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Introduction

         Physics understanding for the experimental improvement of particle and energy

confinement is being advanced through massively parallel calculations of microturbulence

for simulated plasma conditions. The ultimate goal, an experimentally validated, global,

nonlocal, fully nonlinear calculation of plasma microturbulence is still not within reach, but

extraordinary progress has been achieved in understanding microturbulence, driving forces

and the plasma response in recent years.

In this paper we discuss gyrokinetic simulations of plasma turbulence1,2 being

carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator C-

MOD tokamak3, which exhibits an internal transport barrier (ITB)4,5,6,7.  This off axis RF

case represents the early phase of a very interesting dual frequency RF experiment, which

shows density control with central RF heating later in the discharge.  The ITB exhibits

steep, spontaneous density peaking: a reduction in particle transport occurring without a

central particle source.  Since the central temperature is maintained while the central

density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis

shows that χeff drops inside the ITB6. Sawtooth heat pulse analysis also shows a localized

thermal transport barrier7. For this ICRF EDA H-mode, the minority resonance is at r/a≥0.5

on the high field side.  There is a normal shear profile, with q monotonic.

 TRANSP analysis is used to set initial conditions, with Ti not assumed equal to

measured Te, but rather Ti  is found from HIREX spectroscopic and neutron data on Alcator

C-MOD.and is consistent with χi~χChang-Hinton. The simulations, which solve the gyrokinetic

Vlasov-Maxwell system, are run out for 10,000 time steps, until the microinstability growth

rates, γ, and real frequencies, ω, are verified to have converged and the usual measure of



the electrostatic potential, ln|φ|2, is verified to be linearly increasing, in cases that are

designated unstable.  E××××B shearing rates have been estimated from measurements of

toroidal rotation but are not of concern here because at the time of interest, the toroidal

rotation is near zero, changing from strong co to counter rotation as the ITB is established.

Simulations with the GS2 Gyrokinetic Microstability Code

         Linear, fully electromagnetic, gyrokinetic, flux tube calculations of microturbulence

for four species (hydrogen, deuterium, boron and electrons) are being used to examine the

early stage of formation of the ITB, before a steep electron density gradient is established

(Fig. 1).  At this point in time, microturbulent instability for three plasma radii is simulated,

yielding predicted behavior inside, at and outside the ITB, at radii located at r/a=0.25, 0.45,

0.65 for zones 5, 9 and 13 of 20 equally spaced radial zones. The sensitivity of the

microturbulent stability has been examined through the sensitivity of the calculated real

frequencies and growth rates to particular driving forces across the plasma (Fig. 2)

The simulations were carried out on the NERSC T3E supercomputer, using 40-64

parallel processors. We obtain microturbulent growth rates for values of k⊥ ρi  from 0.1 to 80

including the influences of ITG, TEM and ETG modes (Figs. 3 and 4).  The stability analysis

shows that just inside the barrier (r/a~0.45) no mode is strongly growing for 0.2<k⊥ ρi<0.8.

Outside the ITB a clear signature is found for the toroidal ion temperature gradient mode.  In

the plasma core, modes with ω<0 are unstable at k⊥ ρi ≤0.4; there are no strongly growing

modes at 0.5≤k⊥ ρi ≤0.8.  The apparently unstable mode at k⊥ ρi=0.1 is not converged and does

not have a well defined eigenfunction. At higher values of k⊥ ρi, the TEM (usually found near

k⊥ ρi~1) is not unstable, while the ETG (peaked at k⊥ ρi~25) is strongly unstable at, and outside

the barrier, and stable in the core (Fig. 3,4).  Anomalous χi is associated with ITG so that we

expect reduced ion thermal confinement at, and within the ITB.  Anomalous χe is associated

with strong ETG, and the mixing length model would predict 1/2 for the ratio of χe at the ITB

to that outside.  Sawtooth heat pulse propagation measurements of similar experiments have

shown that the effective χheatpulse is reduced (by factor~10) in a narrow radial region of ~1 cm,

located near the foot of the particle barrier, but not necessarily within the barrier7. Reduced

microinstability growth rates predicted at the barrier are consistent with the observed reduced

transport.

Sensitivity Studies



Figure 2 shows the radial variaton of drift mode driving and stabilizing parameters for

the experiment at the time of interest. It is found that either decreasing the plasma electron

density gradient or increasing the plasma electron temperature gradient causes the ITG mode

to be destabilized in the transport barrier region. The growth rates are more strongly elevated

(factor 25) by doubling (∇ Te)/Te than by reducing (∇ ni)/ni by 2.  We also find that ηi

increases as r/a increases, as does the normalized electron temperature gradient. These and

the increasing inverse gradient for the primary impurity, boron (4%), may be stabilizing the

ITG in the core.  The role of magnetic shear, increasing with r/a, is still to be examined.

Conclusions

Just before ITB formation, conditions have been established for which a peaked

density profile can occur and will persist.  Ware pinch provides sufficient fueling to

account for a sustained ITB peaked density profile7. Microturbulent driving forces are not

strong enough to provide anomalous transport through the barrier, since there are no strong

instabilities at the ITB.  Outside the barrier, ITG and ETG modes are linearly unstable. The

sensitivity studies suggest that the observation of ITB with off-axis but not on-axis RF, is

due to weaker (∇ Te)/Te at the barrier.  However, ITB also occurs spontaneously in the C-

MOD ohmic H-mode4. The full story will require a detailed examination and comparison of

the many driving and damping forces operating in both of  these intriguing experiments.
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