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Implications of the Electrostatic Approximation in the Beam

Frame on the Nonlinear Vlasov-Maxwell Equatons

for Intense Beam Propagation

Ronald C. Davidson, W. Wei-li Lee, Hong Qin and Edward Startsev

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

This paper develops a clear procedure for solving the nonlinear Vlasov-

Maxwell equations for a one-component intense charged particle beam or

finite-length charge bunch propagating through a cylindrical conducting pipe

(radius r = rw = const.), and confined by an applied focusing force Ffoc. In

particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed

to the beam frame (‘primed’ variables) moving with axial velocity Vb = βbc =

const. relative to the laboratory. In the beam frame, the particle motions

are nonrelativistic for the applications of practical interest, already a major

simplification. Then, in the beam frame, we make the electrostatic approx-

imation (E′
s = −∇′φ′, E′

T ' 0 ' B′
s) which fully incorporates beam space-

charge effects, but neglects any fast electromagnetic processes with transverse

polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are

then Lorentz-transformed back to the laboratory frame, and properties of the

self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the

laboratory frame are discussed.
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I. INTRODUCTION

Periodic focusing accelerators and transport systems [1–7] have a wide range of applica-

tions ranging from basic scientific research in high energy and nuclear physics, to applica-

tions such as coherent radiation sources, heavy ion fusion, tritium production, nuclear waste

transmutation, and spallation neutron sources for materials and biological research [8,9]. At

the high beam currents and charge densities of practical interest, of particular importance

are the effects of the intense self fields produced by the beam space charge and current on

determining the detailed equilibrium, stability and transport properties, and the nonlinear

dynamics of the system. Through analytical studies based on the nonlinear Vlasov-Maxwell

equations for the distribution function fb(x,p, t) and the self-generated electric and fields

Es(x, t) and Bs(x, t), and numerical simulations using particle-in-cell models and nonlinear

perturbative simulation techniques, considerable progress has been made in developing an

improved understanding of the collective processes and nonlinear beam dynamics character-

istic of high-intensity beam propagation in periodic focusing and uniform focusing transport

systems [10–28]. In almost all applications of the Vlasov-Maxwell equations to intense beam

propagation, the analysis is carried out in the laboratory frame, and various simplifying

approximations are made, ranging from the electrostatic-magnetostatic approximation [29],

to the Darwin-model approximation [30–35] which neglects fast transverse electromagnetic

perturbations.

Given the general importance of model assumptions in affecting the detailed outcome of

calculations, in this paper we develop a clear procedure for solving the nonlinear Vlasov-

Maxwell equations for a one-component intense charged particle beam or finite-length charge

bunch propagating through a cylindrical conducting pipe (radius r = rw = const.), and

confined by an applied focusing force Ffoc. In particular, the nonlinear Vlasov-Maxwell

equations are Lorentz-transformed to the beam frame (‘primed’ variables) moving with ax-

ial velocity Vb = βbc = const. relative to the laboratory [24]. In the beam frame, the particle

motions are nonrelativistic for the applications of practical interest, already a major simpli-
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fication. Then, in the beam frame, we make the electrostatic approximation (E′
s = −∇′φ′,

E′
T ' 0 ' B′

s) which fully incorporates beam space-charge effects, but neglects any fast

electromagnetic processes with transverse polarization (e.g., light waves). The resulting

Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and

properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in

the laboratory frame are discussed.

II. VLASOV-MAXWELL EQUATIONS AND TRANSFORMATION

TO THE BEAM FRAME

In the present analysis, we consider an intense charged particle beam with characteristic

transverse dimensions a and b propagating in the z-direction with average axial velocity

Vb = βbc = const. and characteristic directed kinetic energy (γb − 1)mbc
2. Here, c is the

speed of light in vacuo, γb = (1−β2
b )

−1/2 is the relativistic mass factor, and eb and mb are the

charge and rest mass, respectively, of a beam particle. A perfectly conducting cylindrical

wall is located at radius r = rw, where r = (x2 + y2)1/2 is the radial distance from the

beam axis. The particle motion in the beam frame (‘primed’ coordinates) is assumed to be

nonrelativistic with |v′| � c. Furthermore, the beam current density and charge density

are allowed to be arbitrarily large, subject only to the requirement that the beam particles

be confined by the applied focusing fields Efoc(x, t) and Bfoc(x, t). The specific forms of

Efoc(x, t) and Bfoc(x, t) of course depend on the particular focusing field configuration under

consideration (quadrupole, solenoidal, rf, etc.). Finally, in the present analysis, the beam

can be continuous in the z-direction, or correspond to a finite-length charge bunch.

Within the context of the above assumptions, a complete description of the collective

processes and nonlinear dynamics of the charged particle beam is provided by the nonlin-

ear Vlasov-Maxwell equations [1], which describe the evolution of the distribution function

fb(x,p, t) in the six-dimensional laboratory-frame phase space (x,p), and the corresponding

self fields, Es(x, t) and Bs(x, t), generated self-consistently by the beam space charge and
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current. In laboratory-frame variables, the nonlinear Vlasov-Maxwell equations describing

the self-consistent evolution of fb(x,p, t), Es(x, t) and Bs(x, t) can be expressed as

∂fb

∂t
+ v · ∂fb

∂x
+

[
Ffoc + eb

(
Es +

1

c
v × Bs

)]
· ∂fb

∂p
= 0 , (1)

and

∇ · Es = 4πeb

∫
d3pfb , (2)

∇× Bs =
1

c
4πeb

∫
d3pvfb +

1

c

∂Es

∂t
, (3)

∇× Es = −1

c

∂Bs

∂t
, (4)

∇ · Bs = 0 . (5)

Here, Ffoc = eb(Efoc + c−1v × Bfoc) is the applied focusing force in the laboratory frame,

and the velocity v and momentum p are related by p = γmbv, where γ = (1 +p2/m2
bc

2)1/2.

The Vlasov equation (1) describes the incompressible evolution of the distribution func-

tion fb(x,p, t) in the six-dimensional phase space (x,p) as the beam particles interact with

the applied focusing fields, Efoc(x, t) and Bfoc(x, t), and the average self fields, Es(x, t) and

Bs(x, t), generated by the beam particles. Note that the Vlasov equation (1) is highly nonlin-

ear because Es(x, t) and Bs(x, t) are determined self-consistently in terms of the beam charge

density, ρb(x, t) = eb

∫
d3pfb(x,p, t), and current density, Jb(x, t) = eb

∫
d3pvfb(x,p, t), from

Maxwell’s equations (2)–(5). Here, nb(x, t) =
∫

d3pfb(x,p, t) is the number density of beam

particles.

The Vlasov-Maxwell equations (1)–(5) can of course be analyzed directly in laboratory-

frame variables. However, for a beam consisting of a single charge component (the case

considered here), there is considerable advantage to transforming to the beam frame moving

with axial velocity Vb = βbc relative to the laboratory. In the beam frame the particle motion

is nonrelativistic (|v′| � c) by assumption, which results in a welcome simplification of the

4



corresponding Vlasov-Maxwell equations in the beam frame. The Lorentz transformation

[36,37] relating the primed variables (x′,p′, t′) in the beam frame to the unprimed variables

(x,p, t) in the laboratory frame is given by

x′ = x , y′ = y , z′ = γb(z − Vbt) ,

t′ = γb(t − Vbz/c2) ,

p′x = px , p′y = py , p′z = γb(pz − γmbVb) ,

γ′ = γb(γ − Vbpz/mbc
2) , (6)

where γb = (1 − V 2
b /c2)−1/2. Here, the particle momentum and velocity are related by

p = γmbv and p′ = γ′mbv
′, where γ = (1 + p2/m2

bc
2)1/2 and γ′ = (1 + p′2/m2

bc
2)1/2

are the kinematic mass factors. In the beam frame, the nonlinear Vlasov equation for the

distribution function f ′
b(x

′,p′, t′) can be expressed as [24]

∂f ′
b

∂t′
+ v′ · ∂f ′

b

∂x′ +
[
F′

foc + eb

(
E′

s +
1

c
v′ × B′

s

)]
· ∂f ′

b

∂p′ = 0 . (7)

In Eq. (7), E′
s(x

′, t) and B′
s(x

′, t′) are the self-generated fields in the beam frame, and we

approximate γ′ = 1 + p′2/2m2
bc

2 and p′ = mbv
′ because the particle motion in the beam

frame is assumed to be nonrelativistic. Furthermore, F′
foc = eb(E

′
foc + c−1v′ × B′

foc) is

the applied focusing force on a particle in the beam frame. Here, the applied electric and

magnetic fields transform according to E′
foc = [Ezêz + γb(Exêx + Eyêy) + γbc

−1Vbêz ×B]foc

and B′
foc = [Bzêz + γb(Bxêx + Byêy) − γbc

−1Vbêz × E]foc, which determines E′
foc and B′

foc

directly in terms of the applied focusing fields in the laboratory frame and the Lorentz

transformation in Eq. (6).

Maxwell’s equations in the beam frame of course are similar in form to Eqs. (2)–(5),

and relate the self-generated electric and magnetic fields, E′
s(x

′, t′) and B′
s(x

′, t′), to the

distribution function f ′
b(x

′,p, t′). For present purposes, it is convenient to introduce the

scalar and vector potentials, φ′(x′, t′) and A′(x′, t′), and express

E′
s = E′

L + E′
T = − ∂

∂x′φ
′ − 1

c

∂

∂t′
A′ ,
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B′
s =

∂

∂x′ ×A′ , (8)

where E′
L = −∇′φ′ is the longitudinal electric field, E′

T = c−1∂A′/∂t′ is the transverse

electric field, and the Coulomb gauge condition with ∇′ · A′ = 0 is assumed. From Eq. (8),

the Maxwell equations ∇′ ·B′
s = 0 and ∇′ × E′

s = −c−1∂B′
s/∂t′ are automatically satisfied,

and Poisson’s equation and the ∇′ × B′
s Maxwell equation in the beam frame are readily

expressed as [24]

∇′2φ′ = −4πeb

∫
d3p′f ′

b , (9)

∇′2A′ = −1

c
4πeb

∫
d3p′v′f ′

b +
1

c2

∂2A′

∂t′2
+

1

c
∇′∂φ′

∂t′
, (10)

where use has been made of ∇′ · A′ = 0. In Eqs. (9) and (10), note that the electro-

static potential φ′(x′, t′) is determined self-consistently in terms of the beam charge density

ρ′
b(x

′, t′) = ebn
′
b(x

′, t′) = eb

∫
d3p′f ′

b(x
′,p′, t′) from Eq. (9), and A′(x′, t′) is determined in

terms of the beam current density J′
b(x

′, t′) = ebn
′
b(x

′, t′)V′
b(x

′, t′) = eb

∫
d3p′v′f ′

b(x
′,p′, t′)

from Eq. (10). Here, n′
b(x

′, t′) is the local number density and V′
b(x

′, t′) is the local average

flow velocity of particles in the beam frame, and v′ = p′/mb is the (nonrelativistic) particle

velocity. Note that Poisson’s equation (9) can be viewed as an initial condition to Eq. (10),

which if true at t′ = 0 remains true at all subsequent t′. This follows upon taking the

divergence of Eq. (10) and making use of the Coulomb gauge condition ∇′ · A′ = 0. This

readily gives

1

c

∂

∂t′
∇′2φ′ − 1

c
4πeb∇′ · (n′

bV
′
b) =

1

c

∂

∂t′
[∇′2φ′ + 4πebn

′
b] = 0 , (11)

where use has been made of ∂n′
b/∂t′ +∇′ · (n′

bV
′
b) = 0. It follows trivially from Eq. (11) that

if Poisson’s equation (9) is satisfied initially at t′ = 0, then it remains true at all subsequent

times t′.

For the boundary conditions at the perfectly conducting cylindrical wall at radius

r = r′ = rw, we impose the requirements that the tangential electric field and the normal
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magnetic field vanish. That is, [Ez]r=rw = [Eθ]r=rw = [Br]r=rw = 0, where Ez, Eθ and Br de-

note field components in cylindrical polar coordinates (r, θ, z) in the laboratory frame. In the

beam frame, the corresponding field components are given by E ′
z = Ez, B ′

r = γb(Br+VbEθ/c),

and E′
θ = γb(Eθ+VbBr/c). Therefore, the corresponding boundary conditions at the conduct-

ing wall r′ = rw in the beam frame are also given by [E ′
z]r′=rw = [E ′

θ]r′=rw = [B ′
r]r′=rw = 0.

Expressed in terms of the scalar and vector potentials, φ′(x′, t′) and A′(x′, t′), these boundary

conditions can be expressed as

φ′(r′ = rw, θ′, z′, t′) = A′
z(r

′ = rw, θ′, z′, t′) = A′
θ(r

′ = rw, θ′, z′, t′) = const. , (12)

where (r′, θ′, z′) are cylindrical polar coordinates in the beam frame, with x′ = r′ cos θ′ and

y′ = r′ sin θ′.

The nonlinear Vlasov-Maxwell equations (7), (9) and (10) in the beam frame, subject to

the boundary conditions in Eq. (12), are fully equivalent to the Vlasov-Maxwell equations

(1)–(5) in the laboratory frame, and provide a complete description of the collective processes

and nonlinear dynamics of intense beam propagation. Equations (7), (9) and (10) can be

used to investigate detailed equilibrium and stability properties in the beam frame for a

wide range of system parameters and choices of applied field configurations. Moreover, as

noted earlier, because the particle motion in the beam frame is nonrelativistic, a detailed

investigation of Eqs. (7), (9) and (10) is more tractable analytically and numerically than

the corresponding Vlasov-Maxwell equations (1)–(5) in the laboratory frame. Furthermore,

once the solutions for f ′
b(x

′,p′, t′), φ′(x′, t′) and A′(x′, t′) are obtained in the beam frame,

the corresponding solutions are readily obtained in the laboratory frame. For example,

the variables (x′,p′, t′) are related to (x,p, t) by the Lorentz transformation in Eq. (6).

Furthermore, the scalar and vector potentials φ(x, t) and A(x, t) in the laboratory frame

are related to the potentials φ′(x′, t′) and A′(x′, t′) in the beam frame by the transformation

[24,36]

φ = γb(φ
′ + VbA

′
z/c) ,

Ax = A′
x , Ay = A′

y ,

7



Az = γb(A
′
z + Vbφ

′/c) , (13)

where the arguments (x′, t′) are related to (x, t) by Eq. (6).

III. IMPLICATIONS OF ELECTROSTATIC APPROXIMATION

IN THE BEAM FRAME

The introduction of the Coulomb gauge condition (∇′ · A′ = 0) and the resulting forms

of Maxwell’s equations (9) and (10) also make ancillary approximations more transparent

in the beam frame. In the following analysis, we consider such a case corresponding to

the electrostatic approximation in the beam frame. In particular, it is assumed that the

electromagnetic field components with transverse polarization, E′
T = −c−1∂A′/∂t′ and B′

s =

∇′×A′, are negligibly small in comparison with the longitudinal electric field, E′
L = −∇′φ′.

In this case, we approximate

A′ = 0 ,

E′
T = 0 = B′

s , (14)

and the nonlinear Vlasov equation (7) in the beam frame becomes

∂f ′
b

∂t′
+ v′ · ∂f ′

b

∂x′ + [F′
foc − eb∇′φ′] · ∂f ′

b

∂p′ = 0 . (15)

Of course the scalar potential φ′(x′, t′) occurring in Eq. (15) is determined self-consistently

in terms of the charge density eb

∫
d3p′f ′

b(x
′,p′, t′) from Poison’s equation (9). By virtue

of Eq. (14), we have neglected any fast electromagnetic processes in the beam frame with

transverse polarization (e.g., light waves), and it is assumed that the current carried by

the particles in the beam frame is sufficiently small that the self-generated transverse field

components E′
T and B′

s can be neglected. Equations (9) and (15) of course include the full

influence of space-charge effects in the beam frame through the longitudinal electric field

E′
L = −∇′φ′.
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The nonlinear Vlasov-Poisson equations (9) and (15) constitute a closed description of

the collective processes and nonlinear dynamics of the distribution function f ′
b(x

′,p′, t′) and

space-charge potential φ′(x′, t′) in the beam frame, valid in the electrostatic approximation.

As such Eqs. (9) and (15) can be used to investigate detailed equilibrium and electrostatic

stability properties for a wide range of system parameters and choices of focusing field

configurations. The purpose of this paper is not to solve Eqs. (9) and (15) in detail. Rather,

let us assume that the solutions to Eqs. (9) and (15) have been obtained in the beam

frame (these could be analytical or numerical solutions), and pose the question: What

are the properties of the corresponding solutions in the laboratory frame? The variables

(x′,p′, t′) and (x,p, t) of course transform according to Eq. (6). Furthermore, once φ′(x′, t′)

is determined in the beam frame, field quantities in the laboratory frame are readily obtained

by making use of Eqs. (13) and (14). Substituting A′ = 0 into Eq. (13) readily gives

φ = γbφ
′ ,

Ax = 0 = Ay ,

Az = γbβbφ
′ = βbφ , (16)

where βb = Vb/c. In Eq. (16), the arguments (x′, t′) and (x, t) are related by Eq. (6), so

Eq. (16) gives directly

φ(x, y, z, t) = γbφ
′[x, y, γb(z − Vbt), γb(t− Vbz/c2)] , (17)

as well as Ax = Ay = 0, and

Az(x, y, z, t) = βbφ(x, y, z, t) . (18)

Note from Eqs. (16) and (17) that the (x′, y′) and (x, y) dependences of φ′ and φ are identical,

whereas the (z′, t′) and (z, t) dependences transform according to Eq. (6). In terms of

Fourier-Laplace variables (kz, ω) and (k′
z, ω

′), Eq. (17) leads directly to the familiar relations

[36,37]
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kz = γb

(
k′

z +
Vb

c2
ω′

)
,

ω = γb(ω
′ + k′

zVb) . (19)

That is, if the potential φ′(x′, t′) has axial wavenumber k′
z and frequency ω′ in the beam

frame, then the corresponding axial wavenumber kz and frequency ω in the laboratory

frame are given by Eq. (19). Of course the inverse transformation to Eq. (19) is obtained

by interchanging (kz, ω) and (k′
z, ω

′), and making the replacement Vb → −Vb.

Equations (16)–(18) allow us to determine the self-generated fields, Es = −∇φ −
c−1∂A/∂t and Bs = ∇ × A, in the laboratory frame, consistent with the electrostatic ap-

proximation, E′
s = E′

L = −∇′φ′, in the beam frame. It follows directly that Bs = ∇×Azêz

has components

Bx =
∂Az

∂y
= βb

∂φ

∂y
,

By = −∂Az

∂x
= −βb

∂φ

∂x
,

Bz = 0 . (20)

Furthermore, the self-generated electric field Es = −∇φ − c−1(∂Az/∂t)êz can be expressed

as

Ex = −∂φ

∂x
, Ey = −∂φ

∂y
,

Ez = −∂φ

∂z
− 1

c

∂Az

∂t
= −∂φ

∂z
− βb

c

∂φ

∂t
. (21)

As would be expected, even though there is no magnetic field in the beam frame (B′
s = 0)

by assumption, in the laboratory frame the beam carries an axial current, and there is a

transverse magnetic field generated with components, Bx = ∂Az/∂y and By = −∂Az/∂x,

where Az = βbφ according to Eq. (18). Furthermore, in addition to the longitudinal electric

field EL = −∇φ, it follows from Eq. (21) that there is an inductive electric field ETz =

−c−1∂Az/∂t in the laboratory frame, where Az = βbφ. As noted earlier, the nonlinear

Vlasov-Poisson equations (9) and (15) can be solved in the beam frame, and then Eqs. (6),
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(16), (20) and (21) can be used to determine the corresponding distribution function and

self-generated fields in the laboratory frame.

While Eqs. (9) and (15) provide a complete description of the system in the electrostatic

aproximation in the beam frame, it is nonetheless interesting to examine the implications

of the electrostatic approximation in the beam frame for the corresponding Vlasov-Maxwell

equations in the laboratory frame. First, making use of Eqs. (20) and (21), it follows

that the force on a beam particle in the laboratory frame due to the self-generated fields,

F = eb(Es + c−1v × Bs), can be expressed as F = F⊥ + Fzêz, where

F⊥ = eb

(
−∇⊥φ +

1

c

[
v ×

(
∇Az × êz

)]
⊥

)

= −eb∇⊥
(
φ − 1

c
vzAz

)
(22)

denotes the perpendicular force in the x − y plane, and

Fz = eb

(
− ∂φ

∂z
− 1

c

∂Az

∂t
− 1

c
v⊥ · ∇⊥Az

)

= −eb

[
∂

∂z

(
φ − 1

c
vzAz

)
+

1

c

(
∂

∂t
+ v · ∇

)
Az

]
(23)

is the axial force. Here, ∇⊥ = êx∂/∂x + êy∂/∂y is the perpendicular spatial gradient,

and Az = βbφ follows from Eq. (18). Equations (22) and (23) can be substituted into the

laboratory-frame Vlasov equation (1). One important simplification occurs in this regard.

The characteristics of the Vlasov equation (1) are the single-particle orbits in the self-

generated fields. For example, the coefficient of ∂fb/∂pz is dpz/dt = Fz. From Eq. (23),

introducing the axial canonical momentum Pz = pz+(eb/c)Az, and making use of (d/dt)Az =

(∂/∂t + v · ∇)Az, it follows that dPz/dt = −eb(∂/∂z)(φ− vzAz/c). Therefore, if we change

variables from (x, y, z, px, py, pz, t) to (x, y, z, Px, Py, Pz, t), where Px = px and Py = py

(because Ax = 0 = Ay) and Pz = pz + (eb/c)Az, it follows from Eqs. (1), (22) and (23)

that the nonlinear Vlasov equation for the distribution function fb(x,P, t) in the laboratory

frame can be expressed in the compact form

∂fb

∂t
+ v · ∂fb

∂x
+

[
Ffoc − eb

(
1 − vz

c
βb

)
∇φ

]
· ∂fb

∂P
= 0 . (24)
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In obtaining Eq. (24), use has been made of Az = βbφ to express ∇(φ − vzAz/c) = (1 −
βbvz/c)∇φ. Furthermore, from Eqs. (2) and (21), Poisson’s equation can be expressed as

∇2
⊥φ +

∂

∂z

(
∂φ

∂z
+

1

c
βb

∂φ

∂t

)
= −4πeb

∫
d3Pfb(x,P, t) , (25)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. The Vlasov-Poisson equations (24) and (25), valid in the

laboratory frame, are fully equivalent to the Vlasov-Poisson equations (9) and (15) obtained

in the beam frame in the electrostatic approximation. Of course when the two frames

coincide (βb = 0, γb = 1, φ = φ′ and Az = A′
z = 0), Eqs. (24) and (25) are identical in form

to Eqs. (9) and (15), as expected.

As noted earlier, because the particle motion is nonrelativistic in the beam frame, it

is often advantageous to solve Eqs. (9) and (15) directly, rather than Eqs. (24) and (25).

Nonetheless, with some ancillary approximations, the laboratory-frame Vlasov-Poisson equa-

tions also simplify further. For example, if the axial velocity spread around vz = Vb = βbc is

very small (|∆vz|γ2
bβb � c), then we approximate 1 − vzβbc ' 1 − β2

b = 1/γ2
b , and Eq. (24)

reduces to

∂fb

∂t
+ v · ∂fb

∂x
+

[
Ffoc − eb

γ2
b

∇φ
]
· ∂fb

∂P
= 0 . (26)

Equation (26) shows clearly that the magnetic pinching force due to the self-magnetic field in

the laboratory frame reduces the electric force by the factor 1/γ2
b [1]. A further simplification

occurs in Eq. (25) in circumstances corresponding to an axially continuous beam or very

long charge bunch. In Eq. (25), we denote ∂/∂x ∼ 1/a and ∂/∂y ∼ 1/b where a ∼ b are the

transverse beam dimensions; ∂/∂z ∼ 1/L where L is the characteristic length scale of axial

variations; and ∂/∂t ∼ ω where ω−1 is the characteristic time scale of variations in φ(x, t).

Then, for a ∼ b, the terms on the left-hand side of Eq. (25) stand in the ratio

1 :
a2

L2
:

a2

L2

ωL

c
βb . (27)

Then for a2 � L2, and even for moderately high frequency with |ωL/c| ∼ 1 or |ωL/c| ∼ βb,

the second and third terms on the left-hand side of Eq. (25) are negligibly small, and

Poisson’s equation can be approximated by
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∇2
⊥φ = −4πeb

∫
d3Pfb(x,P, t) , (28)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. Equations (26) and (28) are similar to the laboratory-frame

Vlasov-Poisson equations widely used in the literature [29] to describe thin beam propagation

in the paraxial approximation. Approximate Vlasov-Maxwell equations similar to Eqs. (26)

and (28) can also be derived using the Darwin-approximation model [31–35] developed by

Lee, et al. [30] for intense beam propagation.

IV. CONCLUSIONS

In summary, in this paper we have developed a clear procedure for solving the nonlinear

Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length

charge bunch propagating through a cylindrical conducting pipe (radius r = rw = const.),

and confined by an applied focusing force Ffoc. In particular, the nonlinear Vlasov-Maxwell

equations were Lorentz-transformed to be beam frame (‘primed’ variables) moving with axial

velocity Vb = βbc = const. relative to the laboratory. In the beam frame, the particle motions

are nonrelativistic for the applications of practical interest, already a major simplification.

Then, in the beam frame, we made the electrostatic approximation (E′
s = −∇′φ′, E′

T ' 0 '
B′

s) which fully incorporates beam space-charge effects, but neglects any fast electromagnetic

processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell

equations were then Lorentz-transformed back to the laboratory frame, and properties of

the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory

frame were discussed.
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