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Nonlinear δf simulation studies of intense charged particle beams

with large temperature anisotropy

Edward A. Startsev, Ronald C. Davidson and Hong Qin

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

In this paper, a 3D nonlinear perturbative particle simulation code (BEST) [H. Qin, R. C.

Davidson and W. W. Lee, Physical Review Special Topics on Accelerators and Beams 3, 084401

(2000)] is used to systematically study the stability properties of intense nonneutral charged particle

beams with large temperature anisotropy
(
T⊥b � T‖b

)
. The most unstable modes are identified,

and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for

axisymmetric perturbations with ∂/∂θ = 0.
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I. INTRODUCTION

Periodic focusing accelerators, transport systems and storage rings [1–5] have a wide range

of applications ranging from basic scientific research in high energy and nuclear physics, to

applications such as heavy ion fusion, spallation neutron sources, tritium production and

nuclear waste transmutation, to mention a few examples. Of particular importance at the

high beam currents and charge densities of practical interest, are the effects of the intense

self fields produced by the beam space charge and current on determining the detailed equi-

librium, stability and transport properties. While considerable progress has been made in

understanding the self-consistent evolution of the beam distribution function, fb(x,p, t),

and self-generated electric and magnetic fields, Es(x, t) and Bs(x, t), in kinetic analyses

based on the nonlinear Vlasov-Maxwell equations [1, 6–10], in numerical simulation studies

of intense beam propagation [11–19], and in macroscopic warm-fluid models [20–23], the

effects of finite geometry and space-charge effects often make predictions of detailed sta-

bility behavior difficult. It is therefore important to develop an improved understanding

of fundamental collective stability properties, including the case where a large temperature

anisotropy (T⊥b � T‖b) can drive a Harris-like instability [24, 25], familiar in the study of

electrically neutral plasmas.

It’s well known that in neutral plasmas with strongly anisotropic distributions (T||b/T⊥b �
1) a collective instability may develop if there is sufficient coupling between the transverse

and longitudinal degrees of freedom [24, 25]. Such anisotropies develop naturally in accel-

erators, where the longitudinal temperature of the accelerated beam of charged particles

with charge q accelerated by a voltage V is reduced according to T||bf = T 2
||bi/2qV ( for a

nonrelativistic beam). At the same time, the transverse temperature may increase due to

nonlinearities in the applied and self-field forces, nonstationary beam profiles, and beam

mismatch. These processes provide the free energy to drive collective instabilities and may

lead to a detoriation of beam quality [18, 26, 27]. Historically, this instability was first

studied analytically by Wang and Smith [8] for beams with a Kapchinkij – Vladimirskij

(KV) distribution. Friedman, et. al. [29–31] reported a rapid ’equilibration’ process ob-

served in 3D particle simulations of KV beams with large temperature anisotropy using the

WARP code. They conjectured that the initial rapid heating in the longitudinal direction

may be the result of an anisotropy-driven instability reminiscent of a Harris mode, but with
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transverse betatron motion instead of cyclotron motion. Realizing the fact that the highly

inverted KV distribution may introduce numerous unstable modes, Lund, et. al. [32, 33]

used a semi-gaussian distribution to carry out particle-in-cell simulations of the instabil-

ity. However, unlike the KV distribution, the semi-gaussian distribution is not a rigorous

equilibrium solution of the Vlasov-Maxwell equations. The departure from a self-consistent

equilibrium inevitably leads to mode excitations which can be confused with those due

the anisotropy-driven instability. The bi-Maxwellian distribution considered in the present

study is a rigorous steady-state equilibrium of the Vlasov-Maxwell equations, and it does not

support the spurious modes of the KV distribution. In addition, the bi-Maxwellian distri-

bution is known to be a stable equilibrium with respect to transverse perturbations [9], and

therefore is an ideal candidate for studying instabilities driven by temperature anisotropy.

A simple theory of the instability for a bi-Maxwellian distribution is presented in this paper,

which appears to capture its main features and is a relatively straightforward generalization

of the analysis of the Harris instability to the case of an intense particle beam. In this paper,

we present the instability thresholds obtained in the simulations, as well as detailed simula-

tions of the nonlinear development and saturation of the instability. We identify the main

saturation mechanism as quasilinear stabilization due to resonant wave-particle interaction

(Landau damping). A 3D nonlinear perturbative particle simulation code [14–16], called the

Beam Equilibrium, Stability and Transport (BEST) code, is used to systematically study

the electrostatic stability properties of intense nonneutral charged particle beams with large

temperature anisotropy
(
T⊥b � T‖b

)
. The most unstable modes are identified, and their

eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisym-

metric perturbations with ∂/∂θ = 0. Since a well-behaved bi-Maxwellian distribution is

used in the simulations, the mode structures observed are different from those of the KV

distribution previously reported.

The organization of this paper is the following. In Sec. II, we present a simple kinetic

model of the instability based on a matrix dispersion equation derived from the linearized

Vlasov-Poisson equations. The nonlinear δf simulation method is briefly described in Sec.

III, and in Sec. IV we present detailed simulation results for a wide range of system param-

eters.
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II. LINEAR STABILITY THEORY

A. Kinetic Description

Wang and Smith [8] investigated the kinetic stability properties of an intense particle

beam assuming a Kapchinkij-Vladimirskij (KV) beam distribution [6] in the limit of large

energy anisotropy (T||b/T⊥b → 0) by expanding the solution of the linearized Vlasov-Poisson

equations in a series of Gluckstern eighenfunctions δϕn(r) = (1/2)[Pn−1(1−2r2/r2b )+Pn(1−
2r2/r2b )], where Pn(x) is the n’th-order Legendre polynomial [7]. The expansion yields a dis-

persion relation, expressible in terms of an infinite matrix determinant. For long-wavelength

axial perturbations with k2
zr

2
b � 1, one-half of the modes [8] are identified as transverse

(Tn) Gluckstern modes with eigenfunction δϕ ∝ δϕn. The other half [8] consists of modes

corresponding in the limit of large tune depression (ν → 0) to an ordinary cold-beam longi-

tudinal mode (L1) with eigenfunction δϕ ∝ J0(kzr) inside the beam and dispersion relation

(ω − kzVb)
2 = (ω̂2

pb/2)(kzrb)
2 ln(rw/rb), plus a less-known class of “coupling” modes (Ln)

with δϕ ∝ δϕn and (ω − kzVb)
2 = [ω̂2

pb/8n(n + 1)](kzrb)
2

∫ 2π
0 (dx/2π)Pn(cosx). The latter

modes are the result of the interaction between transversely oscillating particles and the

longitudinal perturbed potential. Here, ω is the mode oscillation frequency, kz is the axial

wavenumber of the perturbation, Vb = βc is the axial beam velocity, and J0(x) is the ordi-

nary Bessel function of the first kind of the order zero. Furthermore, ν = ν0(1− sb)1/2 is the

depressed tune, where sb = ω̂
2
pb/2γ

2
bω

2
f is the normalized beam intensity, ω̂2

pb = 4πn̂be
2
b/γbmb

is the relativistic plasma frequency-squared, ν0 = ωf is the transverse betatron frequency

associated with the applied focusing field, rb is the beam edge radius, rw is the radius of the

perfectly conducting wall, γb = (1 − β2
b )

−1/2 is the relativistic mass factor, eb and mb are

the particle charge and rest mass, respectively, and n̂b is the number density of the beam

particles.

As a general rule, for a KV distribution, instability arises in the regions of parameter space

where two or more modes interact resonantly. The transverse modes (Tn) are not significantly

affected by longitudinal perturbations, and therefore the instability due to their interaction is

a consequence of the fact that the KV distribution has a highly inverted population in phase

space [1, 6–8]. The most dangerous Tn−Lk instabilities are due to T2−L1 interactions [8] in

the region where ν/ν0 � 0.44 with maximum growth rate Imω/ν0 � 0.03, and due to T2−L2
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interactions in the region 0.2 ≤ ν/ν0 ≤ 0.32, with maximum growth rate Imω/ν0 � 0.15.

The latter mode has a much higher growth rate due to the similar transverse structure of

the L2 and T2 modes. The growth rate obtained by Wang and Smith [8] is a maximum for

k2
zr

2
b
>∼ 1 in both cases.

It is important to extend theoretical studies of the kinetic stability properties of

anisotropic beams to distribution functions other than the KV distribution. This is because

the KV distribution has an (unphysical) inverted population in transverse phase-space vari-

ables, which provides the free energy to drive collective instabilities at high beam intensities

that are intrinsic to this inverted population [7, 8]. This, of course, can mask the effects of

anisotropy-driven instabilities. To this end, we briefly outline here a simple derivation of the

Harris-like instability [24, 25] in intense particle beams for electrostatic perturbations about

the thermal equilibrium distribution with temperature anisotropy (T⊥b > T‖b) described in

the beam frame by the self-consistent axisymmetric Vlasov equilibrium [1, 10]

f 0
b (r,p) =

n̂b

(2πmbT⊥b)
exp

(
−H⊥
T⊥b

)
1

(2πmbT‖b)1/2
exp

(
− p2z
2mbT‖b

)
. (1)

Here, H⊥ = p2⊥/2mb+(1/2)mbω
2
f (x

2+ y2)+ ebφ
0(r) is the single-particle Hamiltonian, p⊥ =

(p2x+p
2
y)

1/2 is the transverse particle momentum, r = (x2+y2)1/2 is the radial distance from

the beam axis, ωf = const. is the transverse frequency associated with the applied focusing

field, and φ0(r) is the equilibrium space-charge potential determined self-consistently from

Poisson’s equation, r−1(∂/∂r)(r∂φ0/∂r) = −4πebn0
b , where n

0
b(r) =

∫
d3pf 0

b (r,p) is the

equilibrium number density of beam particles. For simplicity, the analysis is carried out in

the beam frame (Vb = 0 and γb = 1). Furthermore, setting φ
0(r = 0) = 0, the constant n̂b

occuring in Eq. (1) can be identified with the on-axis density n0
b(r = 0), and the constants

T⊥b and T‖b can be identified with the transverse and longitudinal temperatures (energy

units), respectively.

For present purposes, we consider small-amplitude, axisymmetric (∂/∂θ = 0) electrostatic

perturbations of the form

δφ(x, t) = δ̂φ(r) exp(ikzz − iωt), (2)

where δφ(x, t) is the perturbed electrostatic potential, kz is the axial wavenumber, and ω

is the complex oscillation frequency, with Imω > 0 corresponding to instability (temporal

growth). Without presenting algebraic details, using the method of characteristics, the
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linearized Poisson equation can be expressed as

1

r

∂

∂r
r
∂

∂r
δ̂φ(r)− k2

z δ̂φ(r) = −4πeb
∫
d3pδ̂fb(r,p), (3)

where

δ̂fb(r,p) = − eb
T⊥b

δ̂φf0
b − eb

T⊥b

[
ω − kzvz

(
1− T⊥b

T‖b

)]
f 0

b

×i
t∫

−∞
dt′δ̂φ[r′(t′)] exp[i(kzvz − ω)(t′ − t)] (4)

for perturbations about the choice of the anisotropic thermal equilibrium distribution func-

tion in Eq. (1). In the orbit integral in Eq. (4), Imω > 0 is assumed, and r′(t′) =

[x′2(t′) + y′2(t′)]1/2 is the radial orbit in the equilibrium field configuration such that

[x′
⊥(t

′),p′
⊥(t

′)] passes through the phasespace point (x⊥,p⊥) at time t
′ = t. We express

the perturbation amplitude as δ̂φ(r) =
∑
n
αnφn(r), where {αn} are constants, and the com-

plete set of vacuum eigenfunctions {φn(r)} is defined by φn(r) = AnJ0(λnr/rw). Here, λn

is the n’th zero of J0(λn) = 0, and An =
√
2/[rwJ1(λn)] is a normalization constant such

that
∫ rw
0 drrφn(r)φn′(r) = δn,n′ . We substitute δ̂φ(r) =

∑
n
αnφn(r) into Poisson’s equation

(3) and operate with
∫ rw
0 drrφn′(r).... This gives the matrix dispersion equation

∑
n

αnDn,n′(ω) = 0, (5)

where

Dn,n′(ω) = (λ2
n + k

2
zr

2
w)δn,n′ + χn,n′(ω), (6)

and the beam-induced susceptibility χn,n′(ω) is defined by

χn,n′(ω) = −4πebr2w
∫ rw

0
drrφn′(r)

∫
d3pδ̂fn

b (r,p). (7)

Here, δ̂fn
b (r,p) is defined in Eq. (4) with δ̂φ → φn. The condition for a nontrivial solution

to Eq. (5) is

det{Dn,n′(ω)} = 0, (8)

which plays the role of a matrix dispersion relation that determines the complex oscillation

frequency ω.

We defer a detailed analysis of Eqs.(5)-(8) to a separate paper, and summarize here some

qualitative properties of the Harris-like instability that ensues in the limit of an anisotropic
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beam distribution that is cold in the longitudinal direction, i.e.,

T‖b
T⊥b

→ 0. (9)

In this regard, it is convenient to introduce the effective depressed betatron frequency ωβ⊥.

It can be shown [1] that for the equilibrium distribution in Eq. (1), the mean-square beam

radius r2b defined by

r2b = 〈r2〉 =
∫
drr3n0

b(r)∫
drrn0

b(r)
, (10)

is related exactly to the line density Nb = 2π
∫
drrn0

b(r), and transverse beam temperature

T⊥b by the equilibrium radial force balance equation [1]

ω2
fr

2
b =

Nbe
2
b

mb

+
2T⊥b

mb

. (11)

Equation (11) can be rewritten as(
ω2

f −
1

2
ω̄2

pb

)
r2b =

2T⊥b

mb

, (12)

where we have introduced the effective average beam plasma frequency ω̄pb defined by

r2b ω̄
2
pb ≡

∫ rw

0
drrω2

pb(r) =
2e2bNb

mb

. (13)

Then, Eq. (12) can be used to introduce the effective depressed betatron frequency ωβ⊥

defined by

ω2
β⊥ ≡

(
ω2

f −
1

2
ω̄2

pb

)
=
2T⊥b

mbr2b
. (14)

If, for example, the beam density were uniform over the beam cross-section, then Eq. (14)

corresponds to the usual definition of the depressed betatron frequency for a KV beam, and

it’s readily shown that the radial orbit r′(t′) occuring in Eqs.(4) and (7) can be expressed

as [1]

r′2(t′) = r2 cos2(ωβ⊥τ) +
p2⊥

m2
bω

2
β⊥
sin2(ωβ⊥τ) +

rp⊥
mbωβ⊥

cos(φ− θ) sin(2ωβ⊥τ). (15)

Here τ = t′− t is the displaced time variable, and we have expressed (x, y) = (r cos θ, r sin θ)
and (px, py) = (p⊥ cosφ, p⊥ sinφ) in cylindrical polar coordinates. Note from Eq. (15) that

r′(t′ = t) = r and [dr′2/dt′]t=t′ = 2(xpx + ypy)/mb, as expected. Due to the nontrivial

dependence of the perturbed potential in Eq. (4) on radius r, the transverse betatron motion

[Eq. (15)] will drive density perturbations resonantly at frequencies that are multiples of
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2ωβ⊥. Instability occurs when one of these frequencies is close to the beam plasma frequency

ωpb.

In general, for the choice of equilibrium distribution function in Eq. (1), there will be a

spread in transverse depressed betatron frequencies ωβ⊥(H⊥), and the particle trajectories

will not be described by the simple trigonometric function in Eq. (15). For present purposes,

however, we consider a simple model in which the radial orbit r′(t′) occuring in Eq. (4)

and the definition of χn,n′(ω) in Eq. (7) is approximated by Eq. (15) with the constant

value ωβ⊥ defined in Eq. (14) and the approximate equilibrium density profile defined by

n0
b(r) = n̂b exp(−mbω

2
β⊥r

2/2T⊥b). For a nonuniform beam, ω−1
β⊥ is the characteristic time for

a particle with thermal speed vth⊥ = (2T⊥b/mb)
1/2 to cross the rms radius rb of the beam. In

this case, χn,n′(ω) can be evaluated in closed analytical form provided the conducting wall

is sufficiently far removed from the beam (rw/rb >∼ 3, say). In this case, the matrix elements

decrease exponentially away from the diagonal, with∣∣∣∣∣Dn,n+k

Dn,n

∣∣∣∣∣ ∼ exp

(
−π

2k2

4

r2b
r2w

)
, (16)

where k is an integer, and we have used the approximate relation λn ≈ π(4n− 1)/4. There-
fore, for rw/rb >∼ 3, we can approximate {Dn,n′(ω)} by a tri-diagonal matrix. In this case,

for the lowest-order radial modes (n = 1 and n = 2), the matrix dispersion relation (8) can

be approximated by

D1,1(ω)D2,2(ω)− [D1,2(ω)]
2 = 0, (17)

where use has been made of D1,2(ω) = D2,1(ω).

We introduce the effective perpendicular thermal speed-squared of a beam particle defined

by v2
th⊥ = 2T⊥b/mb. Then, for T‖b/T⊥b → 0 and rw/rb >∼ 3, the approximate dispersion

relation (17) describing the coupling of the lowest order n = 1 mode with the n = 2 radial

mode, within the context of the present simplified model, can be expressed as{
λ2

1 + k
2
zr

2
w +

2 exp(−k2
1

2
)(ω̂2

p/ω
2
β⊥)

J2
1 (λ1)

[
I0

(
k2

1

2

)
−

(
1 +

k2
zv

2
th⊥

2ω2

)
I2
0

(
k2

1

4

)

−
(

ω

ω − 2ωβ⊥
+

k2
zv

2
th⊥

2(ω − 2ωβ⊥)2

)
I2
1

(
k2

1

4

)]}

×
{
λ2

2 + k
2
zr

2
w +

2 exp(−k2
2

2
)(ω̂2

p/ω
2
β⊥)

J2
1 (λ2)

[
I0

(
k2

2

2

)
−

(
1 +

k2
zv

2
th⊥

2ω2

)
I2
0

(
k2

2

4

)

−
(

ω

ω − 2ωβ⊥
+

k2
zv

2
th⊥

2(ω − 2ωβ⊥)2

)
I2
1

(
k2

2

4

)]}
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=
(2ω̂2

p/ω
2
β⊥)

2

J2
1 (λ1)J2

1 (λ2)
exp

(
−(k

2
1 + k

2
2)

2

) {
I0

(
k1k2

2

)
−

(
1 +

k2
zv

2
th⊥

2ω2

)
I2
0

(
k1k2

4

)

−
(

ω

ω − 2ωβ⊥
+

k2
zv

2
th⊥

2(ω − 2ωβ⊥)2

)
I2
1

(
k1k2

4

)}2

, (18)

where we have retained only the leading-order nonresonant terms and one resonant term at

(positive) frequency ω ≈ 2ωβ⊥. In the dispersion relation (18), λ1 � 2.405 and λ2 � 5.52

are determined from the zeros of J0(λn) = 0, vth⊥ = (2T⊥b/mb)
1/2 is the transverse thermal

speed, k1 and k2 are defined by k1 = λ1rb/rw and k2 = λ2rb/rw, and ωβ⊥ = ωf (1 − s̄b)1/2

is the effective depressed betatron frequency [Eq. (14)], where s̄b = ω̄
2
pb/2ω

2
f is the effective

normalized beam intensity defined in terms of ω̄pb.

The dispersion relation (18) can be used to investigate detailed electrostatic stability prop-

erties for strong anisotropy (T‖b/T⊥b → 0) for a wide range of normalized axial wavenumbers

(kzrw) and effective normalized beam intensity s̄b = ω̄
2
pb/2ω

2
f , or equivalently, normalized

tune depression ν̄/ν0 defined by

ν̄

ν0
≡ ωβ⊥
ωf

= (1− s̄b)1/2. (19)

For sufficiently large kzrw, the large temperature anisotropy (T‖b/T⊥b → 0) in Eq. (18)

provides the free energy to drive the classical Harris-type instability [24, 25], generalized

here to include finite transverse geometry and beam space-charge effects. The influence of

the finite longitudinal temperature can be taken into account if one assumes T‖b �= 0 in

Eq. (1). This results in the (collisionless) Landau damping of the unstable mode due to

resonant wave-particle interactions [1] associated with the axial momentum spread of the

beam particles.

To compare with the simulation results in Sec. IV, we introduce the normalized beam

intensity sb defined in terms of the on-axis (r = 0) beam density n̂b. Here, sb ≡ ω̂2
pb/2ω

2
f ,

where ω̂pb = (4πe2b n̂b/mb)
1/2. Using Eqs.(11)-(14), the normalized beam intensity s̄b =

ω̄2
pb/2ω

2
f introduced in Eq. (19) is related to sb by the equation

sb = s̄bn̂b

(∫ rw

0
drr3n0

b(r)
) / (∫ rw

0
drrn0

b(r)
)2

. (20)

The allowed range of the normalized intensity parameter sb is 0 ≤ sb < 1, where the limit
sb → 1 corresponds to infinitely depressed tune (space-charge-dominated limit).

Typical numerical results obtained from the approximate dispersion relation (18) are

presented in Figs. 1 – 5 for the case where rw = 3rb. Figure 1 shows the normalized
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growth rate (Imω)/ωf plotted versus normalized wavenumber kzrw for several values of

normalized on-axis beam intensity sb. Note from Fig. 1 that critical value of kzrw for

the onset of instability increases as sb is decreased, and that the maximum normalized

growth rate (Imω)max/ωf is achieved for sb = 0.96 (Fig. 2). In the limit where kzrw → ∞,
the growth rate is zero for sb < 0.75. Finite T‖b effects introduce a finite bandwidth in

kzrw for instability, since the modes with large values of kzrw are stabilized by Landau

damping. Therefore, the stability results in Figs. 2 and 4 – 5 are plotted for moderate value

of normalized wavenumber corresponding to kzrw = 8.

Figure 3 shows the normalized real oscillation frequency (Reω)/ωf plotted versus normal-

ized wavenumber kzrw for sb = 0.96. The high-frequency branches correspond to transverse

modes that are present when kzrw = 0. The low-frequency branches correspond to longitu-

dinal modes that are absent when kzrw = 0. For kzrw greater than some threshold value,

the intermediate high-frequency longitudinal mode and the low-frequency transverse mode

coalesce and have the same value of real oscillation frequency, (Reω)/ωf ≈ 0.8, with growth

rate (Imω)/ωf given by the sb = 0.96 curve in Fig. 1.

The corresponding behavior of the normalized real oscillation frequency (Reω)/ωf as a

function of sb for fixed kzrw = 8 is plotted in Fig. 4. For sb greater than some threshold value,

the two branches coalesce. The real oscillation frequency of the resulting branch is a weak

function of sb. The existence of instability thresholds, both for kzrw and sb, is a reflection

of the resonant nature of the instability. Indeed, referring to Eq. (18), the beam must be

sufficiently intense for the beam plasma frequency to be close to the second harmonic of

the effective depressed betatron frequency ωβ⊥ (Fig. 4). Also, since the longitudinal mode

frequency is proportional to the normalized wavenumber kzrw (for kzrw ≤ 5) (Fig. 3), the

resonant condition is achieved only for sufficiently large values of kzrw.

The normalized eigenfunction plots of Reδφ̂(r) and Imδφ̂(r) versus r/rw corresponding to

sb = 0.96 and kzrw = 8 are plotted versus r/rw in Fig. 5. The real part of the eigenfunction

has no zeros, and has a structure similar to the familiar longitudinal mode (L1) in Ref. [8].

B. Macroscopic Warm-Fluid Description

To remedy the problem arising from an unphysical KV distribution, Strasburg and David-

son [21, 22] employed a warm-fluid model [20] to investigate the stability properties of intense
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charged beams with large pressure anisotropy. A waterbag equilibrium and negligible heat-

flow were assumed. For kz = 0, the model recovers stable high-frequency (ωn >
√
2ν0)

modes, which are similar to the stable high-frequency Tn modes of a KV beam, whereas

the low-frequency unstable Tn modes are absent. For sufficiently large values of k
2
zr

2
b , the

anisotropy leads to instability provided the intensity of the beam is sufficiently below the

space-charge limit, ν/ν0 ≥ 0.5. The maximum growth rate Imω/ν0 � 0.33 is achieved for

k2
zr

2
b > 1 and 0.6 ≤ ν/ν0 ≤ 0.9.

The assumption in the warm-fluid description is that the frequencies of the interest are

much larger than the resonant frequencies characteristic of the transverse particle motion,

so that the contribution from the resonant particles can be neglected. The same assumption

allows one to neglect the heat-flow term in the equation for the pressure tensor. Hence,

the low-frequency modes (ω ≈ ν0) are not correctly described by such a warm-fluid model.
In the warm-fluid treatment [21, 22], the instability arises as a resonant interaction of the

smallest-frequency transverse fluid mode, and the ordinary longitudinal mode at frequency

ω ≈ ν0. At this frequency one can not neglect the resonant interaction with the transverse
particle motion, and one must normally employ a kinetic description.

III. DESCRIPTION OF THE NONLINEAR δF SIMULATION CODE

The theoretical model described in Sec. II uses simplified assumptions for the background

distribution function. In practical applications, the transverse distribution function may be

close to thermal equilibrium with temperature T⊥b, and the longitudinal distribution can be

described by a drifting Maxwellian distribution with temperature T‖b � T⊥b. This distribu-

tion is stable with respect to transverse perturbations [1, 9]. For an arbitrary equilibrium

distribution one cannot solve the stability problem analytically and must employ numerical

simulation techniques. To investigate stability properties numerically, we use the nonlinear

δf method [28] described below, as implemented in the Beam Equilibrium, Stability and

Transport (BEST) code [14–16].

In the smooth-focusing approximation, the transverse focusing force is modeled by Ffoc =

−γbmbω
2
fx⊥, where ωf is the constant focusing frequency associated with applied focusing

field, mb is the particle rest mass, γb = (1−β2
b )

1/2 is the relativistic mass factor, βbc = const

is the average axial beam velocity, and c is the speed of light in vacuo. The solutions

11



to the nonlinear Vlasov-Maxwell equations are expressed as fb = f
0
b + δfb, φ = φ

0+δφ and

Az = A
0
z+δAz, where (f

0
b , φ

0, A0
z) are known equilibrium solutions. The perturbed potentials

satisfy the equations [14]

∇2δφ = −4πeb
∫
d3pδfb, (21)

∇2δAz = −4π
c
eb

∫
d3pvzδfb, (22)

where eb is the particle charge, and δfb(x,p, t) is given by the weighted Klimontovich rep-

resentation,

δfb =
Nb

Nsb

Nsb∑
i=1

wbiδ(x − xbi)δ(p − pbi). (23)

Here, Nsb is total number of beam simulation particles, Nb is total number of actual beam

particles, and the weight function is defined by wb ≡ δfb/fb.

The nonlinear particle simulations are carried out by iteratively advancing the particle

motion, including the weights they carry, according to [14]

dxbi

dt
= (γbmb)

−1pbi, (24)

dpbi

dt
= −γbmbω

2
fx⊥bi

− eb
(
∇φ− vzbi

c
∇⊥Az

)
, (25)

dwbi

dt
= −(1− wbi)

1

fb0

∂fb0

∂p
· δ

(
dpbi

dt

)
, (26)

δ

(
dpbi

dt

)
= −eb

(
∇δφ− vzbi

c
∇⊥δAz

)
, (27)

and updating the fields by solving the perturbed Maxwell’s equations with appropriate

boundary conditions at the cylindrical, perfectly conducting wall at radius rw.

The δf approach is fully equivalent to the original nonlinear Vlasov-Maxwell equations,

but the noise associated with representation of the background distribution f 0
b in conven-

tional particle-in-cell (PIC) simulations is removed. In the δf approach, the simulation

particles are used to represent only a small part of the entire distribution δfb = fb − f 0
b , and

therefore the statistical error in the simulation is proportional to εδf ∼ δfb/
√
Nsb, whereas

the error in PIC simulations is proportional to εpic ∼ fb/
√
Nsb. Therefore, the typical gain in

accuracy in δf simulations compared to PIC simulations with the same number of particles

is εδf/εpic = w̄bi [14]. This fact allows much more accurate simulations of the nonlinear

dynamics and instability thresholds when |w̄bi| � 1. When the perturbation δfb becomes

12



comparable in magnitude with the background distribution function f 0
b , then the δf method

becomes less accurate than a full PIC simulation. In the present paper, a hybrid combina-

tion of the δf and PIC simulation methods is used, where the number density is calculated

according to δnb = [1− θ(w̄bi)]δnδf + θ(w̄bi)(npic − n0), where θ(w) is a monotonic function

of its argument such that θ(w → 0) → 0 and θ(w → 1) → 1. Here, δnδf =
∫
d3pδfb and

npic =
∫
d3pfb.

In addition, the δf method can be used to study linear stability properties, provided

all nonlinear terms in the dynamical equations (25)–(27) are neglected [14–16]. This corre-

sponds to replacing the term 1−wbi with 1 in Eq. (26) for the weights, and moving particles

along the trajectories calculated in the unperturbed potentials (φ0, A0
z).

The δf method described above has been implemented in the three-dimensional electro-

magnetostatic particle-in-cell code (BEST) in cylindrical geometry with a perfectly conduct-

ing cylindrical boundary at radius rw. Maxwell’s equations (21) and (22) are solved using

fast Fourier transform techniques (FFT) in the longitudinal and azimuthal directions. The

particle positions [Eqs.(24) and (25)] and weights [Eq. (26)] are advanced using a second-

order predictor-corrector algorithm. The code is parallelized using Message Passing Interface

(MPI) with domain decomposition in the direction of beam propagation. The NetCDF data

format is used for large-scale diognostic and visualization. Typical runs consist of 106 sim-

ulation particles and are performed on the IBM SP/RS 6000 at NERSC.

IV. SIMULATION RESULTS

Here we present the simulation results for an axially continuous, anisotropic beam in a

constant focusing field. For simplicity we perform the simulations in the beam frame. It is

assumed that the equilibrium distribution function is bi-Maxwellian and given by equation

(1), where n̂b is the on-axis (r = 0) beam density, and T⊥b and T||b are the transverse

and longitudinal temperatures of the beam particles. The equilibrium self-field potentials

(φ0, Az0) are determined numerically from Maxwell’s equations [14–16]. It is also assumed

that the beam is located inside a grounded, cylindrical, perfectly conducting wall at radius

rw = 3rb, where rb = [〈r2〉]1/2 is the rms beam radius. Random initial perturbations are

introduced to the particle weights, and the beam is propagated from t = 0 to t = 800ω−1
f .

The simulations are performed using the nonlinear δf simulation method described in

13



Sec. III for a wide range of normalized beam intensities ranging from sb = 0.1 to sb = 0.95,

and detailed stability properties have been determined for the range of intensity parame-

ters satisfying sb ≥ 0.5 assuming axisymmetric perturbations with ∂/∂θ = 0. Shown in

Fig. 6 is the time history of the density perturbation δnb =
∫
d3pδfb for normalized beam

intensity sb = 0.7. The initial temperature ratio is taken to be T||b/T⊥b = 0.04. After the

initial exponential growth phase, the instability saturates at a moderately large level with

|δnmax
b /n̂b| � 0.05.

Figures 7 and 8 show plots of the real and imaginary parts of the complex oscillation

frequency ω versus normalized axial wavenumber kzrw. The instability has a finite band-

width with maximum growth rate Imω/ωf � 0.02 at kzrw = 7.5. For long wavelengths

with k2
zr

2
w � 1, the dispersion relation is linear with Reω proportional to kzrw. For short

wavelengths with k2
zr

2
w � 1, the transverse beam size is unimportant and Reω � 1.03ωf .

The dependence of the maximum growth rate (Imω)max/ωf on beam intensity sb is shown

in Fig. 9. The maximum growth rate (Imω)max/ωf � 0.038 occurs for sb � 0.8, with no

instability in the region sb ≤ 0.5.

Figure 10 shows a plot of the real oscillation frequency Reω/ωf versus normalized beam

intensity sb for the unstable mode. The radial structure of the unstable mode is shown in Fig.

11 for kzrw = 7.5. Only the real part of the eighenfuction is shown, since Imδφ̂ ≈ const·Reδφ̂
for the weakly unstable mode. The simulation results presented in Figs. 6 – 11 are in

good qualitative agreement with the theoretical model presented in Sec. II in terms of the

mode structure and real oscillation frequencies (see Figs. 1 – 5). The difference in the

absolute value of the growth rate (Imω)max/ωf in Fig. 2 and Fig. 9, and the existence of

the instability cutoff for large values of the normalized wavenumber in Fig. 8, are attributed

to the Landau damping associated with the nonzero value of longitudinal temperature T‖b

in the simulations.

The net change in the longitudinal momentum distribution δFb(pz)/F̂0b at ωf t = 800 in

the simulation is shown in Fig. 12. Here, δFb(pz) =
∫
d2p⊥d3xδfb and F̂0b = n̂b/(2πmbT||b)1/2.

The formation of tails in the axial momentum distribution in Fig. 12 and the consequent

saturation of the instability are attributed to quasilinear stabilization due to resonant wave-

particle interactions in the tails of the distribution function.

Simulations have also been carried out for different values of temperature anisotropy

T‖b/T⊥b. Plotted in Fig. 13 is the ratio (T
th
‖b )

1/2kz/m
1/2
b ωf versus normalized beam intensity
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sb, where T
th
‖b is the threshold value of longitudinal beam temperature for the onset of

instability and kz is the axial wavenumber.

The saturation mechanism due to resonant wave-particle interactions suggests that the

instability is absent if the Landau damping rate due to nonzero thermal spread in the

axial direction is greater than the instability growth rate for T‖b = 0. This implies that

(T th
‖b )

1/2kz/m
1/2
b ωf ≈ γ(T‖b = 0)/ωf , where γ(T‖b = 0) is the instability growth rate for

T‖b = 0. In the present simulations, the instability is found to be absent if the ratio of initial

axial and transverse temperatures is greater than the threshold value (T||b/T⊥b)
th = 0.07.

Finally, we present simulation results for parameters in the stable regime for sb = 0.8

and kzrw = 3. The temperature ratio is taken to be T||b/T⊥b = 0.0025. Figure 14 shows

the frequency spectrum, and Fig. 15 shows the real part of the eigenfunctions for the lowest

frequency longitudinal modes. The frequency spectrum in Fig. 14 agrees resonably well with

the theoretical results in Fig. 4. Note from Fig. 14 that the spread in depressed betatron

frequency ωβ⊥(H⊥) results in a finite bandwidth to the frequency curves.

V. CONCLUSIONS

To summarize, in Sec. II we generalized the classical Harris-like instability to the case of

an intense charged particle beam with anisotropic temperature (T||b/T⊥b < 1) including the

important effects of finite transverse geometry and beam space-charge. Using the simplified

assumption of negligible spread in depressed betatron frequency, we derived a simple disper-

sion equation for the lowest-order eigenmodes for the case of extreme temperature anisotropy

(T||b/T⊥b → 0). For sufficiently large values of k2
zr

2
b
>∼ 1, where rb is the rms beam radius, the

analysis of the dispersion equation leads to a strong anisotropy-driven instability provided

the normalized beam intensity sb = ω̂
2
pb/2ω

2
f is sufficiently large. In Sec. IV, the BEST code

[14], which implements the nonlinear δf scheme described in Sec. III, was used to investigate

the detailed stability properties of intense charged particle beams with large temperature

anisotropy (T||b/T⊥b � 1) assuming axisymmetric perturbations with ∂/∂θ = 0. The simula-

tion results clearly show that moderately intense beams with sb >∼ 0.5 are linearly unstable

to short wavelength perturbations with k2
zr

2
b
>∼ 1, provided the ratio of longitudinal and

transverse temperatures is smaller than some threshold value. The mode structure, growth

rate and conditions for the onset of the instability are qualitatively similar to what is pre-
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dicted by the simple theoretical model presented in Sec. II. The main saturation mechanism

for the instability is the resonant wave-particle interactions that occur during the formation

of tails in the axial momentum distribution. In the nonlinear saturation stage, the total

distribution function is still far from equipartitioned, and free energy is available to drive an

instability of the hydrodynamic type [21, 22].
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VIII. FIGURE CAPTIONS

Fig.1: Plot of (Imω)/ωf versus kzrw obtained from Eq. (18) for rw = 3rb and several

values of normalized beam intensity sb defined in Eq. (20).

Fig.2: Plot of (Imω)/ωf versus normalized beam intensity sb obtained from Eq. (18) for

rw = 3rb and kzrw = 8.

Fig.3: Plot of (Reω)/ωf versus kzrw obtained from Eq. (18) for rw = 3rb and sb = 0.96.

Fig.4: Plot of (Reω)/ωf versus normalized beam intensity sb obtained from Eq. (18) for

rw = 3rb and kzrw = 8.

Fig.5: Radial mode structure of the unstable eigenfunction for rw = 3rb and kzrw = 8

and sb = 0.96.

Fig.6: Time history of the density perturbation δnmax/n̂b for normalized beam intensity

sb = 0.7 at fixed z and r = 0.2rb.

Fig.7: Normalized eigenfrequency Reω/ωf plotted versus kzrw for sb = 0.7 and rw = 3rb,

and initial T‖b/T⊥b = 0.04.

Fig.8: Normalized growth rate Imω/ωf plotted versus kzrw for sb = 0.7 and rw = 3rb,

and initial T‖b/T⊥b = 0.04.

Fig.9: Plot of (Imω)max/ωf versus normalized beam intensity sb for rw = 3rb, and initial

T‖b/T⊥b = 0.04.

Fig.10: Plot of (Reω)/ωf versus normalized beam intensity sb for kzrw = 7.5 and rw = 3rb,

and initial T‖b/T⊥b = 0.04.

Fig.11: Radial mode structure of the unstable eigenfunction for kzrw = 7.5, sb = 0.7 and

rw = 3rb, and initial T‖b/T⊥b = 0.04.

Fig.12: Perturbed axial momentum distribution δFb(pz)/F̂0b at time t = 800ω−1
f , for

normalized beam intensity sb = 0.7 and rw = 3rb, and initial T‖b/T⊥b = 0.04.

Fig.13: Ratio (T th
‖b )

1/2kz/m
1/2
b ωf plotted versus normalized beam intensity sb for rw = 3rb.

Fig.14: Frequency spectrum of stable oscillations for kzrw = 3, sb = 0.8 and rw = 3rb.

Fig.15: Radial mode structure of the stable eigenfunction for kzrw = 3, sb = 0.8 and

rw = 3rb.
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