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Abstract

The conventional approach to exciting high phase velocity waves in plasmas

is to employ a laser pulse moving in the direction of the desired particle accel-

eration. Photon downshifting then causes momentum transfer to the plasma

and wave excitation. Novel approaches to plasma wake excitation, colliding-

beam accelerator (CBA), which involve photon exchange between the long

and short counter-propagating laser beams, are described. Depending on the

frequency detuning ∆ω between beams and duration τL of the short pulse,

there are two approaches to CBA. First approach assumes (τL ≈ 2/ωp). Pho-

tons exchanged between the beams deposit their recoil momentum in the

plasma driving the plasma wake. Frequency detuning between the beams de-

termines the direction of the photon exchange, thereby controlling the phase

of the plasma wake. This phase control can be used for reversing the slip-

page of the accelerated particles with respect to the wake. A variation on

the same theme, super-beatwave accelerator, is also described. In the sec-

ond approach, a short pulse with τL � ω−1
p detuned by ∆ω ∼ 2ωp from

the counter-propagating beam is employed. While parametric excitation of

plasma waves by the electromagnetic beatwave at 2ωp of two co-propagating
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lasers was first predicted by Rosenbluth and Liu [M. N. Rosenbluth, C. S. Liu,

Phys. Rev. Lett. 29, 701 (1972)], it is demonstrated that the two excitation

beams can be counter-propagating. The advantages of using this geometry

(higher instability growth rate, insensitivity to plasma inhomogeneity) are

explained, and supporting numerical simulations presented.

PACS: 52.40.Nk, 41.75.Jv, 52.35.Mw, 42.65.Wi
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I. INTRODUCTION AND MOTIVATION

Plasma is an attractive medium for ultra-high gradient particle acceleration because

it can sustain a very high electric field, roughly limited by the cold wavebreaking field

EWB = mcωp/e ≈
√

n[cm−3]V/cm, where ωp =
√

4πe2n/m is the plasma frequency and n is

the electron density. To accelerate injected particles to velocities close to the speed of light

c, this electric field has to be in a form of a fast longitudinal plasma wave with phase velocity

vph ≈ c. The frequency of the fast plasma wave is ωp, and its wavenumber is kp ≈ ωp/c.

Excitation of such plasma waves can be accomplished by lasers or fast particle beams [1–13].

Below we review the basics of linear plasma wave excitation in very general terms, with-

out restricting ourselves to the specifics of the wakefield driver. Let’s assume that plasma

electrons are subject to the electric field of the fast plasma wave ~E, as well as other non-

linear forces ~FNL, for example, the ponderomotive force of one or more laser pulses. The

total current ~J = ~Jp + ~J2 which enters Ampere’s law ~∇× ~B = (1/c)∂t
~E +(4π/c)( ~Jp + ~J2) is

intentionally split into two components. The first one, ~Jp = −en~ve, where ~ve is the electron

fluid velocity, is driven by the electric field ~E and satisfies ∂t
~Jp = e2n~E. The second compo-

nent ~J2 is driven by the nonlinear ponderomotive force, or could also represent an external

current provided by injected electron beam. Taking the time derivative of the Ampere’s law

yields:

(
∂2

∂t2
+ ω2

p0

)
~E + c2∇×∇× ~E = −4π

∂ ~J2

∂t
, (1)

where the ∇×∇× ~E term naturally vanishes in 1-D. One can say that the science of making

a plasma accelerator is about finding the most effective way of producing the appropriate

J2z(z, t). Of course, not every functional form of J2z(z, t) is useful for making plasma waves

suitable for relativistic particle acceleration. In the rest of this paper we concentrate on

exciting J2z(z, t) ≡ J2z(z − ct) using one or several laser pulses.
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II. COMPARISON OF SINGLE-BEAM AND COLLIDING BEAM

ACCELERATORS

The simplest laser-driven plasma accelerator, which was also the first one realized in the

experiments, is the plasma beatwave accelerator [1–6] (PBWA). It employs a pair of co-

propagating laser beams with normalized vector-potentials ~a0,1 = e ~A0,1/mc2 and frequencies

ω0 and ω1 = ω0 − ωp. The nonlinear current J2z is driven by the ponderomotive force of the

resulting electromagnetic beatwave according to ∂tJ2z = en∂z(~a0 ·~a1). If the two laser-beams

are detuned by the plasma frequency ωp, plasma wave is resonantly excited. The beatwave

scheme was also considered by Rosenbluth and Liu [14] for plasma heating.

From Eq. (1), to excite a plasma wave one needs to deposit momentum into the plasma.

The source of this momentum is the laser. However, since the typical laser frequencies

ω0,1 � ωp, it is impossible for a laser photon to impart its entire momentum to the plasma.

What happens instead is that the frequency of a laser photon is down-shifted by the amount

ωp, depositing the remainder momentum and energy into the plasma. In the case of PBWA,

higher-frequency photons at ω0 are scattered into the lower-frequency photons at ω1 =

ω0 − ωp. Schematically, this process is shown in the top Fig. 1. The phasors of the lasers

lie on the ω2 = ω2
p + c2k2 dispersion curve, and the vector difference of these phasors gives

the phasor of the driven plasma wave. Phase velocity of the plasma wave is then given by

vph = (ω0 − ω1)/(k0 − k1) ≈ vg, where vg ≈ c(1 − ω2
p/2ω

2
0) is the group velocity of the laser

packet. Since vph ≈ c, thus excited plasma wave is suitable for particle acceleration.

The total momentum transfer rate to the plasma in PBWA is then proportional to the

relative momentum transfer per photon ηt = ωp/ω0, times the rate of scattering which is

proportional to beam intensity. Since the relative amount of down-shifting ηt � 1, high

laser intensities are needed to ensure the high overall rate of the momentum transfer. Note

that Fig. 1 (top) is also applicable to the laser wakefield accelerator (LWFA) which employs

a single ultra-short (τL ≈ 2ω−1
p ) laser pulse. Broad bandwidth of the pulse implies that it

contains a continuum of frequency pairs differing from each other by ωp. Because the pulse
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is short, wake excitation is not resonant, and even larger than in PBWA intensity is needed

(typically, close to 1018W/cm2 to achieve E/EWB ∼ 0.2).

In a colliding-beam accelerator (CBA) [15,16] we take a very different approach by em-

ploying two counter-propagating laser beams with differing frequencies: one short and an-

other long (referred to as the pump, with duration τp = 2Lp/c, where Lp is the length of the

plasma). Two types of short laser beams are envisioned: (a) containing two spatially and

temporally overlapping discrete frequency components of duration τL � ω−1
p , or (b) single-

frequency ultra-short (ωpτL ∼ 1) laser pulse. When the two beams interact in the plasma,

the photons of the higher-frequency beam scatter into the photons of the lower-frequency

beam. The crucial difference from the PBWA case is that now approximately twice the

total photon momentum is deposited into the plasma: the recoil momentum of scattering a

forward moving photon with frequency ω0 into a backward moving photon with frequency

ω2 is h̄ω0/c − (−h̄ω2/c) ≈ 2h̄ω0/c. Thus, the laser beams’ intensities required to produce a

given accelerating field can be smaller for counter-propagating geometry than for the LWFA

(or PBWA).

The bottom drawing in Fig. 1 (labeled CBA) illustrates the nonlinear excitation of the

fast plasma waves which is significantly more complex than in PBWA (or LWFA). Specifi-

cally, we assume that two frequency components, separated by ωp, are propagating in the

forward direction. These two frequency components could either belong to two separate and

long laser beams (as in PBWA), or to a single ultra-short laser pulse (as in LWFA). In the

latter case, a continuum of such frequency pairs separated by ωp can be identified. Only

one such pair is shown in Fig. 1. The frequency phasor for the counter-propagating beam

is labeled as backward beam. The beating between the different frequency components of

the forward beam and the backward beam produce two “slow” plasma waves which are

shown as almost-horizontal lines in the drawing. It is the nonlinear mixing of these two slow

waves that gives rise to the “fast” plasma wave (labeled as plasma wake). Therefore, the

accelerating plasma wave is produced by a super-beatwave: the beatwave of two beatwaves.

Visually, one can deduce from the drawing that the phase velocity of the fast wave is
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much larger than that of the slow waves. Mathematically, one can show that the phase

velocities of the slow waves roughly scale as vsl ≈ ωp/k0 while the phase velocity of the

fast wake is close to the speed of light. In Section III we derive formulas for the fast wake

amplitude and demonstrate that, under some circumstances, it can be much larger than the

regular wake produced by only the forward propagating pulse(s).

III. COLLIDING BEAM ACCELERATOR

To provide motivation for the rest of the paper, we present a numerical simulation

which demonstrates that the addition of a backward-propagating laser beam to a forward-

propagating beam can excite very large (� 1 GeV/m) plasma waves which are stronger than

the ones excited by the forward-propagating beam alone. The following physical problem

was simulated using a one-dimensional particle-in-cell (PIC) code VLPL [17]. An ultra-

short circularly polarized Gaussian laser pulse with duration τL = 1.5ω−1
p and normalized

vector potential a0 = 0.12, propagating in the positive z direction, collides in a plasma

with a long counter-propagating pulse with a1 = 0.05. Plasma density was chosen such

that ωp/ω0 = 0.05. The snapshot of the pulse intensity normalized to 2.7 × 1018W/cm2 is

shown in Fig. 2(a). Two cases, corresponding to the different frequencies of the long pulse,

ω1 = 1.1ω0 and ω1 = 0.9ω0, were simulated. The resulting plasma wakes are shown in

Fig. 2(c) and (d), respectively. For comparison, we also plot the wake produced by a single

short pulse in absence of the long counter-propagating pulse in Fig. 2(b).

Since the intensity of the short pulse is chosen non-relativistic, the magnitude of the

plasma wake left behind the pulse is much smaller than the limiting (wavebreaking) field

according to E/Ewb ∼ a2
0/2, where Ewb = mcωp/e. The situation changes dramatically

when a counter-propagating beam is added. As Figs. 2(c) and (d) indicate, the addition of

the pumping beam increases the electric field of the plasma wake by an order of magnitude.

To further illustrate this point, we plotted the regular wake [same as shown in Fig. 2(a)] in

Figs. 2(c-d) for comparison. Note that the vertical scales of the Figs. 2(c-d) and Fig. 2(b)
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differ by a factor 20. Plasma wakes produced as a result of the collision between the counter-

propagating beams is referred to as the enhanced wake because it is much larger than the

regular wake.

This conclusion about the relative magnitudes of the regular and enhanced wakes is only

valid for nonrelativistic laser pulses. It turns out that the magnitude of the enhanced wake

E < (ωp/ω0)Ewb. This limit is set by the maximum velocity of the plasma electrons which

cannot significantly exceed the phase velocity of the beatwave between the short and long

laser beam, equal to vsl = (ω0−ω1)/2k0. Excitation of the fast (accelerating) plasma wake is

a strongly nonlinear process, with the “slow” (short-wavelength) plasma waves generated as

intermediaries. These short-wavelength plasma excitations can be excited either linearly, or

(as it is the case for the simulation parameters of Fig. 2) nonlinearly. Below, we separately

analyze these two excitation regimes, starting with the linear regime.

A. Linear regime: four-wave mixing

The above kinematic illustration in Fig. 1 is, of course, only a cartoon, which does not

explain the physical mechanism of the nonlinear mixing between the slow plasma waves.

To derive the equations for the excitation of the accelerating plasma wake, assume that

two laser pulses with frequencies detuned from each other by ωp are interacting with the

counter-propagating pump. Slow plasma wave are non-resonantly driven through the two-

wave mixing of each of the forward-moving components of the beatwave with the pump. The

beating between these slow plasma excitation is a novel mechanism of driving fast plasma

waves. From Eq. (1),

(
∂2

∂ζ2
+ ω2

p

)
Ez = −4πe

∂ < nv >

∂ζ
, (2)

where ζ = t−z/c, and < nv >= n̂0v̂
∗
1 + n̂1v̂

∗
0 +c. c., where n̂0,1 and v̂0,1 are, correspondingly,

fractional density and velocity perturbations in the first and second slow plasma waves.

The fast wave, characterized by its amplitude Ez, is then nonlinearly driven by the RHS
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of Eq. (2). Equation (2) mathematically expresses the nonlinear mixing between the slow

plasma waves schematically shown in Fig. 1.

Let’s further assume that pulses 0 and 1 are both flat-tops of duration τL, and their

corresponding detunings from the counter-propagating pump are ∆0 = ω0 − ω2 and ∆1 =

ω1 − ω2. The normalized vector-potentials ~a = e ~A/mc2 of the lasers are given by

~a0,1 =
F (t− z/vg)

2
a0,1~e+eiθ0,1 + c. c.

~a2 =
a2

2
~e−eiθ2 + c. c. , (3)

where F (t) = H(t)−H(t−τL) is the flat-top profile of the forward propagating laser beams,

θ0,1 = k0,1z − ω0,1t are their phases, and θ2 = k2z + ω2t is the phase of the pumping beam

which is assumed infinitely long.

Slow plasma waves are excited according to

(
∂2

∂t2
+ ω2

p

)
n̂

n
= c2∇2 |~a|2

2
. (4)

Expressing the density perturbation n̂ as a sum of the two slow waves,

n̂ = n̂0e
i(k0+k2)z−(ω0−ω2)t + n̂1e

i(k1+k2)z−(ω1−ω2)t + c. c. (5)

we insert this expansion into Eq. (4) to obtain:

n̂0

n
=

(k0 + k2)
2c2a0a2

2(∆2
0 − ω2

p)
,

n̂1

n
=

(k1 + k2)
2c2a1a2

2(∆2
1 − ω2

p)
. (6)

Expanding the velocity perturbations in the slow waves in the same way as it was done in

Eq. (5), we calculate v̂0 and v̂1 from the continuity equation:

v̂0 =
∆0

k0 + k2

n̂0

n
, v̂1 =

∆1

k1 + k2

n̂1

n
. (7)

We are now in a position of calculating < nv >:

< nv >

nc
= a0a

∗
1

F 2(t − z/vg)

2
ei(θ0−θ1)

[(
∆0

k0 + k2
+

∆1

k1 + k2

)
(k0 + k2)

2(k1 + k2)
2c3|a2|2

2(∆2
0 − ω2

p)(∆
2
1 − ω2

p)

]
+ c. c.

(8)
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Note that the expression in front of the square brackets is proportional to the direct

beatwave strength in the plasma beatwave accelerator. The term in the square brackets

(which we label η) is proportional to the super-beatwave strength. Whenever the term in

the square brackets exceeds unity, the super-beatwave results in a larger accelerating wake

than the usual beatwave. A more compact simplified expression for η can be obtained by

noting that in a tenuous plasma with ωp � ω2, k0, k1 ≈ k2 ≈ ω2/c, yielding

η ≈ 8|a2|2 ω3
2

ω3
p

[
(∆0 + ∆1)ω

3
p

(∆2
0 − ω2

p)(∆
2
1 − ω2

p)

]
. (9)

The magnitude of η is, roughly, determined by the quantity 8|a2|2ω3
2/ω

3
p . Equation (9) is only

valid when ∆2
0,1 6= ω2

p , which physically means that none of the slow waves are resonantly

excited.

Substituting < nv > into Eq. (2), we calculate the electric field behind the forward-

moving beatwave in the region t − z/vg > τL:

eEz

mcωp
=

ωpτLa0a1

4
η cos (θ0 − θ1) ≈ 2|a0a1a

2
2|

ω3
2τL

ω2
p

[
(∆0 + ∆1)ω

3
p

(∆2
0 − ω2

p)(∆
2
1 − ω2

p)

]
cos (θ0 − θ1), (10)

where θ0 − θ1 = (k0 − k1)z − ωpt is the phase of the fast plasma wave. Note that the

phase velocity of the fast plasma wave (which is produced by the super-beatwave) is the

same as that of the regular beatwave, and equal to the group velocity of the forward-moving

laser packet. The phase of the fast plasma wake is determined by the relative phases of the

forward-moving laser pulses. The phase of the counter-propagating pump does not matter at

all, while its amplitude affects the enhancement coefficient of the super-beatwave η, thereby

determining the amplitude of the fast wave as well. Also, according to Eq. (10), fast wave

generation in the colliding beam accelerator is a four-wave process.

Note that in the particular case of ∆0 + ∆1 = 0 wakefield vanishes. Since ω1 = ω0 − ωp,

this case corresponds to ω2 = ω0 − 0.5ωp. Therefore, the scattering of the photons from

beam 0 into beam 2 proceeds at the same rate as the scattering of the beam 2 into beam 1,

and the overall momentum deposition into the plasma vanishes.

We simulated the beatwave enhancement using a one-dimensional particle-in-cell (PIC)

code VLPL [17]. Forward moving waves have identical normalized vector potentials a0 =
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a1 = 0.025, the counter-propagating beam has a2 = 0.03. Laser and plasma frequencies

were chosen as follows: ω0 = 10.5ωp, ω1 = 9.5ωp, ω2 = 11.0ωp. Plasma density was chosen

n = 1019cm−3 (corresponding to plasma wavelength λp = 2πc/ωp = 10µm), beatwave pulse

duration ωpτL = 25, and the total simulated plasma region L = 10λp = 100µm long. Electric

field produced as the result of the interaction is plotted in Fig. 3. The smaller signal (about 2

GeV/m) is the electric field obtained in the simulation with identical parameters, except that

the pump was turned off. As Fig. 3 clearly indicates, the enhanced beatwave significantly

exceeds the regular beatwave, and produces the accelerating field Ez ≈ 12 GeV/m.

Electric field driven by the super-beatwave appear less regular than the one driven by

the regular beatwave mainly because of the finite short-wavelength electric field which is

proportional to the amplitude of the slow waves. As far as the accelerating properties of the

enhanced wake are concerned, short-wavelength excitations should not affect acceleration

because of their low phase velocity. More on this is said in Section V.

Let’s now turn to another scenario, which is conceptually related to the laser-wakefield

accelerator (LWFA) [1,7–11]. Here an ultra-short laser pulse replaces the forward-moving

beatwave. Simulation results presented in Fig. 2 assumed a large enough laser amplitude

to cause the breaking of the slow plasma waves. However, at small enough laser amplitude

(precisely how small is explained in the Section III B), linear calculation similar to the one

presented for the beatwave case becomes valid. An expression for Ez, similar to Eq. (10),

was derived in [15]:

eEz

mcωp
=

π∆ω

8ω0

(
4a2a0

ω2
0

ω2
p

)2

ω2
pτ

2
Le−ω2

pτ2
L/4

[
e−(ωp−∆ω)2τ2

L + e−(ωp+∆ω)2τ2
L +

2

3
e−∆ω2τ2

L

]
, (11)

where a Gaussian laser pulse ∝ exp−t2/2τ 2
L was assumed. The most efficient excitation

of the accelerating wake requires τL ≈ 2.0ω−1
p and ∆ω = ±1.1ωp. For these parameters

eEz/mcωp ≈ 0.6ωp/ω0 (4a0a2ω
2
0/ω

2
p)

2. The enhanced wake exceeds the regular wake from

forward scattering whenever a2 > (ωp/ω0)
3/2/4. For n0 = 1018cm−3 and λ0 = 1µm, the

corresponding critical pump intensity for which the enhanced plasma wake exceeds the

regular one is given by I2 ≈ 2 ·1014 W/cm2. Note that this criterion is very similar to η > 1,
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where η is given by Eq. (9). This is not surprising: in both cases fast plasma waves are

produced via four-wave mixing.

B. Nonlinear regime: particle trapping

The above picture of a four-wave process resulting in the excitation of a fast wave via the

super-beatwave mechanism is only true when all waves in question are linear. Fast plasma

wave always remains linear because its amplitude is below the wavebreaking limit. Slow

waves (which beat against each other to produce the super-beatwave) break much easier,

their breaking limiting the fast wave amplitude. The ease with which the slow waves break is

related to their low phase velocity. Indeed, breaking of a particular wave with phase velocity

vph occurs when plasma electrons are accelerated to velocities v = vph. After wavebreaking,

particle motion is determined solely by the ponderomotive beatwave force between counter-

propagating beams. Space charge force becomes smaller than the ponderomotive force, and

can be neglected.

The most interesting and easy-to-understand regime corresponds to the single-frequency

short pulse of duration τL < π/ωp which is strong enough to cause wavebreaking. The

incidence of wavebreaking is, approximately, determined by the ratio of the bounce frequency

ωB = 2ω0
√

a0a2 and the plasma frequency. In the strongly-nonlinear regime ω2
B � ω2

p , and

the space-charge force which is proportional to ω2
p can be neglected in comparison with the

ponderomotive force which is proportional to ω2
B . In this regime plasma wave amplitude is

estimated [16] as

eEz

mcωp
=

〈Pz〉
mc

sinωpζ ≈ sign(∆ω)
(

ωB

ω0

)
sinωpζ, (12)

where 〈Pz〉 is the average momentum transferred to the plasma by the laser pulse. The

physics of this momentum transfer can be visualized by plotting the electron phase space at

different times: before the arrival of the short pulse, near the maximum of the short pulse,

and right after the wavebreaking (Fig. 4).

11



Numerical simulations indicate that the largest momentum gain is achieved for the fre-

quency detuning ∆ω ≈ ωB and pulse duration τL ≈ 2/ωB . For those parameters, plasma

electrons execute about half a bounce in the ponderomotive potential, and leave the pon-

deromotive bucket with average velocity vz ≈ cωB/ω0. The nonlinear current J2z = −envz

is then inserted into Eq. (2) to yield Eq. (12).

IV. PARAMETRIC EXCITATION OF PLASMA WAVES BY 2ωP DETUNING

In the previous section we considered two approaches to excitation of fast plasma waves:

one involved two pulses moving in the forward direction and another in the backward direc-

tion (super-beatwave approach), and the other one required a short (τL ≈ 2/ωp) forward-

moving pulse and a backward-moving pulse (CBA approach). The beatwave approach is

complex for two reasons: (a) three laser pulses are needed, and (b) laser pulses have to

be detuned by the plasma frequency. Most laser systems have a fairly small bandwidth

(several percent). This reduces the resonant plasma density and the accelerating gradient.

For example, if the fractional frequency detuning is ∆ω/ω0 = 3%, then the resonant plasma

density for a 1µm laser is np = 1018cm−3. Since the accelerating gradient is limited by

wavebreaking to only Ez ≈ (ωp/ω0)mcωp/e, the accelerating gradient in of a super-beatwave

accelerator in such plasma is only 3 GeV/m.

Single-pulse CBA can also be challenging with presently available lasers because it re-

quires a very short pulse. For example, assuming np = 1019cm−3 and τp = 2ω−1
p yields

the FWHM of only 14 fs. While such short pulse lasers do exist [18], they are not widely

available and are, typically, low power.

All these limitations, and also the simultaneous availability of Nd:Yag (λ1 = 1.06µm) and

Ti:S (λ0 = 0.8µm) laser systems in a number of laboratories compels one to think of other

possible techniques of wake excitation. A novel scheme [19] has been recently suggested:

parametric excitation of accelerating plasma waves using counter-propagating laser beams

detuned by, approximately, 2ωp. Short-pulse duration no longer is required to be comparable

12



to ω−1
p ; in fact, it is advantageous to use significantly longer pulses with ωpτL ≈ 25. From

experimental standpoint, this could be a fairly attractive regime: if ω0 −ω1 = 2ωp, then the

desired plasma density np ≈ 2.5 × 1019cm−3, and the required pulse duration τL ≈ 25ω−1
p

corresponds to 160 fs (FWHM). Such plasma and laser parameters are achievable, making

the practical implementation of the scheme feasible.

We simulated the interaction between a trapezoidally-shaped short pulse and a long

counter-propagating laser beam using a one-dimensional version of a VLPL [17] particle-in-

cell code. The amplitude of the circularly-polarized short pulse is a0 = 0.1, its rise and fall

times are 15λ0/c and 5λ0/c, respectively, and the flat portion is 15λ0/c, where λ0 = 2πc/ω0.

The amplitude of the counter-propagating laser beam is a1 = 0.015, rise and fall times

are 20λ0/c, and the flat portion is 100λ0/c. Frequency of the counter-propagating beam is

chosen to be ω1 = 0.8ω0 and the plasma frequency ωp = 0.1ω0.

Intensity profile of the short pulse is plotted in Fig. 5(a) 85 laser periods after it entered

the plasma and interacted with the counter-propagating pumping beam. Uniform plasma

extends from Z = 5µm to Z = 90µm. Assuming for simplicity that λ0 = 1µm, the peak

intensity of the short pulse is 2.7 × 1016W/cm2. As the short pulse interacts with the long

pump, an accelerating wake grows from the front of the short pulse towards the back, as

shown in Fig. 5(b). The peak accelerating gradient is about 10 GeV/m. Wakefield decreases

for Z < 20µm because the two pulses met at Z = 20µm.

Periodicity of the plasma wake is 10λ0 = 2πc/ωp. Therefore, the phase velocity of

this wake is ≈ c, and it is suitable for particle acceleration. The spiky appearance of

the wake is due to the simultaneous generation of the slow plasma waves, just as it was

the case in Fig. 3. The same simulation was repeated without the low-intensity counter-

propagating beam, and the accelerating field was much smaller. This simulation confirms

that the counter-propagating laser beam initiates a parametric instability which amplifies a

very small initial wakefield. To our knowledge, this is the first direct PIC simulation of the

plasma wake generation by two counter-propagating lasers detuned by 2ωp. It confirms the

effect which was previously modeled analytically and using a simplified time-averaged par-
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ticle simulation [19]. In the co-propagating geometry and much higher intensity, parametric

wake excitation at ∆ω = 2ωp detuning was recently simulated by Ren et. al. [20].

That a plasma wave can be driven unstable by the 2ωp beatwave was originally proposed

by Rosenbluth and Liu [14], who calculated the growth rate of a fast plasma wave γRL ≈
ωpa0a1/2 (co-propagating lasers). This instability is high-order, with growth rate scaling

as the product of laser amplitudes. Thus, for pump waves of sub-relativistic intensity, i.e.

a0, a1 � 1, this decay instability is too slow to be of great practical interest. Simulation

results presented in Fig. 5 indicates that the counter-propagating geometry (i) results in a

much larger growth rate, and (ii) produces fast (accelerating) plasma waves, just as the

co-propagating geometry would. Both effects were overlooked in the original calculation

of Rosenbluth and Liu. Thus, Fig. 5 illustrates a totally different laser-plasma instability.

Below we explain the basic physics of this instability.

To describe the one-dimensional plasma motion in the field of two laser beams, we use the

Lagrangian approach [21]. Plasma electron position is characterized by its time-dependent

displacement ζ(z0, t) from the equilibrium position z0. By definition, ζ = z−z0 and ζ(z0, t =

−∞) = 0. Electron equation of motion is then given by

ζ̈z + ω2
pζz = − e

mc
~v⊥ × ~B⊥ ≡ −c2

2
~∇|~a|2 (13)

where the second term in the LHS of Eq. (13) is the restoring force of the ion background

which is assumed immobile. The RHS of Eq. (13) is the ponderomotive force, and ~a = ~a0+~a1

is the total vector potential. The expression for the ponderomotive force was derived using

conservation of the canonical momenta Px and Py of the electron. Conservation of Px and

Py follows from the assumption that both laser fields are given by plane waves which do not

depend on x or y: ~a0,1 = a0,1(~e± exp (iθ0,1)+c. c. ), where ~e+(−) = (~ex±i~ey)/2, θ0 = k0z−ω0t,

and θ1 = k1z+ω1t. In nonrelativistic case, this translates into a simple expression for ~v⊥ = c~a

which was used to derive the equation for the ponderomotive force. We are interested in

the cross-term in the expansion |~a|2 = |~a0|2 + |~a1|2 + 2~a0 · ~a1 which is responsible for the

beatwave excitation of the plasma.
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Noting that θ0 + θ1 = (k0 + k1)z − ∆ωt ≈ 2k0z − ∆ωt, where ∆ω = ω0 − ω1, we obtain

from Eq. (13):

ζ̈ + ω2
pζ = ik0c

2a0a1e
−2ik0ζ ei[∆ωt−2k0z0] + c. c.. (14)

Due to the nonlinear term exp−2ik0ζ in the RHS of Eq. (14), several modes of plasma

oscillation can become coupled. We concentrate on the coupling between two particular

plasma modes with wavenumbers ks = 2k0 − kp and kf = kp ≡ ωp/c. Here ks and kf are the

wavenumbers of the slow and fast plasma waves, respectively. These two waves are strongly

coupled to each other when ∆ = 2ωp.

If a0 is constant, any two waves with ks and kf satisfying ks + kf = 2k0 are strongly

coupled. In reality, however, a0 represents the vector potential of an ultra-short laser pulse

propagating with the group velocity vg ≈ c. Therefore, a0 ≡ a0(t−z/vg) ≈ a0(t−z0/c) since

the laser envelop is longer than the wavelength. This selects the wavenumber of the fast

wave kf = ωp/c and, therefore, the wavelength of the slow wave ks = 2k0 − kp. Numerical

results presented in Fig. 5 also reveal the strong excitation of a plasma wave with k = ωp/c.

Tow describe the instability, we assume the most general two-wave ansatz for an electron

displacement

ζ = Af sin [kpz0 − ωpt + φf ] + As sin [ksz0 − ωpt + φs], (15)

where Af (φf ) and As (φs) are the amplitudes (phases) of the fast and slow plasma waves.

Of interest to plasma accelerators is, of course, only the fast plasma wave with phase ve-

locity close to the speed of light. For simplicity, in the analytic calculation we assume

monochromatic laser waves. Short-pulse effects are numerically treated later on (see Fig. 6).

We proceed by substituting ζ from Eq. (15) into the nonlinear term exp−2ik0ζ in the

RHS of Eq. (14) and using the Bessel identity eiα sin φ =
∑
k

Jk(α)eikφ. Equation (14) then

becomes

∂2ξ

∂t2
+ ω2

pξ = ik0c
2a0a1

∑
k,l

(−1)k+l Jk(2k0Af )Jl(2k0As)

eik[kpz0−ωpt+φf ]eil[(ksz0−ωpt+φs]ei[∆ωt−2k0z0] + c. c., (16)
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where δω = ∆ω − 2ωp. A set of purely time-dependent equations can now be obtained by

separating the z0 dependent terms on both sides of Eq. (16). Thus, substituting Eq. (15)

into LHS of Eq. (16) and matching the corresponding harmonics of kpz0 and ksz0 on both

sides of the equation, we can write for the (k = 0, l = 1) and (k = 1, l = 0) terms the

following:

∂φ

∂t
= δω − Ω2

B

4
ωpG(Af , As) sinφ (17)

∂(k0Af)

∂(ωpt)
=

Ω2
B

4
J0(2k0Af )J1(2k0As) cos φ (18)

∂(k0As)

∂(ωpt)
=

Ω2
B

4
J1(2k0Af)J0(2k0As) cos φ, (19)

where φ = φs + φf + π/2 + δωt, Ω2
B = 4a0a1ω

2
0/ω

2
p is the square of the electron bounce

frequency in the optical lattice created by the interference of the counter-propagating lasers,

and

G(Af , As) =
J0(2k0Af)J1(2k0As)

k0Af
+

J1(2k0Af )J0(2k0As)

k0As
.

The general case of non-zero laser detuning and large wave amplitudes were analyzed

in Ref. [19]. Here we restrict ourselves to the resonant (δω = 0) and linear (2k0Af,s � 1)

case, for which Eqs. (17,18,19) are simplified to yield φ̇ = −Ω2
B/4(Af/As + As/Af ) sinφ,

Ȧf = Ω2
BAs/4 cos φ and Ȧs = Ω2

BAs/4 cos φ. Since the phase φ rapidly locks at φ = 0, the

two plasma waves, fast and slow, feed on each other and exponentiate with the growth rate

Ωi = ω2
0a1a0/ωp.

The instability mechanism is easy to understand. Fast plasma wave which varies as δnf ∼
cos ωp(t− z/c) modulates the ponderomotive force which oscillates as fz ∼ cos (2k0z − 2ωpt)

to resonantly drive the slow wave which varies as δns ∼ cos (2k0 − kp)z − ωpt. In its turn,

the slow wave modulates the ponderomotive force, driving the fast wave and completing

the feedback loop of the instability. Instability persists until the wavebreaking of the slow

wave. Numerical simulations indicate that the amplitude of the fast wave is limited by

approximately Emax = mcω2
p/2ω0e.
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Using a one-dimensional time-averaged particle code [22], we simulated excitation of the

fast and slow plasma waves by a short slightly chirped (under-compressed) pulse with the

wavelength λ0 = 0.8µm which collides with a longer λ1 = 1µm pulse in a 1019 cm−3 plasma.

These wavelengths correspond to widely available laser systems (Ti:S and Nd-glass), and the

plasma density was chosen to satisfy ω0 = ω1+2.35ωp. Other laser parameters are as follows:

a0 = 0.15 exp [−ζ2/2τ 2
L] with τL = 25 (160 fs FWHM) and dδω/dζ = −9.5 × 10−3ωp (3%

bandwidth). The initial fast plasma wave ẽ0 = 10−3 and a1 = 0.0165 have been assumed.

Simulation results are shown in Fig. 6, where we observe the excitation of both the fast and

the slow plasma waves.

Despite the small amplitudes of both forward and backward pulse, and despite the fact

that the duration of the short pulse is too long for the efficient wake generation, we find that

a significant fast plasma wave Ez = 7 GeV/m is excited. Parameters used in the simulation

are fairly standard for Ti:S and Nd-Glass systems.

Simulation results presented in Fig. 6 point to another important aspect of the parametric

excitation of fast plasma waves using counter-propagating laser beams. Despite the fact that

the frequency detuning between the two laser beams differs from 2ωp (∆ω = 2.35ωp in the

simulation), instability still proceeds. This means that the growth rate of the instability

is not very sensitive to variations in laser detuning or in the plasma density. This is quite

advantageous since plasma density may not be known to high accuracy, and may vary across

the interaction region.

V. UTILITY OF COLLIDING BEAM ACCELERATOR

One obvious benefit of the counter-propagating geometry is that very large accelerating

wakes (of order 10 GeV/m) can be produced with moderate-intensity lasers (I ∼ 1016

W/cm2). Another, less obvious benefit is the ability to control the phase of the accelerating

wake. One observes from Fig. 2 that by changing the frequency of the long pulse from

ω1 = 1.1ω0 (Fig. 2c) to ω1 = 0.9ω0 (Fig. 2d), the phase of the wake is changed by ∆φ = π.
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Thus, one can envision a “plasma linac” which consists of independently phase-controlled

acceleration sections, separated by drift spaces.

Numerical implementation of the “plasma linac” concept is shown in Fig. 7. Collision of

a short “timing beam” (TB) of duration τL = ω−1
p and normalized vector potential a0 = 0.08

with a long “pumping beam” (PB) a1 = 0.012 is modeled using a 1D version PIC simulation

code VLPL [17]. Figure 7(a) illustrates the temporal profile of the PB, which moves to the

left; Figs. 7(b,c) are the snapshots of the generated plasma wake and the phase space of

accelerated electrons, which are continuously injected with initial energy 10 MeV electrons;

Fig. 7(d) shows the evolution of the TB as it moves through the plasma. To show how one

can control the phase and the magnitude of the resulting plasma wake, we split the PB into

two sections: the leading section of duration ∆t1 = 500 × 2π/ω0, where ∆ω = −1.7ωp, and

the trailing section ∆t3 = 250 × 2π/ω0, where ∆ω = 1.7ωp. These two pump beam sections

are separated by the middle section of duration ∆t2 = ∆t3, where the pump is switched off.

As Figs. 7(a,b) show, the three pump sections map into three spatial acceleration regions,

which are different from each other in TB dynamics, magnitude, and phase of the plasma

wake. In the leading region the pump beam has higher frequency and energy flows into the

TB, amplifying it. A strong plasma wake with the peak accelerating gradient of 8 GeV/m

is induced. The middle region is void of the pump. Here the TB interacts with the plasma

through the usual LWFA mechanism only, producing a weak, < 1GeV/m, accelerating wake.

In this region the energy of the injected electrons does not significantly change, as seen from

Fig. 7(d). When the trailing (low-frequency) part of the pump collides with the TB, the

energy flows from the TB into the PB, Fig. 7(c). Again, a strong plasma wake is induced,

Fig. 7(b). This wake, however, is shifted in phase by ∆φ = π with respect to the leading

region. As a result, electrons which gained energy in the leading region are decelerated in

the trailing region, Fig. 7(d). This shows that both amplitude and phase of the enhanced

plasma wake can be controlled by shaping the long low-intensity pump beam.

Note that the accelerating wake in Fig. 7(b) looks somewhat irregular due to the presence

of the slow (short-wavelength) plasma waves. Nevertheless, the particle phase space does
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not show any irregularity. Relativistic particles experience a much smoother accelerating

field because the phase velocity of the slow plasma waves is much smaller than the speed of

light.

Plasma linac can be used to prevent phase slippage between ultra-relativistic particles

and the wake which has the phase velocity vph/c ≈ 1 − ω2
p/2ω

2
0 . Since particles are moving

slightly faster than the wake crests, they eventually outrun the accelerating phase and move

into the decelerating phase of the wake (Fig. 8, left). This occurs after one dephasing length

Ld = λ3
p/λ

2
0. After that, acceleration has to be terminated by terminating the plasma. The

next acceleration stage needs to be in phase with the previous one, presenting a serious

technical challenge.

In a colliding beam plasma linac shown in Fig. 7 dephasing can be circumvented by

taking the length of the leading pump section equal to 2Ld. Particle phase dynamics is

shown in Fig. 8, right. After advancing in phase by ∆φ = π, electron finds itself in the

gap between accelerating sections. Accelerating field in the gap is very small because there

is no enhanced wake there. After the gap, electron enters the second accelerating section,

where the phase differs from the first section by π. Therefore, electron is in the accelerating

phase again. This sequence can be repeated indefinitely, ensuring that electron is never

decelerated.

VI. FUTURE WORK

An important unresolved problem is generation of accelerating plasma waves using the

CBA technique in a plasma channel. Plasma channels are important for guiding both long

and short laser beams. Moreover, transversely inhomogeneous plasma may impart an un-

usual structure of the accelerating field with a local minimum on axis. This may result in

advantageous transverse focusing properties of the wake, especially in the context of the

colliding-beam injector [16].
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FIG. 1. PBWA: kinematics of the plasma wake excitation by a co-propagating wavepacket

consisting of two frequency components differing by ∆ω = ωp. Phase velocity of plasma wake

vph ≈ vg, where vg is the group velocity of the wavepacket; CBA: same, only using an extra

counter-propagating laser beam. Nonlinear beating of two slow waves gives rise to fast plasma

wake.
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FIG. 2. Top to bottom: (a) single short laser pulse with a0 = 0.12 and frequency ω0 prop-

agates from left to right; (b) short pulse generates a weak plasma wake Ex; (c) in the presence

of counter-propagating pump with a1 = 0.05 and frequency ω1 = 1.1ω0 the wake is enhanced,

and its phase is shifted by π/2 with respect to the “regular” wake of (b), which is also shown for

comparison; (d) Same as (c), only a down-shifted pump with ω1 = 0.9ω0 is used, and the phase

shift is −π/2.
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FIG. 3. Accelerating field Ez produced by the regular beatwave without pump (small wave) and

with pump a2 = 0.03 (large wave). Beatwave parameters: ω0 = 10.5ωp, ω1 = ω0 − ωp, ωpτL = 25,

pump frequency: ω2 = 11ωp, plasma density: n = 1019cm−3.
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FIG. 4. Left to right: electron phase space (a) before the arrival of short pulse; (b) near

maximum of short pulse; (c) at wavebreaking. Rapid current jolt developing at wavebreaking

drives the enhanced wake behind the short pulse.
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laser pulse intensity; (b) accelerating wakefield Ez.

100.0 200.0 300.0
kp (ct − z)

0

1

N
orm

alized Intensity

a0n

2

−0.8

−0.4

0.0

0.4

0.8

2e
E

z ω
0/

m
cω

p2 ,  
 R

e(
n 1)

ez

Re(n1)

26



FIG. 6. Solid line: fast electric field ẽz, long-dashed line: normalized intensity of short pulse

a2
0, dashed line: density bunching of the slow plasma wave Re(n̂1) = 〈cos θj〉. Rapidly-varying part

of n̂1 is the driven plasma response inside the laser pulse.
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FIG. 7. Collision between a short timing beam (a0 = 0.08, τL = ω−1
p ) and an intermittent pump

(a1 = 0.012) in n0 = 2.5 × 1018cm−3 plasma (ω0/ωp = 20). 10 MeV electrons are continuously

injected into the plasma. (a) Time-dependence of the pumping beam intensity I1 = a2
1; (b)

longitudinal electric field eEz/mcω0; (c) phase space of injected electrons; (d) propagation of the

TB through the plasma, I0 = a2
0;
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