Mechanism of Radial Redistribution of Energetic Trapped Ions due to $m=2/n=1$ Internal Reconnection in Joint European Torus Shear Optimized Plasmas

by

N.N. Gorelenkov, A. Gondhalekar, A.A. Korotkov, S.E. Sharapov, D. Testa, and Contributors to the EFDA-JET Work programme

January 2002
PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability


DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Telephone: 1-800-553-6847 or (703) 605-6000
Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm
Mechanism of Radial Redistribution of Energetic Trapped Ions due to $m=2/n=1$ Internal Reconnection in Joint European Torus Shear Optimized Plasmas

N.N.Gorelenkov, A.Gondhalekar†, A.A.Korotkov†,
S.E.Sharapov†, D.Testa‡,
and Contributors to the EFDA-JET Work programme*

16th January 2002

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
†UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK
‡Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA

Abstract

Internal radial redistribution of MeV energy ICRF driven hydrogen minority ions was inferred from neutral particle analyzer measurements during large amplitude MHD activity leading to internal reconnection in Shear Optimized plasmas in the Joint European Torus (JET). A theory is developed for energetic ion redistribution during a reconnection driven by an $m = 2/n = 1$ internal kink mode. Plasma motion during reconnection generates an electric field which can change the energy

and radial position of the energetic ions. The magnitude of ion energy change depends on the value of the safety factor at the plasma core from which the energetic ions are redistributed. A relation is found for corresponding change in canonical momentum $P_\varphi$, which leads to radial displacement of the ions. The model yields distinctive new features of energetic ion redistribution under such conditions. Predicted characteristics of ion redistribution are compared with the NPA measurements, and good correlation is found.

Sometimes fast ions were transported to the plasma edge due to interaction with a long-lived magnetic island which developed after the reconnection and had chirping frequency in the laboratory frame. Convection of resonant ions trapped in a radially moving phase-space island is modeled to understand the physics of such events.
1 Introduction

Confinement of MeV energy ions, produced either by nuclear fusion reactions or radio frequency heating, in the plasma core is a requirement for successful heating of tokamak plasmas. Measurement, modeling and benchmarking of internal radial redistribution and expulsion of energetic ions due to tokamak plasma instabilities is therefore a priority topic. Interaction of energetic ions with \( m = 1/n = 1 \) kink mode and sawtooth instability in plasmas with core safety factor \( q(0) < 1 \), and concomitant redistribution of ions have been already extensively studied both experimentally\cite{1, 2} and theoretically\cite{3, 4, 5}. The search for methods to attain high pressure stable plasmas with strong bootstrap current is at present focussed in JET on Shear-Optimized(OS) equilibria with \( q(0) > 1 \). In the present work we report measurement and modeling of radial redistribution of energetic trapped ICRF heated ions due to magnetic reconnection at the \( q = 2 \) surface in OS plasmas in JET.

High performance plasmas are obtained in OS configurations in JET, Tokamak Fusion Test Reactor (TFTR), DIII-D and JT-60U due to formation of an internal transport barrier \cite{6}. The barrier formation is attributed to the shape of the \( q \)-profile, with generally the central \( q(0) = 1.5 - 2 \). Additionally reverse-shear giving a minimum in \( q(r) \) at \( 0.3 \leq r/a \leq 0.5 \) seems to reduce the power threshold for entering the OS regime. In such conditions, where \( m = 1/n = 1 \) sawtooth oscillations are stable, other types of MHD modes arise to limit plasma performance. The most common of these are the pressure driven internal kink modes coupled to the plasma edge \cite{7, 8}. Experiments show that in JET plasmas such \( m = 2/n = 1 \) mode activity often leads to an internal reconnection (‘crash’) near the maximum of mode amplitude, close to the \( q = 2 \) surface.

Measurements of confined ICRF heated energetic hydrogen minority ions in OS plasmas were made using a high energy Neutral Particle Analyzer (NPA) \cite{9}. Using the NPA measurement of the atomic efflux, the line-of-sight integrated energy distribution function, \( \overline{f}(E, t) \), of trapped ions at the bounce points of their banana orbit was inferred. Deduction of \( \overline{f}(E, t) \) invokes impurity induced neutralization of MeV energy ions, which was discovered in JET.
The method has become quantitatively well established [11, 12], and has subsequently been widely applied also in JT-60U [13] and TFTR [1]. During hydrogen minority ICRF heating of deuterium plasmas in OS configurations in JET, often a short sharp burst of anomalously high efflux of MeV energy hydrogen atoms was measured by the NPA. The flux-spike always coincided with $n = 1$ mode activity culminating in a crash. During the crash the flux to the NPA increased in less than 1 ms, which was the minimum time resolution used in the NPA measurements. The subsequent evolution of the flux-spike depended on the magnetic activity following the crash. Sometimes the crash was followed by a long-lived $n = 1$ magnetic activity with rapidly decreasing frequency (‘chirping’). The decay time of the NPA flux-spike during the chirping depended on the energy of the ions measured. Analysis of the measurements leads to the inference that the NPA flux-spike arises due to the ions suffering radial displacement from the plasma core at $r/a \leq 0.3$ to locations of much greater neutralization at larger $r/a$, where they become neutralized, generating the large flux-spike.

The flux-spike measurements can be grouped according to whether or not a chirping frequency activity developed. The measurements also yield a correlation between the magnitude of the NPA flux-spike and the value of the safety factor in the plasma core, $q(0)$, just before the crash. Note that sometimes the NPA flux-spike was also observed when the $n = 1$ mode grew to such large amplitude that the plasma subsequently disrupted. We conjecture that under these conditions magnetic islands formed on different resonant surfaces overlap, creating conditions for diffusion in stochastic fields. Then the correlation mentioned above between the measured NPA flux-spike and $q(0)$ was not observed. However, this paper excludes consideration of such events.

In TFTR [1, 3], it was shown that in a $m = 1/n = 1$ sawtooth crash lower energy trapped ions experienced stronger mixing than the higher energy ones. The observations were in line with theory [3, 4], which predicted such behavior due to faster toroidal precession of more energetic trapped ions than the characteristic crash time, $\tau_{cr}$. Faster precessing ions, with $\tau_{pr} \ll \tau_{cr}$, average out the effect of the $m = 1/n = 1$ helical perturbation
and therefore experience less redistribution than the slowly precessing ions, i.e. ions with smaller energy. An expression was derived for the critical energy which separates these two groups of ions

\[ \mathcal{E}_{cr} = \frac{2 \omega_c m a R}{n \tau_{cr} q} \]  

(1)

Here \( \omega_c \) is the ion cyclotron frequency, \( m \) is the mass of the energetic ion, \( a \) and \( R \) are the minor and major radii of the plasma, \( n \) is the toroidal mode number, \( \tau_{cr} \) is the sawtooth crash time or reconnection time, and \( q \) is the safety factor. \( \mathcal{E}_{cr} \) is the ion energy at which ion toroidal precession time becomes approximately equal to the sawtooth crash time.

The analysis of NPA measurements of fusion \( \alpha \)-particle redistribution due to sawteeth in TFTR [3] was not able to identify within the error bars the way in which ions were redistributed in \( P_\varphi \) during the crash. This was because the NPA line-of-sight was in the equatorial plane perpendicular to the magnetic axis, and therefore only horizontal redistribution of ions could be measured, with the change in ion energy being responsible for it. Two redistribution formulae for crash induced change in \( P_\varphi \) were tested, a stochastic distribution given by a large diffusion coefficient, and a distribution derived from Kadomtsev’s inversion formula which invokes conservation of magnetic flux and number of ions. Using the stochastic models for \( \Delta P_\varphi \) gave a uniform ion density distribution in the vertical (Z) direction, whereas using Kadomtsev inversion gave a hollow profile along the Z-coordinate. Both models for \( \Delta P_\varphi \) gave satisfactory agreement with the TFTR measurements. The same measurements were also modeled by invoking magnetic field stochasticity due to overlapping multiple poloidal harmonics [5], again giving satisfactory agreement with measurement. In the present work we perform a complementary analysis of ion redistribution induced by the crash event. In this case, however, it is driven by \( m = 2/n = 1 \) reconnection in JET OS plasmas, which has more parametric variation, in particular with \( q(0) \). This makes it possible to exclude specific assumptions of modeling used in [3, 5]. We show that the modeling of the JET measurements favours a post-crash distribution of \( \Delta P_\varphi \) given by the Kadomtsev inversion formula. Physically this
corresponds to the component of the $E \times B$ drift in the direction of minor radius being responsible for the ion redistribution.

In this paper we develop a theory of ion redistribution due to an internal reconnection driven by the $m = 2/n = 1$ infernal kink mode. The formalism is applicable to plasmas in which the core safety factor is $1 \leq q(0) \leq 2$, as in the OS plasmas considered here. We show that for energetic ion redistribution due to such a crash, theory predicts a strong correlation between spatial range of ion redistribution and $q(0)$. It is also shown that in transport due to subsequent trapping in the $n = 1$ magnetic island with chirping frequency, ions in a wide energy range can be transported to the stochastic ripple diffusion domain at the plasma edge at the top of the torus.

2 Ion Redistribution and MHD Activity

2.1 NPA Measurements show Radial Ion Redistribution

High energy NPA measurements have been used in JET for determining the energy distribution function, $T(\mathcal{E}, \mu^*, t)$, of MeV energy ICRF driven hydrogen isotope [11, 12, 14, 15] and He-3 ions [16] with almost fixed ion pitch angle, given by $\mu^* \equiv \cos^{-1}(v_\parallel/v) \leq 5 \times 10^{-3}$. Measurements of $T(\mathcal{E}, \mu^*, t)$ for confined DT fusion alpha-particles [17] and knock-on deuterons produced by close elastic collisions between DT fusion alpha-particles and thermal plasma fuel ions have also been made [17, 18]. These measurements rely on non-perturbing neutralization of energetic ions by one- and two-electron species of the main intrinsic plasma impurities, carbon, beryllium and helium [10, 11]. Through these experiments the physical basis of the measurement and deduction of $T(\mathcal{E}, \mu^*, t)$ has become quantitatively well established. The high energy NPA has thus become a key tool for studying the dynamics of confined MeV energy hydrogen and helium isotope ions. Redistribution of ICRF driven energetic hydrogen ions from the plasma core in JET OS plasmas was deduced from measurements using the methods described above. A preliminary account of the measurements has been given earlier [19].

A description of the measurement set-up is given in ref. [11]. The vertical
line-of-sight of the NPA crosses the plasma centre at $R = 3.1m$, and is typically inside the on-axis ICRF resonance. The NPA admits only atoms born on the vertical NPA line-of-sight and from ions with $v_z/v_\parallel \geq 2 \times 10^2$, where $v_z$ is the component of ion velocity in the $Z$-direction. The measured quantity, the flux of energetic atoms to the NPA, is thus

$$\Phi(\varepsilon, t) = \int F(\varepsilon, Z, \mu^*, t) P(\varepsilon, Z, t) \gamma(\varepsilon, Z, t) dZ \quad (2)$$

Here, $\varepsilon$ is the energy of the ions moving towards the NPA, $Z$ is the vertical coordinate, $F(\varepsilon, Z, \mu^*, t)$ is the local energy distribution function of ICRF driven ions with $\varepsilon$ typically extending to many MeV, $P(\varepsilon, Z, t)$ is the local neutralization probability for the energetic ions, and $\gamma(\varepsilon, Z, t)$ is the plasma transparency for the exiting energetic atoms. The integral is along the NPA line-of-sight. In ICRF heated plasmas in JET with the resonance located on the plasma axis, the radial ICRF heating profile is approximately Gaussian of width $0.2 - 0.3m$ [12]. Thus in eq.(2) $F(\varepsilon, Z, \mu^*, t)$ is weighted to the plasma core with the dominant contribution coming from $r/a < 0.3$. $P(\varepsilon, Z, t)$ is the sum of contributions from different hydrogen isotope atoms (thermal and NBI) in the plasma and from the one- and two-electron ions of the main intrinsic plasma impurities, carbon, beryllium and helium. In JET the dominant neutralization agents for high energy hydrogen isotope ions are [H]- and [He]-like impurity ions. The density of these ions, produced by charge-exchange reactions, is sustained by the density of hydrogen isotope atoms and that of the bare impurity ions [10, 11]. The source for both the hydrogen atoms and the impurities is at the plasma edge. In JET plasmas generally $P(\varepsilon, Z, t)$ is nearly constant in the plasma core and increases rapidly in the region $0.6 \leq |Z/b| \leq 1$. In ICRF heating experiments, using measurements of $\Phi(\varepsilon, t)$ and knowing $P(\varepsilon, Z, t)$ and $\gamma(\varepsilon, Z, t)$ from measured plasma parameters, the line-of-sight integrated ion energy distribution function $\Phi(\varepsilon, \mu^*, t)$ is routinely deduced.

Fig.1 shows evolution of a deuterium OS plasma pulse in JET, heated with deuterium NBI and first harmonic hydrogen minority ICRF heating, which produces the MeV energy hydrogen and deuterium ions with $T_\perp \gg T_\parallel$. 
and effective tail temperature of $0.2 \leq T_\perp (MeV) \leq 0.4$. In the present measurement eight channels of the NPA detected hydrogen atoms spanning the range $0.3 \leq \varepsilon_H (MeV) \leq 1.1$. The key observation was that at $4.725\text{s}$ a sharp increase, by a factor of $3 - 5$, in the flux to the NPA was measured in the whole measurement energy range. Simultaneously a sharp increase in $n = 1$ mode activity was measured on the external Mirnov coils, immediately followed by an ELM seen on the $D_\alpha$ signal. This pattern was common to all of the large number of pulses in which energetic ion redistribution was inferred. The NPA flux-spike was observed in the hydrogen as well as in the deuterium flux. Often this event caused loss of ICRF power coupling as seen in fig.1, thought to be due to the ELM. The burst of $n = 1$ destroyed the internal transport barrier, evidenced by degradation of thermal diffusivity, fusion reactivity, and plasma rotation shown in fig.1. For completeness, just before the $n = 1$ burst the peak electron density $n_e(0) \simeq 3.5 \times 10^{19} m^{-3}$. Note that the duration of the NPA flux-spike, the $n = 1$ mode activity, the ELM seen in $D_\alpha$ emission, and the subsequent redistribution of ions to be discussed, were much shorter than the slowing-down time of the ICRH driven ions in the measurement energy range. We therefore assume that for modeling the subsequent short duration energetic ion transport, the loss of ICRH coupling, if it occurred, may be neglected. In nearly half the pulses in a large set of pulses where the flux-spike was observed, a loss of ICRH coupling or a full disruption of the plasma was observed subsequent to the NPA flux-spike. Evidence of reconnection was seen in fast ECE emissivity measurements which showed a sawtooth-like crash with the inversion radius at $R \approx 3.5 m$. The major radius $R = 3.54 m$ corresponds to the $q = 2$ location deduced from EFIT equilibrium reconstruction.

We exclude transient increase in neutralization probability in eq. (2), due to ELM related injection of H/D atoms or impurities into the plasma, as cause of the NPA flux-spike. This is because: (1) the ELM occurred later than the NPA flux-spike, (2) the ELM related increase in impurity density in the plasma decayed on a time scale much longer than the flux-spike duration, (3) disturbance of impurity ionization balance in the plasma due to injection of H/D atoms from the plasma edge must relax throughout the plasma after the
Figure 1: Evolution of pertinent parameters in a OS plasma pulse #45837 with $B_{\phi 0} = 2.53T$, $I_\psi = 2.32MA$, $q(0) = 1.65$. Evolution is shown of the ICRF and NBI heating powers, peak electron temperature $T_e(0)$, DD fusion rate $R_{DD}$, peak ion temperature $T_i(0)$, central toroidal rotation frequency $\omega_{rot}(0)$, edge emission of $D_{\alpha}$, and amplitude of $n = 1$ mode. $\Phi_H$, the flux of hydrogen atoms to the NPA, is shown for two different energies $\mathcal{E}$, $0.3MeV$ and $0.7MeV$.

ELM (600$\mu$s wide) in $\leq 400\mu$s, contrary to the measured $5 - 10msec$ width of the flux-spike, (4) if ELM induced increase in neutralization probability were the cause of the flux-spike then the decay time of the flux-spike in the low energy NPA channels would be shorter than or equal to that in the high energy channels. The measured decay time of the flux-spike is longer for the low energies than for high energies, varying over $4 \rightarrow 2ms$ for energies $\mathcal{E}(MeV) = 0.3 \rightarrow 1.1$. For reasons (1)-(4) we conclude that the measured time evolution of the flux-spike is contrary to expected evolution if ELM related transient enhancement of neutralization probability had taken place. We therefore exclude the ELM as cause of the NPA flux-spike. This conclusion is validated by the observation that in many similar OS plasma pulses ELMs occured without a corresponding NPA flux-spike.

First evidence that the flux-spike represented expulsion of ICRF driven ions from the plasma core was seen in the spectrogram of $B_\theta$ fluctuations measured at the plasma edge using Mirnov coils. Typically high frequency EAE(350-400 kHz) and TAE(100-180 kHz) modes, excited by energetic
ICRF driven ions, were abruptly extinguished at the time of the flux-spike. This is similar to termination of TAE activity by giant sawteeth in TFTR [20].

Fig.2 shows the temporal behaviour of the NPA flux-spike in a pulse where the \( n = 1 \) burst was followed by a long-lived magnetic island with chirping frequency. Shown energy dependence of the decay time is typical. It looks similar to the sawtooth induced redistribution observed in TFTR [1], where the ions first suffer fast expulsion from the plasma core and subsequent slow loss due to stochastic ripple diffusion. The measured decay time of the flux-spike was modeled using the ORBIT guiding centre code [21] and was consistent with the fact that the high energy particles generally diffused faster from the confinement region due to the energy dependence of the magnetic field ripple stochastic diffusion.

We have applied ORBIT for JET OS plasma incorporating JET TF-ripple and the measured pre-crash plasma equilibrium. Since stochastic ripple diffusion is very sensitive to the magnitude of the TF field ripple and the ion energy, we can determine the allowed position of the ion bounce point \( r_{bp} \) at which it was neutralized. For example, for low energy ions with \( E \approx 300 \text{keV} \) we obtain the post-crash minor radius of the bounce point at \( r_{bp}/a \approx 0.75 \), while for higher energy ions with \( E = 800 \text{keV} \) we find \( r_{bp}/a \approx 0.67 \). Without the stochastic ripple diffusion the ions would live at given minor radius for a long time, comparable to the slowing-down time of several hundred milliseconds. Note that in JET, because of the small amplitude of the TF ripple due to its high periodicity (32 TF coils), the spatial extent of the stochastic ripple diffusion domain is small and typically is around \( \Delta r/a \approx 0.05 \) between the confinement domain and the prompt loss domain. Since (1) the width of the ripple diffusion region is so narrow, (2) the flux-spike time coincide with the chirping frequency magnetic activity and (3) ceased after it, we can conclude that the time dependence of the NPA flux after the crash is primarily controlled by the chirping frequency magnetic activity and is coming from this narrow region of the stochastic ripple diffusion. Using the ORBIT modeling we determine that the bounce points of ions giving the flux evolution shown in fig.2 have to be located within \( 1.39 \leq Z(m) \leq 1.55 \).
Figure 2: Evolution of NPA flux-spike at two representative energies, in a pulse with a long-lived magnetic island with chirping frequency following the $n = 1$ burst, showing energy dependent decay time of the flux-spike. We infer that larger the ion energy, faster is the decay of density of those ions.

With this information in hand we were able to determine the energy distribution function of ions contributing to the flux-spike. Before and after the flux-spike the position of ions was at $r/a \leq 0.3$, permitting an accurate determination of $F(\mathcal{E},t)$. Fig.3 shows the deduced absolute energy distribution function of the ions at two times, immediatly before and after the flux-spike. The energy distribution function of ions contributing to the flux-spike is also shown. Due to uncertainty in impurity transport in the edge plasma from which the flux-spike originates, the required impurity ionization equilibrium can not be computed accurately [11]. Therefore the absolute magnitude of the ion energy distribution function in the flux-spike can not be determined accurately, although variation with energy is correctly deduced. Therefore in fig.3 the energy distribution function of ions contributing to the flux-spike was normalized to that before and after the flux-spike at the highest energies. From fig.3 we conclude that more low energy ions with $\mathcal{E} \leq 0.6\,\text{MeV}$ are redistributed than higher energy ones. Comparison of deduced ion energy distribution functions before and after the NPA flux-spike, in the range $0.3 \leq E(\text{MeV}) \leq 1.1$, shows that 10 ÷ 20% of the ICRF heated ions in the measurement phase-space were redistributed from the plasma core due
Figure 3: Measured energy distribution function of ions before, during and after the flux-spike averaged over 5\textit{msec} time window. We see that the magnitude of $T(\xi)$ after the flux-spike is reduced from that before the spike. We also see that more low energy ions are displaced than higher energy ones.

... to the crash, and that the affected ions were those with toroidal precession time greater than the crash time, $\tau_{\text{pr}} > \tau_{\text{cr}}$.

2.2 $m = 2/n = 1$ Reconnection and Subsequent Long-lived Magnetic Island with Chirping Frequency

Formation of an internal transport barrier(ITB) in OS plasmas in JET leads to a highly peaked pressure profile close to the limit of stability of pressure driven kink modes. According to ref.[7] occurrence of disruptions is the main limitation to high performance in OS plasmas in JET with an ITB. The measured structure of the disruption precursor mode was found to be in agreement with calculated structure of the ideal MHD $n = 1$ pressure driven kink mode. Analysis in ref.[7] suggests that when conditions are favourable the precursor mode grows to large amplitude simultaneously with plasma rotation decreasing, so that eventually the mode locks, causing a disruption. Sometimes the momentum input from the NBI is sufficient to overcome the decelerating forces and the mode does not lock and no disruption occurs, but the ITB is destroyed nevertheless.

Ref.[7] also shows that fishbone-like activity frequently occurs in JET OS plasmas. Frequency chirping is a notable characteristic of the modes, with frequency($f$) down-shifting at a rate $df/dt \simeq -3 \times 10^6$ Hz/s, with duration
5 – 10msec. These oscillations are attributed to \( m = 2/n = 1 \) double-kink modes [22] in plasmas with off-axis minimum in \( q(r) \), and driven unstable by precessional resonance with energetic ions. Degradation of ITB and plasma performance are associated with such fishbone-like bursting activity. NPA measurements during such fishbone-like bursting activity show no detectable change in NPA flux. This leads to the inference that any concomitant internal redistribution of energetic ions, if at all, must be small in spatial extent. The resistive reconnecting counterpart of the above, a double-tearing mode leading to sawtooth-like reconnection at the \( q=2 \) surface was observed and analyzed in TFTR [23].

The most prominent magnetic activity present at the time of the flux-spike is shown in fig.4, where the dominant behaviour is the fast magnetic reconnection soon after 44.724s. The reconnection is also evidenced by ECE measurement of \( T_e \) shown in fig.5. The reconnection event terminates the ITB, analogously to that described in ref.[7]. The precursor is an \( n = 1 \) mode of amplitude \( \delta B_\theta/B \simeq 2 \times 10^{-4} \), growing up to \( \delta B_\theta/B \simeq 10^{-3} \) during the reconnection. In some pulses a long-lived magnetic island is formed with frequency chirping in the laboratory frame from \( 15kHz \) to \( 4kHz \) within \( \simeq 6ms \), giving \( df/dt \simeq -2 \times 10^6 \) Hz/s, as shown in fig.4. The timing in fig.4 lags behind that in fig.5 by \( \simeq 2.1ms \) due to averaging and Fourier transformation. Soft x-ray camera measurements show the perturbation to be kink-like. Moreover, at the \( q = 2 \) location, the measured rate of change of plasma rotation frequency is \( df_{rot}/dt \sim -7.5 \times 10^4 \) Hz/s. Thus deceleration of the island in the plasma frame is the main cause of the observed frequency chirping.

3 Formulation of Energetic Ion Redistribution during a \( m=2/n=1 \) Reconnection

In this section we present a theory of redistribution of energetic ions induced by the reconnecting phase of the crash in JET OS plasmas. This is typically a very fast process, with a period shorter than the toroidal precession time
Figure 4: Spectrogram of $B_\theta$ fluctuations, showing the magnetic field activity at the time of the crash, and the subsequent long-lived $n = 1$ magnetic island with characteristic chirping frequency. During the crash typically $\delta B_\theta / B \geq 3 \times 10^{-4}$, whereas during the frequency chirping magnetic island $\delta B_\theta / B \approx 2 \times 10^{-4}$.

Figure 5: ECE measurement showing: (a) Contours of constant $T_e$ as function of major radius $R(m)$ and time $t(s)$. At the crash cold plasma invades the region of higher $T_e$, followed by a period of intense non-thermal ECE emission. (b) Snapshot of $T_e$ profile at three time points shown in fig.5(a), profiles #1 and #2 are at opposite phases of the precursor oscillation before the crash, illustrating the kink-like structure of the mode. Profile #3 is taken after the crash and shows characteristic flattening due to the magnetic island, which persists for the whole duration of the frequency chirping shown in fig.4.
of the MeV energy hydrogen ions, but longer than the characteristic transit and bounce times of such ions. We model the NPA flux-spike measurements described above, with the aim to elucidate the physical mechanism of ion redistribution. To this end a mechanism for changing the energy of the ions during the $m = 2/n = 1$ reconnection is invoked. This mechanism has been developed previously to model sawtooth induced major radius redistribution of DT fusion α-particles in TFTR [3].

3.1 Initial Spatial Distribution of Ions and Bounce Point Characteristics During the Reconnection

Following Ref.[3] we make use of invariants of ion motion, which are integrals of the guiding-center drift orbit of the ions in the unperturbed tokamak magnetic field. We define three invariants which will be the variables describing the energetic ion distribution function $f(\mu, P_\varphi, p)$

\[ P_\varphi \simeq \tilde{\psi} - v_\parallel R, \quad p = \mu B_0 R_0 / \mathcal{E}, \quad \mathcal{E} = v^2 / 2. \]  

(3)

Here $P_\varphi$ is the canonical toroidal momentum, which is not conserved during the reconnection. $\tilde{\psi} = \omega_{c0} \psi / 2\pi B_0$ in which $\omega_{c0}$ is the ion cyclotron frequency and $B_0$ is the equilibrium toroidal magnetic field at the plasma axis. $\psi$ is the poloidal magnetic flux. $\mu = \mathcal{E}_\perp / B$, the ion magnetic moment in which $\mathcal{E}_\perp$ is the perpendicular ion energy, is assumed to be conserved in the low frequency mode oscillations under consideration. The total ion energy $\mathcal{E}$ or equivalently $p$, a pitch-angle like variable whose magnitude is equal to the major radius of the bounce point of the ion orbit in a low-beta plasma, are not conserved. The effect of the reconnection on the ions is governed by the particle motion in the presence of an electric field. We assume that the reconnection is driven by the ideal $n = 1$ kink mode which has helical symmetry. To determine the position of the ions after the reconnection we calculate evolution of ion energy $\mathcal{E}$ and toroidal momentum $P_\varphi$ through the reconnection using the following equations.
\[
\frac{dP}{dt} \sim \frac{dE}{dt} = \left\langle \nabla \vec{\psi} \cdot \vec{v}_E \right\rangle,
\]
where \( z \) is the ion charge, and \( \vec{v}_d \) is ion drift velocity in the toroidal magnetic field of the tokamak. The equations describe ion drift in the electric field \( \vec{E} \) generated by plasma motion during the reconnection, and the change of ion energy due to the electric field. The angle brackets denote time average over the ion bounce period. Eq.(4) also describes the evolution of the position of the bounce point, since \( d \ln p = -d \ln \mathcal{E} \). The equilibrium magnetic field can be represented in the form \( \vec{B} = g \vec{R} \vec{\nabla} \varphi + \vec{\nabla} \times \vec{\psi} \), enabling us to transform Eqs.(4) into the set

\[
\frac{dP}{dt} = -\frac{c_\omega}{2\pi B} \mathcal{J} \frac{\partial}{\partial \rho} \phi
\]
\[
\frac{dE}{dt} = -\frac{\varphi}{B} \mathcal{E} \left( 2 - \frac{B}{B_0} \right) \frac{\partial R}{\mathcal{J}} \left[ -\left( \frac{\partial}{\partial \theta} \ln B \right) \frac{\partial}{\partial \psi} + \left( \frac{\partial}{\partial \psi} \ln B \right) \frac{\partial}{\partial \theta} \right] \phi \quad (5)
\]

Here \( \mathcal{J} \) is the Jacobian, and we have used the high aspect ratio approximation \( \epsilon^2/q \ll 1 \). In general the plasma displacement needs to be found numerically from the Kadomtsev like reconnection model. Analytic solutions, yielding the main properties of ion motion, are obtainable by making assumptions of ideal MHD electrostatic potential with one dominant mode \((m, n)\). Quasineutrality condition can be written as

\[
\Delta \phi \simeq \left( \frac{1}{\rho} \frac{d}{dp} \rho \frac{d}{dp} - \frac{m^2}{\rho^2} \right) \phi = 0,
\]

which has a solution near the plasma center \( \phi = \phi_0 \rho^m \cos(m \theta - n \varphi - t) \).

The potential takes the familiar form for the \( m = 1/n = 1 \) mode inside the mixing radius, as discussed in Ref.[3]. For trapped ions the toroidal angle satisfies \( \varphi = \varphi_{md} + q\theta \), where \( \varphi_{md} \) is the toroidal angle where the ion intersect the midplane. Substituting this formula into Eq.(5) after some algebra keeping finite ellipticity \( k \) of plasma surfaces, we obtain the following equations describing the minor and major radii of the ion bounce points during the crash,
\[
\frac{d\rho(P_\omega)}{dt} = A \rho^{m-1} \sin\left(n\varphi_{md} + \omega t\right), \\
\frac{dn}{dt} = C \rho^{n-1} \sin\left(n\varphi_{md} + \omega t\right),
\]

(6)

The coefficients \( A \) and \( C \) denote

\[
A = \left\langle -\frac{m}{B} \phi_0 \cos\left[(m-nq)\theta\right]\right\rangle, \\
C = \left\langle -\frac{m}{B} \phi_0 \cos\left[(m-nq-1)\theta\right]\right\rangle
\]

(7)

The coefficients \( A \) and \( C \) in Eqs. (6) reveal an important property of ion interaction with the perturbation given \( (m, n) \), that the ion mixing will depend on the safety factor. Ion toroidal precession velocity \( \dot{\varphi}_{md} \) determines the toroidal angle \( \varphi_{md} = \dot{\varphi}_{md} t + \varphi_0 \), where \( \varphi_0 \) is the pre-crash toroidal angle. Generally Eq. (6) can be solved only numerically, but simple approximations yield all qualitative features of the ion motion. We assume that coefficients \( A \) and \( C \) remain constant and that the trapping parameter for the ions does not change due to the redistribution, i.e., \( \kappa = const. \). The trapping parameter is given by \( \kappa^2 = (1-\epsilon)[R_0(1+\epsilon) - p]/2cp \), so that for trapped ions \( \kappa < 1 \) and for passing ions \( \kappa > 1 \). A second approximation that we have made use of is that the period of toroidal precession of the ion is longer than the crash time, \( \tau_{pr} > \tau_{cr} \), so that the ion energy is less than the critical energy \( \mathcal{E}_{cr} \) given in Eq. (1). Recall that low energy trapped ions satisfying \( \tau_{cr} < \tau_{pr} \) undergo the largest energy exchange and maximum bounce point displacement. We have verified that in pulse \#45837 at \( t = 4.725 \text{sec} \), at the position of \( q = 2 \), for hydrogen ions with \( E \leq 0.4 \text{ MeV} \), that \( \tau_{pr} > \tau_{cr} (\simeq 50 \mu \text{sec}) \). A comparison of correlation between degree of mixing and the ion energy, for different energies, for ion redistribution by sawteeth was made in [1, 3], where it was demonstrated that higher energy ions are less sensitive to the mixing. Then we can write the post-crash minor and major radius positions of the ion bounce points, \( \rho_+ \) and \( p_+ \), in terms of the pre-crash values, \( \rho_- \) and \( p_- \),

\[
\rho_+ = \rho_- e^{A\tau_{cr} \sin n \varphi_0}, \\
p_+ = p_- + \frac{C}{A}(\rho_+ - \rho_-)
\]

(8)

From this equation one can determine the ion distribution after the crash.
if the distribution before the crash is known. We specify the minor radius ($\rho$) and pitch angle ($p$) distribution of the ions before the crash as a Gaussian with a peaked spatial profile

$$f_\rho = (1 - \rho^2)^4 \exp[-(p - R_c)^2 \Delta R^2] \quad (9)$$

Here $R_c$ is the position of the ICRF resonance, $\Delta R$ is the radial width of the resonance layer, and $R_0 = 3.1 m$ is the major radius of the magnetic axis. Measurements over a wide range of plasma parameters in TFTR [1] have demonstrated the validity of using such a pitch-angle distribution function for the energetic ions. An important conclusion to be drawn from Eq.(6) is that during mixing following the crash the relation $\dot{\rho} = C \dot{\rho}/A$ holds. It follows that $\Delta R/\Delta \rho \simeq \text{const}$, where the value of the constant depends mainly on the value of core safety factor $q(0)$. We will consider two limits $q(0) = 2$ and $q(0) = 1$, and the perturbation has dominant $m = 2$ harmonic.

In the zero orbit width approximation, for $q(0) = 1$ we obtain

$$\frac{C}{A} = 2 \frac{E(\kappa)}{K(\kappa)} - 1$$

Here $K$ and $E$ are the complete elliptical integrals of the first and the second kind respectively. Fig.6 illustrates the dependence of the spatial ion redistribution due to the $m=2/n=1$ reconnection on the magnitude of the core safety factor $q(0)$. The figure presents contours of the initial ion distribution according to Eq.(9), and trajectories along which the trapped ion bounce points can move as given by Eqs.(8).

From fig.6 we see that for $q(0) = 2$ much larger flux to the NPA is to be expected after the crash, because the ion motion is predominantly vertical into the region of rapidly increasing neutralization of the energetic hydrogen ions. In this illustration we have fixed the trapping parameter at $\kappa = 0.6$, which corresponds to ions with bounce points just inboard of the major radius. Since the ion mixing due to the crash is not very sensitive to the trapping parameter, for the purpose of a qualitative explanation this is sufficient.
Figure 6: Contours of initial spatial distribution of energetic trapped ions, and characteristic trajectories of ion bounce point motion during the crash. Shown also is the vertical NPA line-of-sight. Bounce point trajectories are shown for the two limiting cases of (a) $q(0) = 1$, and (b) $q(0) = 2$. We have taken $R_c = 3m$, $R_0 = 3.1m$, and $\Delta_R = 0.1m$, close to the experimental set-up.

3.2 Mixing Formula

Here we express the energetic hydrogen ion distribution function $f_+$ after the crash in terms of $f_-$, the distribution function before the crash. Ion redistribution depends on the toroidal angle of the ion position. To obtain the post-crash spatial distribution of the ions integration over pre-crash toroidal position of the ions $\varphi$ is performed. After the crash the ions will precess toroidally and redistribute homogeneously over the toroidal angle. We find

$$ f_+(\rho, R, \varphi) = J^{-1} \int f_-(\rho', R) J_{\varphi} \frac{d\varphi}{2\pi} $$

We have used Eq.(8), and $J$ is the Jacobian of the transition from the six dimensional phase-space to variables $\mu, P_\varphi, \rho$, plus three ignorable fast rotational variables. $G(\rho', \rho)$ is defined as

$$ G(\rho', \rho) = \frac{1}{2\pi \rho n \sqrt{\tau_\varphi^2 A^2 - [\ln(\rho'/\rho)]^2}}. \quad (10) $$
Figure 7: Spatial distribution of energetic trapped hydrogen ions after the reconnection, for cases with $q(0) = 1$ (left) and $q(0) = 2$ (right), and for the initial distribution given by the Eq.(9).

The amplitude of the electric field potential during the crash has to be determined empirically from plasma measurements. The amplitude will depend on the time duration over which the redistribution happens, which is usually a few hundred microseconds; and there is large uncertainty in the onset of the event and its duration. For simplicity we fix the potential by specifying $\tau_{cr} A = 1$ at the location of the $q = 2$ surface, thereby picking the strongest redistribution which is equivalent to a full reconnection as in the Kadomtsev model. Substituting in Eq.(10) we can now find the spatial distribution function of the ions after the crash. This is shown in fig.7 for two cases, when $q(0) = 1$ and when $q(0) = 2$.

In fig.8 we show the ion distribution after the crash, along the vertical ($Z$) and horizontal ($R$) torus coordinates, for $q(0) = 1$ and $q(0) = 2$. We readily see an important prediction of the foregoing theory, that after the reconnection the redistribution of ion bounce points in the direction of the $Z$-axis is much stronger when $q(0) = 2$ than when $q(0) = 1$. In the latter case ions are redistributed further from the center in the direction of the $R$-axis.
Figure 8: Energetic trapped hydrogen ion distribution after the reconnection, for two limiting cases of $q(0) = 1$ and $q(0) = 2$, showing that the redistribution of ion bounce points along the vertical(left) and major-radius(right) axis is strongly dependent on the value of $q(0)$.

4 Comparison with Measured Ion Transport

In this section we show that the NPA measurements support the conclusion of the theory above, that the direction of motion of ion bounce points during an $m = 2/n = 1$ reconnection is determined by the magnitude of $q(0)$, and that as the value of $q(0)$ increases from unity, the ion bounce orbit becomes more and more elongated in the direction of the Z-axis.

Continuing from eq. (2) we recall how the NPA flux $\Gamma(E, t)$ is formed. For the pulses in discussion, between $r/a = 0$ and $r/a = 0.8$, the measured density of bare carbon ions increased by a factor $\cong 2.5$, and the modeled density of recycled thermal hydrogen isotope atoms increased by a factor $\cong 30$. Therefore, bearing in mind the uncertainty introduced due to lack of knowledge of impurity ion transport in calculating the ionization balance, in $r/a = 0 \rightarrow 0.8$ we expect $P(Z)$ to increase substantially, by a factor $\geq 10$. Having excluded a transient temporal increase in $P(E, Z, t)$, we infer that the flux-spike must be due to transport of all or some of the energetic
ICRF driven ions from the plasma core to outer regions of the plasma in the direction of the NPA. We can now construct \( \Gamma_+ / \Gamma_- \), the ratio of flux to the NPA at the peak of the flux-spike to that of flux just before the flux-spike, in the lowest energy channel. Formulating the ratio, dropping \( \mu^* \) and \( \mathcal{E} = \mathcal{E}^* \) for the lowest energy channel from the notation, we get

\[
\frac{\Gamma_+}{\Gamma_-} = \frac{F(Z_+, t_+) P(Z_+, t_+) \gamma(Z_+, t_+)}{F(Z_-, t_-) P(Z_-, t_-) \gamma(Z_-, t_-)}
\] (11)

Since the pre-crash location of the energetic ICRF driven ions is in the plasma core, \( Z_- \approx 0 \). We now assume that the energetic ion distribution function in the flux-spike is a fixed fraction of the distribution function before the spike, and that the fraction is constant amongst all the pulses in our comparison, thus \( F(Z_+, t_+)/F(Z = 0, t_-) = \delta_1 \leq 1 \). Similarly, we assume that the transparency \( \gamma \) from the plasma core at \( Z = 0 \) is a fraction of the transparency from the position \( Z_+ \) and that the fraction is constant amongst all the pulses in our comparison, \( \gamma(Z = 0, t_-)/\gamma(Z_+, t_+) = \delta_2 \leq 1 \). This is reasonable since the plasmas in the comparison have all similar \( n_e \) and \( T_e \) profiles in magnitude and shape. Then we readily see from eq.(11) that

\[
\frac{\Gamma_+}{\Gamma_-} \propto \frac{P(Z_+)}{P(Z = 0)}
\] (12)

Since \( P(Z) \) is a monotonically increasing function of \( Z \), the ratio \( \Gamma_+ / \Gamma_- \) is a measure of how far from the plasma core the energetic ions have been redistributed by the crash, that is to say the \( \Gamma_+ / \Gamma_- \propto Z_+ \). We have evaluated the variation of \( \Gamma_+ / \Gamma_- \) with \( q(0, t_-) \) for pulses with \( m = 2/n = 1 \) mode driven reconnection. This is shown in fig.9. Two groups of pulses for which this relationship has been evaluated are shown, one in which the crash occured alone and another in which the crash was followed by a long-lived magnetic island with chirping frequency.

We deduce from the fig.9 that (1) for the group with the reconnection alone, that \( Z_+ \) increases, or in other words the bounce orbit becomes more and more elongated along the \( Z \)-axis, as \( q(0) \) increases above unity, (2) with subsequent trapping in a chirping frequency magnetic island the ions are...
Figure 9: Ratio of flux to the NPA at the flux-spike (after the crash) to that just before it, as function of core safety factor $q(0)$ for pulses with the crash alone and pulses with the crash and subsequent chirping frequency magnetic activity.

transported even further along the $Z$-axis.

5 Crash induced $n = 1$ Magnetic Island with Chirping Frequency

In some pulses the reconnection induces a relatively long-lived ($\sim 5-8ms\ell c$) magnetic island with chirping frequency such as that shown in fig.4, in which the frequency changes from $f = 15 \to 4kHz$ during $t = 44.725 \to 44.731s$. We conjecture that the such a magnetic island traps and transports energetic ions to the plasma edge where they are lost due to stochastic ripple diffusion or as prompt losses. Ion motion in a decelerating wave has been analyzed previously [24]. It was shown for a tokamak plasma that if the frequency chirping is small then the ion adiabatic invariants are conserved, and if $df/dt < 0$ then the minor radius where the wave-ion resonance occurs, $r_{res}(f)$, will expand. In this section we model how such a mode would, as observed, redistribute ions up to the stochastic ripple diffusion domain at the plasma edge. Since the amplitude of the mode is much smaller then the equilibrium magnetic field we assume that the post-crash magnetic island with chirping frequency has the same spatial structure as the pre-crash $m = 2/n = 1$ infernal kink mode. The most important for the mode-ion in-
teraction is the kink symmetry of the mode, and the frequency of its rotation. For use in the next section the kink mode structure was reproduced using an ideal MHD code and plasma rotation was taken from measurements.

The spatial structure of the \( n = 1 \) mode was calculated using the ideal MHD stability code NOVA [25]. Validated plasma parameters, taken from analysis of the pulse using the TRANSP code[26], were employed. We computed the mode structure in pulse \#45837 just before the crash using the following parameters: major radius of plasma geometrical center \( R = 2.9m \), major radius of plasma magnetic axis \( R_0 = 3.1m \), plasma minor radius \( a = 0.95m \), magnetic field at the geometrical center \( B_r = 2.56T \), central and edge values of the safety factor \( q(0) = 1.73 \) and \( q_a = 4.5 \), respectively. There was no conducting wall around the plasma in this calculation. Calculated poloidal harmonics of the component of plasma displacement perpendicular to the equilibrium flux surfaces are shown in fig.10. The displacement is plotted as a function of \( \sqrt{\Psi} \), where \( \Psi \) is the normalized poloidal flux. First three poloidal harmonics of the unstable \( n = 1 \) infernal kink mode are important, of which the \( m = 2 \) is dominant. The mode harmonics extend over the whole minor radius of the plasma. The \( q = 2 \) surface is located at \( r/a = 0.6 \).
5.1 Convective Transport due to Trapping of Ions in Phase-space Island

The ORBIT code [21] was used to simulate the observed energetic ion transport due to the chirping $m = 2/n = 1$ mode. Calculations indicate that indeed energetic ions with energy $E = 200 - 800keV$ are redistributed in minor radius from the central regions when the amplitude of the perturbed magnetic field is greater then $10^{-3}B_0$. In the following we identify the transport mechanism as convective, and not driven by stochasticity due to overlapping resonant modes. In the convective type of transport ions trapped in a phase-space resonance island near the resonance are transported with the radially moving phase-space resonance island. In our case the resonant island moves as the mode frequency decreases. Since the ion precession frequency at the magnetic island location is comparable to the toroidal plasma rotation frequency, the plasma rotation needs to be simulated. A radial electric field is therefore included in the calculations. We model it to fit the experimentally measured rotation frequency, giving a best fit electric field potential $\phi = \phi_0 \Psi (1 - 0.95 \Psi^{0.54})$ with the $\phi_0 = -1.2keV$.

An example of ion redistribution is shown in fig.11 for $\phi_0 = -1.5keV$. The perturbed magnetic field used is of the form [21] $\delta B = \nabla \times \delta \alpha B$. The amplitude of the perturbation, $\delta \alpha_0 = 2 \times 10^{-3} \simeq \delta B/B$, is a normalization constant. In this study we only want to demonstrate the mechanism of transport, so for simplicity we have taken for the initial energetic ion density a flat spatial distribution extending to $r/a \simeq 0.7$, as shown in fig.11(a). A total of 2000 ions were used in the calculations. In fig.11(b) we see that after the chirping activity the resonant ions are redistributed outward in minor radius ($\rho$), while some of them are lost.

To understand the nature of this redistribution we plot in fig.12 the toroidal precession frequency of a $200keV$ hydrogen ion as a function of normalized poloidal flux taken at the bounce point of the ion drift orbit. Two cases are shown, one with $\phi_0 = 0$, thus with zero radial electric field. In the second case $\phi_0 = -1.2keV$ giving a finite electric field. Initial frequency of the kink mode perturbation is $f = 15kHz$ or $\omega = 0.94 \times 10^5 sec^{-1}$. From
Figure 11: Minor radius distribution of energetic ion density, (a) initial flat spatial density distribution as input to computation, and (b) radial ion transport due to resonant interaction with chirping frequency magnetic island.

Figure 12: Toroidal precession frequency of a 200keV ion as a function of normalized poloidal flux at the bounce point of ion banana orbit with and without radial electric field.

the figure one can see that the electric field correction to the ion precession frequency moves the resonance from near the plasma core to middle of minor radius and further out as the frequency chirps down further.

Figure 13 presents more evidence that the electric field is critical in describing the convective wave-ion resonance. Fig. 13(a) shows dependence of \( < \Psi_{\text{bounce}}^2 > \), squared poloidal flux at the ion bounce point averaged over the ion distribution, as function of electric field potential \( \phi_0 \) and \( \delta \alpha \). Also shown are the same dependencies for the ion loss \( N_{\text{loss}} \). As pointed out earlier, with stronger electric field the resonance moves outward so that the increase in averaged ion minor radius or \( < \Psi_{\text{bounce}}^2 > \) with growing electric
Figure 13: Characteristics of convective ion transport. Shown are the
dependences of $\langle \Psi_{b\text{ounce}}^2 \rangle$, squared poloidal flux at the ion bounce point
averaged over the ion distribution, and a number of lost ions $N_{\text{loss}}$ as func-
tions of electric field potential $\phi_0$ and $\delta \alpha$.

field is expected. On the other hand there is only weak dependence of this
parameter on the mode amplitude. It would be strong function of the mode
amplitude if the stochastic transport is present [27]. Ion loss increases as
the mode amplitude grows because more ions become trapped near the reso-
nance in the phase-space island. This study is in agreement with the result of
Fig. 9. The observed correlation of the flux ratio with $q(0)$ is caused by the
correlation of the crash driven redistribution with $q(0)$, which serves as an
initial condition to further convective transport driven by chirping frequency
magnetic island.

6 Summary

In this paper we have developed a model for internal redistribution of trapped
ions due to magnetic reconnection at the $q = 2$ location, where the reconnec-
tion is driven by an unstable $m = 2/n = 1$ infernal kink model. The
model qualitatively well describes NPA measurements of redistribution of
ICRF driven trapped hydrogen minority ions in JET OS plasmas, due to
sawtooth-like reconnection at $q = 2$. Most importantly, the model predicts
that as the core safety factor $q(0)$ just before the reconnection increases
above unity, the trajectories of ion bounce points after reconnection become
increasingly vertical. This is consistent with the NPA measurements in which
the magnitude of vertical displacement of ions is correlated with the value of $q(0)$ before reconnection. This agreement allows the conclusion that distinctive features of Kadanoff reconnection give the observed result and that magnetic field stochasticity, invoked in modeling of $\alpha$-particle redistribution due to sawteeth in TFTR, can be excluded. In JET OS plasma experiments, additional ion transport was observed when the reconnection was followed by the magnetic island with chirping frequency. Modeling of convective transport of resonant ions trapped in a radially moving phase-space island describes the main features of the observations.

7 Acknowledgements

The authors are grateful to to B. Alper and R. Budny for data analysis in support of this work, and to P. Helander and Yu. Yakovenko for valuable comments. This work was performed under the European Fusion Development Agreement. UKAEA authors were funded jointly by the UK Department of Trade and Industry, and by Euratom.
References


External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Física DEQ/1F - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Library, R61, Rutherford Appleton Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, MTA KFKI-ATKI, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Insitute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Plasma Physics Laboratory, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China
Shih-Tung Tsai, Institute of Physics, Chinese Academy of Sciences, People's Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Mr. Dennis Bruggink, Fusion Library, University of Wisconsin, USA
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA