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Abstract

A novel nonlinear effect of anomalously deep penetration of an external radio

frequency electric field into a plasma is discribed. A self-consistent kinetic

treatment reveals a transition region between the sheath and the plasma.

Because of the electron velocity modulation in the sheath, bunches in the

energetic electron density are formed in the transition region adjusted to the

sheath. The width of the region is of order VT /ω, where VT is the electron

thermal velocity, and ω is frequency of the electric field. The presence of

the electric field in the transition region results in a cooling of the energetic

electrons and an additional heating of the cold electrons in comparison with

the case when the transition region is neglected.

PACS numbers:52. 35.Mw, 52.65Ff, 52.65-y, 52.75-d, 52.80.Pi

The penetration of the electric field perpendicular to the plasma boundary was studied

by Landau in the linear approximation [1]. He showed that an external electric field with

amplitude E0 is screened by the plasma electrons in the sheath region in a distance of order

the Debye length, and reaches a value E0/ε in the plasma, where ε is plasma dielectric

constant. In many practical applications, the value of the external electric field is large: the

potential drop in the sheath region Vsh is typically of order hundreds of Volts and is much

larger than electron temperature Te, which is of order of a few Volts; and the field penetration
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has to be treated nonlinearly. The asymptotic solution of sheath structure has been studied

by Lieberman in the limit Vsh >> Te [2]. In this treatment, the plasma sheath boundary

is considered to be infinitely thin and the position of the boundary is determined by the

condition that the external electric field is screened in the sheath regions when electrons

are absent. Electron interactions with the sheath electric field are traditionally treated as

collisions with a moving potential barrier (wall). It is well known that multiple electron

collisions with an oscillating wall result in electron heating, provided there is sufficient

phase-space randomization in the plasma bulk. It is common to describe the sheath heating

by considering the electrons as test particles, and neglecting the plasma electric fields [3].

Kaganovich and Tsendin proved in Ref. [4] that accounting for the electric field in the plasma

reduces the electron sheath heating, and the electron sheath heating vanishes completely in

the limit of uniform plasma density. Therefore, an accurate description of the rf fields in the

bulk of the plasma is necessary for calculating the sheath heating. The electron velocity is

oscillatory in the sheath, and as a result of this velocity modulation electron density bunches

appear in the region adjusted to the sheath. The electron density perturbations decay due

to phase mixing over a length of order VT/ω, where VT is the electron thermal velocity,

and ω is the frequency of the electric field. The electron density perturbations polarize the

plasma and produce an electric field in the plasma bulk. This electric field, in turn, changes

the velocity modulation and correspondingly influences the electron density perturbations.

Therefore, electron sheath heating has to be studied in a self-consistent nonlocal manner

assuming a finite temperature plasma.

Notwithstanding the fact, that particle-in-cell simulations results are widely available for

the past decade [5-7] a basic understanding of the electron sheath heating is incomplete,

because no one has studied the electric field in the plasma bulk using a nonlocal approach,

similar to the anomalous skin effect for inductive electric field [8]. In this regard, analytical

models are of great importance because they shed light on the most complicated features

of collisionless electron interactions with the sheath. In this Letter, an analytical model is

developed to explore the effects associated with the self-consistent non-local nature of the
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phenomenon.

One of the approaches to study electron sheath heating is based on a fluid description of

the electron dynamics. For the collisionless case, closure assumptions for the viscosity and

heat fluxes are necessary. In most cases, the closure assumptions are made empirically or

phenomenologically [6, 7]. The closure assumptions have to be justified by direct comparison

with the results of kinetic calculations as is done, for example, in Ref. [9]. Otherwise,

inaccurate closure assumptions may lead to misleading results as discussed below.

To model the sheath-plasma interaction analytically, the following simplifying assump-

tions have been adopted. The discharge frequency is assumed to be small compared with

the electron plasma frequency. Therefore, most of the external electric field is screened in

the sheath region by an ion space charge. The ion response time is typically larger than the

inverse discharge frequency, and the ion density profile is quasi-stationary. There is an ion

flow from plasma bulk towards electrodes. In the sheath region, ions are being accelerated

towards the electrode by the large sheath electric field, and, the ion density in the sheath

region is small compared with the bulk ion density. In the present treatment, the ion density

profile is assumed fixed and is modeled in a two-step approximation: the ion density nb is

uniform in the plasma bulk, and the ion density in the sheath nsh < nb is also uniform

(see Fig.1). At the sheath-plasma boundary, there is a stationary potential barrier for the

electrons (eΦsh), so that only the energetic electrons reach the sheath region. The potential

barrier is determined by the quasineutrality condition, i.e., when the energetic electrons

enter the sheath region, their mean density is equal to the ion density [ne(Φsh) = nsh].

The electron density profile is time-dependent in response to the time-varying sheath

electric field. The large sheath electric field does not penetrate into the plasma bulk. There-

fore, the quasineutrality condition holds in the plasma bulk, i.e., the electron density is equal

to ion density, ne = nb. In the sheath region, the electrons are reflected by the large sheath

electric field. Therefore, ne = nsh for x > xsh(t), and ne = 0 for x < xsh(t), where xsh(t) is

the position of the plasma-sheath boundary [2]. From Maxwell’s equations it follows that

∇ · J = 0, where the total current J is the sum of the displacement current and the electron
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current. In the one-dimensional case, the condition ∇ · J = 0 yields the conservation of the

total current:

eneVe +
1

4π

∂Esh

∂t
= j0 sin(ωt + φ), (1)

where j0 is the amplitude of the rf current controlled by the external circuit and φ is the

initial phase. In the sheath, electrons are absent in the region of large electric field, and the

Eq.(1) can be integrated to give [4]

Esh(x, t) =
4πj0
ω

[−1− cos(ωt+ φ)] + 4π|e|nshx, x < xsh(t) (2)

where Poisson’s equation has been used to determined the spatial dependence of the sheath

electric field. The first term on the right-hand side of Eq.(2) describes the electric field at

the electrode, the second term relates to ion space charge screening of the sheath electric

field. The position of the plasma-sheath boundary xsh(t) is determined by the zero of the

sheath electric field, Esh[xsh(t), t] = 0. From Eq.(2) it follows that

xsh(t) =
Vsh0
ω

[1 + cos(ωt+ φ)], (3)

where Vsh0 = j0/(ensh) is the amplitude of the plasma-sheath boundary velocity. The ion

flux on the electrode is small compared with the electron thermal flux. Because electrons

attach to the electrode, the electrode surface charges negatively, so that in a steady-state

discharge, the electric field at the electrode is always negative, preventing an electron flux on

the electrode. However, for a very short time (ωtn+ φ ≈ π(1+ 2n)) the sheath electric field

vanishes, allowing electrons to flow to the electrode for compensation of the ion flux. Note

that there is a large difference between the sheath structure in the discharge and the sheath

for obliquely incident waves interacting with a plasma slab without any bounding walls.

Because electrodes are absent, electrons can move outside the plasma, and the electric field

in the vacuum region, Esh(x, t) = (4πj0/ω) cos(ωt+φ), may have a different sign. Therefore,

electrons may penetrate into the region of large electric field during time when Esh(x, t) < 0

[10,11]. However, in the discharge, because the sheath electric field given by Eq.(2) is
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always reflecting electrons, the electrons never enter the region of the large sheath electric

field, which is opposite to the case of obliquely incident waves.

The calculations based on the two-step ion density profile model is known to yield dis-

charge characteristics in good agreement with experimental data and full-scale simulations

[12].

Throughout this paper, linear theory is used because the plasma-sheath boundary ve-

locity and the mean electron flow velocity are small compared with the electron thermal

velocity [4,5]. The important spatial scale is the length scale for phase mixing, lmix = VT/ω.

The sheath width satisfies 2Vsh0/ω << lmix because Vsh << VT . Therefore, the sheath width

is neglected, and electron interactions with the sheath electric field are treated as a bound-

ary condition. The collision frequency (ν) is assumed to be much less than the discharge

frequency (ν << ω), and correspondingly the mean free path is much larger than the length

scale for phase mixing. Therefore, the electron dynamics is assumed to be collisionless. The

discharge gap is considered to be sufficiently large compared with the electron mean free

path, so that the influence of the opposite sheath is neglected. The effects of finite gap width

are discussed in Ref. [13].

The electron interaction with the large electric field in the sheath is modelled as collisions

with a moving oscillating rigid barrier with velocity Vsh(t) = dxsh(t)/dt. An electron with

initial velocity −u after a collision with the plasma-sheath boundary - modeled as a rigid

barrier moving with velocity Vsh(t) - acquires a velocity u + 2Vsh. Therefore, the power

deposition density transfer from the oscillating plasma-sheath boundary is given by [2]

Psh =
m

2

〈∫
∞

−Vsh

du [u+ Vsh(t)]
[
(2Vsh(t) + u)2 − u2

]
fsh(−u, t)

〉
, (4)

where m is the electron mass, fsh(−u, t) is the electron velocity distribution function in

the sheath, and 〈· · ·〉 denotes a time average over the discharge period. Introducing a new

velocity distribution function g(−u′, t) = fsh[−u− Vsh(t), t], Eq.(4) yields

Psh = −2m
〈
Vsh(t)

∫
∞

0
u′2g(−u′, t)du′

〉
, (5)
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where −u′ = −u− Vsh is the electron velocity relative to the oscillating rigid barrier. From

Eq.(5) it follows that, if the function g(u′) is stationary, then (Psh = 0) there is no collisionless

power deposition due to electron interaction with the sheath [7, 14]. For example, in the limit

of a uniform ion density profile nsh = nb, g(u
′) is stationary (in an oscillating reference frame

of the plasma-sheath boundary), and the electron heating vanishes [4]. Indeed, in the plasma

bulk the displacement current is small compared with the electron current, and from Eq.(1) it

follows that the electron mean flow velocity in the plasma bulk, Vb(t) = −j0 sin(ωt+φ)/|e|nb,

is equal to the plasma-sheath velocity Vsh(t), from Eq.(3). Therefore, the electron motion

in the plasma is strongly correlated with the plasma-sheath boundary motion. From the

electron momentum equation it follows that there is an electric field, Eb = m/e dVb(t)/dt,

in the plasma bulk. In a frame of reference moving with the electron mean flow velocity,

the sheath barrier is stationary, and there is no force acting on the electrons, because the

electric field is compensated by the inertial force (eEb−mdVb(t)/dt = 0). Therefore, electron

interaction with the sheath electric field is totally compensated by the influence of the bulk

electric field, and the collisionless heating vanishes [4].

The example of a uniform density profile shows the importance of a self-consistent treat-

ment of the collisionless heating in the plasma. If the function g(u′, t) is nonstationary,

there is net power deposition. In this Letter, a kinetic calculation is performed to yield the

correct electron velocity distribution function g(u′, t) and, correspondingly, the net power

deposition.

The electron motion is different for the low energy electrons with initial velocity in the

plasma bulk |u| < ush, where u2sh = 2eΦsh/m, and for the energetic electrons with velocity

|u| > ush. The low energy electrons with initial velocity in the plasma bulk −u are reflected

from the stationary potential barrier eΦsh, and then return to the plasma bulk with velocity

u. High energy electrons enter the sheath region with velocity u1 = −(u2 − u2sh)
1/2. They

have velocity u2 = 2Vsh − u1 colliding with the moving rigid barrier, and then return to the

plasma bulk with velocity (u22 + u2sh)
1/2 [15].

As the electron velocity is modulated in time during reflections from the plasma-sheath
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boundary, so is the energetic electron density (by continuity of electron flux). This phe-

nomenon is identical to the mechanism for klystron operation [16]. The perturbations in

the energetic electron density yield an electric field in the transition region adjusted to the

sheath.

The electron velocity distribution function is taken to be a sum of a stationary isotropic

part f0(u) and a nonstationary anisotropic part f1(x, u, t). f1 is to be of the form f1(x, u, t) =

f1(x, u) exp(−iωt). The linearized Vlasov equation becomes

−iωf1 + u
∂f1
∂x

+
eE(x)

m

df0
du

= −νf1, (6)

where the term on the right-hand side accounts for rare collisions (ν << ω). All

time-dependent variables are assumed to be harmonic functions of time, proportional to

exp(−iωt), and, in the subsequent analysis, the multiplicative factor exp(−iωt) is omitted

from the equations. The electron velocity distribution function must satisfy the bound-

ary condition at the plasma-sheath boundary (x = 0) corresponding to f(0, u) = f(0,−u)

for |u| < ush, and fsh(u
′) = fsh(2Vsh − u′), for u > ush, where u′ = (u2 − u2sh)

1/2 and

fsh is the electron velocity distribution in the sheath. From energy and flux conservation,

u′fsh(u
′)du′ = uf(u)du, it follows that fsh(u

′) = f [(u′2 + u2sh)
1/2]. Linearly approximating

the boundary conditions yields

f1(0, u) = f1(0,−u), 0 < u < ush, (7)

f1(0, u) = f1(0,−u) + 2Vsh
u′

u

df0
du

, u > ush. (8)

The electric field is determined from the condition of conservation of the total current (j0),

which gives

e
∫
∞

−∞

uf1(x, u)du− iω

4π
E(x) = j, (9)

where j = j0e
i(φ+π/2), and the first term is the electron current and the second term corre-

sponds to a small displacement current. Equations (6) and (9), together with the boundary

conditions (7), (8) comprise the full system of equations for the bulk plasma.
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It is convenient to solve Eq. (6) by continuation into the region x < 0. First, we introduce

the artificial force

F (x, u) = 2mVshu
′δ(x)Θ(|u| − ush), (10)

where Vsh = j/ensh, δ(x) is the Dirac delta-function, and Θ(u) is the Heaviside step function.

The force in Eq.(10) accounts for the change of the energetic electron velocity in the sheath

region. Equation (6) together with the boundary conditions (7) and (8) are equivalent to

Eq. (6) with the force in Eq.(10) added to the third term of Eq. (6). This gives

−iωf1 + u
∂f1
∂x

+
eE(x) + F (x, u)

m

df0
du

= −νf1, (11)

where the boundary condition (7) for all electrons becomes

f1(0, u) = f1(0,−u). (12)

In this formulation, the half-space problem is equivalent to that of an infinite medium

in which the electric field is antisymmetric about the plane x = 0, with E(x) = −E(−x)

[1, 17]. Such a continuation makes Eq. (11) invariant with respect to the transformation

x → −x, and u → −u. Electrons reflected from the boundary in the half-space (x > 0)

problem correspond to electrons passing freely through the plane x = 0 from the side x < 0

in the infinite-medium problem.

A spatial Fourier the transform of Eq. (11) gives

f1(k) =
eE(k) + Fsh(u)

mi(ω − uk + iν)

df0
du

, (13)

where E(k) is the Fourier transform of E(x)

E(k) =
∫
∞

−∞

E(x) exp(−ikx)dx, (14)

and Fsh(u) = 2mVshu
′Θ(|u| − ush). It is convenient to divide the electric field in the plasma

into two parts corresponding to E(x) = E1(x)+Ebsgn(x), where E1(x) → 0 for x → ∞, and

Eb is the value of the electric field far away from the sheath region. The Fourier transform

of the electron current can be obtained by integrating Eq. (13) over velocity, yielding
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j(k) = σ(k)E1(k)− 2i

k
[Eshσsh(k) + σ(k)Eb] , (15)

σ(k) = −ie2

m

∫
∞

−∞

u

(ω − uk + iν)

df0
du

du, (16)

σsh(k) =
ie2k

(ω + iν)m

∫
∞

−∞

uu′Θ(|u| − ush)

(ω − uk + iν)

df0
du

du, (17)

where σ(k) is the electron conductivity, σsh(k) is the effective conductivity due to elec-

tron interaction with the sheath, and Esh = (−iω + ν)mVsh/e is the effective electric field

corresponding to Vsh.

The Fourier amplitude E1(k) is to be determined from Eq.(9) continued into the half-

space x < 0. Because E(x) is an antisymmetric function about the plane x = 0, j0 is

continued with negative sign into the half-space x < 0, and the Fourier transform of j0sgn(x)

is −2i j0/k. Substituting E(k) = E1(k) − 2iEb/k and j0 = [σ(0)− iω/4π]Eb into Fourier

transform of Eq.(9) gives

E1(k) = −2i

k

[σ(0)− σ(k)]Eb − Eshσsh(k)

σ(k)− iω
4π

. (18)

Notice that, if the plasma density in the sheath is equal to the bulk density nsh = nb, then

ush = 0, Eb = Esh and σ(0)− σ(k) = σsh(k). Therefore, E1(k) = 0 and the uniform electric

field Eb satisfies the current conservation condition, as discussed earlier.

The profile for E1(x) given by inverse Fourier transform

E(x) =
1

2π

∫
∞

−∞

E(k) exp(ikx)dk (19)

is shown at the top in Fig.2. For x < 6VT/ ω the electric field profile is close to E1(x) ≈
E1(0) exp(−λxω/VT ), where E1(0) = −0.72, and λ = 0.19 + 0.77i for the conditions in

Fig.2. For x > 6VT /ω, the electric field profile is no longer a simple exponential function,

similar to the case of the anomalous skin effect [17]. The three components of current

corresponding to the first, second, and third terms in Eq. (15) are shown at the bottom

in Fig.2. The first term describes the current (jtr) driven by the electric field E1(x) under
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the assumption of specular reflection at the boundary. The second term relates the current

(jsh) of the energetic electrons owing only to a velocity change due to reflections from

the large sheath electric field. The third term describes the current (jb) driven by the

uniform electric field Eb under the assumption of specular reflection at the boundary. Due

to the boundary condition of specular reflection in Eq. (7), both of the currents jb and

jtr are equal to zero at x = 0. Also, both of the currents jtr and jsh vanish at x >

15VT/ ω due to phase mixing, and the only current left here is jb. In contrast to large x,

at small x << VT/ ω the total current is entirely due to energetic electrons interacting

with the sheath jsh. Indeed, the energetic electrons enter the sheath region with velocity

distribution fsh(u
′). The electron current is given by the sum of the contribution from the

electrons approaching the oscillating barrier and from the electrons already reflected from

the barrier, jsh =
∫
∞

Vsh
u′fsh(u

′)du′ +
∫
−Vsh
−∞

u′fsh(u
′)du′. Because fsh(u

′) = fsh(2Vsh − u′),

jsh = 2eVsh
∫
∞

Vsh
fsh(u)du ≈ eVsh

∫
∞

−∞
fsh(u

′)du′ = enshVsh = jo sin(ωt + φ). In the last

calculation the contribution to the density by electrons with velocity u < Vsh0 is omitted.

Their contributions are second-order effects in Vsh0/VT , which are neglected in the present

study [15]. Therefore, in the sheath region, when electrons are present, and in the nearest

vicinity of the sheath all current is conducted by the energetic electrons. As can be seen

in Fig.2, the current conservation condition, jtr(x) + jsh(x) + jb(x) = [σ(0)− iω/4π]Eb, is

satisfied for arbitrary x.

The difference in phase of the currents of the energetic and low energy electrons was

observed in Ref. [6], but it was misinterpreted as the generation of electron acoustic waves.

Electron acoustic waves can be excited if the denominator of the right-hand side of Eq. (18)

has a pole at frequency ω, which corresponds to the root of the plasma dielectric function,

ε = 1+ 4πiσ(k)/ω. For a Maxwellian electron distribution function, the pole does not exist

for ω << ωp, where ωp =
√
4πe2nb/m is the electron plasma frequency. But the electron

acoustic waves can exist if the plasma contains two groups of electrons having very different

temperatures [18]. The wave phase velocity is ω/k =
√
nc/nh

√
Th/m , where nc and nh are

the electron density of cold and hot electrons, respectively, and Th is the temperature of the
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hot electrons. The electron acoustic waves are strongly damped by the hot electrons, unless

nc << nh and Tc << Th , where Tc is the electron temperature of the cold electrons [18]. In

the opposite limit, nc > 4nh, the electron acoustic waves do not exist [18]. In capacitively-

coupled discharges, the electron population does stratify into two populations of cold and

hot electrons, as has been observed in experiments and simulation studies [19,20]. Cold

electrons trapped in the discharge center by the plasma potential do not interact with the

large electric fields in the sheath region and have low temperature. Moreover, because of

the nonlinear evolution of plasma profiles, the cold electron density is much larger than the

hot electron density [20]. Therefore, weakly-damped electron acoustic waves do not exist

in the plasma of capacitively-coupled discharges. Reference [6] used the fluid equation and

neglected the effect of collisionless dissipation, thus arriving at the wrong conclusion about

the existence of weakly-damped electron acoustic waves.

The power deposition is given by the sum of the power transferred to the electrons by

the oscillating rigid barrier in the sheath region and by the electric field in the transition

region,

Ptot = Psh + Ptr. (20)

Here Psh is given by Eq.(4), which after linearization yields

Psh = Psh0 + Psh1. (21)

In Eq.(21), Psh0 is the power dissipation in the sheath neglecting any influence of electric

field,

Psh0 = 2m
〈∫

∞

0
2u′ Vsh(t)

2 f0sh(−u′, t)
〉
, (22)

and Psh1 accounts for the influence of the electric field on f1 and correspondingly on the

power dissipation in the sheath,

Psh1 = 2m
〈∫

∞

0
Vsh(t)u

′2 f1sh(−u′, x = 0, t)du′
〉
. (23)
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Time averaging, changing variables from u′ to u, and integration by parts in the first term

yield

Psh = m
∫
∞

0

{
−|Vsh|2 u′2 df0

du
+Re [Vshu

′ uf∗1 (−u, x = 0)]

}
Θ(|u| − ush)du, (24)

where f ∗1 is solution to Eq.(6),

f ∗1 (−u, x = 0) =
e

mu

df0
du

∫
∞

0
E∗(x)e−(iω+ν)x/udx. (25)

Time averaging the power deposition in the transition region,
∫
∞

0 〈jE〉 dx, gives

Ptr =
1

2
Re

∫
∞

0
j0E

∗dx. (26)

Substituting j0 = ienbVb, where Vb = eEb/mω is the amplitude of the mean electron flow

velocity in the plasma bulk and φ = 0 was assumed in Eq.(1), we obtain Pb = 1/2Re j0E
∗ =

−1/2enbVb ImE1(x). Therefore, Pb is determined by the imaginary part of E1, and can

be either positive or negative (see Fig. 2). Negative power density has been observed in

numerical simulations [6].

Substituting j0 = jE + jsh, where jE = jb + jtr, the power deposited by the current jE

can be calculated by continuing into infinite space and using the Fourier transform [17]

1

2
Re

∫
∞

0
jEE

∗dx =
1

4
Re

∫
∞

−∞

jEE
∗dx =

1

8π
Re

∫
∞

−∞

jE(k)E
∗(k)dk, (27)

where jE(k) = σ(k)E(k). Finally, substituting the conductivity from Eq.(16) yields

1

2
Re

∫
∞

0
jEE

∗dx = −1

4

∫
∞

0

e2|E(k = ω
k
)|2

m

df0
du

du. (28)

The current jsh is determined by the perturbed electron velocity distribution function due to

reflections from the sheath electric field. The perturbed distribution function f1sh at x = 0

is given by Eq.(8), and for x > 0 the solution to the Vlasov equation becomes

f1sh(x, u) = −2Vsh
u′

u

df0
du

e(iω−ν)x/u. (29)

Calculating the current jsh by integrating f1sh from Eq.(29) over velocity, and substituting

the current into Eq.(26) gives
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1

2
Re

∫
∞

0
jshE

∗dx = −Re

[
Vsh

∫
∞

0
u′E∗(k =

ω

u
)
df0
du

du

]
. (30)

Substituting f ∗1 from Eq. (25) into Eq. (24), and adding the contributions from Eqs.(28)

and (30) yield

Ptot = −
∫
∞

0
muDu(u)

df0
du

du, (31)

where Du(u) is the diffusion coefficient in velocity space,

Du(u) =
u|du|2

4
, (32)

and du is the change in electron velocity after passing through the transition and sheath

regions,

du = 2iVb

[
u′

u

nb

nsh
Θ(|u| − ush)− 1

]
+

eE1(k = ω/u)

u
. (33)

A plot of |du|2/2 is shown in Fig.3. Taking into account the electric field in the plasma (both

Eb and E1) reduces |du| for energetic electrons (u > ush) and increase |du| for slow electrons

(u < ush). Therefore, the electric field in the the plasma cools the energetic electrons and

heats the low energy electrons, respectively. Similar observations were made in numerical

simulations [6].

Figure 4 shows the dimensionless power density as a function of nb/nsh. Taking into

account the electric field in the plasma (both Eb and E1) reduces the total power deposited

in the sheath region. Interestingly, taking into account only the uniform electric field Eb

gives a result close to the case when both Eb and E1 are accounted for. The electric field E1

redistributes the power deposition from the energetic electrons to the low energy electrons,

but does not change the total power deposition (compare Fig.3 and Fig.4). Therefore, the

total power deposition due to sheath heating can be calculated approximately from Eq. (31),

taking into account only the electric field Eb. This gives

Ptot ≈ −mV 2
b

∫
∞

0
u2

[
u′

u

nb

nsh
Θ(u− ush)− 1

]2
df0
du

du. (34)
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The result of the self-consistent calculation of the power dissipation in Eq.(34) differs from

the non-self-consistent estimate in Eq.(22) by the last term in Eq.(34), which contributes

corrections of order nsh/nb to the main term.

This research was supported by the U.S. Department of Energy. The author gratefully

acknowledges helpful discussions with Ronald C. Davidson, Vladimir I. Kolobov, Michael

N. Shneider, Gennady Shvets, and Edward Startsev.

APPENDIX:

I. PROPERTIES OF E1(K)

The Fourier transform E1(k) has the following properties in the limits of small and large

k. At small k (k << ω/VT ), E1(k) ∼ k, because the numerator in the last factor on the

right-hand side of Eq.(18)∼ k2 ( [σ(0) − σ(k)] ∼ k2 and σsh(k) ∼ k2). Because E1(k) ∼ k

for small k,
∫
E1(x)dx = 0 similarly to the case of anomalous skin effect [17].

At large k (r−1
d

>> k >> ω/VT ), E1(k)˜1/k, because both the numerator and the

denominator in the last factor on the right-hand side of Eq.(18) are reciprocal to k−2

(σ(0)Eb = Eshσsh(k → ∞)). E1(x) at small x is determined by behavior of E1(k) at

large k. In the limit of large k (r−1
d

>> k >> ω/VT )

E1(k) =
2iA

k
, (A1)

where

A = Eb − C

B
Esh. (A2)

Here,

B = lim
k→∞

σ(k)k2, (A3)

C = lim
k→∞

[σsh(∞)− σsh(k)] k
2. (A4)

14



For a Maxwellian electron distribution function, substituting definitions of conductivities

Eqs.(16) and (17) into Eqs.(A3) and (A4), respectively, yields

B =
ie2ω

m

∫
∞

−∞

1

u

df0
du

du =
−ie2ωnb

T
(A5)

C =
−ie2ω

m

∫
∞

−∞

u′

u′2 + u2
sh

dfsh
du′

du′ =
−ie2ωnsh

T

(
1−√

πunshe
u2
nsh [1− erf(unsh)]

)
, (A6)

where unsh = ush/VT , and erf(unsh) is the error function. Form Eq.(19), E1(x) at small x is

given by

E1(x → 0) = −2A

π

∫
∞

0

sin(kx)

k
dk = −A. (A6)

Substituting and Esh = Ebnb/nsh and values of B and C from Eqs. (A5) and (A6) into

Eq.(A2) gives

E1(0) = −√
πunshe

u2
nsh [1− erf(unsh)]

15
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Figure captions 
 
Fig.1 Schematic of a sheath. The negatively charged electrode pushes electrons away by different 

distances depending on the strength of the electric field at the electrode. Shown are the density and 

potential profiles at two different times. The solid line is at the time of maximum sheath expansion. 

 

Fig.2 Plots of the electric field and the current normalized to their respective values in the plasma bulk, 

Eb and ωmnEe b /2 , as functions of the normalized coordinate TVx /ω  for the following parameters: 

nsh/nb=1/3, 100/1/ =pωω , and a Maxwellian electron distribution function. The upper graph shows 

profiles of )(1 xE : (a) amplitude - solid line; (b) real part - dashed line; (c) imaginary part - dotted line; 

and (d) phase with respect to phase of Eb divided by π  - dash-dotted line. The lower graph shows 

profiles of imaginary part of currents: (e) jtr - solid line; (f) jsh -dashed line; and (g) jb - dotted line. 

 

Fig.3 Plot of the average square of the dimensionless velocity kick as a function of the dimensionless 

velocity for the conditions in Fig.2, taking into account (a) both )(1 xE  and bE  - solid line; (b) only bE  

- dashed line; and (c) no electric field - dotted line.  

 

Fig.4 Plot of the dimensionless power density as a function of the ratio of the bulk plasma density to 

the sheath density, taking into account (a) both )(1 xE  and )(xEb  - solid line;  (b) only bE  - dashed 

line; and (c) no electric field - dotted line. 
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