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Introduction 

The National Compact Stellarator Experiment (NCSX) will study the physics of 

low aspect ratio, high β, quasi-axisymmetric stellarators. In order to achieve the scientific 

goals of the NCSX mission1, the device must be capable of supporting a wide range of 

variations in plasma configuration about a reference equilibrium. Numerical experiments 

are presented which demonstrate this capability. 

The NCSX coil-set comprises 18 modular coils, 6 in each of the 3 field periods of 

the machine. The coils are grouped into 3 independently controlled circuits - one circuit 

for each distinct coil shape. A novel island-healing algorithm2 was incorporated in the coil 

design methodology to ensure good flux surfaces. A supplementary toroidal field coil 

system can provide a 0.5 T  1/R field in either direction relative to the modular coil field. 

This provides the capability to vary the external rotational transform at fixed toroidal field. 

A system of 6 pairs of axisymmetric poloidal field coils is included for additional 

flexibility, four of which provide low-order axisymmetric multipole fields, and the 

remaining two provide an ohmic field. 

The primary computational tool for the flexibility studies is STELLOPT, a VMEC-

based free-boundary optimizer which varies coil currents to generate equilibria with 

targeted physics properties, such as stability to kink and ballooning modes (conducting 

wall at infinity) and good quasi-axisymmetry (QA). Essential code modules within 

STELLOPT include an equilibrium solver (VMEC3), stability analysis codes 

(TERPSICHORE4 for kink modes, COBRA5 for ballooning modes), and a QA analyser 

(NEO6 which evaluates QA by calculating the effective helical ripple, εh).  
Plasma performance as ββββ and Ip are varied    

Here STELLOPT is used to calculate coil currents which support stable plasmas 

with good QA as Ip and β are varied from their reference values. Profiles of pressure and 

current are held fixed, equal to a bootstrap-consistent form (see curves labelled α = 0.0 
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and γ = 0.0 in Fig. 1) appropriate to the BT = 1.7 T  design point (S3) where Ip = 174 kA,   

β = 4.2%. For a 5x5 matrix of equally spaced Ip, β values spanning Ip ∈ [0, 174 kA], β ∈ 

[0, 4%], STELLOPT successfully produces εh-optimized equilibria which are stable to 

kink and ballooning modes for all Ip, β values, with εh varying within a factor of two of the 

reference (εh
ref = 0.5% at s ~ (r/a)2 = 0.5). In addition, a stable configuration with good 

quasi-axisymmetry was obtained at β = 6% for Ip = 174 kA, BT = 1.7 T and reference 

profiles of current and pressure. (No attempt has yet been made to find the β-limit for 

optimized profiles). Modular coil currents vary by less than ±10% over the Ip – β plane 

and the auxiliary TF field variation is less than ± 0.10 T. Using reference profiles, we 

conclude there is a substantial region of stability with good QA in the Ip - β plane. For 

these calculations STELLOPT was run in a mode which provides a cost function penalty 

for instability but no reward for stability margin. Therefore each equilibrium  produced in 

the Ip, β scan is marginally stable (as was verified by freezing the coil currents, increasing 

β, and noting the appearance of instability). Configurations with a wide range of β-limits 

can be easily generated by an appropriate choice of the coil currents.  

Plasma performance as profiles are varied 

We now examine plasma performance when plasma profiles are varied about 

reference forms at fixed Ip and BT. A 1-parameter sequence of J.B profiles, labelled by 

parameter α ∈ [0, 1], describing the effect of peaking the current profile in the core of the 

plasma is shown in Fig. 1a. Using the reference p(s) and Ip = 174 kA, BT = 1.7 T, 

STELLOPT finds stable configurations with β ≥ 3.0% for 0 ≤ α ≤ 0.5, with  εh ≤ 0.5% at s 

= 0.5. Current profiles with finite edge current have also been examined.  At β = 5.0% we 

find stability is maintained as J.Bedge/J.Bmax is raised to 50%! (dashed curve in Fig. 1a). 

The stability of stellarators to edge currents7 is in contrast with tokamak behavior and 

leads to the interesting possibility that H-mode profiles may be beneficial to NCSX. 

STELLOPT was run for a sequence of pressure profiles (see Fig. 1b) where the 

peakedness in the core region, parameterized by γ ∈ [0, 1], was varied. Fixing  β at 3.0% 

and using the reference J.B current profile, the stable range of p(s) is 0 ≤ γ ≤ 0.8. For this 

range of profiles, εh ≤ 0.4% at r/a = 0.5. The γ = 1.0 configuration is stable at β = 2.5%. 

Finite edge pressure gradients were also studied. Using the pedestal profile shown in Fig. 

2b, a stable configuration at β = 3.0%, with εh = 0.56% was found.   



 

 

 

 

 

Figure 1: J.B(s) and p(s) profiles used in flexibility studies. S ~ (r/a
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Figure 2: Boundary shapes generated by different modular coil cu
with εeff(s = 0.5)  differing by a factor of 10. 
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Control of iota profile 

 The ability to change the external transform provides a useful control feature in 

NCSX. Control of ι(s) can be used to test the importance of avoiding low-order rational 

surfaces in the plasma region; evaluating the role of shear on neoclassical tearing modes; 

is useful for mapping stability boundaries; and will be useful for establishing controlled 

conditions for transport experiments. Using reference profiles of pressure and current and 

fixed reference S3 values of β, Ip and BT (for which the axis and edge values of iota are 

ι(0) = 0.40, ι(1) = 0.65) substantial changes ∆ι(s) ∈ [-0.2, +0.1] at constant shear can be 

accommodated while keeping the shear constant. Similarly, the shear, measured by ∫ = 

(ιmax – ι(0)) can be changed in the range 0.23  0.53. Figure 3a,b shows ι(s) profiles for 

the constant shear and variable shear scans at constant β, Ip and BT. In conjuction with the 

variation in iota profiles obtained by varying Ip and β at constant BT, shown in Fig 3c, the 

range of iota profiles accessible to NCSX is very broad. 

 

 

 

 

 

 

 

Figure 3a,b: Range of iota variation achieved by varying coil currents at fixed Ip and BT.       
3c: Range of iota profiles obtained by varying Ip and β at constant BT. 
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