
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3692 PPPL-3692
UC-70

Energy of Force-free Magnetic Fields
in Relation to Coronal Mass Ejections

by

G.S. Choe and C.Z. Cheng

May 2002



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Fiscal
Year 2002. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Submitted to Ap.J.

Energy of Force-Free Magnetic Fields

in Relation to Coronal Mass Ejections

G. S. Choe and C. Z. Cheng

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543-0451

gchoe@pppl.gov

ABSTRACT

In typical observations of coronal mass ejections (CMEs), a magnetic struc-

ture of a helmet-shaped closed configuration bulges out and eventually opens up.

However, a spontaneous transition between these field configurations has been

regarded to be energetically impossible in force-free fields according to the Aly-

Sturrock theorem. The theorem states that the maximum energy state of force-

free fields with a given boundary normal field distribution is the open field. The

theorem implicitly assumes the existence of the maximum energy state, which

may not be taken for granted. In this study, we have constructed force-free fields

containing tangential discontinuities in multiple flux systems. These force-free

fields can be generated from a potential field by footpoint motions that do not

conserve the boundary normal field distribution. Some of these force-free fields

are found to have more magnetic energy than the corresponding open fields. The

constructed force-free configurations are compared with observational features of

CME-bearing active regions. Possible mechanisms of CMEs are also discussed.

Subject headings: Sun: coronal mass ejections (CMEs)—magnetic fields— mag-

netohydrodynamics (MHD)

1. Introduction

A typical sequence of coronal mass ejection (CME) consists of rising of a cavity and

formation of a CME loop, opening up of field lines, and magnetic reconnection of open fields

manifested as a flare, which recovers the closed field configuration as before the eruption

(e.g., Hundhausen 1988, 1999; Gosling 1993a,b). These sequential processes are considered
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to occur spontaneously because the timescale of a CME (hours to a day) is much shorter

than the timescale of energy buildup (days to a month). The free energy driving a CME

is believed to be stored in the pre-eruption magnetic field, most part of which has a closed

configuration. Here the term ‘closed’ means that both ends of field lines are connected to

the solar surface. A spontaneous transition from a closed magnetic configuration to an open

field configuration requires that more magnetic energy should be contained in the closed

magnetic field than in the open field.

The investigation of this energy hypothesis dates back to early days of flare research

(Barnes & Sturrock 1972). Due to the dominance of magnetic field pressure over plasma

pressure in the corona, the research has been mostly concentrated on force-free fields (for

brevity hereafter FFFs). A ground-breaking progress in this research was made by Aly

(1984) who showed that there is an upper bound of magnetic energy of force-free fields in

an infinite halfspace with the same boundary normal field (hereafter Bn) distribution. Aly

(1984) further conjectured that the maximum energy state of the closed FFFs should be

the corresponding open field. This conjecture was backed up by “physical proofs” provided

by Aly (1991) and Sturrock (1991) and since then has been commonly called “Aly-Sturrock

theorem.”

As Aly (1991) pointed out, the proofs by Aly (1991) and Sturrock (1991) are not com-

plete because their validity is conditioned by two important assumptions. First, in the set of

admissible FFFs, whose lines are connected to the bottom boundary, an energy maximizing

sequence of FFFs should be able to converge to a field B+, which may or may not belong to

the set. Second, if the sequence converges, it should hold that E[B+] = Em, where E[B+]

designates the magnetic energy of B+ and Em is the least upper bound of energy of the

FFFs. Although these two conditions intuitively seem trivial, their validity cannot be taken

for granted at all. Even if B+ exists, there is a possibility that E[B+] < Em (J. J. Aly

2002, private communication). In other words, no admissible FFF configuration may exist

for the energy supremum Em. The argument in §4 of Sturrock (1991) does not consider such

a possibility. In short, no rigorous proof for Aly’s conjecture has been presented yet.

Aly’s conjecture has been supported by quite a few numerical (Yang et al. 1986; Mikić

& Linker 1994; Roumeliotis et al. 1994; Amari et al. 1996) and analytical (Lynden-Bell &

Boily 1994; Aly 1994a; Wolfson 1995) studies of twisted or sheared magnetic fields. All

these studies dealt with only those force-free states which are physically accessible under

the ideal MHD conditions from potential fields by footpoint motions always conserving the

boundary normal field distribution. In this Letter, we investigate force-free fields numerically

constructed in multiple flux systems. The FFFs in our study differ from the FFFs in the

previous studies in that our FFFs contain singular current sheets (tangential discontinuities)
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and that our FFFs cannot be generated from a potential field by Bn-conserving footpoint

motions. We find that some of our FFFs have more energy than the corresponding open

fields. In §2, we describe our FFF model and the numerical procedure. Our computational

results for field configurations and magnetic energy are presented in §3. In §4, a comparison

is made between our results and observational features of eruptive active regions. A summary

and discussions regarding possible mechanisms of CMEs are provided in §5.

2. Modeling of Force-Free Fields in Two-Flux Systems

Our study of multiple flux systems is motivated by the fact that magnetic fields in

and below the solar photosphere are made of filamentary flux tubes. After a magnetic field

emerges from below the solar surface, the high β plasma barrier between elementary flux

tubes will be drained and only current sheets will separate individual flux tubes. Unless

magnetic reconnection totally destroys the current sheets, the magnetic field will probably

retains the cellular structure. The simplest model of such a cellular magnetic structure is

two interwinding flux tubes. Formation of interwinding flux tubes of a much larger scale is

expected when a new flux tube emerges under a pre-existing field. Since there is no reason

for these two flux systems to have any connectivity, magnetic field is discontinuous in the

interface of two flux systems. Large scale photospheric motions can interwind these flux

tubes.

We consider a magnetic field system occupying the infinite halfspace {z > 0} above a

plane. The magnetic field normal to the boundary plane {z = 0} is concentrated on four

separate circular patches of finite area so that

Bn(x, y) = Bz(x, y, 0) =
∑

i

Bzi(ρi) , (1)

where

Bzi(ρi) =

{±[1 − (ρi/R)2]2 if ρi ≤ R,

0 if ρi > R,
(2)

in which ρi = |r − ri| is the distance from the center position of the i-indexed patch, ri, to

a point r in the z = 0 plane and R is the radius of the patches. We assume that for xi > 0,

Bzi > 0, and for xi < 0, Bzi < 0. Let’s consider two flux tubes designated by a and b, whose

intersections with the z = 0 plane are circular patches of radius R = 0.7 centered at

ra+ = (1.7, 0, 0) , ra− = (−1.7, 0, 0) ,

rb+ = (3.3, 0, 0) , rb− = (−3.3, 0, 0) . (3)
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One possible configuration of the two-flux system (not in equilibrium) satisfying the above

boundary conditions is shown in Figure 1(a). The potential field satisfying the boundary

condition given by equations (1)-(3) will have the field line connectivity as follows:

xo+ = −xo− , yo+ = yo− , (4)

where (xo+, yo+) and (xo−, yo−) are coordinates of two conjugate field line footpoints, one in

x > 0 and the other in x < 0. Now we impose horizontal boundary motions respectively on

each side of the polarity inversion line so that each pair of flux patches undergoes a rotational

motion with a constant angular velocity centered at rC± = (ra± + rb±)/2 = (±2.5, 0).

Beyond a distance wholly covering each pair of flux patches, the angular speed is assumed to

be gradually tapered down to 0 with the increasing distance. Under ideal MHD condition,

two flux tubes are interwound by this rotational boundary motion, conserving the field

line connectivity. The angle of twist (or interwinding) between two flux tubes, which will

be denoted by Φ, is twice the rotation angle on each side of the polarity inversion line.

Figure 1(b) shows one possible configuration of the two-flux system (not in equilibrium) for

Φ = 2π. If we relax the two-flux system to a force-free equilibrium after interwinding by any

nonzero angle Φ, part of the separatrix between two flux systems will become a current sheet

(tangential discontinuity). The field connectivity of a FFF with Φ 6= 0 is definitely different

from that of the potential field for the same Bn(x, y) and cannot be created from the potential

field by any footpoint motions conserving Bn(x, y) under the ideal MHD conditions.

In this study, we have numerically constructed FFFs for different twist angles. Since our

FFFs contain current sheets, it is important to prevent any spurious magnetic reconnection

and maintain the specified field connectivity. To do this, we describe the magnetic field with

‘unmatched Euler potentials’ (e.g, Stern 1970) as

B =
∑

j

Fj(αj, βj) (∇αj ×∇βj) , (5)

where index j denotes the flux system a or b. Either Fa or Fb is only allowed to have a

nonzero value at any location (x, y, z). The Euler potential description has the advantage

of inducing far less spurious magnetic reconnection than employing the three components of

a magnetic field B or a vector potential A. To specify the location of field line footpoints

easily, we select a functional form of Euler potentials as

α = α(x2
o) , β = β(yo) , (6)

where xo and yo are the coordinates of field line footpoints at z = 0 when the angle of twist

Φ is zero. With this setting, we have

Bz(x, y, 0) =
∑

j

Fj(αj , βj)
(dαj

dxo

)(dβj

dyo

)
. (7)
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With the field description given by equation (5), the magnetic induction equation (Faraday’s

law) can simply be written as

∂α

∂t
= −v · ∇α ,

∂β

∂t
= −v · ∇β , (8)

where v is the bulk velocity of plasma. To construct force-free equilibria, we have employed

a magnetofrictional method (e.g., Chodura & Schlüter 1981; Choe & Lee 1996), which drives

the system to the minimum energy state by continuously removing kinetic energy with the

field connectivity conserved. In this method, we also employ equation (8), in which t is now

a relaxation parameter and v is a vector proportional to the Lorentz force.

In specifying boundary conditions, we have to consider two points. First, different from

time-dependent problems (e.g., Mikić & Linker 1994; Amari et al. 1996), an equilibrium

problem is well defined only if Bn is specified at all boundaries (Chodura & Schlüter 1981).

Second, the stress exerted by the boundary should be minimized in order to simulate an

open system. Thus, we specify Bn as given by equations (1)-(3) at the bottom boundary

and set Bn to zero at all other boundaries. This boundary condition naturally allows field

movement tangential to the boundary where Bn=0 during the relaxation process.

3. Constructed Force-Free Fields and Their Energy

We have constructed a total of seven force-free fields with Φ = 0, 0.5π, π, 1.5π, 2π,

2.5π and 3π. Two flux surfaces containing a quarter of the total flux in each flux tube are

shown in Figure 2 for Φ = 1.5π and 3π. It is interesting that the flux system occupying a

finite flux volume at Φ = 0 (the red one in Figures 1 and 2) always takes a finite volume

after interwinding whereas the other system (the green one) always takes an infinite volume

(the rest volume). The notable pleated structure of the flux surfaces can be attributed to

the self-twist of the flux tubes generated by the rotational footpoint motion.

The magnetic energy of the force-free fields that we have constructed increases with the

twist angle as shown in Figure 3. The energies of the potential fields and of the open fields

can be obtained with a Green function method familiar in electrostatics and are plotted in

the figure for reference. An upper bound (not the least upper bound) of energy of FFFs

derived by Aly (1984),

EUB =
1

4π

(∫
z=0

B2
n dx dy

) 1
2
(∫

z=0

r2B2
n dx dy

) 1
2

,

is 10.7Epot(Φ = 0) = 8.69Eopen(Φ = 0), far greater than the energies we have obtained. In

the figure, we can find that the magnetic energy of FFFs exceeds the open field energy for

Φ & 1.5π.



– 6 –

Although we deal with systems in an infinite halfspace, our computation is performed in

a finite computational box. Thus, we need to make sure that the uncertainty in energy does

not affect our conclusion. To do this, we first compared the energies of force-free fields that we

obtained in domains of different sizes. The energies obtained in a box of 160×160×160 (refer

eq. [3] for units) differ from those obtained in a box of the size 300× 300× 300 by not more

than 5 %. The latter differ from the energies obtained in a box of the size 400×400×400 by

not more than 1.4 %. Furthermore, the last two configurations can hardly be distinguished.

The values we presented are obtained with the largest box. Another way of assessing the

effect of the finite box size is to check integral relations that should be satisfied by force-free

fields in an infinite halfspace above a plane. Aly (1984) derived the following equations from

the tensor virial theorem. ∫
z

(B2
x + B2

y) dx dy =

∫
z

B2
z dx dy . (9)

E(z > 0) =
1

8π

∫
z>0

(B2
x + B2

y + B2
z) dx dy dz =

1

4π

∫
z=0

(xBx + yBy)Bz dx dy . (10)

For our FFF solutions, the discrepancy between the lefthand side and the righthand side of

the above equations is found to be less than 3 % for equation (9) and of less than 9 % for

equation (10), respectively. For not too large twist angles, the discrepancies are even smaller

than the above values. The energy of the constructed force-free field for Φ = 3π is about

30 % more than the open field energy. This difference is considered to be well above the

error level due to the finite size of the domain. Therefore, we can conclude that some of the

force-free fields we have constructed indeed have more energy than the open field.

What, then, makes our results on multiple flux systems different from the results of

previous studies on single flux systems (Yang et al. 1986; Mikić & Linker 1994; Roumeliotis

et al. 1994; Amari et al. 1996; Lynden-Bell & Boily 1994; Aly 1994a; Wolfson 1995)? The

single flux systems treated in most previous studies (except Lynden-Bell & Boily 1994) have

smooth, well-ordered field structures. Their field lines tend to partially open beyond a certain

shear or twist so that further accumulation of magnetic energy in the system is hindered.

On the contrary, we do not find any tendency of field opening in our interwinding two-flux

system although the system takes a larger flux volume with increasing Φ. By interwinding,

each flux system seems to suppress free expansion of the other. This shackling behavior of

twisted fields is also reported by Klimchuk et al. (2000) for a single flux system in a smooth

equilibrium.
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4. Relevance to Observations

The most well-known observational condition for solar eruption detected in the photo-

sphere and chromosphere is the high magnetic shear (e.g., Krall et al. 1982), which is the

alignment of horizontal magnetic field vectors along the polarity inversion line. In addition,

polarity inversion lines also show a tendency of distortion during the evolution of active

regions toward eruption (e.g., Uddin et al. 1986). Recent X-ray observations have revealed

appearance of an S- or inverse-S-shaped bundle of coronal loops before solar eruption (Acton

et al. 1992; Canfield et al. 1999). This structure is called a sigmoid (Rust & Kumar 1996).

To compare our force-free field model with these observations, we have generated vector-

magnetograms at a height level of z = 0.22 with our FFF solutions. Also images projected

onto the bottom boundary are created for a flux surface containing 95 % of the total flux of

the inner flux tube. Figure 4 shows one set (for Φ = 2.5π) of those plots. As much expected,

the magnetic shear increases along the polarity inversion line with the twist angle. Moreover,

the polarity inversion line becomes more tilted and distorted from the original straight line

with the increase of the twist angle. The projected image of a flux surface takes an inverse-S

shape and becomes more twisted and larger in size with increasing Φ. We note that the

outermost flux surface of the inner flux tube, which is the separatrix between the two flux

systems, also takes a shape similar to the flux surface shown in the figure, but with a little

larger scale. If the emission from a sigmoid is due to the heating by magnetic reconnection

in the pre-eruption stage, the resulting change in field topology may play an important role

in the subsequent solar eruption.

5. Summary and Discussion

We have found that there is a class of force-free fields of closed field configuration having

more energy than the open fields. The force-free fields considered in our study consist of two

interwinding flux systems with current sheets.

Although we have constructed closed force-free fields having more energy than the open

fields, we still do not know whether they can lead to a CME eruption and what kind of

mechanism is involved if eruption can take place. For future studies, we can think of several

possibilities leading to eruption. The eruption up to field opening may be solely an ideal

MHD process or may somehow involve magnetic reconnection. In the former case, a global

nonequilibrium (see Aly 1994b, for the definition) may take place beyond a certain amount

of twist. However, our study so far does not hint this possibility. If magnetic reconnection

is involved, a variety of possibilities can arise. Magnetic reconnection results in change
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of field topology. If no equilibrium of closed configuration is available in a field topology

created during a reconnection process and if the field still retains more energy than the open

field, an eruption with field opening can take place. If closed equilibrium states are always

available in field topologies generated by a reconnection process and if flux volumes become

much larger in the new equilibrium states, CMEs with apparent field opening to a finite

distance can occur. If flux volumes in the new equilibrium states are not considerably larger

than the original flux volume, a flare may take place without a CME. Investigation of these

possibilities will be performed in our future studies.

We greatly thank Dr. J.-J. Aly for helpful comments and discussions. This work has

been supported by DoE Contract No. DE-AC02-76-CH03073 and NSF grant ATM-9906142.
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Fig. 1.— Possible configurations of a two-flux system (not in equilibrium). The configuration

in (a) has the same field connectivity as the potential field. The configuration in (b) can be

created by rotational boundary motions under the ideal MHD conditions.

Fig. 2.— Flux surfaces of the numerically generated force-free fields consisting of two inter-

winding flux systems. Each flux surface contains 25 % of the total flux in each flux system.
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Fig. 3.— Energy of the numerically generated force-free fields for different twist angles. The

energies of the potential fields (dashed curve) and of the open fields (solid curve) are also

shown as a function of the twist angle.
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Fig. 4.— (a) A vectormagnetogram generated from our FFF solution for Φ = 2.5π at the

height z = 0.22. (b) The projected image of the flux surface containing 95 % of the total

flux of the inner flux tube (the red one in Figures 1 and 2).
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