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Abstract

Resonant heating of a magnetized plasma by low frequency waves of large amplitude

is considered. It is shown that the magnetic moment can be changed nonadiabatically

by a single large amplitude wave, even at frequencies normally considered nonres-

onant. Two examples clearly demonstrate the existence of the resonances leading

to chaos and the generic nature of heating below the cyclotron frequency. First the

classical case of an electrostatic wave of large amplitude propagating across a con�n-

ing uniform magnetic �eld, and second a large amplitude Alfv�en wave, propagating

obliquely across the magnetic �eld. Waves with frequencies a small fraction of the

cyclotron frequency are shown to produce signi�cant heating; bringing, in the case

of Alfv�en waves, particles to speeds comparable to the Alfv�en velocity in a few hun-

dred cyclotron periods. Stochastic threshold for heating occurs at signi�cantly lower

amplitude with a perturbation spectrum consisting of a number of modes. This phe-

nomenon may have relevance for the heating of ions in the solar corona as well as for

ion heating in some toroidal con�nement fusion devices.

PACS numbers: 52.35.Fp 52.50.Gj
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I. Introduction

Resonant heating of particles in a magnetic �eld is a subject which has been examined by

many authors and is of importance in the heating of magnetically con�ned laboratory as

well as extraterrestrial plasmas. For a review see Lichtenberg and Lieberman.1 It has been

found that it is also possible to break the invariance of the magnetic moment at frequencies

well below the cyclotron frequency.2{7 This phenomenon is due to the nonlinear coupling

of higher harmonics of the guiding center motion with the cyclotron motion, and must be

expected to occur for a large amplitude wave of almost any type. It is most easily analyzed by

considering the classic case of an electrostatic wave propagating across a constant magnetic

�eld.

The Alfv�en wave is a fundamental excitation of a magnetically con�ned plasma. Alfv�en

waves, either excited spontaneously or by external sources, have been observed or predicted

to be present in plasmas with parameters ranging from those of laboratory to space and

astrophysical environments. Interactions between Alfv�en waves and charged particles thus

play crucial roles in many plasma dynamical processes. Pitch angle scattering and ener-

gization of charged particles (ions) by large amplitude Alfv�en waves occurs at frequencies

well below the cyclotron frequency 
c through a mechanism entirely analogous to that de-

scribed by an electrostatic wave. Previous theoretical investigations of heating mechanisms

have nearly always been based on the existence of the primary cyclotron resonance, which

can change the magnetic moment leading to pitch angle scattering and heating. We have

recently found7 that given a suÆciently large amplitude, obliquely propagating wave there

indeed exists eÆcient stochastic ion pitch angle scattering and heating by the Alfv�en wave

even when ! � 
c.

We divide the presentation into a discussion of the standard model of electrostatic cy-

clotron heating in section II, higher order Hamiltonian analysis in Section III, heating with

Alfv�en waves in section IV, and conclusions in Section V.
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II. Electostatic Cyclotron Heating

Consider the simplest cyclotron heating problem possible1, that of a particle gyrating in

a constant magnetic �eld, acted upon by an electrostatic plane wave propagating across

the �eld. This situation is realizable for example by a lower hybrid wave in a plasma of

high density and small magnetic �eld, propagating perpendicularly to ~B at the ion plasma

frequency. The observation of stochastic heating has in fact been reported in work we only

recently discovered.4 We will �nd that the resonances producing stochastic heating below

the cyclotron frequency occur through the same mechanism as those due to any wave in a

magnetized plasma, so this model illustrates the heating mechanism well.

The Hamiltonian for this system is

H =
(~p� ~A)2

2
+ �(x; t) (1)

with the magnetic �eld given by the vector potential ~A = �Byx̂, giving equations of motion

_vx = Bvy � @x�; _vy = �Bvx� @y�.

Take the units of time to be given by 
c, the cyclotron frequency, and let the electrostatic

wave be given by a single harmonic, � = �0cos(kx�!t). There are then three dimensionless

parameters characterizing the heating problem. De�ne � = v=
c to be the instantaneous

cyclotron radius. Then k� characterizes the ratio of cyclotron radius to wave length, k2�0 =

k�xg = !2
b
=
2

c
characterizes the ratio of guiding center polarization drift displacement in

the wave to wave length, with !b the bounce frequency in the wave and xg the guiding center

position, and !=
c gives the ratio of the wave frequency to the cyclotron frequency.

The equations of motion become, _vx = vy + k�0sin(kx� !t); vy = �x+ x0, giving

d2x

dt2
+ x = x0 + k�0sin(kx� !t): (2)

It is easy to see that trapping in the wave is impossible, prevented by the cyclotron

motion. During each cyclotron period, at the point vy = 0 the orbit returns to the point

x0 and every orbit is thus �xed in the laboratory frame. Conversely, assuming that the
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orbit is trapped in the wave with kx ' !t we �nd that vy grows without bound, which is

inconsistent with trapping.

For small wave amplitude at the cyclotron frequency it is possible to describe the particle

response to the wave in terms of oscillation at the cyclotron frequency with a slowly varying

cyclotron radius, or energy. In the case of interest here wave amplitudes are large and wave

frequencies di�erent from, but comparable to, the cyclotron frequency, so response of the

particle at additional frequencies must be retained. To treat the full problem it is necessary

to include particle motion at fractions of the cyclotron frequency, sidebands, harmonics,

etc. The particle motion must be written x = x0 + �cos(t) � �sin(t) +
P
m
[�mcos(�mt) +

�msin(�mt)] with �, �, �m, �m slowly varying in time compared to 1; �m, and �m giving the

set of frequencies necessary to describe the motion. A full analytic treatment is not possible,

but some analytic approximations give insight into the nature of the solutions.

First consider Eq. 2 for s � k(x � x0) � 1. Letting 2T = kx0 � !t and keeping only

lowest order in s we have

d2s

dT 2
+

"
4

!2
�
4k2�0

!2
cos(2T )

#
s =

4k2�0

!2
sin(2T ) (3)

ie, a driven Mathieu equation. This equation has unstable solutions for ! ' 2=N with N

integer, indicating the existence of large amplitude solutions for these values of !.

Now consider a Poincar�e section of k�,  = kx�!t, by taking points when vy = 0; _vy > 0.

This gives  =  0 � !tj, with  0 = kx0, and tj given by the times at which x = x0 and

_x < 0. Given �(t), �(t), �m(t), �m(t) one can solve for the Poincar�e times tj. Without

loss of generality we take at t = 0 initial values x random, vx random negative and vy = 0,

giving x = x0,  (0) =  0. The values at t = 0 then determine one Poincar�e point. Others

are given by k�(tj),  (tj) =  0 � !tj. Fixed points are given by dv=dt = 0 and constant

phase, or _� = _� = _�m = _�m = 0.

In general these equations are very complicated and the Poincar�e section must be exam-

ined numerically. For signi�cant heating there must exist resonances. A complete analysis

would consist of a determination of all �xed points and then the calculation of the widths of
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the islands occuring around the elliptic points, followed by an estimate of stochastic thresh-

old due to island overlap. Unfortunately this approach is not feasible, and to make any

progress analytically one must be guided by numerical results. A numerical Poincar�e plot is

shown in Fig. 1 for k2�0 = 0:1, ! = 1=2, showing period two �xed points occuring at small

wave amplitude. In Fig. 2 are shown these two �xed point orbits, the smaller orbit to the

left corresponding to the lower �xed points at k� ' 0:825,  = 0; �, and the larger corre-

sponding to the upper �xed points at k� ' 1:841,  = ��=2. The nature of the resonance

is obvious, a particle at the �xed point completes two cyclotron periods while completing

one wave period. The �rst �xed point orbit shows a large variation of the orbit between

one cyclotron period and the second, in the second orbit this modi�cation is clearly higher

order.

Guided by numerical results, including a Fourier analysis of the �xed point trajectories,

we illustrate the nature of the solutions for this case by considering only the cyclotron motion

and the particle response at the wave frequency of ! = 1=2. Employing multiple time scales,

and using as ansatz the solution to the equations of motion x = x0 + �cos(t) � �sin(t) �

�sin(!t) with �; �; � slowly varying with respect to 1; !, we then �nd, keeping only leading

order in the slow time scale and using e�iasin(b) =
P
m
Jm(a)e

�imb,

�2
d�

dt
cos(t)� 2

d�

dt
sin(t)� (1� !2)�sin(!t) =

k�0

X
jlm

Jj(k�)Jl(k�)Jm(k�)sin[(j � l�m! � !)t]cos[ 0+ j=pi=2]

+k�0

X
jlm

Jj(k�)Jl(k�)Jm(k�)cos[(j � l�m! � !)t]sin[ 0+ j�=2]: (4)

Integrating over the short time scales, we have

(1� !2)� = k�0

X
jlm

Jj(k�)Jl(k�)Jm(k�)cos( 0 + j�=2)�!�; (5)

2
d�

dt
= �k�0

X
jlm

Jj(k�)Jl(k�)Jm(k�)sin( 0 + j�=2)�1+; (6)

2
d�

dt
= �k�0

X
jlm

Jj(k�)Jl(k�)Jm(k�)cos( 0 + j�=2)�1+; (7)
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with ��� = Æj�l+(�m�1)!;� � Æj�l+(�m�1)!;�� .

To gain an intuitive understanding of the occurences of the nonlinear resonances which

permit heating at frequencies well below the cyclotron frequency, we can examine the limit

of small wave amplitude, k2�0 � 1, analytically for ! = 1=2. Denoting C0 = cos( 0),

S0 = sin( 0), and de�ning Fa;b(�; �) =
P
1

n=�1(�1)
nJ2n+a(k�)J2n+b(k�), we �nd

(1� !2)� = k�0[C0(F0;0 � F0;�1) + S0(F1;0� F1;1)]; (8)

2
d�

dt
= k�0J1(k�)[C0(F1;0 � F1;�1 + F1;2� F1;1) + S0(F0;�1 � F0;�2 + F0;1 � F0;0)]; (9)

2
d�

dt
= k�0J1(k�)[S0(�F1;0+ F1;�1 + F1;2 � F1;1) + C0(F0;�1 � F0;�2 � F0;1 + F0;0)]: (10)

Within this ansatz, these equations determine the motion of a Poincar�e point in the k�,

 plane for small k2�0. To determine the existence of resonances �rst look for �xed points

of the Poincar�e map. In this case k� and k� are small and we �nd for the existence of a

�xed point in the case ! = 1=2, C0 = 1; S0 = 0 and � = 0, J0(k�) = 2J1(k�) + J2(k�)

giving k� = 0:825 and � = �1:62k�0. The Poincar�e points are given by tj = 2j�. The

�xed points are then k� = k(� � !�),  = 0 and k� = k(� + !�),  = �, agreeing with

the positions shown in Fig. 1. The second pair of �xed points in Fig. 1 at  = ��=2 and

k� = 1:84, giving the larger orbit in Fig. 2 is more complex, due to a combination of higher

order motion at ! and 3!. Including particle response at more frequencies, and allowing

larger values of k2�0 the number of �xed points in the map increases enormously.

For ! 6= 1=2 but less than 1, the situation is qualitatively di�erent. The �xed points of

the map emerge from � = 0 as �0 is increased. Nevertheless, �xed points and resonances

exist for all integer N , associated with the unstable domains of the associated Mathieu

equation. In the following we show a few of the Poincar�e plots and associated �xed point

orbits to make clear the nature of the resonances involved producing stochastic heating.

A numerical Poincar�e plot is shown in Fig. 3 for k2�0 = 0:1, ! = 1=3, showing period

three �xed points which move upward as k2�0 increases. In Fig. 4 is shown the �xed
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point orbit for ! = 1=3. The motion is easily interpreted as consisting of three cyclotron

oscillations within one wave period. The orbit initiates at the orgin, which is one Poincar�e

point, with _x < 0. The three cyclotron periods consist of 1) the left half of the lower ellipse,

continuing around to the bottom of the small central ellipse, which is another Poincar�e point,

2) the upper ellipse, returning again to the bottom of the small central ellipse, which is the

third Poincar�e point, and 3) the right half of the lower ellipse, returning to the origin.

In Fig. 5 is shown the Poincar�e plot for ! = 1=4, k2�0 = 0:77, and in Fig. 6 is shown

the period four �xed point orbit associated with the �xed points at  = 0;��=2;�� for the

same parameters. There are four cyclotron periods contained in the wave period. The map

has also become very chaotic, but good KAM surfaces exist for k� > 2.

For ! = 2=N with N odd the �xed point orbit is not simply interpretable as consisting

of an integer number of cyclotron periods in one wave period, as the cases with ! equal

to a simple fraction. Part of the orbit has a peculiar shape and consists of a pause, or

syncopation, allowing one wave period for every N=2 cyclotron periods.

In the above �gures, the �xed point orbits are shown only to display the nature of the

resonances. Most orbits are obviously very complex, and are not closed. The nature of these

resonances is very robust. Small additional perturbations of the system shift the location

of the O-points, they do not destroy the resonances. Even including pitch angle scattering

in the particle motion the resonances are well preserved until the scattering frequency is

comparable to the cyclotron frequency.

Now investigate the approach to chaos and the extent of the chaotic domain, which

limits the possible heating obtained. Stochastic threshold is not simply described in terms

of island overlap, as is evident from Fig. 1. The islands at small perturbation amplitude

are already large, forming a lattice. For frequencies below the cyclotron frequency the

resonance domain, and hence the origin of the chaos, is at small energies, unlike the case of

heating well above the cyclotron frequency.8 The stochastic domain typically extends from

� = 0 to a maximim value, where good KAM surfaces exist and the perpendicular energy

is only oscillatory, described by the magnetic moment. The extent of the stochastic domain
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increases in discrete jumps as new resonances overlap and domains around them become

stochastic. Heating of an initially cold distribution proceeds to the maximum limit given by

the good KAM surfaces in a rather short time; on the order of one to two hundred cyclotron

periods.

Figure 7 shows the variation of the extent of the \heating domain" in k� versus wave

frequency for k2�0 = 0:36, 0:8, and 2:6. For small wave amplitude some peaking can in-

deed be seen at low-order (small) integer fractions, as predicted by the Mathieu equation

approximation. As the amplitude increases, however, nonlinear generation of many �xed

points produces chaos which smooths out the resonance structures and makes the extent of

the domain almost linear in !. Of course at small amplitude and in the limit of ! ! 0 for

any amplitude the motion is not stochastic, and there is no real heating, only large ampli-

tude excursions in the potential. But for large amplitude the motion becomes stochastic,

producing true heating, for very low frequencies. For the two larger amplitude plots an X

indicates the frequency for the onset of chaos. For k2�0 = 0:36, curve a, there is no chaos,

only large scale convective motion, even at ! = 1.

The onset of chaos at large wave amplitude as a function of ! is shown in Fig. 8. Note

that heating at the cyclotron frequency has a threshold not signi�cantly lower than for

subcyclotron frequencies. Values of k2�0 above the line give a signi�cantly stochastic plot,

with the area of the domain of stochasticity increasing rapidly as one moves away from the

line. The onset of chaos is very irregular, it can occur through period doubling, the overlap

of islands of various period, or through the stochastic broadening of a separatrix.

III. Hamiltonian Analysis

The resonances described above are missed in the usual Hamiltonian formalism. To see

how this occurs follow Lichtenberg and Lieberman.1 The unperturbed Hamiltonian is H0 =

(~p� ~A)2=2 with ~B = Bẑ, the vector potential ~A = 
cxŷ, and canonical variables x; y; px; py.

Transform to guiding center variables �;X;PX ; P� using F1(q;Q; t) = 
c[
1
2
(x �X)2cot� +
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yX], with tan� = vx=vy, y = Y + �cos�, x = X + �sin�, p = @F1=@q; P = �@F1=@Q,

giving px = 
c(x�X)cot�; py = 
cX, P� = 
c�
2=2, PX = �
cY . Then we have H0 =

P�
c. Now introduce the perturbation H = H0+�0sin(kx�!t). Make the transformation

X;PX !  ;P with  = kX � !t using F2(q; P; t) = (kX � !t)P + P��, giving p =

@F2=@q; Q = @F2=@P; PX = kP , and the Hamiltonian becomes

H = P�
c � P ! + �0�mJm(k�)sin( +m�) (11)

with variables  ; �; P ; P� and unperturbed frequencies !� = @P�H0 = 
c, ! = @P H0 =

�!.

The �rst order perturbation gives resonances, with a secularity of the perturba-

tion, when  + m� = constant, or ! � m
c = 0, ie the usual cyclotron har-

monics. But if �0 is large, this analysis is incomplete. To obtain higher order in

�0, begin with Eq. 2. Take ! � 1, and perform a two time scale analysis with

X(t) slow. Neglecting slow time scale dependence, and averaging over the fast time

scale we �nd kX = kx0 + k2�0 hsin(kX + k�sin�� !t)i. Again transform X;PX !

 ;P using F2(q; P; t) as above. Then �nd the equation for  to be  =  0 +

k2�0 hsin( + k�sin�)i with  0 = kx0�!t. Now iterate twice in powers of k2�0 giving  2 =

 0 + k2�0�mJm(k�) hsin( 0 +m�)i + (k4�2
0=2)�mnJm(k�)Jn(k�) hsin(2 0 +m�+ n�)i +

(k4�2
0=2)�mnJm(k�)Jn(k�) hsin(m�� n�)i.

Recall the Hamiltonian is H = H0 + �0sin( + k�sin�), so hk2Hi �  . But terms in

 2 with m + n = 1 give a secularity at 2! = 
c. To �nd the secularities at ! = 
c=N

it is necessary to perform N iterations, and the Hamiltonian becomes very complicated.

Furthermore this is a ! � 
c approximation, and cannot even reproduce the case ! = 
c=2

described above, with any degree of accuracy.

IV. Alfv�en wave Heating

Now examine stochastic heating of cold ions by low frequency Alfv�en waves. The physics of

this stochastic heating is similar to that due to a perpendicularly propagating electrostatic
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wave with a frequency a small fraction of 
c given above.7 To demonstrate the similarity

consider a linearly polarized Alfv�en wave in the laboratory frame X;Y;Z, given by ~Bw =

Bwŷcos( ) with  = ~k � ~X � !t and ~B = B0ẑ. We have ! = kzvA and if we consider ions

which are cold in the laboratory frame we have also ! = kzvA = kzv with v the velocity in the

wave frame x; y; z with z = Z � vAt. Take the units of time to be given by 
c, the cyclotron

frequency, and normalize the �eld to B0. In the wave frame we have  = kxx+ kzz and the

velocity v = vA is constant in time. Dimensionless numbers characterizing the problem are

then kxv, kzv = !=
c, and the wave magnitude Bw=B0.

The equations of motion become, again in the wave frame, _vx = vy � vzBwcos ; vy =

x0 � x; _vz = vxBwcos , giving

d2x

dt2
+ x = x0 � vzBwcos (12)

and the instantaneous location of a particle in phase space is given by x; z and the pitch

� = vz=v. Note that vy = 0 implies again x = x0 and every orbit is thus localized in x, but

in distinction to the electrostatic case the wave is also propagating in z.

To lowest order in Bw, the velocity vz does not change, and we thus �nd to �rst order

d2x=dt2+ x = x0� vz(0)Bwcos . This equation is equivalent to Eq. 2, describing cyclotron

heating, with !=
c = kzvz(0)=
c playing the role of the frequency of the electrostatic wave,

and kxvz(0)Bw=(B0
c) the nonlinearity parameter. We again �nd a driven Mathieu equation

with unstable solutions for ! ' 2=N with N integer. Thus there are resonances at many

values of particle pitch in the wave frame. However, note that kx = 0 implies no nonlinear

interaction, so we expect nonlinear e�ects only for waves propagating across the �eld. For

larger values of Bw the approximation of vz = vz(0) will be invalid in the di�erential equation

for x and the motion will be more complex. Thus we expect the threshold for chaos to occur

at lower perturbation amplitude than for the case of an electrostatic wave.

To study the resonances, again take a Poincar�e section of �;  , formed by taking points

when vy = 0 and _vy > 0 for a distribution at a �xed energy, ie all particles with the same

v in the wave frame. Figure 9 shows a sample Poincar�e plot with kxv = 0:1, kzv = 1,
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Bw = 0:22, with resonances at kzvz = 2=n for all integer n � 2, although only a few are

visible in this plot. Large islands centered at zero pitch are populations of particles trapped

in the magnetic well. In a way, the Alfv�en problem is simpler than the electrostatic problem,

because the location of the resonances in the Poincar�e plot in this case is known. At larger

wave amplitude these resonances produce stochastic motion, and hence allow non adiabatic,

permanent change in pitch �. Transformed back to the laboratory frame such a change in

pitch is equivalent to particle acceleration and heating as well as pitch angle scattering.

Noting that waves of left hand polarization are often excited in space plasmas, we shall

consider in the following only a left hand circularly polarized Alfv�en wave. Thus we have,

again in the wave frame ~Bw = �Bwx̂cos(�)sin( ) + Bwŷcos + Bw ẑsin(�)sin( ) with

 = kxx + kzz and tan(�) = kx=kz . In the laboratory frame the wave propagates in the

positive z direction, and in the wave frame vz=v = �1 for an initially cold ion distribution.

Figure 10 shows a Poincar�e plot for a left hand circularly polarized wave with Bw = 0:25,

kxv = 0:27, kzv = 0:2. In the laboratory frame of the cold particles this wave has a

frequency of !=
c = 0:2. At this amplitude the lower part of the plot is chaotic, and ions

can freely move from vz=v = �1 to values near �0:4, but above this there are good KAM

surfaces. Transforming back to the laboratory frame, the �nal ion distribution has a mean

perpendicular velocity more than three times as large as the mean parallel velocity. An

initially cold distribution is given a large perpendicular energy in a few hundred cyclotron

periods.

In Fig. 11 is shown a numerical determination of the stochastic threshold in the plane

of kxv;Bw for frequencies of !=
c = 0:1; 0:25; 0:5. This plot was obtained by observing

the Poincar�e plot of initially cold (pitch = -1) particles. Above the line there is a signi�-

cant chaotic domain leading to heating, and below it good KAM surfaces exist, preventing

heating.

With a spectrum consisting of waves of di�erent frequencies a Poincar�e plot cannot be

used to investigate the onset of chaos. However it is possible to examine the presence of

chaos by using a perturbation which is Gaussian in time, tending to zero at t = �1 with a
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width of Æt� 1=
c. In Fig. 12 is shown the adiabatic nature of the particle energy change

for a small amplitude perturbation, with a spectrum of 21 modes all with kxVa = kzVa = 
c,

uniformly distributed in the interval 0:2 < !=
c < :7, the amplitude for mode k given by

ÆBk � A=!k, as suggested by solar corona spectroscopy.9 The initial particle distribution

was monoenergetic with v = VA=20 and uniform in pitch. Over 90 percent of the energy is

in the perpendicular velocity, so these plots are essentially of the magnetic moment. In Fig.

13 is shown the nonadiabatic response with a larger amplitude perturbation. Figure 14 gives

the �nal energy change as a function of average mode amplitude for spectra consisting of 1,

5, 21, and 51 modes with kxVA = 1 and one spectrum with kxVA = 10, all in the frequency

range 0:2 < !=
c < :7, showing an approximate threshold behavior. As expected from the

linear analysis, larger kx increases the level of chaos. There is not a precise threshold for

heating because as ÆB increases small chaotic domains begin to appear, with a few particles

a�ected. However above a fairly well de�ned point almost all of phase space is stochastic

up to some limiting energy, and the whole distribution is heated irreversibly. Within limits,

extending the width of the Gaussian perturbation does not change results, the particles are

heated up to the limiting KAM surface in a few hundred cyclotron periods. The stochastic

threshold and the amount of heating depend on the properties of the spectrum in ways which

are still being investigated.

V. Conclusion

In conclusion, we have demonstrated that signi�cant perpendicular heating of a magnetized

plasma can be obtained well below the cyclotron frequency. The example of an electrostatic

wave propagating across a constant magnetic �eld with a frequency below the cyclotron

frequency serves as a simple mathematical model for the e�ect. The resonances involve

orbits which complete multiple cyclotron periods in one wave period. Stochastic threshold

for a single wave occurs at an amplitude which is almost independent of the wave frequency,

and in the presence of several waves the threshold is signi�cantly lowered. This generic
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process is due to the nonlinear coupling of the motion of the guiding center due to the wave

with the cyclotron motion, and can occur with any type of wave. The process may have

application in laboratory heating devices as well as in astrophysical situations. Of particular

interest is a spectrum of Alfv�en waves, which can energize cold ions even when the wave

frequency is well below the ion cyclotron frequency. This e�ect may be of importance in

the heating of ions in the solar corona7 and in transfering energy directly from a fast ion

population to bulk thermal ions in a magnetically con�ned toroidal plasma with low aspect

ratio.10
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Figure Captions

Fig. 1 Poincar�e plot for Electrostatic wave, k2�0 = 0:1, ! = 1=2

Fig. 2 Fixed point orbits for Fig. 1

Fig. 3 Poincar�e plot for Electrostatic wave, k2�0 = 0:1, ! = 1=3

Fig. 4 Fixed point orbit for Fig. 3

Fig. 5 Poincar�e plot for Electrostatic wave, k2�0 = 0:77, ! = 1=4

Fig. 6 Fixed point orbit associated with Fig. 5

Fig. 7 Heating Domain vs ! for k2�0 = a) 0.36, b) 0.8 c) 2.6

Fig. 8 Threshold for chaos in the k2�0, ! plane.

Fig. 9 Poincar�e plot for a plane polarized Alfv�en wave, Bw = 0:22, kxv = 0:1, kzv = 1.

Fig. 10 Poincar�e plot for a circularly polarized Alfv�en wave, Bw = 0:25. kxv = 0:27, kzv = 0:2.

Fig. 11 Stochastic threshold, (a) ! = 0:5, (b) ! = 0:25, (c) ! = 0:1

Fig. 12 Energy time history for spectrum of Alfv�en waves with ÆB=B = 4� 10�3

Fig. 13 Energy time history for spectrum of Alfv�en waves with ÆB=B = 4� 10�2

Fig. 14 Stochastic heating due to a spectrum of Alfv�en waves.
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FIGURES

Fig. 1. Poincar�e plot for Electrostatic wave, k2�0 = 0:1, ! = 1=2

Fig. 2. Fixed point orbits for Fig. 1
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Fig. 3. Poincar�e plot for Electrostatic wave, k2�0 = 0:1, ! = 1=3

Fig. 4. Fixed point orbit for Fig. 3
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Fig. 5. Poincar�e plot for Electrostatic wave, k2�0 = 0:77, ! = 1=4

Fig. 6. Fixed point orbit associated with Fig. 5
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Fig. 7. Heating Domain vs ! for k2�0 = a) 0.36, b) 0.8 c) 2.6

Fig. 8. Threshold for chaos in the k2�0, ! plane.
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Fig. 9. Poincar�e plot for a plane polarized Alfv�en wave, Bw = 0:22, kxv = 0:1, kzv = 1.

Fig. 10. Poincar�e plot for a circularly polarized Alfv�en wave, Bw = 0:25. kxv = 0:27, kzv = 0:2.
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Fig. 11. Stochastic threshold, (a) ! = 0:5, (b) ! = 0:25, (c) ! = 0:1

Fig. 12. Energy time history for spectrum of Alfv�en waves with ÆB=B = 4� 10�3
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Fig. 13. Energy time history for spectrum of Alfv�en waves with ÆB=B = 4� 10�2

Fig. 14. Stochastic heating due to a spectrum of Alfv�en waves.
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