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Determination of 3D equilibria from flux surface

knowledge only
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Abstract

We show that the method of Christiansen and Taylor, from which complete

tokamak equilibria can be determined given only knowledge of the shape of the flux

surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators.

As for the tokamak case, the given geometric knowledge has a high degree of

redundancy, so that the full equilibrium can be obtained using only a small portion

of that information.

PACS #s: 52.30.Bt, 52.55.Hc
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Christiansen and Taylor (CT) have shown1 that complete MHD equilibria may

be obtained for axisymmetric tokamaks with noncircular cross-sections, provided

that one initially knows only the shapes of the flux surfaces, described by some flux

surface labelρ(x) over real-spacex. The demonstration is accomplished by taking

appropriate flux–surface averages of the Grad-Shafranov (GS) equation2,3 to ob-

tain a simple radial second order o.d.e. for the poloidal fluxψ as a function ofρ.

This can be solved analytically, and, givenψ(ρ), one can obtain expressions for the

pressure gradient profilep′ ≡ dp/dρ and poloidal current profileF which appear

in the GS equation. Sinceρ(x) can be inferred from measurements of physical

quantities which are also approximately flux functions (such as density, tempera-

ture, or pressure) the method has the potential to be an important diagnostic, and

efforts have been made to apply this method to measuring the current andq profiles

on JET,4 C-Mod,5 and PEGASUS.6

It is natural to consider whether such a method also exists for 3-dimensional

(3D) toroidal equilibria such as stellarators. In this paper, we demonstrate that this

is the case. The GS equation is an elliptic partial differential equation (p.d.e.) in

2 dimensions, usually parametrized by the distanceR from the major axis, and

the vertical heightZ above the midplane, independent of the geometrical toroidal

azimuthζg about that axis. Since the derivation of the GS equation makes use of

axisymmetry, it is unclear that the method will generalize. However, Degtyarev,

et al.7 have shown, through insightful choices of flux coordinate systems, that a

3D generalization of the GS equation forψ(x) exists, which we shall refer to as

the 3D-GS equation. Here we show that this more complicated equation may also

be subjected to a procedure like that in Ref. 1 to obtain a radial o.d.e. forψ(ρ)

of the same form as in the 2D case, but with more complicated coefficients. CT

have pointed out that their procedure for tokamaks is more robust the more highly
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shaped the tokamak cross section. One might conjecture that, because of the strong

poloidal and toroidal shaping of typical stellarators, the CT procedure would in fact

be more suited to stellarators than to tokamaks.

We briefly review the origin of the 3D-GS equation.7 In a general flux coordi-

nate system{qi} ≡ {ρ, θ, ζ} (for i = 1, 2, 3) parametrizing a torus, with poloidal

angleθ, toroidal angleζ, and flux surface labelρ already introduced, one may

represent the magnetic field in both the contravariant (Clebsch) representation,

B = ∇ψ ×∇ζ + ∇Φ ×∇θ = eθB
θ + eζB

ζ , (1)

and in the covariant representation

B = J∇θ + F∇ζ − ν∇ρ+ ∇φ. (2)

Here, theei ≡ J ej × ek are the contravariant basis vectors, wherei, j, andk are

cyclic. These are reciprocal to the covariant setei, usually taken equal to∇qi, in

which caseei = ∂x/∂qi. J ≡ (e1 ·e2×e3)−1 = e1 ·e2×e3 is the Jacobian.Φ(ρ)

andψ(ρ) are, respectively,1/2π times the toroidal magnetic flux inside, and the

poloidal flux outside, flux surfaceρ, andJ(ρ) andF (ρ) are, respectively,µ0/2π

times the toroidal current inside, and the poloidal current outside, flux surfaceρ.

Using Eq.(2) in Ampere’s law, one obtains the contravariant representation of the

current,

µ0J = ∇× B = −(F ′ + ∂ζν)∇ζ ×∇ρ+ (J ′ + ∂θν)∇ρ×∇θ. (3)

Eqs.(1) and (3) automatically satisfy∇ · B = 0 and the steady-state condition

∇ · J = 0, as well as the equilibrium conditionsBρ ≡ ∇ρ ·B = 0 andJρ ≡ ∇ρ ·
J = 0 arising from dottingB andJ into the force-balance equationp′∇ρ = J×B.

The final equilibrium condition is the radial component of this,

|∇ρ|2p′ = ∇ρ · J× B. (4)
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The standard (2D) GS equation uses neither the co- nor the contra-variant repre-

sentations ofB andJ in Eq.(4), but the ‘mixed’ representation

B = ∇ψ × b + bF, µ0J = −b∆∗ψ + ∇F × b, (5)

whereb ≡ ∇ζg = ζ̂/R, andb2∆∗ψ ≡ ∇ · (b2∇ψ). Using Eqs.(5) in (4), one

obtains

b2∆∗ψ = −µ0p
′/ψ′ − b2FF ′/ψ′. (6)

Axisymmetry has been used in obtaining the simple forms forJ and Eq.(6). Spe-

cializing ρ to ψ here so thatψ′ = 1, and noting thatb2 = R−2 yields the GS

equation.

In the fully 3D problem, Degtyarev,et al.7 have shown that a mixed repre-

sentation may again be given, making use of two special flux coordinate systems,

the ‘natural’ and ‘conatural’ systems(ρ, θn, ζn) and(ρ, θc, ζc), respectively, which

become the same system in the 2D case. Demanding∇ρ · ∇ × B = 0 from

representation (1) forB, and further that this condition hold independent of the

rotational transformι ≡ −ψ′/Φ′ results in equations determining the angles for

the natural coordinate system:

∇ · [∇ρ× (∇θn ×∇ρ)] = 0,∇ · [∇ρ× (∇ζn ×∇ρ)] = 0, (7)

and demanding∇ · B = 0 from representation (2) for the conatural system, and

further that this hold independent of the ratioF/J results in similar conditions

determining the angles for the conatural system:

∇ · [∇ρ× (∇θc ×∇ρ)/|∇ρ|2] = 0,∇ · [∇ρ× (∇ζc ×∇ρ)/|∇ρ|2] = 0. (8)

Each of Eqs.(7) and (8) have no radial derivatives, and so are 2D p.d.e.s over a flux

surface. Starting only withρ(x), one uses Eqs.(7) and (8) to obtain the full natural
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and conatural coordinate sets. Given these, the generalized mixed representation

for B is shown in Ref. 7 to be

B = ∇ψ × bc + bnF, (9)

wherebc ≡ ec3/(ec3 · en3) andbn ≡ en3/(ec3 · en3). The current is then given

by

µ0J = ∇× (∇ψ × bc) + ∇F × bn + F∇× bn, (10)

where the final term vanishes in the 2D case. Using Eqs.(9) and (10) in (4) yields

the 3D-GS equation,

b2
c∆

∗
cψ = −µ0p

′/ψ′ − b2
nFF

′/ψ′ + Fbc · ∇ × bn − F ′bc · (bn ×∇ρ) (11)

−(F/ψ′|∇ρ|2)(bn ×∇ρ) · ∇ × (bc ×∇ψ) + (F 2/ψ′|∇ρ|2)(bn ×∇ρ) · (∇× bn),

where the operator∆∗
c generalizes∆∗ in the GS equation:

b2
c∆

∗
cψ ≡ −bc · ∇ × (∇ψ × bc) = ∇ · (b2

c∇ψ) −∇ψ · bc × (∇× bc). Of the

6 terms on the right side of Eq.(11), all but the first 2 vanish in the axisymmetric

case (6), as does the second term in last form given forb2
c∆

∗
cψ.

We now show that Eq.(11) has a form amenable to the analysis to which CT

subjected (6) in Ref. 1. Usingρ as the radial variable, we write each of the terms

in ψ′×Eq.(11) as the product of some combination of the physics-related profile

functionsψ(ρ), p(ψ) andF (ρ) and their derivatives, times a geometric coefficient

(A(x), C(x), Di=0−4(x)) which varies over a flux surface:

ψ′ψ′′A+ ψ′2C = −p′D0 − FF ′D1 − Fψ′D2 − (Fψ′)′D3 − F 2D4, (12)

whereA ≡ b2
c |∇ρ|2, C ≡ b2

c∆∗
cρ, D0 ≡ µ0, D1 ≡ b2

n, D2 ≡ [−bc · ∇ × bn +

(bn ×∇ρ) · ∇ × (bc × ∇ρ)/|∇ρ|2], D3 ≡ bc · (bn × ∇ρ), andD4 ≡ −(bn ×
∇ρ) · (∇×bn)/|∇ρ|2. Only the coefficientsA,C,D0 andD1 are nonvanishing in

the 2D case.
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As in Ref. 1, we note that Eq.(12) has an immense amount of redundancy: an

infinite number of coupled o.d.e.s inρmay be generated from it by taking different

flux surface averages. For example, for any “test functions”hi(x), (i = 0 − 4)

with vanishing flux surface average,〈hi〉 = 0, taking〈(12)×hi/Di〉 yields a 1D

equation of the form of Eq.(12), but with the term inDi annihilated. Generating

such an o.d.e. for each of the 5Di, one obtains a set of 5 linear equations in

the 7 ‘unknowns’{ψ′ψ′′, ψ′2; p′, FF ′, Fψ′, (Fψ′)′, F 2}. Thus, by taking linear

combinations, one can eliminate the last 5 of these, and obtain an equation of the

same form as found in Ref. 1,

ψ′ψ′′AT + ψ′2CT = 0, (13)

which is easily solved forψ(ρ). Calling the coefficient of theith equationαi, (i =

0 − 4), Eq.(13) is thus obtained by the flux surface average〈(12)×hT 〉, with

hT (x) ≡ ∑4
i=0 αihi(x)/Di(x). Givenψ, one may obtain any of the other flux

function unknowns, and thusp′ andF , through other combinations of the 5 o.d.e.s.

A slightly different approach is to make contact with the starting point of CT for

this part of the analysis, the GS equation written withρ as the radial variable. As

noted above, this is just Eq.(12) with vanishingD2, D3, andD4. Using only the

last 3 (i = 2, 3, 4) of the 5 averaged equations above, one can straightforwardly

eliminate the unknownsFψ′, (Fψ′)′, andF 2 from Eq.(12), obtaining

ψ′ψ′′ ˜̃A+ ψ′2 ˜̃C = −p′ ˜̃D0 − FF ′ ˜̃D1, (14)

where all 4 coefficients̃̃X here are given bỹX̃ ≡ X̃−〈X̃h1/D̃1〉D̃4/〈D̃4h1/D̃1〉,
andX̃ ≡ X − 〈Xh2/D2〉D3/〈D3h2/D2〉 − 〈Xh3/D3〉D2/〈D2h3/D3〉. Eq.(14)

is of the same form as the GS equation, but with the replacementsb2|∇ρ|2 → ˜̃A,

b2∆∗ρ → ˜̃C, µ0 → ˜̃D0, andb2 → ˜̃D1. Thus, the same expressions given in

Ref. 1 forψ, p′ andFF ′ apply here as well, with these replacements.
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Summarizing, we have shown that the 2D result of Ref. 1, that knowing only

the shapeρ(x) of the flux surfaces in a toroidal MHD equilibrium is sufficient to

determine the full equilibrium, can be extended to 3D equilibria, such as those of

stellarators. This is achieved by building on the results of Ref. 7, which showed

that a 3D analog for the GS equation exists, and by demonstrating that this 3D-GS

equation retains the needed properties for the CT method to be applied. As noted

in Ref. 1, the equilibrium equation has a great deal of redundancy, reflected in the

great flexibility in the choice of the test functionshi(x). These may be chosen to

be appreciable everywhere over each flux surface, or highly localized, depending,

for example, on what type of data one has available to determineρ(x). The fact

thatρ(x) describes a 3D equilibrium assures that any choice will yield the same

result. However, if the precision with which this information is known is limited,

as will be the case ifρ(x) is measured experimentally, a corresponding spread in

the results forψ, p′ andFF ′ will arise for different choices ofhi. Study of this,

and the practicality of the CT approach to profile determination in stellarators, are

left to future work.
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