
PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3695 PPPL-3695

Field Line Resonances in Quiet and Disturbed Time
Three-Dimensional Magnetospheres

by

C.Z. Cheng and S. Zaharia

May 2002



Field Line Resonances in Quiet and Disturbed Time

Three-Dimensional Magnetospheres

C. Z. Cheng and S. Zaharia

Princeton University, Plasma Physics Laboratory, Princeton, NJ

Received ; accepted

submitted to Journal of Geophysical Research, 2002

Short title: FIELD LINE RESONANCE



2

Abstract.

Numerical solutions for field line resonances (FLR) in the magnetosphere are

presented for three-dimensional equilibrium magnetic fields represented by two Euler

potentials as B = ∇ψ ×∇α, where ψ is the poloidal flux and α is a toroidal angle-like

variable. The linearized ideal MHD equations for FLR harmonics of shear Alfvén waves

and slow magnetosonic modes are solved for plasmas with the pressure assumed to be

isotropic and constant along a field line. The coupling between the shear Alfvén waves

and the slow magnetosonic waves is via the combined effects of geodesic magnetic field

curvature and plasma pressure. Numerical solutions of the FLR equations are obtained

for a quiet time magnetosphere as well as a disturbed time magnetosphere with a thin

current sheet in the near-Earth region. The FLR frequency spectra in the equatorial

plane as well as in the auroral latitude are presented. The field line length, magnetic

field intensity, plasma beta, geodesic curvature and pressure gradient in the poloidal flux

surface are important in determining the FLR frequencies. In general, the computed

shear Alfvén FLR frequency based on the full MHD model is larger than that based

on the commonly adopted cold plasma model in the βeq > 1 region. For the quiet

time magnetosphere the shear Alfvén resonance frequency decreases monotonically with

the equatorial field line distance which reasonably explains the harmonically structured

continuous spectrum of the azimuthal magnetic field oscillations as a function of L shell

in the L ≤ 9RE region. However, the FLR frequency spectrum for the disturbed time

magnetosphere with a near-Earth thin current sheet is substantially different from that

for the quiet time magnetosphere for R > 6RE , mainly due to shorter field line length

due to magnetic field compression by solar wind, reduced magnetic field intensity in the

high β current sheet region, azimuthal pressure gradient and geodesic magnetic field

curvature.
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1. Introduction

Field line resonances (FLRs) with multi-harmonic frequencies have been observed

extensively, for example, in the 2 ≤ R/RE ≤ 9 region by AMPTE/CCE [Takahashi

et al., 1990, 2002]. It was firmly established that they are the most commonly excited Pc

3-5 waves in the dayside magnetosphere from the plasmapause to the magnetopause

[Engebretson et al., 1986]. The distinctive structure in the azimuthal component,

consisting of several frequency components, corresponds to the fundamental and higher

harmonics of the local toroidal Alfvén resonances. The L-shell dependence of the

frequency and the latitudinal dependence of wave amplitudes are unambiguous evidence

for local shear Alfvén field line resonances. The excitation mechanism of these pulsations

has also been observed to be due to external sources. Correlating the CCE magnetic field

data with simultaneous solar wind data from AMPTE/IRM, Engebretson et al. [1987]

found that both the direction of the interplanetary magnetic field and the velocity of the

solar wind govern the amplitude of the harmonically structured magnetic pulsations. A

comprehensive statistical study of the resonant harmonic waves [Anderson et al., 1990]

concluded that different source mechanisms can generate different harmonic modes at

different local times. The dayside source may be related to the bow-shock-associated

upstream waves, and the flank side strong fundamental waves may be driven by the

Kelvin-Helmholtz instability generated waves. These toroidal Alfvén resonances can also

be excited impulsively by a dayside pressure change embedded in the solar wind [Potemra

et al., 1989].

Field line resonance (FLR) has also been considered as a mechanism for the auroral

arc formation. Several FLR characteristics are found to correlate well with those of

auroral arcs [Samson et al., 1992, 1996; Lotko et al., 1998]. These include quasiperiodic

poleward motion of auroral forms, narrow frequency band in luminosity power spectrum,

arc duration of many hours, progressively lower frequency signal with increasing latitude,

and a nearly 180◦ shift in wave electric and magnetic field. In addition, FLR can account



4

for the small arc thickness by mode conversion to inertial Alfvén waves [Wei et al.,

1994; Trondsen et al., 1997; Streltsov et al., 1998]. There is also recent interest in FLR

from Fast Auroral SnapshoT (FAST) observations of several features associated with an

auroral arc [Lotko et al., 1998]. The reported frequency range for FLR in the night sector

is 1 − 4 mHz at auroral latitudes. There are varying degrees of success in matching

observed frequencies with the theoretical ones. The FLR frequencies calculated for a

dipole magnetosphere are generally at least one order of magnitude larger than those

observed. A significant reduction of FLR frequency can be achieved by stretching the

magnetic field line length either with an empirical magnetic field model [Rankin et al.,

2000] or a self-consistent equilibrium with stretched magnetic field [Lui and Cheng, 2001].

The theory of field line resonances of standing shear Alfvén waves in response to

the propagation of compressional MHD waves [Radoski, 1966; Cummings et al., 1969;

Tataronis and Grossmann, 1973; Chen and Hasegawa, 1974; Southwood, 1974; Cheng and

Chance, 1986; Cheng et al., 1993] seemed to be able to explain the basic features of

low- to mid- frequency (Pc 3-5) transverse waves. The corresponding eigenfrequencies

for the transverse shear Alfvén waves standing along the field lines vary spatially and

constitute the so-called shear Alfvén continuum. For an excitation frequency matching

an eigenfrequency inside the shear Alfvén continuum, the wave resonance generates

perturbations that are radially singular near the particular resonant magnetic field

surface. However, most FLR theories have been limited to the cold plasma model in

simple one-dimensional straight magnetic field configuration [Southwood and Kivelson,

1986], or in a dipole field geometry [Chen and Cowley, 1989; Lee and Lysak, 1990], or in

stretched magnetic fields based on empirical models such as the T96 model [Rankin

et al., 2000]. In a realistic magnetosphere, besides being nonuniform in the radial

direction, the Alfvén velocity is also nonuniform in the azimuthal direction as well as

in the direction along the ambient magnetic field, the plasma pressure is finite, and the

particles are trapped in the low magnetic field region. By assuming that the pressure is
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only a function of the poloidal flux (or L-shell) the continuous FLR and discrete spectra

of shear Alfvén waves and slow magnetosonic modes for two-dimensional axisymmetric

equilibrium magnetic field models have been studied [Cheng and Chance, 1986; Cheng

et al., 1993; Lui and Cheng, 2001].

In general, the MHD model with isotropic pressure dictates that the plasma pressure

is constant along a field line, but can vary from field line to field line. With the

magnetospheric magnetic field represented by two Euler potentials as B = ∇ψ ×∇α,

where ψ is the poloidal flux and α is a toroidal angle-like variable, the plasma pressure can

be written as P = P (ψ, α). Recently we have reformulated the ideal MHD eigenmode

equations for isotropic pressure distributions P (ψ, α) in a form that provides a better

physical representation of the MHD continuous FLR spectra in general three-dimensional

magnetic field geometries [Cheng, 2002]. The FLR equations that represent two branches

(shear Alfvén waves and slow magnetosonic waves) of the MHD continuous spectra are

naturally obtained in the formulation. A new term due to the product of ∂P/∂α and

the geodesic magnetic field curvature is found for the shear Alfvén waves. These two

branches couple through the combined effect of geodesic magnetic field curvature and

plasma pressure as was obtained previously [Cheng and Chance, 1986; Cheng et al.,

1993].

In this paper we present numerical solutions of the FLR equations for three-

dimensional quasi-static magnetospheric equilibrium fields. In particular, we present

results for two different states of the magnetosphere: a quiet time magnetosphere as

well as a disturbed time magnetosphere with a near-Earth thin current sheet. In

Section 2 we present MHD FLR equations and a Lagrangian variational principle for

the FLR equations. In Section 3 we present the equilibrium solutions for a quiet

time magnetosphere and a disturbed time magnetosphere as well as the shear Alfvén

wave and slow magnetosonic mode FLR frequency spectrum for both magnetospheric

states. For the quiet time magnetosphere the shear Alfvén resonance frequency decreases
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monotonically with the L shell distance and scales as L−4ρ−1/2, which reasonably

explains the harmonically structured continuous spectrum of the azimuthal magnetic field

oscillations observed by AMPTE/CCE [Engebretson et al., 1986; Takahashi et al., 1990,

2002] in the L ≤ 9RE region. However, the FLR frequency spectrum for the disturbed

time magnetosphere with a near-Earth thin current sheet is substantially different from

that for the quiet time magnetosphere for R > 6RE mainly due to shorter field line

length due to magnetic field compression by solar wind, reduced magnetic field intensity

in the high β current sheet region, azimuthal pressure gradient and geodesic magnetic

field curvature. Finally, in Section 4 a summary of the major results is given, and future

efforts involving global computation of wave propagation are discussed.

2. MHD Field Line Resonance Equations in 3D Fields

We consider quasi-static magnetospheric equilibria described by the system of

equations

J×B = ∇P,

∇×B = J,

∇ ·B = 0, (1)

where J, B, and P are the equilibrium current density, magnetic field, and plasma

pressure, respectively. The above equilibrium equations can be cast into the following

form:

∇⊥(P +B2/2) = κB2, (2)

where κ = (B/B) ·∇(B/B) is the magnetic field curvature and the subscript ⊥ indicates

the direction perpendicular to B. For a general three dimensional magnetospheric

equilibrium with nested flux surfaces, the magnetic field can be expressed as

B = ∇ψ ×∇α, (3)
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where ψ and α are three-dimensional functions of the configuration space variable x. We

choose ψ to be the magnetic flux function labeling the nested flux surfaces and α to be

an angle-like variable. Both ψ and α are constant along magnetic field lines, and the

lines where surfaces of constant ψ and surfaces of constant α intersect represent magnetic

field lines. Because B ·∇P = 0, P = P (ψ, α) is constant along field lines. However, we

note that the plasma density is allowed to vary along the field lines. For magnetospheric

magnetic fields α is a periodic function of toroidal angle φ in the cylindrical (R, φ, z)

coordinate system to ensure the periodicity constraint on each flux surface.

With the time dependence of perturbed quantities as e−iωt, the linearized ideal

MHD equations governing the asymptotic behavior of the perturbed quantities are the

momentum equation

ρω2ξ = ∇δp+ δB× J + B× (∇× δB), (4)

the equation of state

δp+ ξ ·∇P + ΓsP∇ · ξ = 0, (5)

the Faraday’s law

iωδB = ∇× (δE), (6)

and the Ohm’s law

δE = ξ ×B, (7)

where ξ is the usual fluid displacement vector, δB is the perturbed magnetic field, δp is

the perturbed plasma pressure, ρ is the total plasma mass density, δE is the perturbed

electric field, and Γs = 5/3 is the ratio of specific heats.

First, we decompose the displacement vector and perturbed magnetic field as

ξ =
ξψ∇ψ

|∇ψ|2 +
ξs(B×∇ψ)

B2
+
ξbB

B2
, (8)
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and

δB =
Qψ∇ψ

|∇ψ|2 +
Qs(B×∇ψ)

|∇ψ|2 +
QbB

B2
, (9)

where ξψ = ξ·∇ψ, ξs = ξ·B×∇ψ/|∇ψ|2, ξb = ξ·B,Qψ = δB·∇ψ,Qs = δB·B×∇ψ/B2,

Qb = δB ·B. We also define ∆ = ∇ ·ξ, and the geodesic curvature κs = 2κ ·B×∇ψ/B2.

A set of global MHD eigenmode equations and field line resonance equations have been

derived in the paper by Cheng [2002]. The FLR equations are

[
B ·∇

( |∇ψ|2
B2

B ·∇ξs

)
+
ρω2|∇ψ|2

B2
ξs + κs

∂P

∂α
ξs

]
+ ΓsPκs∆ = 0, (10)

and

[
B ·∇

(
ΓsP

ρω2B2
B ·∇∆

)
+
B2 + ΓsP

B2
∆

]
+ κsξs = 0. (11)

Since Eqs. (10) and (11) can be combined to form a fourth order ordinary differential

equation along the field line with the coefficients being all non-singular, the eigenvalues ω

must be discrete for closed field lines. Thus, for each field line a discrete set of eigenvalues

ωn, where the index n = 0, 1, 2, ..., can be found with the corresponding eigenfunctions

ξsn and ∆n satisfying appropriate boundary conditions along closed field lines. Note that

ξsn and ∆n are linearly dependent through Eqs. (10) and (11). Because the field lines are

continuous in space, each ωn takes a continuous range of values for different field lines

and forms a continuous spectrum.

A Lagrangian functional δL can be obtained from Eqs. (10) and (11) and is given

by

δL =
∫ s2

s1

ds

B

{
ρω2

(|∇ψ|2
B2

|ξs|2 +B2|Z|2
)

−
[ |∇ψ|2

B2
|B ·∇ξs|2 − κs

∂P

∂α
|ξs|2 +

ΓsPB
2

ΓsP +B2
|κsξs + B ·∇Z|2

]}
= 0 (12)

where Z = ΓsP (B ·∇∆)/ρω2B2, the boundary condition ξ∗sB ·∇ξs = ∆Z∗ = 0 at the

field line end points is assumed, and we have also made use of Eq. (11) to substitute ∆
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in terms of ξs and B ·∇Z. It is straightforward to verify that Eqs. (10) and (11) are a

consequence of the requirement that the functional δL is stationary.

It is clear that there are only two branches of MHD FLRs - the shear Alfvén branch

(Eq. (10)) and the slow magnetosonic branch (Eq. (11)), and the coupling of these

two branches is through the geodesic magnetic field curvature κs and plasma pressure.

We also note that there is an additional term in the shear Alfvén equation due to the

pressure gradient in the B ×∇ψ direction. In the cold plasma limit (P = 0), the slow

magnetosonic wave no longer exists. Eq. (10) then reduces to a second order ordinary

differential equation for ξs and describes the shear Alfvén resonance (toroidal magnetic

field resonance) in the cold plasma limit previously investigated by Cummings et al.

[1969]. However, from Eq. (11) ∆ = −κsξs and thus the shear Alfvén waves retain a

finite plasma compressibility if the geodesic magnetic field curvature κs is non-vanishing.

3. Continuous Field Line Resonance Spectrum in 3D

Magnetospheric Fields

In the following we present numerical solutions for the field line resonance frequencies

for the shear Alfvén and slow magnetosonic continuous spectrum in three-dimensional

magnetospheric equilibrium fields with high β plasma. A numerical code, the MAG-3D

code [Cheng, 1995], has been developed to solve the force balance equation in a domain

bounded by the specified inner most and outer most flux surfaces with a prescribed

pressure distribution in the equatorial plane. The innermost and outermost constant ψ

surfaces are imposed as those obtained from the Tsyganenko’s T-96 model [Tsyganenko,

1995; Tsyganenko and Stern, 1996]. In terms of the (ψ, θ, α) flux coordinate system the

Jacobian is J −1 = ∇ψ × ∇α · ∇θ. In the MAG-3D code we choose ψ and α to be

coincide with the dipole field flux ψd and toroidal angle φ respectively on the Earth’s

surface with the dipole field represented as Bd = ∇ψd × ∇φ. We also choose the field-
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aligned θ coordinate such that equal θ interval corresponds to equal arc length along a

field line. Moreover, θ is normalized for all field lines such that θ = 0, π correspond to

the end points of field lines. In the following we present the numerical solutions of the

shear Alfvén and slow mode continuum spectrum in two equilibrium fields: a quiet time

equilibrium and a disturbed time equilibrium with a thin current sheet in the near-Earth

plasma sheet region. The numerical solutions are obtained by solving the Lagrangian

equation, Eq. (12) with a finite element method. The basis functions are chosen to be

sin(lθ), where 0 ≤ θ ≤ π and l = 1, 2, ...., such that each basis function satisfies a

reflecting boundary condition, and thus the perturbations ξs and ∇ · ξ vanish on the

Earth’s surface for each field line.

3.1. Quiet Time Magnetospheric Fields

A quiet time 3D magnetospheric equilibrium field is obtained with the pressure

chosen to be a function of radial distance in the equatorial plane. P (R) in unit of

nPa is chosen to be the empirical profile obtained by Spence and Kivelson [1993],

P (R) = 89e−0.59|R| + 8.9|R|−1.53. The innermost and outermost constant ψ surfaces

are imposed as those obtained from the Tsyganenko’s T-96 model [Tsyganenko, 1995;

Tsyganenko and Stern, 1996] with parameters typical of a quiet-time state: BzIMF = 10

nT, ByIMF = 0, Dst = 0, and the solar wind dynamic pressure Psw = 0.55 nPa. Figure 1

shows constant equilibrium flux surfaces of a quiet equilibrium in the noon-midnight

meridian plane as well as in the equatorial plane. Fig. 2 shows the equatorial values of

pressure (in nPa), magnetic field Beq (in nT) and the plasma beta βeq along the sun-

Earth axis. βeq is less than unity on the day side, but on the night side becomes larger

than unity for R > 7RE , increases with R and reaches to about 60 at 23RE . Figure 3

shows the azimuthal current density (Jφ in unit of nA/m2) distribution in the midnight

meridian and the equatorial plane. It is clear that Jφ is larger on the night side than on

the day side. Figure 1.

Figure 2.

Figure 3.
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3.2. Continuous Field Line Resonance Spectrum in Quiet Time

Magnetospheric Fields

Once a 3D quasi-static magnetospheric equilibrium is known we can compute the

FLR solutions for each field line. However, in computing the FLR frequency we need to

specify the mass density along field lines. In the cold plasma model there is no constraint

on the plasma density, and various density models had been employed by Cummings et al.

[1969] for computing the shear Alfvén FLR frequency. However, in the isotropic pressure

MHD model the warm plasma density is constrained to be constant along a magnetic field

line to maintain force balance along a field line, and from adiabatic pressure law the mass

density is proportional to P−5/3. We also note that there is a cold plasma component

which can give rise to nonuniform density along the field line. Nevertheless, because

there is not enough information on the cold plasma density, we will assume for simplicity

the plasma density to be constant along the field line and choose it to be a function of

radius in the equatorial plane: ρ(R) = 10 (Rgeos/R)4mp/cm
3, where Rgeos = 6.6RE is

the geosynchronous orbit distance and mp is the proton mass. When the actual mass

density distribution is known, the frequency can be recalculated easily with the actual

density from the results given in this paper. Figure 4.

First, we show the solutions of un-coupled equations for the shear Alfvén wave and

slow magnetosonic wave FLRs separately, i.e., by neglecting the coupling terms, ΓsPκs∆

in Eq. (10) and κsξs in Eq. (11). The square of frequency f (in mHz) of FLR harmonics

versus the field line equatorial distance R (in RE) for field lines with a constant α that

corresponds to the local time 22:48:00 on the Earth surface are plotted in Fig. 4 for

(a) the shear Alfvén FLR in the cold plasma model, (b) the un-coupled shear Alfvén

FLR in the warm plasma MHD model, (c) the un-coupled slow magnetosonic mode FLR

in the warm plasma MHD model, and (d) shear Alfvén waves and slow magnetosonic

modes in the coupled warm plasma MHD model. The un-coupled shear Alfvén wave
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FLR frequency for warm plasma is given by

ω2 =
∫ s2

s1

ds

B

[ |∇ψ|2
B2

|B ·∇ξs|2 − κs
∂P

∂α
|ξs|2

]
/
∫ s2

s1

ds

B

ρ|∇ψ|2
B2

|ξs|2. (13)

The shear Alfvén FLR frequency has been commonly calculated with the cold plasma

model. Figure 4(a) shows that f2 of the shear Alfvén FLR with cold plasma model

decreases as R, which is similar to the radial dependence of the Alfvén speed, VA =

B/ρ1/2, (shown in Fig. 5(a)) divided by the field line length. By comparing Fig. 4(a)

with Fig. 4(b) it is clear that the new term with coefficient κs∂P/∂α reduces f2 in the

high βeq region for all harmonics. This is mainly because the new term κs∂P/∂α > 0

(κs < 0 and ∂P/∂α < 0 in the pre-midnight sector and κs > 0 and ∂P/∂α > 0 in the

post-midnight sector). From Fig. 4(b) the effect on the shear Alfvén fundamental (n =

0) harmonic is more pronounced due to low frequency values and f2 becomes negative

(unstable) for R > 15.5RE . Figure 5.

The un-coupled slow magnetosonic mode FLR frequency is given by

ω2 =
∫ s2

s1

ds

B

ΓsP

ρB2
|B ·∇∆|2/

∫ s2

s1

ds

B

B2 + ΓsP

B2
|∆|2. (14)

For ΓsP � B2 the slow magnetosonic mode frequency approaches the shear Alfvén

frequency in the cold plasma limit and is roughly given by ω2 = k2
‖B

2/ρ in the field line

average sense. For ΓsP � B2 the slow magnetosonic mode frequency is roughly given

by ω2 = k2
‖ΓsP/ρ in the field line average sense. As shown in Fig. 4(c) the fundamental

harmonic (n = 0) frequency is very small (� 1 mHz) even in the region where βeq � 1.

This is mainly because the fundamental harmonic (n = 0) mode structure is extended

along the field line and ΓsP is much smaller than B2 except in the lower latitude region

of the field lines. However, for the second (n = 1) and higher harmonics the slow

magnetosonic mode structure is more localized in the lower latitude region and their

frequencies are larger with f > 3 mHz as shown in Fig. 4(c). We also note that the slow

mode frequency decreases as R (or equatorial beta value βeq) increases, except for the n

= 1, 2 harmonics whose frequencies become flat for R > 12RE .
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Fig. 4(d) shows f2 vs. R for the harmonic solutions of the coupled equations.

Including the coupling between the shear Alfvén and slow magnetosonic modes, the

fundamental harmonic (n = 0) of shear Alfvén modes is stabilized (f2 > 0), but for other

harmonics their frequencies are much less affected and are slightly higher in the high βeq

region. Clearly, the coupling causes f2 of the fundamental harmonic shear Alfvén mode to

increase in the βeq > 1 region (R > 10RE). For slow magnetosonic modes the frequencies

of all harmonics are smaller than those of shear Alfvén waves with similar nodal structures

along B. The slow mode frequencies are also weakly affected by the coupling except

when the frequency of shear Alfvén modes crosses that of the slow modes; the coupling

of these two modes causes a small frequency gap to form in the continuous spectrum.

Note that the fundamental harmonic (n = 0) shear Alfvén modes have higher (lower)

frequency than the second harmonic (n = 1) slow modes for R > 8RE (R < 8RE). The

harmonically structured continuous spectrum of the azimuthal magnetic field oscillations

as a function of R observed by AMPTE/CCE for R ≤ 8.8RE [Engebretson et al., 1986]

can be reasonably interpreted by the shear Alfvén resonance frequency which scales as

R−4ρ−1/2 [Anderson et al., 1990; Takahashi et al., 1990, 2002]. However, no observational

evidence has been established for the slow magnetosonic continuous spectrum in the

magnetosphere. This may be because the slow magnetosonic waves are easily Landau

damped if ion temperature is roughly equal or larger than electron temperature as is

usually the case in the magnetosphere. Figure 6.

Figure 7.Figs. 6 and 7 show the contours of fundamental harmonic (n = 0) shear Alfvén

FLR frequency (in mHz) in the equatorial plane and in the northern polar ionosphere,

respectively. The constant FLR frequency contours in the near Earth (lower latitude)

region form closed surfaces that are slightly different from the constant flux surfaces in

the night side. However, the constant FLR frequency surfaces in the higher latitude

region deviate substantially from the constant flux surfaces. In particular, in the night

side high latitude region (the tail region) the constant FLR frequency surfaces form
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closed contours localized around midnight. It is to be noted that a different equatorial

density profile will yield a different global behavior of the FLR frequency. The behavior

of the FLR frequencies can be understood from Fig.8 which shows the contours of Alfvén

speed, VA = B/ρ1/2, and slow magnetosonic speed, Cs = (ΓsPB
2/ρ(ΓsP + B2))1/2, in

the equatorial plane. Note that the Alfvén speed is similar to that presented by Moore

et al. [1987] for 6 < R/RE < 12 on the night side. It is clear that shear Alfvén (slow

magnetosonic) FLR frequency behaves qualitatively similar to the shear Alfvén (slow

magnetosonic) speed divided by the field line length. It is to be reiterated that the

R−4 dependence of mass density distribution is idealized and an empirical mass density

distribution can be used to adjust the results presented here. Figure 8.

3.3. A Disturbed Time Magnetospheric Equilibrium Field with Thin Current

Sheet

The disturbed-state equilibrium with thin current sheet was obtained by specifying

the innermost and outermost flux surfaces obtained from the T96 model with parameters

typical of disturbed times, i.e. southward IMF, negative DST and increased solar wind

dynamic pressure. The particular values chosen are: BzIMF = −2 nT, ByIMF = 0,

Dst = −40 nT and Psw = 3 nPa. The pressure profile was modified from the one

used in the quiet-time case to reflect the typical pressure changes observed during active

magnetospheric conditions [e.g., Lui et al., 1987]. We still assume P = P (R) in the

equatorial plane, but as seen in Fig. 9 which shows the pressure (in nPa), magnetic

field (in nT) and the plasma beta along the sun-Earth axis, we have chosen significantly

larger pressure value from 3.5RE to 9RE , than the empirical quiet time value obtained

by Spence and Kivelson [1993] in order to model the observed pressure. Figure 10 shows

constant equilibrium flux surfaces of a disturbed time equilibrium in the noon-midnight

meridian plane and in the equatorial plane. It is to be noted that the outer boundary flux

surface provided by the T-96 model is strongly compressed in the north-south direction by
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the solar wind and thus the field line length is shorter in comparison with the quiet time

magnetosphere for the same equatorial crossing point. Figure 11 shows the azimuthal

current density (Jφ) distribution in (a) the midnight meridian plane and (b) the equatorial

plane. It is clear that a thin current sheet is located in the near-Earth region from x ' −6

to −9RE , from z ' −0.5 to 0.5RE and from y ' −3 to 3RE . In the thin current sheet

region a shallow magnetic well is dug at around x = −7.5RE , and the plasma βeq is

enhanced to over 10 in the radial region from x = −6 to −9RE (peaks at about 32 at

about x = −7RE) which is much larger than the quiet time value of 0.5 ≤ βeq ≤ 1.5 in

the same radial region (see Fig. 2). Figure 9.

Figure 10.

Figure 11.

Figure 12.

3.4. Continuous Field Line Resonance Spectrum in a Disturbed Time

Magnetospheric Field with Thin Current Sheet

We choose the density profile to be the same as for the quiet time magnetosphere to

eliminate the effect of density on the FLR frequency when comparing these two different

states of the magnetosphere. The mass density profile is chosen as a function of radius

in the equatorial plane: ρ(R) = 10 (Rgeos/R)4mp/cm
3, where Rgeos = 6.6RE is the

geosynchronous orbit distance and mp is the proton mass. It is interesting to note that the

FLR frequency spectrum for the disturbed time case is substantially different from that

of the quiet time case. Fig. 12 shows the square of frequency (in mHz) of FLR harmonics,

f2, versus the field line equatorial distance R (in RE) for field lines with a constant α

that corresponds to the local time 22:55:12 at the Earth for (a) the shear Alfvén wave

FLR in the cold plasma model, (b) the un-coupled shear Alfvén wave FLR in the warm

plasma MHD model, (c) the un-coupled slow mode FLR in the warm plasma MHD model,

and (d) shear Alfvén waves and slow modes in the coupled warm plasma MHD model.

First, in comparing the shear Alfvén FLR frequencies for the cold plasma model for the

disturbed magnetosphere shown in Fig. 12(a) and for the quiet magnetosphere shown in

Fig. 4(a), they differ in two aspects: (1) the disturbed time shear Alfvén FLR frequency
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in the high βeq (R > 8RE) region is higher than the quiet time value by more than 80%

at R = 15RE and by about 30% at R = 9RE , and (2) the frequency decreases at small

R to form local minima at around R ' 7RE and then increases as R increases further.

(1) is mainly because the field line length from the same equatorial distance is shorter in

the disturbed magnetosphere than in the quiet time magnetosphere as shown in Figs 10

and 1. The frequency local minima are in the current sheet region and are due to the

reduction of magnetic field and thus of the Alfvén speed in the magnetic well as shown

in Fig. 13 (a) which shows the Alfvén speed, VA = B/ρ1/2, versus the field line equatorial

distance R (in RE). Figure 13.

The effect of the new κs∂P/∂α term on the un-coupled shear Alfvén FLR frequency

can be seen by comparing Fig. 12(a) with Fig. 12(b). It is clear that the new term reduces

f2 in the high βeq (βeq > 10 for R > 6RE) region for all harmonics. The effect on the

fundamental (n = 0) harmonic is more pronounced due to low frequency values and f2

becomes negative for R > 7RE where βeq ≥ 10.

The un-coupled slow magnetosonic mode FLR frequency is shown in Fig. 12(c), and

the fundamental harmonic (n = 0) frequency is very small (� 1 mHz), similar to the

quiet time case because the fundamental harmonic mode structure is extended along

the field line and ΓsP is much smaller than B2 except in the lower latitude region of

the field lines. For higher harmonics (n ≥ 1) the slow magnetosonic mode structure is

more localized in the lower latitude region and their frequencies are larger than 5 mHz

which is larger than in the quiet time case as shown in Fig. 4(c). We also note that the

higher harmonic (n ≥ 1) slow mode FLR frequency increases with R at small R, peaks

at around 7RE near the current sheet region, but decreases as R further increases. The

frequency peaking in the current sheet region is mainly due to shorter field line distance

as R decreases and to the magnetosonic speed Cs profile variation along the field line as

well as in the radial direction as shown in Fig.13(b). Note that the Cs profile has a dip

in the three-dimensional current sheet region (at around R = 7RE) due to the reduction
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of magnetic field, and Cs increases rapidly away from the equatorial plane along the field

line. The dip can be seen in the frequency of higher harmonics (n > 2) slow mode. We

also note that the slow mode FLR frequency profile differs from that of the quiet time

case (Fig. 4(c)) mainly because of shorter field line length and larger Cs due to larger

pressure value. From Fig.13(b) the equatorial Cs is larger than the quiet time value for

R < 6RE and R > 12RE .

Fig. 12(d) shows f2 vs. R for the FLR harmonic solutions of the coupled equations.

Including the coupling between the shear Alfvén and slow magnetosonic modes, the

fundamental harmonic (n = 0) of shear Alfvén modes is stabilized (f2 > 0), but for

other harmonics their frequencies are much less affected and are slightly higher in the

high βeq region. Clearly, the coupling causes f2 of the fundamental harmonic shear

Alfvén mode to increase in the βeq > 1 region (R > 5.5RE). It is also noted that the

fundamental harmonic (n = 0) shear Alfvén mode has higher frequency than that based

on the cold plasma model (shown in Fig. 12(a)) for R > 6RE . For slow magnetosonic

modes the frequencies of all harmonics are smaller than those of shear Alfvén waves with

similar nodal structures along B. The slow mode frequencies are weakly increased by

the coupling effect, and the increase is larger for higher harmonics because these modes

experience stronger coupling in the low latitude, higher β region along a field line. Also,

when the shear Alfvén mode frequency crosses the slow mode frequency, coupling of these

two modes causes a small frequency gap to form in the continuous spectrum. Note that

the fundamental harmonic (n = 0) shear Alfvén modes have lower frequency than the

second harmonic (n = 1) slow mode in the region 13RE > R > 5.5RE . Figure 14.

Figure 15.Figs. 14 and 15 show the contours of fundamental harmonic (n = 0) shear Alfvén

FLR frequency (in mHz) in the equatorial plane and in the northern polar ionosphere,

respectively. The constant FLR contours in the lower latitude region form closed surfaces

that are slightly different from the constant flux surfaces in the night side. However, the

constant FLR frequency surfaces in the higher latitude region deviate greatly from the
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constant flux surfaces. In particular, in the night side high latitude region (the tail region)

the constant FLR surfaces form closed contours localized around midnight. Moreover,

for certain excitation frequencies there is more than one resonance surface. However, it is

to be noted that a different equatorial density profile will yield a different global behavior

of the FLR frequency.

To help understand the behavior of the FLR frequencies the contours of Alfvén

speed, VA = B/ρ1/2, and slow magnetosonic speed, Cs = (ΓsPB
2/ρ(ΓsP + B2))1/2, in

the equatorial plane are shown in Fig.16. Note that the Alfvén speed is substantially

different from that presented by Moore et al. [1987] due to the near-Earth current sheet for

6RE < R < 12RE on the night side. It is clear that the shear Alfvén (slow magnetosonic)

FLR frequencies behave qualitatively similar to the shear Alfvén (slow magnetosonic)

speed divided by the field line length. It is to be reiterated that the R−4 dependence

of mass density distribution employed here is idealized and an empirical mass density

distribution can be used to adjust the results. Figure 16.

4. Summary and Discussions

In this paper we have presented numerical solutions of FLR resonances based on the

ideal MHD model that shows two branches of FLRs, the shear Alfvén waves and slow

magnetosonic modes. The calculations were performed for a quiet time magnetosphere

and a disturbed time magnetosphere with a thin current sheet in the near-Earth region

(7 − 9RE). The magnetic field is represented as B = ∇ψ × ∇α and a pressure

distribution P = P (ψ, α) is assumed. The magnetospheric equilibrium magnetic fields

are calculated with the MAG-3D code [Cheng, 1995] by specifying the outermost and

inner most boundary surfaces which are obtained from the Tsyganenko’s T-96 model

[Tsyganenko, 1995; Tsyganenko and Stern, 1996].

As derived in our paper [Cheng, 2002], there is a new term in the shear Alfvén FLR

equation due to the azimuthal pressure gradient, ∂P/∂α, which is discussed for the first
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time in the literature. These two branches of FLR continuous spectra are represented by

the eigenfunctions ξs and ∇ · ξ with corresponding eigenfrequencies ω, and they couple

through the geodesic magnetic field curvature and plasma pressure. In general, the

computed shear Alfvén FLR frequency in the full MHD model is larger than that based on

the commonly adopted cold plasma model in the βeq > 1 region. Slow magnetosonic wave

frequencies are smaller than those of shear Alfvén waves with similar nodal structures

along B even for equatorial beta value much larger than unity. For the quiet time

magnetosphere the shear Alfvén resonance frequency decreases monotonically with the

equatorial field line distance (or L-shell) and scales as L−4ρ−1/2, which explains reasonably

well the harmonically structured continuous spectrum of the azimuthal magnetic field

oscillations as a function of L-shell observed by AMPTE/CCE [Engebretson et al.,

1986; Takahashi et al., 1990, 2002] in the L ≤ 9RE region. However, no observational

evidence has been established for the slow magnetosonic continuous spectrum in the

magnetosphere. This may be because the slow magnetosonic waves are easily Landau

damped if ion temperature is roughly equal or larger than electron temperature as is

usually the case in the magnetosphere.

We have also found that the FLR frequency spectrum for the disturbed time

magnetosphere with a near-Earth thin current sheet is substantially different from that

for the quiet time magnetosphere. In particular, the shear Alfvén FLR frequencies

for the disturbed magnetosphere are about 50% larger than those for the quiet time

magnetosphere in the night side for R > 6RE mainly due to shorter field line length

due to magnetic field compression by solar wind, reduced magnetic field in the high

β current sheet region, pressure gradient in B × ∇ψ direction and geodesic magnetic

field curvature. Moreover, the shear Alfvén FLR frequency has a minimum in the near-

Earth current sheet region. However, the slow modes FLR frequency peaks in the the

near-Earth current sheet region.

Global magnetospheric ULF pulsations with frequencies in the Pc 5 range (f =
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1.7 - 6.7 mHz) and below have been observed for decades in space and on the Earth

[Herron, 1967; Samson et al., 1991; Nikutowski et al., 1995; Rinnert, 1996; Kepko et al.,

2002]. Observation of discrete frequencies with f = 1.3, 1.9, 2.6, 3.4, and 4.2 mHz

[Samson et al., 1991] have been attributed to global wave-guide modes [Samson et al.,

1992]. Recently, these global magnetospheric ULF pulsations are explained as driven

directly from the fluctuations in the solar wind because of the good correlation between

the fluctuation spectrum observed by WIND spacecraft in the upstream solar wind region

and the measured spectrum by the geosynchronous satellite GOES 10 [Kepko et al., 2002].

In order to study these global modes, numerical solutions of global MHD eigenmode

equations must be pursued. However, if the frequencies of these global modes are inside

the FLR continuous spectrum, the compressional MHD waves will be absorbed at the

FLR locations and cannot propagate to the lower L-shell region. Thus, in order for

the global modes to propagate to the lower L-shell region, their frequencies must be

lower than the FLR frequencies. To have a better theoretical understanding of this

issue, we need to solve the global MHD equations to obtain the global wave propagation

property. By imposing a source disturbance at the magnetopause boundary as a boundary

condition, one can obtain the L-shell dependence of the FLR power spectrum. Thus, a

global MHD solution will not only provide the information of radial wave structures, but

will also improve our understanding of the azimuthal variation of the FLRs.
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Figure Captions

Figure 1. Constant ψ surfaces of the three-dimensional quiet time magnetospheric equilibrium

in the noon-midnight meridian plane and the equatorial plane. Constant α lines are also shown

in the equatorial plane. The parameters for the T-96 model are BzIMF = 10 nT, ByIMF = 0,

Dst = 0, and the solar wind dynamic pressure Psw = 0.55 nPa. The equatorial pressure profile

is chosen as the empirical profile obtained by Spence and Kivelson [1993] as shown in Fig. 2.
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Figure 2. The plasma pressure (in nPa), magnetic field (in nT) and plasma beta along the

sun-Earth axis for a quiet time magnetospheric equilibrium.
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Figure 3. Contours of azimuthal current density (in nA/m2) in the equatorial plane for a

three-dimensional quiet time magnetospheric equilibrium. The azimuthal current density is

larger on the nightside than on the day side. The dotted curves correspond to constant ψ

values.
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Figure 4. The square of frequency f (in mHz) of field line resonance harmonics versus the field

line equatorial distance R (in RE) is shown for field lines with a constant α that corresponds

to the local time 22:48:00 at the Earth for a quiet magnetosphere. (a) is for shear Alfvén waves

in the cold plasma model limit, (b) is for shear Alfvén waves in the un-coupled warm plasma

MHD model, (c) is for slow magnetosonic modes in the un-coupled warm plasma MHD model,

and (d) is for shear Alfvén waves (solid curves) and slow modes (dashed curves) in the coupled

warm plasma MHD model.
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Figure 5. (a) Alfvén speed, VA = B/ρ1/2, and (b) slow magnetosonic speed, Cs =

(ΓsPB2/ρ(ΓsP + B2))1/2, (in km/s) versus the field line equatorial distance R (in RE) for

field lines with a constant α that corresponds to the local time 22:48:00 at the Earth for a quiet

time magnetospheric equilibrium.
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are plotted in the equatorial plane for a quiet time magnetosphere. The dashed curves are the
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Figure 9. The plasma pressure (in nPa), magnetic field (in nT) and plasma beta along the

sun-Earth axis for a disturbed time magnetosphere with a thin current sheet.

Figure 10. Constant ψ surfaces in the noon-midnight meridian plane and the equatorial plane

for a three-dimensional disturbed time magnetospheric equilibrium with a thin current sheet.

Constant α lines are also shown in the equatorial plane. The parameters for the T-96 model

are BzIMF = −2 nT, ByIMF = 0, Dst = −40 nT and Psw = 3 nPa. The equatorial pressure

profile is shown in Fig. 9.
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Figure 11. Contours of azimuthal current density (in nA/m2) in the equatorial plane for a

three-dimensional disturbed time magnetospheric equilibrium with a thin current sheet. The

dotted curves correspond to constant ψ values. An enhanced cross tail current is formed in the

current sheet region from x = −6 to −9RE.
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Figure 12. The square of frequency (in mHz) of field line resonance harmonics, f2, versus the

field line equatorial distance R (in RE) for field lines with a constant α that corresponds to the

local time 22:55:12 at the Earth for a disturbed time magnetosphere. (a) is for shear Alfvén

waves in the cold plasma model limit, (b) is for shear Alfvén waves in the un-coupled warm

plasma MHD model, (c) is for slow magnetosonic modes in the un-coupled warm plasma MHD

model, and (d) is for shear Alfvén waves and slow modes in the coupled warm plasma MHD

model.
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Figure 13. (a) Alfvén speed, VA = B/ρ1/2, and (b) slow magnetosonic speed, Cs =

(ΓsPB2/ρ(ΓsP + B2))1/2, (in km/s) versus the field line equatorial distance R (in RE) for

field lines with a constant α that corresponds to the local time 22:55:12 at the Earth for a

disturbed time magnetosphere.
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Figure 14. Contours of the fundamental harmonic shear Alfvén resonance frequency (in mHz)

are plotted in the equatorial plane for a disturbed time magnetosphere. The dashed curves are

the intersection of constant ψ surfaces with the equatorial plane.
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Figure 15. Contours of the fundamental harmonic shear Alfvén resonance frequency (in mHz)

are plotted in the northern polar ionosphere for a disturbed time magnetosphere. The dashed

circles are constant dipole latitude lines.
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Figure 16. Contours of (a) Alfvén speed, VA = B/ρ1/2, and (b) slow magnetosonic speed,

Cs = (ΓsPB2/ρ(ΓsP + B2))1/2, (in km/s) in the equatorial plane for a disturbed time

magnetosphere. The dashed curves are the intersection of constant ψ surfaces with the

equatorial plane.
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