of frequencies for auxiliary plasma heating, the target plasma is
often characterized by the presence of non-thermal species. Non-Maxwellian ion popu-
lations can arise from neutral beam injection, from fusion reactions, or else from wave-
driven acceleration of resonant ion species and may significantly alter the wave propaga-
tion and absorption properties.

Most wave field descriptions presented to date assume that the Finite Larmor Radius
approximation is valid, which limits their range of application to low cyclotron harmonics
and to modes with long wavelengths compared to the ions gyroradii. Recently, a new
class of full-wave codes has appeared, which do not rely on this assumption [1–3].

The mets code, which is presented here, belongs to this class and has been extended
to handle non-thermal populations. After a brief description of the code, the study of
three physical situations will be presented, respectively in TFTR, NSTX and ITER-
FEAT, each being characterized by the presence of a non-Maxwellian population, owing
to neutral beam ions, for the first two cases, or to fusion-produced alpha particles, for the
latter. In this work, these non-thermal species will be described by isotropic slowing-down
distributions [4].

1. Description of the code
mets is a one dimensional all-orders full wave code [2] which solves directly the

Discrete Fourier Transform of the wave equation for the electric field∑
j

exp(ikjxi)
[
(c/ω)2kj × kj ×

=

1 +
=

K(xi,kj)
]
· E(kj) = 0 (1)
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where E(kj) is the Fourier transform of the electric field and
=

K is the dielectric tensor

kernel.
=

K includes all orders in k⊥ρL, where k⊥ is the perpendicular wavenumber and ρL
is the ion Larmor radius. In other words, the code is able to handle situations in which
either ρL or k⊥ becomes large. The implications of this feature are beyond the scope of
this paper but are discussed extensively in ref. 5.

Recently, mets has been extended to handle non Maxwellian distributions. In this

case, the terms of
=

K do not have analytical expressions and two-dimensional integrals
over velocity space must be performed numerically. Obviously, this implies a tremendous
increase of the computational requirements and one has to resort to massively parallel
computers to solve the problem within acceptable time and memory limits.

The new version of the code has been thoroughly benchmarked versus the original

version, by comparing the results obtained using the analytical expressions for
=

K and the
results obtained with a numerical Maxwellian, where the velocity-space integrations are
actually performed. Provided an adequate velocity space grid is used, it has been found
that the results are generally indistinguishable.

2. ICRH and NBI on TFTR
On TFTR, Ion Cyclotron Resonance Heating has been extensively used to explore

various aspects relevant to the Deuterium-Tritium reactor regimes [6]. A D-T shot is
considered, with the following parameters: B0 = 4.7T, ne0 = 4.7×1019m−3, Te0 = 6.8keV.
In this discharge, the temperature of the present Deuterium, Hydrogen and Carbon ions
was assumed to be Ti0 = 31keV. A Tritium beam was injected in the plasma. The results
obtained when this population is described by a slowing-down distribution and when an
equivalent Maxwellian is used are compared, which is accomplished by computing an
equivalent tail temperature at each radius. On figure 1(a) and 1(b), the power deposition
profiles on electrons and Tritium ions, respectively, are shown for the two cases.
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Figure 1: Power deposited on (a) Electrons, (b) Tritium when the latter are described by
a slowing-down distribution (solid) or by an equivalent Maxwellian (dashed) in TFTR.

Although the net absorption is similar in both cases, the absorption profiles differ
drastically, especially for the Tritium ions. When a slowing-down distribution function
is used, the deposition profile appears to be much more peaked than for the equivalent
Maxwellian. This point is still under investigation, but might be related to the presence
of particles with an energy above Ebeam in the Maxwellian case, by contrast with the
slowing-down distribution function, which imposes f(E > Ebeam) = 0.



3. HHFW and NBI on NSTX
The spherical torus NSTX uses High Harmonic Fast Wave as a way to heat electrons

and to drive non inductive toroidal current [7]. In the presence of Neutral Beam Injection,
fast ions can eventually absorb a fraction of the wave power, which therefore can not be
coupled to the electrons. We simulate a typical HHFW+NBI shot where B0 = 0.45T,
ne0 = 2.75 × 1019m−3, Te0 = 1keV. The wave frequency is fFW = 30MHz and the
launched parallel refractive index is kant‖ = 14m−1.

Deuterium, Hydrogen and Carbon ions are taken into account, all in thermal equilib-
rium with Ti0 = 1keV. A back-of-envelope calculation indicates that the power is likely
to be absorbed around the 8-th harmonic of the Deuterium. In addition, a Deuterium
beam at Eb = 80keV is considered and modeled by a slowing-down distribution function.

Here, two situations are compared: in the first one, no beam is present, whereas in
the second one the beam is taken into account. On figure 2(a), the left-handed electric
field is shown in both cases, and the corresponding power depositions appear on figure
2(b)
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Figure 2: (a) Left-handed electric field, (b) Power deposition in the absence (grey), and
in the presence (black) of a Deuterium beam at Eb = 80keV in NSTX.

The electric field is reduced when the beam is present, which indicates a stronger
absorption of the wave. Indeed, the single-pass overall absorption increases from 70%
to 94% when the beam is applied. Whereas in the first case, the electrons were entirely
responsible for the power absorption, a large fraction of the power (70%) is deposited on
the beam ions, thus lowering the electron absorption which drops from 70% to 24%. The
deposition on other species (H and 6C) is negligible, in both cases.

4. ICRF on ITER-FEAT in the presence of fusion particles
A prerequisite of the next-step experiments is high ion temperatures, at least for the

reacting species. Among the various possible schemes, first harmonic Helium-3 minority
heating has received a lot of interest [8]. To simulate this type of discharge in ITER-
FEAT, the following parameters are used: R0 = 6.43m, a0 = 2m, B0 = 5.2T, ne0 =
1×1020m−3, Te0 = 25keV. D, T, 3He and 6C ions are all taken to be thermal species with
Ti0 = 20keV. Both Deuterium and Tritium are assumed to have the same concentration
(ηD = ηT = 42%) and ηHe−3 = 3%. Fusion produced Helium-4 ions are modeled by
means of a slowing-down distribution characterized by Eb = 3.5MeV and ηHe−4 = 0.6%.
In this simulation, the corresponding density was proportional to the electron density.
The results of two calculations are presented, the first one neglecting alpha particles, the



second one taken them into account. On figure 3, the absorption profiles are compared
for both cases. For sake of clarity, the power depositions on D and on 6C, which are very
low, do not appear. The corresponding absorption figures are summarized in table 1
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Figure 3: Power deposited on electrons (dashed), T (dotted), 3He (solid) and 4He (dash-
dots) ions in the absence (a) and in the presence of fusion alphas (b) in ITER-FEAT.

No alphas Alphas incl.
Electrons 44.6 % 38.5 %
Deuterium 0.4 % 0.2 %
Tritium 5.3 % 3.8 %
Helium-3 45.0 % 32.1 %
Helium-4 N/A 22.7 %
Overall 95.3 % 97.3 %

Table 1: Absorbed power in ITER-FEAT.

A significant fraction of the incident
power is absorbed by the alpha particles,
mostly to the detriment of the minority
species. More simulations need to be per-
formed with a narrower alpha density pro-
file, however.

5. Conclusion
The all orders full-wave code mets is

now able to describe the effects of non ther-
mal populations in various heating schemes,
relevant to ongoing as well as to future ex-
periments. As a first step, the results pre-
sented here were all based on isotropic slowing-down distribution functions for the mod-
eling of energetic ions. It should be emphasized, however, that mets is not restricted to
this particular shape and in the short term, will handle arbitrary distribution functions
so as to describe, for instance, the wave propagation and absorption in the presence of a
strongly asymmetric RF tail.
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