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Abstract

Electromagnetic radiation is strongly absorbed by a magnetized plasma if the

radiation frequency equals the cyclotron frequency of plasma electrons. It is

demonstrated that absorption can be completely canceled in the presence of a

magnetostatic field of an undulator, or a second radiation beam, resulting in

plasma transparency at the cyclotron frequency. This effect is reminiscent of

the electromagnetically-induced transparency (EIT) of the three-level atomic

systems, except that it occurs in a completely classical plasma. Unlike the

atomic systems, where are all the excited levels required for EIT exist in each

atom, this classical EIT requires the excitation of the non-local plasma oscil-

lation. The complexity of the plasma system results in an index of refraction

at the cyclotron frequency that differs from unity. Lagrangian description was

used to elucidate the physics and enable numerical simulation of the plasma

transparency and control of group and phase velocity. This control naturally

leads to applications for electromagnetic pulse compression in the plasma and

electron/ion acceleration.

PACS: 52.35.Hr, 52.35.Mw, 42.25.Bs, 52.38.Kd
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Electromagnetically induced transparency (EIT) in quantum-mechanical atomic systems

is a well understood and thoroughly studied [1] subject. EIT is the basis of several appli-

cations, such as slow light [2], information transfer between matter and light [3,4], sound

wave generation [5], and even a proposed testing of black-hole physics [6]. Several re-

cent reviews [7] elucidated the quantum mechanical mechanism of EIT, which relies on the

destructive interference between several pathways which connect the ground and excited

states of the atom. This Letter presents the physics of induced transparency and reduced

group velocity in a classical plasma and proposes applications to accelerators and energy

compression.

We consider an externally magnetized plasma with ~B = B0~ez and density n0. A right-

hand polarized electromagnetic wave (which we refer to as the probe) at a frequency ω1 equal

to cyclotron frequency Ω0 = eB0/mc cannot propagate in the plasma because it undergoes

resonant cyclotron absorption [8]. The cold magnetized plasma dispersion relation ω1 v. s.k1

for the right-hand polarized probe, plotted in Fig. 1, is given by ω2
1 = k2

1c
2 +

ω2
pω1

ω1 − Ω0
. Both

the plasma current and the wavenumber k1 become infinite for ω1 → Ω0, and a forbidden

bandgap exists between Ω0 and Ωc =
√

Ω2
0/4 + ω2

p + Ω0/2, where ωp = (4πe2n0/m)1/2 is the

plasma frequency. Transparency can be realized by adding a second intense electromagnetic

wave (the pump) with frequency ω0 = Ω0 − ωp. Moreover, if ωp = Ωc, transparency can be

obtained using a magnetostatic undulator with arbitrary wavenumber k0.

The mechanism of classical electromagnetically induced transparency is the destructive

interference between the electric field of the probe ( ~E1⊥) and the sidebands of the electric

( ~E0⊥) and magnetic ( ~B0⊥) fields of the pump. The sidebands are detuned by the plasma

frequency from the pump, and are produced by the collective electron plasma oscillation,

with frequency ωp, along the magnetic field. Qualitatively, the total force at the cyclotron

frequency experienced by a plasma electron is given by ~Ftot ≈ −e( ~E1⊥+ζz∂z
~E0⊥+ζ̇z~ez× ~B0⊥),

where ζz is the electron displacement in the plasma wave. In linear theory, with only the

probe wave, the resonant ~E1⊥ generates an induced plasma current that dominates the

displacement current and prevents wave propagation. With both the pump and probe, if
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the amplitudes and phases of the pump and the plasma wave are properly correlated, the net

force can vanish (~Ftot ∼ 0). Consequently, the plasma current at the cyclotron frequency is

small (or even vanishing), and the probe propagates as if in vacuum. Numerical simulation

below demonstrates that this correlation is naturally achieved in a collisionless plasma.

We assume two right-hand polarized EM waves propagating along z− direction, with

their electric and magnetic fields given by 2e ~E0⊥/mcω0 = apump~e+ exp (iθ̄0) + c. c.,

2e ~E1⊥/mcω1 = aprobe~e+ exp (iθ̄1)+c. c., and ~B0,1⊥ = (c~k0,1/ω0,1)× ~E0,1⊥, where ~e± = ~ex±i~ey,

and θ̄0,1 = k0,1z − ω0,1t. The non-relativistic equation of motion of a plasma electron in the

combined fields is given by

d2~x

dt2
+ Ω0~v × ~ez + ω2

pζz~ez = − e

m

∑
m=0,1


 ~Em⊥ +

~v × ~B⊥m

c


 , (1)

where ~x ≡ (z0 + ζz)~ez + ~x⊥ and ~v = d~x/dt ≡ c~β are the particle position and velocity. The

initial conditions are ~v = 0 and ~x = z0~ez. The third term on the LHS of Eq. (1) is the

restoring force of the ions [9].

Equation (1) was integrated for the case when only a probe field is present and the

case with both the pump and the probe. The pump and the probe amplitudes were taken

as increasing adiabatically in time, up to their respective peak amplitudes of a0 and a1,

according to

apump =
a0

2
(1 + tanh [(Ω0t − 160)/40]) ,

aprobe =
a1

2
(1 + tanh [(Ω0t − 320)/40]) . (2)

This enables the pump to turn on first, followed by the probe.

Simulation results for ωp/Ω0 = 0.3 (ω0 = 0.7Ω0) are shown in Fig. 2. Without the pump,

an electron is resonantly driven by the probe as shown in Fig. 2(a). In the plasma, this

growth leads to a large electron current and consequent probe absorption (time-averaged,

~E⊥ ·~v⊥ < 0). Adding a strong pump with a0 = 0.1 and k0 ≈ 0.83Ω0/c dramatically changes

electron motion, as seen in Fig. 2(b). After the pump is turned on but before the turning on

of the probe, an electron oscillates in the field of the pump according to the analytic solution
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βx0 = ω0apump/(ω0−Ω0) sin (k0z0 − ω0t). Switching on the probe does not significantly alter

electron motion: βx − βx0 appears as a barely visible dashed line in Fig. 2(b). Figs. 2(a)

and (b) illustrate how the pump suppressed electron response at the cyclotron frequency.

This suppression results in the plasma becoming transparent at the cyclotron frequency and

allows the propagation of the probe.

The suppression of the linear response to the probe is caused by the excitation of a

strong plasma oscillation [shown in Fig. 2(c)], which produces a sideband of the pump at

the cyclotron frequency. This sideband, in turn, cancels the electric field of the probe. An

approximate analytic formula for the steady-state the plasma oscillation,

ζ0 =
2aprobe

k0apump
sin ωpt, (3)

is derived below by requiring that the sideband cancels the probe. It is in good agreement

with the simulation, as seen in in Fig. 2(c) where the dashed line shows the difference

between the analytic and simulated motion. Simulation results demonstrate the stability

of the steady-state values of βx and ζz ; these values are naturally reached in a collisionless

plasma. Note that the pump has to be switched on prior to the arrival of the probe. In

atomic physics, this pulse sequence is well-known, and referred to as “counter-intuitive” [7].

Here it seems intuitive, in that the pump needs to be present so as to suppress the response

to the probe.

Generating a high-power pump wave may prove challenging in practice. For example, a

dimensionless vector potential of a0 = 0.01 over an area A = (2πc/ω0)
2 requires microwave

power of order 3 MW. Transparency can, however, also be induced by a helical undulator

field. In this circumstance, corresponding to a zero-frequency pump, one requires ωp = Ω0.

We simulated electron motion in the combined field of an undulator, with a0 = 0.1 and

k0 = 2Ω0/c, and a probe, switched on according to aprobe = 0.5a1 (1 + tanh [(Ω0t − 270)/60]),

where a1 = 0.01. Suppression of the electron response at the cyclotron frequency is apparent

from Fig. 3(a). The force due to the electric field of the probe is canceled by the (ζ̇z/c)~ez× ~B0⊥

force which is exerted on a longitudinal plasma wave by the helical magnetic field of the
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undulator. The plasma wave in this example can be used for acceleration of relativistic

electrons because its phase velocity is vph = (ω1 − ω0)/(k1 − k0) = −c.

The steady-state values of β+ = β∗
− = βx − iβy and ζz can be analytically obtained by a

straightforward linearization of Eq. (1) in the weak probe, a1 � a0, limit.

β̇+ + iΩ0β+ =

−
(
ω0a0e

iθ̄0 + ω1a1e
iθ̄1 − k0a0ζ̇ze

iθ̄0 − k1a1ζ̇ze
iθ̄1

)
. (4)

Introducing θ0,1 = k0,1z0−ω0,1t and assuming that k0,1ζz < 1, the exponentials in Eq. (4)

are expanded as eiθ̄0,1 ≈ eiθ0,1(1 + ik0,1ζz), yielding

β̇+ + iΩ0β+ = −ω0a0e
iθ0

(
1 + ik0ζz − k0ζ̇z/ω0

)

−ω1a1e
iθ1

(
1 + ik1ζz − k1ζ̇z/ω1

)
. (5)

The longitudinal equation of motion is given by

ζ̈z + ω2
pζz ≈ − e

mc


~v⊥ × ~B⊥ + ζz~v⊥ × ∂ ~B⊥

∂z


 ,

where ~B⊥(z, t) was expanded as ~B⊥(z0 + ζz) ≈ ~B⊥(z0) + ζz∂z0
~B⊥(z0) to first order in ζz.

Expression ~B⊥ in terms of amplitudes and phases yields

ζ̈z + ω2
pζz = −c2

2

(
k0a0β−eiθ0 + k1a1β−eiθ1−

ik2
0ζzβ−a0e

iθ0 − ik2
1ζza1e

iθ1

)
+ c. c. (6)

The last term on the RHS of Eq. (6) will be dropped because it is proportional to the product

of two small quantities, ζz and a1. Note that, unlike the transverse velocity β+ which is

excited directly by each of the two lasers according to Eq. (5), plasma waves are excited

only in the presence of two lasers (including the possibility of one having zero-frequency)

via the beatwave mechanisms.

The physical reason for transparency in the plasma is the strong coupling between the

longitudinal and transverse degrees of freedom of the plasma electrons. The steady-state

solution of Eq. (6) ζz = 0.5ζ̃ exp i(∆kz − ∆ωt) + c. c. , where ∆ω = ω1 − ω0 and ∆k =
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k1 − k0, is substituted into the transverse equation of motion (5). Retaining terms with

exp−iω0t and exp−iω1t dependence results in

β+ = − iω0a0

ω0 −Ω0
eiθ0 − iω1

ω1 − Ω0

(
a1 +

ik0ζ̃

2
a0

)
eiθ1 . (7)

Applying Eq. (7) to case of ω1 = Ω0 and ∆ω = ωp yields the steady-state amplitude of the

plasma wave given by Eq. (3).

The general case of ω1 6= Ω0 is handled by inserting β+ and β− into Eq. (6) to arrive at

(ω2
p − ∆ω2)ζ̃ = ic2

[
k0a

∗
0ω1

ω1 − Ω0
(a1 + ik0ζ̃a0/2)−

k1a1ω0

ω0 −Ω0
a∗

0 − i
k2

0 ζ̃ω0

ω0 − Ω0
|a0|2

]
, (8)

where θ1 − θ0 = (k1 − k0)z0 − ∆ωt. Equation (8) is then solved for ζ̃. Substitution of this

expression for ζ̃ into Eq. (7) yields the steady-state perpendicular velocity:

β+s = − iω0a0

ω0 − Ω0

eiθ0 − i
ω1a1

ω0 −Ω0

eiθ1 ×

×c2k2
0ω0|a0|2(k1/k0 − 2) + 2(ω2

p − ∆ω2)(ω0 − Ω0)

c2k2
0 |a0|2ω1 + 2(ω2

p − ∆ω2)(ω1 −Ω0)
, (9)

where we have neglected terms proportional to the product of the laser detuning from reso-

nance, δΩ = ω1 −Ω0, and the pump intensity a2
0. Qualitatively, the influence of the pump is

strong only close to the cyclotron resonance, and is negligible far from ω1 = Ω0. From Eq. (9),

plasma is resonantly driven when the denominator D = 2(ω2
p −∆ω2)(ω1 −Ω0) + c2k2

0 |a0|2ω1

vanishes. Close to cyclotron resonance, D ≈ 4ωp(Ω
2
R − δΩ2), where ΩR = ck0a0(Ω0/4ωp)

1/2

is the effective Rabi frequency. Hence, the pump field shifts plasma resonances from ω1 = Ω0

to ω1 = Ω0 ± ΩR.

The fluid velocity component synchronous with the probe (i.e., proportional to exp iθ1)

is b+ ≈ β+s − ∂z(ζzβ+s) = β+ − ik1ζzβ+ Explicitly, using the results of the last paragraph,

b+ = ia1ω1(δΩ + δΩ0)/(Ω
2
R − δΩ2) where δΩ0(k1) = (2Ω2

Rω0/ωpΩ0)(k1/k0 − 1). The expres-

sion for b+ can now be used to calculate the current in the plasma that is synchronous with

the probe field.
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The desired dispersion relation for induced transparency in a magnetized plasma is de-

rived from the wave equation for the probe, −(c2∂2
z − ∂2

t ) ~E = 4π∂t
~J = −4πicω1en0b++c. c..

One finds

ω2
1 = c2k2

1 − ω2
pω1

δΩ + δΩ0(k1)

Ω2
R − (δΩ)2

, (10)

where it was assumed that the frequency of the pump is fixed at ω0 = Ω0 − ωp. Complete

transparency (ω2
1 = k2

1c
2) is achieved at ω1 = Ω0−δΩ̄0, where δΩ̄0 ≈ (2ω0Ω

2
R/ωpΩ0)(Ω0/k0c−

1). Note that this frequency shift is in general very small in the most interesting regime of

ΩR � ωp: |δΩ0| < 4Ω2
R/ωp � ΩR, and can be even smaller near cyclotron resonance when

the pump and probe co-propagate. Equation (10) reduces to the dispersion relation for a

single probe in a magnetized plasma when the detuning is large, (δΩ)2 � Ω2
R. As expected,

the influence of the pump on the response of the plasma to the probe is significant only in

the vicinity of δΩ = 0.

Note that index of refraction is not identically equal to unity at the cyclotron resonance.

This is different from the quantum-mechanical result for a three-level system [10], where

ω1 = k1c on resonance. We speculate that this difference occurs because of multiple Landau

levels En = nh̄Ω0 and corresponding Raman-shifted levels ERn = En+h̄ωp which participate

in the classical EIT.

The modified dispersion relation given by Eq. (10) is plotted in Fig. (4), for the same

plasma parameters as in Fig. (1) and a co-propagating pump with ΩR = 0.5ωp. The flat band

between the Ω0±ΩR resonant frequencies is a novel feature which is not present without the

pump (compare with Fig. (1)). The width of this transparency band, which scales as ΩR ∝
a0, can become very narrow for low pump amplitude. The corresponding “group velocity”

(as understood in the strictly geometrical sense explained below) vg = ∂ω1/∂k1 ≈ 2cΩ2
R/ω2

p

can also be made arbitrarily small. This slowly propagating wavepacket of electromagnetic

waves is a classical analog of the “slow light” in atomic systems [2].

Qualitatively, the spectacular slowing down of electromagnetic waves in the EIT plasma

can be understood by considering the entrance of a probe beam of duration L0 into the
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plasma. In steady-state inside the plasma, the “slow light” wavepacket of length Lf consists

of the transversely polarized field of the probe | ~E1| = | ~B1| = a1mcω1/e and the longitudinal

electric field of the plasma wave Ez = 4πen0(2a1/k0a0). As the pulse enters the plasma,

it loses photons to the pump at the same rate as new plasmons are created (according to

the Manley-Rowe relations). The classical photon density of a field with frequency ω is

proportional to the action density ∝ U/ω, where U is the energy density. From this one can

calculate that the ratio of the plasmon to photon density inside the “slow light” pulse,

Uplas/ωp

Uphot/ω1
=

Ω0

ωp

E2
z

2E2
1

=
ω2

p

2Ω2
R

, (11)

is much greater than unity if ΩR � ωp. Thus, most of photons of the original pulse are

transferred to the plasma wave. Since the index of refraction remains close to unity, the

photon energy density in the pulse remains roughly constant. Therefore, the loss of photons

is due to the spatial shortening of the pulse from L0 to Lf = L0 × (2Ω2
R/ω2

p). Because tem-

poral pulse duration does not change, we recover the previously calculated vg/c = 2Ω2
R/ω2

p .

It is precisely in this geometric sense of vg/c = Lf/L0 that the group velocity of the slow

light is interpreted. vg is not related to the speed of individual photons since their number is

not conserved during the pulse transition into the plasma. In the case of a static undulator

all the energy is transfered to the plasma and compressed by a factor vg/c, resulting in a

dramatic increase of the energy density.

One interesting application of EIT in magnetized plasma is ion acceleration. While laser-

plasma accelerators of electrons [11] have long been considered as a long-term alternative

to conventional rf cavity-based linacs, the field of plasma-based ion accelerators is still in

its infancy [12]. Present concepts revolve around ions generated at low energies when ultra-

intense lasers hit thin foils. The plasma system studies here enables one to conceive of an

entirely different scheme–a short-pulse ion accelerator consisting of a “slow light” pulse in a

plasma with approximately equal group and phase velocities. Acceleration is accomplished

by the longitudinal electric field of the plasma wave. Counter-propagating geometry is

chosen to match the phase and group velocities because vph = ωp/|k0| + k1 ≈ 0.5cωp/Ω0.
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Matching vph = vg yields a0 ≈ ω2
p/Ω

2
0 � 1. Other accelerator concepts which rely on the

ponderomotive force appear attractive because the ponderomotive force, which scales as the

gradient of the energy density E2
z/Lf ∝ (ωp/Ω0)U0/v

2
g , increases rapidly with decreasing

group velocity of the probe.

This work was supported by the DOE Division of High Energy Physics and the Presi-

dential Early Career Award for Scientists and Engineers.
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FIG. 1. Dispersion curve for a right-hand polarized wave propagating along a magnetic field.
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FIG. 2. Numerical simulation of single particle motion in the combined field of two EM

waves with (ω1 = Ω0,k1 = ω1/c) and (ω0 = Ω0 − ωp, k0 ≈ 0.83Ω0/c). Both the pump and

the probe are slowly turned on according to Eq. (2). (a) Without the pump an electron is

resonantly driven by probe: βx growth indefinitely; (b) With the pump, electron motion is al-

most unaffected by the probe. Solid line – total βx; barely visible dashed line – (βx − βx0),

where βx0 = ω0apump/(ω0 − Ω0) sin (k0z0 − ω0t) is the analytic result when only the pump is

present. (c) Solid line: the longitudinal displacement Ω0ζz/c; dashed line: Ω0(ζz − ζ0)/c, where

ζ0 = 2apump/aprobe sinωpt from Eq. (3)
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Ω0ζz/c during and after the turn-on of the probe.
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