
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3706 PPPL-3706
UC-70

Physical Limitations of Empirical Field Models:
Force Balance and Plasma Pressure

by

Sorin Zaharia and C.Z. Cheng

June 2002



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Fiscal
Year 2002. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Physical limitations of empirical field models: force
balance and plasma pressure

Sorin Zaharia and C. Z. Cheng

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract. In this paper we study whether the magnetic field of the T96
empirical model can be in force balance with an isotropic plasma pressure
distribution. Using the field of T96, we obtain values for the pressure P by
solving a Poisson-type equation ∇2P = ∇ · (J ×B) in the equatorial plane,
and 1-D profiles on the Sun-Earth axis by integrating ∇P = J×B. We work
in a flux coordinate system in which the magnetic field is expressed in terms
of Euler potentials. Our results lead to the conclusion that the T96 model
field cannot be in equilibrium with an isotropic pressure. We also analyze in
detail the computation of Birkeland currents using Vasyliunas relation and
the T96 field, which yields unphysical results, again indicating the lack of
force balance in the empirical model. The underlying reason for the force
imbalance is likely the fact that the derivatives of the least-square fitted model
B are not accurate predictions of the actual magnetospheric field derivatives.
Finally, we discuss a possible solution to the problem of lack of force balance
in empirical field models.

1. Introduction

The goal of this work is to evaluate the T96 em-
pirical model on physical grounds in the closed-field
region of the inner and middle magnetosphere, by an-
alyzing its limitations and applicability to tasks in
which a force balance between field and plasma pres-
sure forces is essential.

Several empirical data-based models have been de-
veloped [Olson and Pfitzer , 1974; Mead and Fairfield ,
1975; Alexeev et al., 1996; Ostapenko and Maltsev ,
1997; Tsyganenko, 1987, 1989, 1995; Tsyganenko and
Stern, 1996]. These models are calibrated against
field databases obtained from different observations
and at different times, and thus the model B repre-
sents a large-scale time-average picture of the mag-
netospheric field. Common uses of empirical models
include mapping along the field lines, useful for inter-
preting spacecraft data, and calculating the trajectory
of particles in the B field, essential in space weather
modeling.

However, for many other purposes, it is useful to
also have information about the plasma, in addition
to the magnetic field. A quantity that contains sig-
nificant information about the plasma is the pressure,

a key parameter that determines both transverse and
field-aligned magnetospheric currents. The region 1
and region 2 field-aligned (Birkeland) currents in par-
ticular are crucial in regulating the magnetosphere-
ionosphere (M-I) coupling. Even though they were
discovered a while ago [Iijima and Potemra, 1976], the
mechanisms responsible for their formation are still
being debated, however it has become quite clear that
pressure gradients play a crucial role [e.g., Cheng ,
1995; Antonova and Ganyushkina, 1996]. Besides
their role in M-I coupling, the Birkeland currents also
affect the magnetospheric field. It has been demon-
strated [e.g., Donovan, 1993] that the inclusion of J‖
effects is essential for mapping along B, as the field
line topology is essentially affected in their presence
[Ding et al., 1994].

Because a significant body of magnetospheric phe-
nomena depend on pressure profiles, the need for
a clear picture of the pressure distribution is then
obvious. Unfortunately, the pressure P is not well
known through much of the magnetosphere, most in-
situ observations being either in the ionosphere or in
the plasma sheet, and consequently other means are
needed to obtain it. A method employed by [Wing
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and Newell , 1998] consists in mapping the ionospheric
P into the magnetosphere along the field lines of an
empirical model. This method fits in the common
practice of mapping along an empirical field, from au-
roral structures [Elphinstone et al., 1991; Pulkkinen
et al., 1995; Ober et al., 2000] to electric potentials
[e.g., Boonsiriseth et al., 2001] to field-aligned cur-
rents [e.g., Lu et al., 1997]. However, it needs to be
recognized that using a non self-consistent state ob-
tained from such a mapping as starting point for phys-
ical calculations such as the computation of Birkeland
currents [e.g., Wing and Newell , 2000] is physically
unsound and can even lead to spurious results, as will
be shown later.

Another way of obtaining the pressure is comput-
ing a P profile that would be in force balance with the
magnetic stresses of an empirical field model. Before
taking up such an analysis, it is natural to ask “under
what conditions is the assumption of magnetospheric
force balance valid ?” Force balance is thought to
be valid in the so-called “quasi-equilibrium” magne-
tospheric states, which are believed to exist at most
times, except for periods of explosive activity [e.g.,
Tsyganenko, 1990]. Furthermore, if the time scale
of global B changes is not too short, one can de-
scribe the evolution of the magnetosphere as a se-
ries of still “snapshots”, each of them being a unique
quasi-equilibrium state. For example, studies [e.g.,
Kropotkin and Lui , 1995] indicate that the substorm
growth phase can be described by such a sequence of
quasi-equilibria.

In a quasi-equilibrium magnetospheric state, the
magnetic forces should be balanced by one or a com-
bination of: (a) a pressure gradient force, (b) a time
variation of the plasma flow momentum, and/or (c)
a gradient of the plasma flow kinetic energy. Of
these possibilities, (b) can be excluded when analyz-
ing an empirical model configuration, since as men-
tioned such a model represents an average field, in
which small time-scale variations are smoothed out;
(c) also is ruled out for a “quasi-static” equilibrium, in
which there are no significant flows. The quasi-static
condition is expected to hold best in a large region
of the inner and middle magnetosphere, generally on
closed field lines where only sub-Alfvenic flows exist
[Wolf , 1983].

With the assumption of quasi-static equilibrium,
the question is now whether the pressure is isotropic
or anisotropic. We note that in-situ observations
[e.g., Stiles et al., 1978; Baumjohann and Paschmann,
1989; Nakamura et al., 1991] show that during quiet

times the plasma sheet is almost isotropic. Fur-
thermore, observations of ionospheric particle fluxes
[Sergeev and Malkov , 1988] revealed the existence
of a sharp boundary, called the isotropy boundary,
separating the pole-ward zone of isotropic precipi-
tation from the equator-ward zone of smaller pre-
cipitating flux. Regions pole-ward of the isotropy
boundary roughly map to the plasma sheet, and the
isotropy is believed to be due to current-sheet scat-
tering [Sergeev et al., 1993] because of large ion gyro-
radius and small field curvature in the tail. The
observed isotropy is theoretically expected, as an
anisotropic plasma would be highly unstable due to
either of the fire hose or mirror large-scale MHD in-
stabilities. For anisotropy values exceeding certain
thresholds, these instabilities would quickly relax the
plasma to an isotropic state [Nötzel et al., 1985]. The
existence of these two “macro”-instabilities places
very tight constraints on the possible degree of an-
isotropy [Walker and Southwood , 1982; Voigt , 1986;
Hill and Voigt , 1992], with Hill and Voigt [1992] con-
cluding that the maximum degree of anisotropy sup-
portable in the plasma sheet is given by P⊥/P‖ in the
range 1 ± δ2, with δ ≈ 0.1. Besides the two macro-
instabilities, there are additional isotropization mech-
anisms, such as the ion cyclotron instability, isotropiz-
ing the plasma via pitch-angle scattering, and the
stochasticity of particle orbits in thin current sheets.

The above discussion points to the fact that it
is realistic to look for an isotropic P in equilibrium
with the field of an empirical model. While there
is, to our knowledge, no study of P in force balance
with the empirical model of Tsyganenko [1995] and
Tsyganenko and Stern [1996] (from here on T96),
such a task has been attempted for earlier models
of Tsyganenko [1987] and Tsyganenko [1989] (from
here on T87 and T89, respectively). The studies by
Spence et al. [1987], Kan et al. [1992] and Lui et al.
[1994] obtained isotropic or anisotropic pressure pro-
files in force equilibrium with magnetic stresses along
the midnight meridian line in the equatorial plane.
Extending the domain of calculation, Horton et al.
[1993] obtained 2-D isotropic P from T87 and T89 on
the equatorial and noon-midnight meridional planes.
They also computed an anisotropic profile in 2-D force
balance with an analytical approximation of the em-
pirical B. A similar but more complete analysis in
2-D also, without resorting to the approximations of
Horton et al. [1993], was performed by Cao and Lee
[1994] for T87 and T89 on the same two planes. While
they found T87 to be “almost isotropic”, the signif-
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icant anisotropy found in the T89 case is likely an
artifact due to the fact that T89 is over-stretched in
the tail region [e.g. Peredo et al., 1993; Rostoker and
Skone, 1993]. This being said, we note that very close
to Earth significant anisotropy might indeed exist, as
observations [Lui and Hamilton, 1992] indicate. How-
ever, P is less important in regions with low plasma
β = 2P/B2, because in such regions P does not alter
the magnetic configuration much [e.g., Cheng , 1992].
This is certainly the case for example at 4.5 RE, where
Cao and Lee [1994] find a rather large anisotropy
(P⊥/Pparallel = 0.3), but where plasma β is very
low, as observations show [e.g., Lui and Hamilton,
1992].

Our study of the T96 model is motivated by many
factors. First, as opposed to earlier models, which
were parameterized by the Kp index and had no field-
aligned currents, the inclusion of those currents and
the parameterization of T96 on solar wind conditions
should result in a more accurate rendition of the
global magnetospheric picture. Secondly, the stud-
ies of Cao and Lee [1994] and Horton et al. [1993]
investigate a limited domain. The former is limited
to 15RE, thus not including the important high-β
plasma sheet region down the tail. On the other hand,
Horton et al. [1993] only consider distances farther
than 10RE, thereby missing the crucial transitional
region between 6.6RE and 10RE, where the B field
transforms from a dipole-like to an extended tail-like
configuration and plasma β starts to be significant.
Third, none of the two studies look at the day-side
magnetosphere, where nevertheless observations exist
[Lui and Hamilton, 1992]. Finally, earlier 2-D investi-
gations [Horton et al., 1993] presented P distributions
obtained by 2-D quadratures of J × B, which is not
a well-posed problem. Our more rigorous approach
consists in de-composing J × B into a curl-free part
and a divergence-free part, followed by computation
of P from a Poisson equation.

We work in a flux coordinate system [e.g., Cheng ,
1992, 1995], in which the empirical B is expressed in
terms of Euler potentials [e.g., Stern, 1994a]. This
magnetic field representation, described in Section 2,
provides clear physical meaning to formulas express-
ing various magnetospheric quantities. In Section 3
we present our methods for obtaining P : both a di-
rect integration of J × B from the empirical model
in 1-D on the Sun-Earth line and a 2-D solution of
∇2P = ∇ · (J × B) in the equatorial plane. In Sec-
tion 4 we briefly describe our numerical method and
how the computational domain is defined. The re-

sults for P and their discussion are given in Section
5. In Section 6, we show that the Birkeland currents
as computed by using Vasyliunas relation [Vasyliu-
nas, 1970, 1984] and the T96 field can be unrealistic.
Section 7 describes a possible solution to the force
balance problem in empirical models, and a summary
and conclusions are given in Section 8.

The main result of our study is that the T96 em-
pirical model is not in force balance in 3-D with any
isotropic pressure distribution. A possible reason for
this, despite the ability of the model to describe rela-
tively well the magnetospheric B, lies in the method
by which the model is built, which is by fitting the
field from a framework of postulated currents to ob-
served B data. This approach, while providing B that
correlates well with observations, could yield less than
satisfactory values for key physical quantities com-
puted from the model by differentiation of the field
Stern [1994a].

2. Physical Quantities in a Magneto-
spheric Flux Coordinate System

The equation of motion for plasma in a single-fluid
approach, with isotropic P and over time scales long
enough such that the quasi-neutrality condition is sat-
isfied is, in rationalized EMU units,

ρ

[
∂v
∂t

+ (v ·∇)v
]

= J×B−∇P (1)

A quasi-static equilibrium exists (left-hand side of
Eq. 1 negligible) if: (a) there is no time-dependence
on the time scale of interest (∂/∂t ≈ 0), and (b), the
convective term (v ·∇)v is negligible. In such a case,
the equations describing our system are:

J×B = ∇P (2)

∇×B = J (3)

∇ ·B = 0 (4)

2.1. Euler potential representation of B; flux
coordinate system

From Eq. 4 B can be expressed as

B = ∇ψ ×∇α, (5)
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where ψ and α are called Euler potentials [e.g., Stern,
1967]. Obviously B · ∇ψ = B · ∇α = 0, so that the
magnetic field lines are defined by the intersection
between constant ψ and constant α surfaces.

The Euler potentials ψ and α can be obtained in
analytical form only for certain simplified cases, such
as a dipole field [Stern, 1976] or certain force-free
fields [e.g., Stern, 1994b]. In the magnetospheric case
however, the complexity of B precludes a simple an-
alytical expression for ψ and α.

One approach then is computing ψ and α nu-
merically, and encouraging work has been reported
[e.g., Cheng , 1995; Peymirat and Fontaine, 1999].
Our method, also used in [Cheng , 1995], relies on
the close connection in the magnetospheric case be-
tween the Euler potential representation and the so-
called “straight field line” coordinate system (see [e.g.,
D’haeseleer et al., 1991] and references therein). It
also provides unambiguous values for ψ and α due
to physical constraints. Since our particular repre-
sentation is not very common in the space physics
community, it is worthwhile to briefly discuss how
our flux coordinate system is built. By definition,
flux coordinates are curvilinear coordinates in which
the equation of a magnetic field line takes the form
of a straight line [D’haeseleer et al., 1991]. For this
reason these coordinates are also called straight-B or
straight-field coordinates.

In the magnetosphere, the magnetic field lines form
a set of “nested” surfaces (L-shells), each surface be-
ing defined by field lines with footpoints at the same
magnetic latitude on the Earth’s surface. Let these
surfaces, called magnetic (or flux) surfaces, be “la-
beled” by a function ρ, with its value constant on
a surface. Let also the poloidal and toroidal (az-
imuthal) angles θ and φ, respectively, specify a point
on the surface. We have to mention that the “nested-
ness” constraint is satisfied in the absence of singular
structures such as X-lines, and in the magnetospheric
case it will be valid if reconnection regions are not
included.

Since B ·∇ρ = 0, B can be expressed in its contra-
variant form as B = Bθeθ + Bφeφ, where eθ and eφ
represent the unit vectors in the θ and φ directions,
respectively, part of the co-variant basis {eρ, eφ, eθ}.
Considering the contra-variant basis {∇ρ,∇φ,∇θ}
now, we have Bθ = B ·∇θ, Bφ = B · ∇φ and Bρ =
B · ∇ρ = 0, and thus the equation for a field line is
dθ/dφ = Bθ/Bφ = (B ·∇θ)/(B ·∇φ). Generally the
ratio Bθ/Bφ is not constant on a flux surface, but

it is possible [e.g., D’haeseleer et al., 1991] to make
a transformation from the real angles (θ, φ) to two
variables (χ, ζ) such that the field line is a straight
line in (χ, ζ): Bχ/Bζ = f(ρ). Such a transformation
is not unique, and one possibility is χ = θ and ζ =
φ − 2πν̃/Ψ̇pol , with ν̃ a function periodic in φ and
θ, and Ψ̇pol the derivative with respect to ρ of the
poloidal flux contained within the surface ρ,

Ψ̇pol =
dΨpol

dρ
=

1
2π

∫ 2π

0

∫ 2π

0

dφdθJB · ∇θ

With the described transformation, B is given by
[D’haeseleer et al., 1991]:

B = ∇ρ×∇
(
− 1

2π
Ψ̇torχ+

1
2π

Ψ̇polζ

)
, (6)

a straight-line in (χ, ζ). In the above equation Ψ̇tor

is the derivative with respect to ρ of the toroidal flux
contained within the surface ρ:

Ψ̇tor =
dΨtor

dρ
=

1
2π

∫ 2π

0

∫ 2π

0

dφdθJB · ∇φ

and J is the Jacobian of the (ρ, φ, θ) system: J =
[(∇ρ×∇φ) ·∇θ]−1. In the magnetospheric case Eq.
(6) further simplifies, due to the fact that Ψ̇tor = 0.
This is so because the total toroidal flux within a
flux surface Ψtor = 1/(2π)

∫∫∫
d3xB · ∇φ = 0, due

to the fact that there is no net poloidal current into
the system (the field-aligned currents cancel on aver-
age) [Cheng , 1995]. Therefore, Eq. (6) for the mag-
netospheric field becomes B = ∇ρ × ∇(Ψ̇polζ/ 2π).
Since Ψ̇pol is a function of ρ only, and because ρ
can be any function of the flux surface, with the
choice ψ ≡ ρ ≡ Ψpol/(2π) and α ≡ ζ one finally
has B = ∇ψ ×∇α.

We have thus obtained B in the Euler-potential
form (Eq. 5), with clear physical significance for the
functions ψ and α: ψ labels a flux surface and its value
is related to the poloidal flux within that flux surface,
while α is the equivalent of the azimuthal angle.

Fig. 1 shows several constant flux surfaces in the
noon-midnight meridian and equatorial planes, as
well as constant α lines in the equatorial plane of a
quiet-time T96 configuration. The functions ψ and
α, together with a third coordinate χ represent a
straight-B system: B has no component in the ∇ψ or
∇ζ directions, and is thus a straight line parallel to
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Figure 1. Constant ψ surfaces in the noon-midnight
meridian and equatorial planes as obtained from the
T96 model with quiet-time parameters. Constant α
lines are also shown in the equatorial plane.

∇χ in the (ψ, α, χ) flux coordinate system. We note
that this coordinate system is not orthogonal in gen-
eral: ∇ψ ·∇χ 6= 0, ∇ψ · ∇α 6= 0, and ∇α ·∇χ 6= 0
[e.g., Cheng , 1995]. Obviously, in an axisymmetric
case B · ∇φ = 0, so no transformation of the az-
imuthal angle φ would be necessary: α = φ.

In the general case, we note that knowing ψ and
α still leaves one degree of freedom, i.e. the choice
of χ, which determines the position on the field line.
This choice is actually equivalent to choosing a spe-
cific form for the Jacobian of the (ψ, α, χ) system,
J = [(∇ψ ×∇ζ) ·∇χ]−1 [e.g., Cheng , 1992, 1995].
It also has certain practical significance — for numeri-
cal calculations the choice of χ determines the spacing
of grid points in the discrete computational mesh. In
this paper we will make the “equal arc length” choice
[Cheng , 1995], such that equal dχ correspond to equal
ds variations, ds being the infinitesimal distance along
a field line.

2.2. Field-aligned currents

Attempts have been made in the past [Ding et al.,
1994] to obtain the Birkeland currents directly (by
J‖ = b · (∇ × B), with b = B/B) from T87 or
T89. Those earlier models do not have explicit field-
aligned currents built-in (unlike T96), but it appeared
that because the models were built by least square fit-
ting against large field databases, one would still find
a “residual” presence of these currents, due to their
existence in the actual data. However, [Ding et al.,
1994] concluded that T87 and T89 do not have any
such “residual” currents. They explained this appar-
ent paradox by the fact that the magnetic field due to
these currents was likely to be lost in the statistical
averaging process, as they tend to flow in thin current

sheets that are highly variable in both space and time
[Donovan, 1993].

In a quasi-equilibrium state with isotropic P , J‖
can be obtained from the charge neutrality condition
∇ · J = 0 by the well-known Vasyliunas relation [Va-
syliunas, 1970, 1984]:

B ·∇
(
J‖
B

)
=

2B · (∇P × κ)
B2

=
∇B2 ×B ·∇P

B4
,

(7)

where κ = (b ·∇)b is the magnetic field curvature.
Thus, in a force-balanced state with known P , J‖ can
be obtained by an integration along the line. The
computation of J‖ using Eq. 7 was performed for ex-
ample by Cheng [1995], using analytical P profiles
and a computed 3-D equilibrium field. The reverse
problem has also been considered by Antonova and
Ganyushkina [1996], who computed ∇P on top of the
ionosphere from J‖ and using empirical model fields.

We now express Eq. 7 in our (ψ, α, χ) system.
First, from J×B = ∇P one has B·∇P = 0, and so P
is constant along the field line, P = P (ψ, α). There-
fore ∇P = (∂P/∂α)∇α+(∂P/∂ψ)∇ψ, and the first
equality in Eq. 7 becomes

B ·∇
(
J‖
B

)
=

2B
B2

·
[
∂P

∂ψ
(∇ψ × κ)

]

+
2B
B2

·
[
∂P

∂α
(∇α× κ)

]
(8)

The equation above, however with only the first
term on the right hand side (due to assuming P =
P (ψ) only), was used by Cheng [1995]. The second
term can indeed be neglected if one restricts the do-
main close to Earth, however past 10 RE both terms
are relevant and should be included.

Each term in Eq. 8 has its own physical signifi-
cance. The first term is non-zero only if the magnetic
field line is not a geodesic (a curve of shortest path
between two points) on the flux surface. The curva-
ture κ of a geodesic line is parallel to the normal to
the surface [e.g., Weinstock , 1974], i.e. to ∇ψ, there-
fore if the field line is a geodesic then ∇ψ × κ = 0
and the first term on the RHS of Eq. 8 is zero. If the
line is not a geodesic however, there is a component
of κ in the direction B× ∇ψ, called geodesic curva-
ture, which makes the first term in Eq. 8 non-zero. In
the T96 model, one can intuitively picture that due
to the built-in field-aligned currents, a field line will
depart from a geodesic curve. This is why we expect
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the first term in Eq. 8 to be significant if T96 is con-
sidered vs. when a model without Birkeland currents
is used. The second term in Eq. 8, as opposed to the
first term, is finite even with no geodesic curvature, as
long as ∂P/∂α is finite. We expect the regions close
to the equatorial plane in the magnetotail to provide
the largest contribution to this term, because κ is
largest there, due to the stretching of the field. In the
special case of axisymmetry, both terms on the RHS
of Eq. 8 are zero: the first term because the κ is in
the radial ∇ψ direction in that case, and the second
one because ∂P/∂α ≡ ∂P/∂φ = 0.

2.3. Guiding center motion; implications for
the pressure distribution

In the 3-D magnetospheric case we will show that
generally P depends on both α and ψ. Let us con-
sider the bounce-averaged drift of the particle guiding
center [e.g., Northrop, 1963]. We express the compo-
nent of this drift in the ∇ψ direction, i.e. across flux
surfaces: 〈vgc ·∇ψ〉 = (m/q)∂J2/∂α, where the an-
gle brackets denote averaging over a bounce period:
〈vgc · ∇ψ〉 =

∮
(vgc · ∇ψ)ds/v‖, and J2 =

∮
v‖ds

is the second adiabatic invariant, characterizing the
bounce motion of the particle between the northern
and southern mirroring points.

The invariant J2 is a function of field line: J2 =
J2(ψ, α) [Northrop, 1963]. Considering the E × B
convection to be weak, i.e. neglecting the electric po-
tential energy qφ in v‖ = [2(W − µB − qφ)/m]1/2, we
have

∂J2

∂α
=
∂

∮
v‖ds
∂α

=
∮
∂v‖
∂α

ds = −
∮

µ

m

∂B

∂α

ds

v‖
,

where µ = mv2
⊥/(2B) denotes the magnetic moment,

while W is the total energy of the particle. With
dψ/dt = vgc ·∇ψ we finally obtain

〈
dψ

dt

〉
= −

∮
µ

m

∂B

∂α

ds

v‖
, (9)

which shows the rate at which the guiding center drift
motion crosses the flux surfaces. Eq. 9 shows that if
∂B/∂α = 0, the guiding center drift has no compo-
nent across the flux surface. This means that in a
thin shell (on the order of the ion gyro-radius) en-
veloping the magnetic flux surface the particle dis-
tribution would be constant as the particles ∇B -
and curvature-drift around the Earth, i.e. P would
only be a function of the flux surface: P = P (ψ)
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Figure 2. Constant ψ (dotted lines) and B (solid
lines) contours on the equatorial plane in quiet time
T96; contour values for B, from the farthest to the
closest to Earth, are: 1.5, 2, 3, 5, 10, 20, 50, 100 and
200 nT

if ∂B/∂α = 0. Generally, the systems in which the
drifts lie within the magnetic surfaces are called om-
nigenous systems [Hall and McNamara, 1975].

The Earth’s magnetosphere however does not sat-
isfy the omnigenity constraint, as the condition ∂B/∂α =
0 is not satisfied. This is seen in Fig. 2, where we plot
an equatorial plane view of flux surfaces ψ as well as
contours of constant |B|, as obtained from T96 with
quiet-time parameters. It is apparent that while near
Earth (where the field is almost dipolar) the equato-
rial |B| contours are almost circular and almost co-
incide with the ψ contours, at distances larger than
7 RE the constant |B| contours diverge greatly from
the ψ contours in the magnetotail. We note here that
the addition of E×B convection will strengthen our
conclusion that the magnetospheric P has to depend
on both ψ and α.

3. Obtaining Pressure in Force Balance
With a Magnetic Field Structure

The magnetic force J×B can be written in a gen-
eral form by using Helmholtz’s decomposition theo-
rem [e.g. Arfken, 1985]:

J×B = ∇P + ∇×G (10)
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Figure 3. Two paths of integration for Eqs. 11 and
12 in the equatorial plane of T96. Several constant ψ
contours (dotted lines) and α lines (thin solid lines)
are also shown.

In Eq. 10 P and G are scalar and vectorial functions
of space, respectively. In the case of an exact equi-
librium with isotropic pressure, one has ∇ ×G = 0.
Note that any magnetic configuration will allow the
general decomposition in Eq. 10, as long as ∇·(J×B)
and ∇× (J×B) go to zero at infinity (here this will
mean a boundary farther than the magnetopause).
If a magnetic configuration is in equilibrium with
isotropic pressure, then ∇ × G = 0, and therefore
∇×G represents in a general case the departure from
equilibrium with isotropic P .

3.1. 1-D pressure profile from an empirical
field model

As mentioned, Horton et al. [1993] computed 2-D
profiles of isotropic P for T87 and T89 by perform-
ing simple quadratures of ∂P/∂u and ∂P/∂v on the
equatorial plane, where u and v represent two coor-
dinates defining the plane. This method is however
mathematically unsound, because P at a particular
point depends on the path of integration, as we will
show below.

In applying Eq. 10 on the equatorial plane of a
north-south symmetric empirical model, the absence
of exact force balance will dictate ∇ × G 6= 0 and
therefore no function P can be found on the plane
that satisfies J × B = ∇P . The implication of this
can be seen if we assume J×B = ∇P , and consider

its component in the directions of (B×∇ψ) and (B×
∇α), respectively:

J ·∇ψ = ∇ ·
[
(∇ψ)2∇α− (∇α ·∇ψ)∇ψ

]
= −∂P

∂α
,

(11)

J ·∇α = ∇ ·
[
(∇α ·∇ψ)∇α− (∇α)2∇ψ

]
=
∂P

∂ψ
,

(12)

as obtained by [e.g., Birn et al., 1977; Cheng , 1995].
The problem of finding P from Eqs. 11 and 12 is not
well posed for fields that do not satisfy force balance,
since the function P defined by Eqs. 11 and 12 is not
analytic (regular)! More exactly,

∂

∂ψ

(
∂P

∂α

)
= − ∂

∂ψ
(J ·∇ψ)) 6= ∂

∂α
(J ·∇α)) =

∂

∂α

(
∂P

∂ψ

)

Therefore, the equivalent of Eqs. 11 and 12 in any
other coordinate system cannot be used to obtain 2-D
P profiles from magnetic configurations without force
balance. Trying to integrate Eqs. 11 and 12 starting
from a point where P is chosen will give values de-
pendent on the integration path! To see whether this
is the case for the T96 model, we have used Eqs. 11
and 12 to compute P at point B in Fig. 3.1 start-
ing from the farthest point A, following two paths:
(1) the direct path, along constant midnight α, and
(2), through A1 and A2. The results obtained for
PB, starting from PA = 0.036 nPa, are 4.24 nPa and
4.57 nPa for integration done along paths (1) and (2),
respectively. This difference shows that there is no
regular (analytic) P with ∇P = J×B, therefore us-
ing Eqs. 11 and 12 to obtain 2-D P profiles from
empirical model fields is not a physically well-posed
problem.

In an east-west symmetric model however, on the
Sun-Earth line the problem is well-posed due to ∂P/∂α
= 0 there. Therefore, J×B can be integrated on that
line due to the symmetry of the problem, however the
resulting P cannot be extended to other local times.

There is another very important use for equations
11 and 12 however. They can be construed as coupled
2-D elliptic equations for α and ψ on constant ψ and
α surfaces, respectively. By solving them numerically
for example, a self-consistent magnetospheric picture
could be obtained in 3-D if the P profile is prescribed
on one plane. This approach, with P = P (ψ), has
been used by Cheng [1995] to compute a 3-D magne-
tospheric equilibrium.
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3.2. Rigorous way of obtaining P : Poisson
equation

With the 2-D direct integration of ∇P = J × B
seen to be an ill-posed problem, we concentrate on
the rigorous solution for P (and G)) defined by the
Helmholtz decomposition of J×B, Eq. 10.

The quantities P and G can be formally expressed
as [e.g., Arfken, 1985]

P (r) =
∫
V

∇ · (J×B)
4π |r− r′ | d

3r
′
, (13)

G(r) =
∫
V

∇× (J×B)
4π|r− r′ | d3r

′
, (14)

where the volume integrals have to be performed over
the whole spatial domain with non-zero ∇ · (J × B)
and ∇ × (J × B), respectively. Eq. 14 shows that
∇×(J×B) acts as a “source” for G, and that G could
still be considerable at point r even if the ∇×(J×B)
is small locally. One also sees that in order to find
∇×G one needs to know ∇× (J×B) everywhere.

One method for obtaining P is by directly com-
puting it from Eq. 13. That however involves an inte-
gration over the whole region where the integrand is
non-zero (i.e. the whole magnetosphere), and is not
practical, as we would need to know ∇ ·(J×B) every-
where! A more tractable way of finding P is observing
that

∇2P = ∇ · (J×B) (15)

which is an elliptic Poisson-type equation, requiring
appropriate boundary conditions for uniqueness of the
solution. After solving Eq. 15 one can obtain ∇×G
from Eq. 10, and then a comparison between both
∇P and ∇×G with J×B will indicate how far from
an equilibrium with isotropic P the empirical field is.
Eq. 15, was mentioned by Horton et al. [1993] in their
study of the T87 and T89 models, but the authors did
not present P solutions.

In this paper we will investigate Eq. 15 on the
equatorial plane, but while only considering isotropic
P = P (ψ, α), we will take into account components
due to the dependence on the third coordinate (along
the field) in the operators ∇ and ∇2. In our (ψ, α, χ)
system, the LHS of Eq. 15 is:

∇2P = ∇ · (∇P ) =
1
J

{
∂

∂ψ

[
J (∇P )ψ

]
+

+
∂

∂α
[J (∇P )α] +

∂

∂χ
[J (∇P )χ]

}
, (16)

where the superscripts denote the contravariant com-
ponents of ∇P . Because P = P (ψ, α), ∂P/∂χ = 0
and one might be tempted to drop the last term
in Eq. 16. However, that third term contains the
contravariant component of ∇P , : (∇P )χ = ∇P ·
∇χ = (∂P/∂ψ)(∇ψ ·∇χ)+∂P/∂α(∇α ·∇χ), whose
derivative with respect to χ is non-zero, because
∂/∂χ(∇ψ · ∇χ) 6= 0 and ∂/∂χ∇α · ∇χ 6= 0. The
third term in Eq. 16 — the equivalent of ∂2P/∂Z2 in
a Cartesian system — is thus not zero, with its values
actually found to be quite significant on the equato-
rial plane. Again we note a benefit of using the flux
coordinate system, as the term is explicitly written in
terms of ∂P/∂ψ and ∂P/∂α in this system, however
in a Cartesian system further calculation would be
needed to express ∂2P/∂Z2 in terms of ∂P/∂X and
∂P/∂Y , based on the constancy of P along the field
line.

With regard to the boundary conditions for the
Poisson equation, it is evident that they cannot be
obtained from the empirical model itself, and addi-
tional assumptions are needed. One choice is Dirichlet
conditions on the inner and outer flux surfaces, with
values for P chosen on those surfaces as given by the
so-called Spence-Kivelson empirical formula [Spence
and Kivelson, 1993]. In the α coordinate, the bound-
ary condition is periodic: P (α+ 2π) = P (α).

3.3. Departure from equilibrium: ∇×G

The main goal of our work is to investigate the
T96 on physical grounds, searching for how close the
model can be in force balance with an isotropic pres-
sure distribution.

Several such tests have been performed [Walker
and Southwood , 1982; Horton et al., 1993; Cao and
Lee, 1994] for earlier models such as T87 and T89 .
These studies mainly applied a “momentum balance
test”, investigating ∇× (J×B), which should vanish
if an exact quasi-static equilibrium with ∇P = J×B
describes the system. The above parameter was ex-
amined in itself by Walker and Southwood [1982], and
its magnitude compared with ∇·(J×B) or |J×B| by
Horton et al. [1993], Cao and Lee [1994], respectively.

A main conclusion reached by Cao and Lee [1994]
by examining the parameter ε = RE|∇×(J×B)|/|J×
B| was that T87 was “almost isotropic”. In the case of
an equilibrium with isotropic P however, one expects
the field-aligned current as obtained from Vasyliunas
relation (Eq. 7) to coincide with the actual current
directly obtained from Ampere’s law ∇×B = J. Such
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a test was performed by Ding et al. [1994] in the T87
case, however they obtained widely different results.
By using Vasyliunas relation (in which they replaced
∇P by J×B), they found much larger (by more than
one order of magnitude) currents than the actual ones
in T87 (which are very small as mentioned). This
result is suspicious, and the question to be answered
is: what gives rise to “field-aligned currents” using
Vasyliunas relation where J‖ = 0? The most likely
possibility that might explain the contradiction in the
results of Ding et al. [1994] is that the T87 model is
not really “almost isotropic”, but that somehow the
magnitude of ∇×(J×B) is not a good test for locally
characterizing the isotropy.

Indeed, each of the past approaches suffers from
one or more of the following problems: (1) the quan-
tity ∇ · (J ×B) can be very small, resulting in large
values of the ratio |∇× (J×B)|/|∇ · (J×B)| exam-
ined by Horton et al. [1993]; (2) the parameter ε com-
puted by Cao and Lee [1994] for T87 and T89 cannot
be applied to T96, as it will experience large varia-
tions at the thin field-aligned current sheet bound-
aries, and (3) most importantly, ∇ × (J × B) is not
the best indicator of departure from an equilibrium
with isotropic P . Indeed, from Eq. 10 one finds
∇ × (J × B) = ∇ × (∇ × G). However, in or-
der to quantify the departure from equilibrium with
an isotropic pressure, it is not sufficient to know
∇× (∇×G), because it is necessary to compare ∇P
and ∇ × G. Because ∇ ×G = J × B − ∇P is the
true measure of the departure from equilibrium, the
degree of this departure in an empirical model cannot
be characterized just by inspection of ∇× (J×B).

4. Numerical Method and Computational
Domain

From a computational point of view it is desir-
able that one be able to describe different regions
of the magnetosphere with different spatial resolu-
tions. For this purpose, we introduce two com-
putational functions ρc, ζc, such that ψ = ψ(ρc),
α = α(ζc), and therefore the B is expressed as
B = (dψ/dρc)(dα/dζc)(∇ρc × ∇ζc). Accuracy can
be increased where that is needed (e.g. in regions of
steep gradients), by a judicious choice of ρc and ζc.
With χc = χ, we have a “computational flux coor-
dinate system,” with the computational coordinates
defined in the intervals 0 ≤ ρc ≤ 1, 0 ≤ ζc ≤ 2π, and
0 ≤ χc ≤ π [Cheng , 1995] .

One subtle issue needs to be mentioned here. Un-

like in T87 or T89, the field in T96 is not divergence-
free by construction. In particular, the field due to
the Birkeland currents is computed by separate best
fit analytical approximations for each component Bx,
By and Bz , thus precluding an exact ∇ ·B = 0 [Tsy-
ganenko and Stern, 1996]. A significantly non-zero
∇ · B would be physically problematic and no Eu-
ler potential representation would be accurate, as the
field defined by B = ∇ψ ×∇α intrinsically satisfies
∇ ·B = 0. We have however computed ∇ ·B on and
in the vicinity of the equatorial plane using a very
fine Cartesian grid and obtained values RE∇ · B/B
on the order of 10−2 or less, thus verifying the claim
by Tsyganenko and Stern [1996] that an approximate
∇ · B ≈ 0 should still hold with sufficient accuracy.
Therefore, B = ∇ψ ×∇α is an accurate representa-
tion of the T96 field.

Since the field at the Earth’s surface can be as-
sumed to be overwhelmingly due to internal Earth
sources [Tsyganenko, 1990] and only taking into ac-
count the dipole expansion, from the dipole axisym-
metry we have α ≡ φ on the Earth’s surface as seen
before. The value of ψ on the Earth’s surface on the
other hand is simply related to the poloidal flux of a
dipole field [e.g., Cheng , 1995]: ψ = −BDRE

2 sin2θ,
where BD and RE are the equatorial dipole field on
the Earth’s surface and the Earth radius, respectively,
while θ represents the colatitude.

For simplicity, we will only consider the case of
zero tilt of the geodipole axis. For a certain set of
parameters in T96 we trace various field lines start-
ing from the Earth’s surface, taking advantage of the
known values for ψ and α there. The footpoints of the
traced field lines cover the Earth surface in a chosen
latitude interval, with footpoint density that can be
varied by a judicious choice of ρc(ψ). For each lati-
tude (i.e., each ψ) we trace field lines with footpoints
on Earth in the whole 360◦ longitude range. Very
good resolution in the step size is needed for the trac-
ing [Peymirat and Fontaine, 1999], because a small
difference in the latitudes of the footpoints of two dif-
ferent field lines on the night side can translate into
a difference of a few RE on the equatorial plane. To
this end, our tracing was performed using an adaptive
Runge-Kutta technique, with an average step size of
200 km.

By applying the described tracing method we ob-
tained a grid of 201 × 201 (ψ, α) values. On each
traced line, we retained 21 equally-spaced points
within 2 RE from the equatorial plane, to have an ac-
curate calculation of partial derivatives ∂/∂χ. The
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obtained grid is thus characterized by an average
spatial separation of 0.15 RE in the radial direction,
0.5 RE in the azimuthal direction and 0.1 RE along
the field line. The largest latitude (thus largest ψ)
was chosen such that the domain did not extend past
35 RE in the night side, because very few points are
available there in the database used in T96 [Tsyga-
nenko, 1995]. At the other end, we have chosen 3.5 RE

to be the inner domain boundary at midnight, as cer-
tain boundary conditions for P later discussed are not
valid closer than that.

Finally we need to underscore yet another advan-
tage of the Euler potential approach to represent-
ing the T96 field: the fitting of the model field to
the data was done [Tsyganenko, 1995] by considering
least squares for the differences of unit direction vec-
tors b = B/B, rather than the full vectors B, thus
making T96 a better choice for mapping compared to
previous models. Therefore, a depiction of T96 by
using field-tracing techniques seems only natural.

5. Results for Pressure From Quiet-time
T96

5.1. Pressure obtained by direct 1-D integra-
tion on the Sun-Earth line

As mentioned, the problem of integrating ∇P =
J×B with an empirical model field only makes sense
on the Sun-Earth line, as at other azimuths P is not
a regular (analytic) function. In this subsection we
present results for P (denoted by P1 from here on)
obtained by integrating Eq. 12 for ∂P/∂ψ on the
Sun-Earth axis. The present study, the first to our
knowledge for T96, is similar to previous work in-
vestigating 1-D force balance with isotropic pressure
in earlier empirical models [e.g., Spence et al., 1987;
Kan et al., 1992]. We have done the calculation for
a quiet-time state, with T96 described by DST = 0,
Pdyn = 0.55 nPa, ByIMF = 0 and BzIMF = 10 nT,
typical for a quiet time. With these parameters, the
outer limit at 36 RE corresponds to a latitude of 73.9◦

at midnight, while the inner boundary at 3.5 RE cor-
responds to a midnight latitude of 57.7◦.

Eq. 12 only determines P1 up to a constant, which
was chosen by letting the value of P1 at 36RE at
midnight to be the value from the Spence-Kivelson
empirical formula [Spence and Kivelson, 1993] . The
farthest point was chosen as reference point because
P1 is smallest there and so even if there was an error
in the value chosen there, it will translate into a much
smaller relative error for P1 closer to Earth.
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Figure 4. Profile of P1, obtained by integrat-
ing ∇P1 = J × B from T96 on the Sun-Earth
line (solid lines); also shown: average pressure from
AMPTE/CCE up to 9 RE [Lui and Hamilton, 1992]
(dashed lines); DMSP data mapped by Wing and
Newell [1998] (squares); GEOTAIL plasma sheet
pressure [Hori et al., 2000] (circles); and finally, the
Spence-Kivelson empirical profile [Spence and Kivel-
son, 1993] (dash-dotted line).

In Fig. 4, we plot the obtained P1 profiles on
the Sun-Earth line together with several observa-
tions, as well as the Spence-Kivelson formula, i.e.
P (nPa) = 89e−0.59|X| + 8.9|X|−1.53. Most observa-
tions only provide the proton pressure, however this
should not present a problem, as the contribution of
other ions is negligible in quiet times [e.g., Lui and
Hamilton, 1992], while the electron pressure is also
much smaller (about 1/7 th of the proton pressure
[Baumjohann et al., 1989]).

For the innermost part of the nightside magneto-
sphere, the comparison is made with data obtained by
AMPTE/CCE [Lui and Hamilton, 1992]. Since Lui
and Hamilton [1992] compute both P⊥ and P‖ from
the particle distribution function, for the purpose of
this comparison we plot their average pressure, de-
fined as 〈P 〉 = (2P⊥ + P‖)/3. It can be seen that
from 3.5 RE to about geosynchronous orbit (6.6 RE),
our computed P1 tends to be lower than the average
observed value. This fact might be explained by the
argument of Lui and Hamilton [1992] that if signifi-
cant anisotropy exists but the pressure is nevertheless
computed from force equilibria with the isotropic as-
sumption, the obtained values can underestimate the
real pressure by as much as a factor of 3.

For comparison at larger distances, we plot GEO-
TAIL plasma sheet pressure data [Hori et al., 2000],
as well as ionospheric data from DMSP mapped, us-
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ing T89, by Wing and Newell [1998]. The GEO-
TAIL data is averaged in the domain |Y | < 2 RE,
while the mapped profile from DMSP is averaged over
−10 RE < Y < 10 RE. We observe that our com-
puted P1 is quite consistent with the GEOTAIL ob-
servations, which suggests, within the assumption of
equilibrium, that T96 could be in 1-D force balance
along the midnight meridian in the equatorial plane.
The computed P1 is significantly lower than the values
of Wing and Newell [1998], which are basically con-
stant from 20 to 40 RE. It has been discussed however
[Wang and Lyons, 2001] that the profile of Wing and
Newell [1998] is larger than other observations as well,
and we believe that this might be due to the fact that
Wing and Newell [1998] use T89 to map P from the
ionosphere, since T89 has been found to be excessively
stretched in the tail [Peredo et al., 1993; Rostoker and
Skone, 1993], and less reliable than T87 in predicting
accurate B in the region from 10 to 20 RE. If this
is the case, the P shown in [Wing and Newell , 1998]
beyond 15 RE is in fact “translated” from closer dis-
tances. The findings of Lui et al. [1994] support this
interpretation because their 1-D integration of the
magnetic force in the T89R model (a modified T89
different from the original only very close to Earth)
produced a P profile almost constant between 15 and
35 RE. However this result is not obtained when an-
other model (derived from T87), is considered.

We now look at the dayside region, which has been
much less analyzed before. Besides our calculation,
we plot the average profile from AMPTE/CCE [Lui
and Hamilton, 1992], again defining 〈P 〉 = (2P⊥ +
P‖)/3. As opposed to the situation on the night side,
there is less consistency between the data and our
obtained P1. The observed pressure on the day-side
peaks at a higher value, and has a sharper gradient.
The inconsistency could be explained by anisotropy,
which is found to be rather large throughout the day-
side region [Lui and Hamilton, 1992].

5.2. Solution for P from the Poisson equation;
∇P vs. ∇×G

In this section we present the 2-D solution for P
from Eq. 15, which we denote by P2 from here on. The
purpose of the study is to obtain ∇P2 and ∇×G, and
to compare them, which would provide an indication
of how well the T96 model supports a “quasi-static
equilibrium” with an isotropic pressure. We have
solved Eq. 15 numerically for the same quiet-time
state as before using Dirichlet boundary conditions,
and Fig. 5 shows equatorial contours of the obtained

−35−30−25−20−15−10−50510

−20

−15

−10

−5

0

5

10

15

20

12 10 5 2 1 0.5 0.2 0.1

0.038

X(R
E
)

Y
(R

E
)

Figure 5. Contours of equal P2 (nPa) on the equa-
torial plane from Eq. 15 with Pb = Pb(r) boundary
conditions (solid lines); constant ψ contours are also
shown (dashed lines)

P2. We also present in subplot (a) of Fig. 6 the profile
of P2 along the Sun-Earth line, along with the pre-
vious profile P1 obtained by integrating Eq. 12 along
that line, as well as the empirical Spence-Kivelson
profile.

Next, with P2 known, we computed ∇P2 and ∇×
G = J × B − ∇P2 as defined in Eq. 10. Obviously,
before performing the calculation, one might suspect
that due to the large discrepancy seen in subplot (a)
of Fig. 6 between the computed P2 and the Spence-
Kivelson formula (which as seen in Fig. 4 is quite
similar to the P1 profile), both ∇P2 and ∇×G will
be found to be quite large and different from J× B.
This is indeed the case, as seen in subplots (b) and
(c) of Fig. 6, where the values of ∇P2, ∇ × G and
J×B are shown along the Sun-Earth line. It is seen
that everywhere |J × B| is smaller than both |∇P2|
and |∇×G|. The large values of |∇×G| suggest that
the T96 model field does not support an equilibrium
with isotropic P constant along the field line, not even
in the plasma sheet region.

5.2.1. Effect of boundary conditions

It would appear that the particular dependence of
P2 obtained from Eq. 15 on ψ and α might be due to
our choice of boundary conditions, i.e. Pb = Pb(r).
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Figure 6. (a) P2 (nPa) obtained with Pb = Pb(r)
boundary conditions, shown only on the Sun-Earth
axis (solid line); also, P1 obtained by 1-D integration
(dashed line) and the Spence-Kivelson profile (dash-
dotted line); (b) Values on the Sun-Earth axis of mag-
netic force J×B (solid lines), ∇P2 (dash-dotted lines)
and ∇ × G (dashed lines); all three quantities are
in the radial direction, and are given in nPa/RE; (c)
same quantities as in (b), but logarithmic plot of their
absolute values.

However, there are several indications that point to
the contrary, namely that the shape of the P distri-
bution is due to the source term ∇ · (J ×B). First,
it is evident from Fig. 5 that the P = P (r) behav-
ior is valid only very close to the inner and outer ψ
boundaries, and that the 2-D P2 distribution drasti-
cally changes away from boundaries. Furthermore, we
present in Fig. 7 the result for P2 obtained from Eq. 15
with a different boundary condition, Pb = Pb(ψ). The
result is seen to be very similar to the previously
obtained P2, except within 1 RE from the outer ψ
boundary. We also present in Fig. 8 the profile on
the Sun-Earth axis of P2 obtained from Eq. 15 with a
lower value of P2 on the inner boundary at midnight,
P2 = 4.24 nPa, the same as P1 there. For this case, at
different α values, P2 on the boundary was obtained
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Figure 7. Contours of equal P2 (nPa) on the equa-
torial plane from Eq 15 with Pb = Pb(ψ) boundary
conditions (solid lines); constant ψ contours are also
shown (dashed lines)

by integrating ∂P/∂α from Eq. 11 on both the inner
and outer ψ surfaces.

We limit our presentation to Dirichlet boundary
conditions. There is a physical rationale however for
trying to impose Neumann conditions, as one might
think that by choosing ∇P2 ≈ J×B on one or both
boundaries (i.e. ∇ × G ≈ 0 there), one could find
a state in which ∇ × G would be minimal through-
out the domain. However, the fact that no P exists
such that ∇P = J×B also makes implementation of
this approach impossible — the various ∂P/∂ψ val-
ues are not differentiable in α, and thus the prob-
lem is not well-posed physically. Besides, even if one
tried to “smooth” ∂P/∂α, the problem with Neu-
mann conditions on both boundaries would still not
be well posed. This is due to the well-known fact [e.g.,
Hackbusch, 1992] that the problem with Neumann
conditions on both boundaries is well-posed only if∫
V

∇ · (J × B)d3r =
∫
Γ
∂P2/∂n · dS, where the in-

tegral over V represents the integral over the whole
domain, while dS = n dS is the directed surface ele-
ment on the boundaries.

5.3. Discussion

A significant dissimilarity is seen in the radial de-
pendence along the Sun-Earth axis of P1 obtained by
direct integration of Eq. 12 vs. P2 from the Poisson
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Figure 8. Sun-Earth axis profile of P2 (nPa)
obtained from Eq. 15 with boundary conditions
Pinner = 4.24 nPa taken equal to P1 at noon and
midnight, with α behavior from integrating ∂P/∂α
in Eq. 11 along the inner and outer ψ surfaces (solid
lines); P1 profile from 1-D integration also shown
(dashed lines);

equation, Eq. 15, as is depicted in Figure 4, subplot
(a) of Fig. 6 and Fig. 8. It is evident that P2 is signif-
icantly larger than P1 at all radial distances, with the
exception of the farthest end point, where the value
from the Spence-Kivelson formula is imposed. Both
profiles however show a monotonic decrease with ψ :
∂P/∂ψ < 0 (and so ∂P/∂r < 0, consistent with ob-
servations tail-ward of 3.5 RE [e.g., Lui et al., 1994]).
Nevertheless, P2 exhibits lower ∂2P /∂r2 > 0, i.e.
the change in ∇P2 is much lower than both ∇P1 and
the observed ∇P . Thus P2 obtained from Eq. 15
does not agree with findings [Spence et al., 1989; Lui
et al., 1994] of a large change in ∇P in the “transition
region” between the dipole-like and tail-like field con-
figurations — indeed, the largest ∇P2 consists in the
significant drop near the outer boundary at 36 RE.

The most relevant comparison between P2 and P1

is in Fig. 8, where we show P2 obtained from Eq. 15
with Dirichlet boundary values taken equal to P1 at
noon and midnight, and by integrating ∂P/∂α along
the inner and outer ψ surfaces at other local times.
Mathematically, the difference between the P2 and P1

solutions is due to contributions from α and χ terms
in the source term ∇·(J×B), as well as the constraint
that P2 be constant along the field line. The funda-
mental physical difference between the two methods is
that while the Helmholtz decomposition “filters out”
the non-zero curl of J×B, the 1-D method does not.
The good correlation between the 1-D profile and ob-

servations indicate that the T96 model does a rela-
tively good job in being almost force-balanced with
observed pressure in 1-D along the midnight merid-
ian, particularly in the plasma sheet. However, the
model is far from being self-consistent in 3-D, as our
decomposition of J × B into the curl-free ∇P2 and
the divergence-free ∇ ×G results in unphysical val-
ues for ∇P2. The large values of P2 make it debatable
whether P2 alone possesses a physical significance in
terms of moments of the particle distribution func-
tion, and point to the possibility that J×B obtained
from the empirical model might include unphysical
contributions that cannot be expressed as the diver-
gence of a pressure tensor ∇ · P.

6. Computation of Birkeland Currents

With the P1 profile as obtained by direct integra-
tion along the tail axis consistent with observations,
the use of T96 in 1-D on that axis should not present
real problems. This is not the case however if one
employs the model away from the Sun-Earth line in
a 3-D magnetosphere. Such an application, namely
the computation of Birkeland currents using Vasyliu-
nas relation, Eq. 7, is presented in this section. While
relatively frequently used in the community, Vasyliu-
nas relation is valid under the underlying assumption
of a 3-D force balance between J×B and ∇P . We use
Vasyliunas relation, Eq. 7, where ∇P will be replaced
by J ×B from the T96 model, in order to ascertain
to what degree the non self-consistency in the empir-
ical model affects the accuracy of the result. As basis
of comparison we compute J‖ in T96 directly from
Ampere’s law as well: J‖ = b · (∇×B).

The computation using Ampere’s law should pro-
duce the currents built into T96, so it is useful at this
point to recall their topology in that empirical model.
The built-in region 1 currents have ionospheric foot-
points between 68◦ at midnight and 72◦ at noon, have
maxima on the dayside, and flow in the distant tail
to the outer layers of the plasma sheet [Tsyganenko,
1993; Tsyganenko and Stern, 1996]. They are open
inside the magnetosphere, closing outside of it in the
dayside. The region 2 currents exhibit larger noon-
midnight asymmetry, being centered at 61◦ at mid-
night and 66◦ at noon. They close inside the magne-
tosphere through the partial ring current, flowing in
a large region from about 5 to 10RE.

We perform the computation of J‖ close to the
equatorial plane, because we expect T96 to be closest
to force balance in the plasma sheet. In Fig. 9 we
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Figure 9. Contours of field-aligned current density
(in nA/m2) at Z = 1 RE above the equatorial plane,
obtained directly from T96 by Ampere’s law (up-
per plot) and computed by Vasyliunas relation (lower
plot); the solid lines show positive current (out of
the equatorial plane), while the dashed lines repre-
sent negative current (into the equatorial plane).

present contour plots for the Birkeland currents, at
Z = 1 RE above the equatorial plane. The top sub-
plot of the figure shows J‖ = b · (∇×B). It is purely
of region 2 sense and it flows in a relatively large ra-
dial domain from 5 RE to 15 RE. Its largest values are
seen to be about 0.06nA/m2 at around 10 PM and
2 AM local times, respectively. The relatively small
values of J‖ are due to the way the Birkeland currents
are built into T96: at small Z in the night side, the
region 2 currents flow almost parallel to the equato-
rial plane as they close via the partial ring current,
and therefore their field-aligned component is quite
small (see Fig. 6 in [Tsyganenko and Stern, 1996]
for the topology of the region 2 Birkeland currents

built into T96). In the second subplot of Fig. 9 we
show J‖ computed using Vasyliunas relation. The
computed currents in the near-Earth nightside mag-
netosphere are still of region 2 sense, with a maximum
of 0.07 nA/m2, and spatial location roughly the same
as the Ampere-obtained currents. However, we also
notice the appearance of region 1 sense currents far-
ther in the tail between 25 and 30 RE. This feature
is quite problematic because there are no region 1
currents in the picture obtained from Ampere’s law
— the region 1 currents built into T96 flow on sur-
faces outside of the plasma sheet, and therefore should
not be encountered at Z = 1 RE. We also note the
existence of region 1 sense currents on the dayside,
very close to Earth. Since at those locations Lui and
Hamilton [1992] found significant anisotropies, it can
be argued that the force balance there is not com-
plete without non-isotropic terms, and thus Eq. 7 is
not valid there. Such an argument is harder to make
in the tail at 25 to 30 RE because observations have
shown P to be isotropic.

While not presented here due to space consider-
ations, we have performed the above computations
further along the field lines, and obtained larger and
larger dissimilarities between J‖ obtained by the two
methods as we approached the ionosphere. Evidently,
in the case of a 3-D force balance with isotropic P one
would expect the current profiles obtained by the two
methods to be the same. The fact that they are not
and especially the appearance of spurious currents re-
inforces our earlier conclusion that T96 does not sup-
port such a force balance.

Recently, Wing and Newell [2000] have applied Va-
syliunas relation to model the Birkeland currents in
the plasma sheet during quiet times, using the T89
model, together with observed ionospheric P mapped
to the plasma sheet using the same T89 [Wing and
Newell , 1998]. Since our discussion is pertinent to
exactly this type of application, in the following we
present a few comments on the work of Wing and
Newell [2000]. A first problematic issue in their ap-
proach is the mapping, since T89 has no built-in field-
aligned currents, and therefore, as Ding et al. [1994]
state, all attempts at detailed mapping using a model
which does not include the effects of the Birkeland
currents should be viewed with a degree of skepticism.
Secondly, the P profiles in conjunction with the B
field used by Wing and Newell [2000] do not represent
a self-consistent state. Also, again because T89 has no
field-aligned currents, there is almost no geodesic cur-
vature through most of the equatorial plane, as any
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“residual” field-aligned currents are negligible [Ding
et al., 1994]; Figure 1 in the paper by Wing and
Newell [2000] also shows the magnetic tension mostly
oriented Earthward. In these conditions, the contri-
bution to J‖ comes mainly from the second term in
Eq. 8, which is quite large, as the azimuthal ∇P in
their mapped pressure is itself large. However, such
large azimuthal ∇P cannot be in force balance with
the field of T89, as azimuthal changes in magnetic
pressure would not be enough to maintain it, and a
geodesic curvature is needed, which is only possible in
the presence of self-consistent J‖. It can be pictured
however that if the field of T89 is modified in order
to rotate κ to balance ∇P , the product κ ×∇P in
Eq. 7 will decrease, thus decreasing the (rather large)
values for J‖ obtained by Wing and Newell [2000] at
Z = 0.1 RE.

Another result obtained by Wing and Newell [2000]
is that over 80% of the contribution to J‖ comes from
0 < Z < 1 RE, implying that there are no significant
“sources” (i.e. significant values for the RHS of Eq. 8)
above Z = 1 RE. This result can be understood, be-
cause in their physical setting only the second term
of Eq. 8 is significant. This term has large values in
regions with large (non-geodesic) κ, i.e. very close to
the equatorial plane, especially for the over-stretched
T89. However, in a more realistic situation with self-
consistent J‖, the first term in Eq. 8 will also be sig-
nificant. For example, Cheng [1995] showed that by
integrating just this term for a 3-D computed equi-
librium from the equatorial plane to the ionosphere,
one obtains values for J‖ consistent with observations
(∼ 1µA/m2). Also, if J‖ were to mainly originate
within Z = 1 RE, then the current within a flux tube
would have to stay almost constant as the tube goes
from Z = 1 RE to the ionosphere. A realistic Birke-
land current topology probably does not satisfy this
requirement — for example, it is evident in the con-
struction of the region 2 currents in T96 [Tsyganenko
and Stern, 1996] that the “current tubes” do not co-
incide with the flux tubes.

7. A Possible Solution to the Force-
Imbalance Problem

We need to mention first one possible underlying
reason of why the fields of an empirical model such as
T96 are not in force balance with the pressure. There
have been arguments [e.g., Wing and Newell , 2000]
that because both field and P observations represent
averaged configurations, they ought to nearly satisfy

the force balance. However, one recognizes, as Stern
[1994a] points out, that while B in an empirical model
might represent the real field with a reasonably good
correlation coefficient, first and higher order spatial
derivatives of B are likely to be farther and farther
from reality. That T96 indeed gives a rather good
prediction of B is indicated for example by the test
performed by Zhou et al. [1997], who only found ma-
jor discrepancies with observations close to the cusp
region. However, it is well known [e.g., Stern, 1994a]
that first and higher order derivatives of a function
fitted by a least-squares approach are worse approx-
imations of the derivatives of the original function.
Thus, we expect J × B as obtained from the model
to present a worse correlation against the actual force
J×B, with ∇·(J×B) being an even more inadequate
approximation of its corresponding actual quantity.
The most obvious approach would be to build an em-
pirical model that would fit currents instead of mag-
netic fields. Such a project is not practical in the
near future however, due mainly to the lack of synop-
tic multi-point data.

There is an alternative approach however, namely
the adjustment of the model field by computing a 3-
D quasi-equilibrium in which force balance is satis-
fied throughout the domain. Such a study, limited
to 15 RE, with P = P (ψ) and using simple boundary
flux surface shapes, has been successfully performed
in the past using the MAG-3D code [Cheng , 1995].
We have since refined the code to extend the equi-
librium to about 25RE and to use observation-based
P from both DMSP [Wing and Newell , 1998] and
GEOTAIL [e.g., Hori et al., 2000], as well as bound-
ary conditions from the T96 empirical model. Us-
ing observed pressure profiles to obtain the magnetic
field and not vice-versa also makes physical sense in
the plasma sheet, where high values of the plasma β
indicate that indeed P determines the field, not the
other way around. The details of our self-consistent
computation will be presented in a future paper. The
obtained 3-D configurations have already been used
as a background configuration in order to compute
field-line resonances [Cheng and Zaharia, 2002], and
should prove a useful tool for modelers in other areas
where self consistency between magnetospheric fields
and plasma is indispensable.

8. Summary and Conclusions

Empirical models have been enjoying widespread
use in the space physics community, being employed
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in a wide array of applications, ranging from mapping
along the field lines to modeling of Birkeland currents,
field-line resonance and ballooning instabilities.

Knowledge of the magnetosphere however is not
complete if only the average B is known. The plasma
pressure is another crucial factor due to its funda-
mental effect, especially in high-β regions such as the
plasma sheet, on the magnetospheric dynamics and
the formation of transverse and field-aligned currents.
Due to the very limited knowledge of P from in-situ
observations, attention has focused to other means of
obtaining P , one of them being computing a pressure
distribution that would be in force balance with the
magnetic stresses of an empirical field model.

In this paper we analyze the issue of force bal-
ance in the T96 model, with the goal of finding out
how well the T96 field structure can support an equi-
librium with isotropic P . To extract most physics
from our treatment, we work in a flux coordinate sys-
tem in which the empirical field is naturally given in
terms of Euler potentials as B = ∇ψ×∇α (the many
benefits of the Euler representation are discussed in
[e.g., Stern, 1994a]).

The previously used method of obtaining a 2-
dimensional P from an empirical model by simple
quadratures is deficient because in an empirical model
field configuration the problem is not well posed, as
there is no mathematically well-defined P with ∇P =
J×B. We present a rigorous way of obtaining P in 2-
D, by using the decomposition J×B = ∇P+∇×G by
Helmholtz’s theorem, followed by solving a resulting
Poisson equation for P in the equatorial plane. The
computation is more than 2-D: while P = P (ψ, α) is
a function of ψ and α only, components due to the
dependence of the operators ∇ and ∇2 on the third
coordinate χ are taken into account as well. The Pois-
son equation is solved using various boundary condi-
tions on the inner and outer ψ surfaces. Once P is
known, ∇ × G is also found, and represents a bet-
ter criterion for judging the departure of a magneto-
spheric state from equilibrium with isotropic P than
previous “isotropy criteria” based on ∇× (J×B).

We also compute P on the Sun-Earth axis only by
integrating ∇P = J×B (a well-posed problem in 1-
D). This method has been used in the past for earlier
models such as T87 and T89 [e.g., Spence et al., 1987;
Kan et al., 1992], however our present calculation is
to our knowledge the first such study for T96.

Comparing P obtained via the two methods on the
Sun-Earth line, we note that while P obtained from
1-D integration (called P1) compares relatively well

with observations, P from the Poisson equation (de-
noted by P2) has significantly higher values through-
out the domain. Our results suggest that the T96
model is not compatible with an isotropic pressure in
the 3-D domain at any location, including the plasma
sheet. The importance of this fact depends on the
particular application to which the empirical model
is employed, as for some applications its use could
be more appropriate than for others. An application
where force-balance is absolutely essential is the com-
putation of the field-aligned currents. We perform
this computation and we find that using the so-called
Vasyliunas relation [Vasyliunas, 1970, 1984] with em-
pirical model fields can lead to spurious currents. As
an example we also provide comments on the work
of Wing and Newell [2000], who use B from the T89
model in conjunction with P observations to obtain J‖
from Vasyliunas relation, but their implicit assump-
tion that force balance is “nearly” satisfied in such a
case is not likely to be valid, as we discuss.

We also discuss a possible reason for the lack of
force balance in empirical models, which lies in the
method by which these models are built, which is
by fitting the field from a framework of postulated
currents to observed B data. This approach, while
providing B values that correlate well with observa-
tions, could yield less than satisfactory values for key
physical quantities computed from the model by dif-
ferentiation of the field, such as the electric currents.

Finally, we describe a possible solution to the is-
sue of force imbalance in empirical models, namely
the “adjustment” of the model field by computing a
3-D field that satisfies force balance with a pressure
gradient, by using boundary conditions from the em-
pirical model and observation-based P profiles. Such
a study, using a refined version of the MAG-3D code
[Cheng , 1995] with boundary conditions from T96 and
pressure from both ionospheric (DMSP) and plasma
sheet (GEOTAIL) observations, will be presented in
a future paper.
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