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The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially 

symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that 

can lead to estimates of global stability.  Here MHD stability is analysed through the calculation 

and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s, α, θk); s is the 

edge normalized toroidal flux, α is the field line variable, and θk is the perpendicular wave vector 

or ballooning parameter.  Broken symmetry, i.e., deviations from axisymmetry, in the stellarator 

magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise 

to new types of non-symmetric eigenvalue isosurfaces in both the stable and unstable spectrum.  

For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative 

of strong "quantum chaos".  The complexity of QAS marginal isosurfaces suggests that finite 

Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n 

MHD computations are required to predict the beta limit. 
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I. INTRODUCTION 

The stability and confinement of plasma configurations are key issues for the success of 

the magnetic confinement fusion energy program. Classical stellarators were found to have 

unacceptably poor particle confinement many decades ago, but new concepts and methods for 

designing magnetic configurations, due to Nührenberg1 and Garabedian2, have led to quasi-

symmetric stellarators with computationally drift-orbit-optimized confinement.  Just as 

symmetry is known to govern particle transport and system stability throughout mathematical 

physics (e.g., Noether’s theorem3) and all branches of contemporary physics, it is central to the 

development of these new stellarator designs. Plasma beta (β) is a measure of performance, 

defined as the confined plasma kinetic energy divided by the confining magnetic energy of a 

fusion device.  The problems of disruptions and magnetohydrodynamic (MHD) stability which 

limit β  for axisymmetric tokamak performance are also central to stellarator design and, like 

particle transport, can be targeted with computational optimization techniques. Here we explore 

some aspects of the effect of symmetry and optimized stellarator design on MHD ballooning 

mode stability properties for a proposed, next generation, medium size stellarator experiment. 

The National Compact Stellarator Experiment (NCSX)4 is a hybrid configuration which 

is intended to combine the best features of drift-orbit-optimized stellarators, and advanced 

tokamaks.  For the new stellarators, global kink and vertical mode high-n MHD stability can be 

calculated in the ideal, linear limit5,6 for fully three-dimensional configurations.  Simpler, one-

dimensional, radially local, ballooning calculations provide rapid estimates of MHD stability7, 

but are likely to underestimate the maximum β  achievable. The quasiaxially symmetric 

stellarator (QAS) design for NCSX has β  limited by high-n kink and ballooning instabilities.  
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Consequently, a detailed study of ballooning stability is of interest for this QAS design, with the 

aim of understanding and increasing the β  limit. 

In this paper we report on the application to the QAS of a well known approach8 to 

investigating ballooning mode spectra which has recently been applied to stellarators9,10, 

enhanced by new high performance computing and visualization tools. The method makes use of 

the additional geometric and profile information contained in the results of a large set of local 

ballooning eigenvalue calculations to infer global mode stability. Ballooning eigenvalue 

isosurfaces have been found which exhibit radial, poloidal and toroidal localization9 for the H-

1NF heliac11 at The Australian National University and for ten field period stellarators10,12 

related to the Large Helical Device (LHD)13 in Japan.  Given these isosurfaces, ray tracing can 

be used to predict the occurrence of kinetic stabilization of β  for a plasma configuration. 

The symmetry breaking localization of the unstable ballooning mode eigenfunction in 

stellarator plasmas has been shown to be analogous to the disorder-driven Anderson 

localization14 of one dimensional quantum systems. This eigenfunction localization, driven by 

departure from periodicity in the equilibrium, is important in condensed matter physics, as well 

as in acoustics and nonlinear optics.   Abstract mathematical concepts and terminology, not 

usually found in plasma physics (broken symmetry, localization of eigenfunctions, quantum 

chaos, eigenvalue isosurface topologies), have crossed the boundaries of scientific subfields and 

provide new methods with which to investigate stability in plasma physics.   

The paper is organized as follows. In Sec. II we describe the QAS configuration and 

discuss MHD instability calculations of ballooning mode stability.  Section III presents results 

for the localized eigenfunctions and structures found in the QAS energy spectra above the design 

point β .  These are compared to other stellarators and to axisymmetric tokamaks.  In Sec. IV we 
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discuss these results, the possibility of finite Larmor radius stabilization of the ballooning 

instability in the QAS and comment on the connections between symmetry breaking and the 

practical problems of plasma particle confinement and MHD stability. 

 

II. QAS BALLOONING MODE STABILITY CALCULATIONS 

The symmetric stellarator concept has led to improved toroidal plasma configurations, for 

which good particle confinement has been of primary importance.  With sufficient field line 

rotational transform iota (ι=1/q), good neoclassical particle confinement is assured. 

Unfortunately, tokamaks require a large toroidal current to provide rotational transform, but such 

high current, necessary for high performance plasmas, leads to instabilities and disruptions.  The 

new designs for the QAS stellarator are planned to provide rotational transform by modular field 

coils as well as bootstrap current, and so are both more stable to the kink mode and support 

steady state operation.   

The National Compact Stellarator Experiment (NCSX) design point4 is similar to the 

three-dimensional QAS plasma configuration we examine. The stellarator plasma configuration 

at 4% β is found to have good particle confinement as well as kink, vertical and ballooning 

stability.  This drift-orbit optimized experiment would be complementary to the large 

experiments underway in Japan (LHD) and under construction in Germany (Wendelstein-7-X 

(W-7X))15, as well as to a smaller symmetric stellarator in Wisconsin (the Helically Symmetric 

Stellarator (HSX)) 16.   

A stellarator plasma configuration is described by the harmonic spectrum of the magnetic 

field:  B = Σ Bmn cos(mθ-nNfφ), where Nf is the number of field periods. In magnetic flux 

coordinates, B = ∇ζ ×∇ψ - q∇θ ×∇ψ = ∇α ×∇ψ, where the field line label α ≡ φ – qθ  and is a 
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measure of the toroidal location. 2πψ represents the poloidal magnetic flux, and q=q(s) is the 

safety factor, equal to the average number of toroidal circuits traversed by a field line for each 

poloidal circuit around the torus.  An axisymmetric tokamak has all n≠0 Bmn terms negligible; the 

quasihelical symmetry of HSX requires all Bmn terms with m≠n to be small and the quasiaxially 

symmetric design of a QAS requires all Bmn terms with n≠0 to be small.  The design QAS axial 

symmetry is broken by (n≠0 ,m≠0) components which are ~1% of the strength of the (n=0, m=0) 

component.  In Figure 1 is shown the shape of the last closed flux surface for the QAS, with one 

half of one field period removed. The cross-section continuously deforms as the toroidal angle 

changes, as is apparent from the two cross sections shown at the cut.  The configuration 

analyzed, denoted LI383, has a major radius of 1.4 m, an aspect ratio of 4.4, a toroidal magnetic 

field 1.2-1.7 T and 6 MW of neutral beam heating.   

Ballooning mode stability theory is based on the linear, ideal, MHD energy principle, 

with which minimized plasma energy, δWp, describes destabilized ballooning and other internal 

modes: 

    δWp = (1/2)∫dτ [Q⊥
2 – j//(ξ×B)/B – 2(ξ⊥ • ∇P) (ξ⊥ • κ) + B2(∇•ξ⊥ + 2ξ⊥• κ)2 + γP(∇•ξ )2]  (1) 

In this equation for the variation in plasma energy resulting from a deformation in the plasma  

flux surface, ξ , the first term is the stabilizing magnetic energy of field line bending.  The second 

term is the free energy from the current profile and drives kink instabilities. The third term, 

proportional to ∇P, is the energy potential for interchange or ballooning instabilities.  This term 

is destabilizing if ∇P and κ  are in the same direction (κ•∇P > 0), at the outer edge of a tokamak, 

for example.  The fourth term is the energy in field compression for fast magnetosonic waves 

and the last term is the energy in compressional sound waves. Minimization of δWp in the limit 
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as the component of the wavevector perpendicular to B, k⊥, approaches infinity yields a second 

order ordinary differential Euler-Lagrange equation, if the compressional terms are neglected. 

Calculations of ballooning stability provide a relatively simple and rapid method for 

evaluating the performance of an MHD-limited, plasma configuration, and are often used for 

initial estimates of stability expected for plasma experiments. The ballooning mode is driven by 

the plasma pressure gradient interacting with the magnetic field. Ions are assumed to have 

negligible Larmor radius and to be localized to a particular magnetic field line (diamagnetic drift 

negligible). Although this is a 1-d, ideal MHD model, effectively localized to a field line, valid 

on the Alfvén time scale, with long parallel and short perpendicular wavelength, it contains 

information about the three-dimensional equilibrium through the plasma equilibrium gradients.  

The ballooning mode instability eigenvalues, λ, are found by solving the ballooning equation in 

magnetic coordinates7 

∂/∂θ  [( Cp + Cs (θ – θk) + Cq (θ –θk)2)∂ξ/∂θ] + (1-λ)[dp+ ds(θ – θk)]ξ = 0                   (2) 

The coefficients {Cp, Cs, Cq, dp, ds} depend on the equilibrium magnetic geometry. The 

coefficients ds and Cs of the linear secular terms in Eq. 2 are proportional to q′(s)/Ψ′(s), the 

(global magnetic) shear, while that of the quadratic secular term, Cq, is proportional to the square 

of the shear.   The radial coordinate, s, is the edge normalized toroidal flux, Ψ(r)/Ψ(a), which is 

proportional to r2.   The parameter θk is related to the direction of the mode wave vector.  The 

secular terms cause localization when the shear is nonzero: very roughly, the eigenfunction is 

localized around θ ∼ θk.  The calculation results in an eigenvalue at each flux surface which 

implies instability if positive:  λ > 0.  The displacement of the flux surface increases with a 

notional growth rate γ =vλ = iω, as ξ ∝ exp(iωt) ∝ exp(vλt).  The normalization of the kinetic 

energy on which Eq. 2 is based, leads to isosurfaces valid at the marginal point (λ=0), and 
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qualitatively correct for unstable values of λ.  Further work is needed to verify the structures in 

the stable spectrum. 

 The ballooning equation can also be transformed into a Schrodinger- like form9 

                                     [d2/dθ 2 + E – V]A 1/2 ξ = 0                (3) 

with the “potential” V and the coefficient A expressed in terms of the ballooning coefficients. 

The secular terms due to magnetic shear provide a “potential well”, modulated by the poloidal 

and toroidal variations in the equilibrium quantities on the given field line.  In the axisymmetric 

case (i.e. no toroidal variation) this shear localization is the only effect giving localization and 

hence a discrete spectrum in λ: when shear vanishes, V is periodic and the λ spectrum consists of 

continuum bands (“Brillouin zones”). However, in the nonaxisymmetric case the 

incommensurate periodicity of the toroidal and poloidal modulations (when q is an irrational) 

can give rise to Anderson localization and a discrete spectrum even when the shear vanishes. 

 

III.  BALLOONING MODE SPECTRUM RESULTS AND VISUALIZATION  

High-β  equilibria for the QAS were obtained with the VMEC code17, keeping the fixed 

boundary coordinates of the marginally stable design point and scaling the pressure and current 

profiles together. As β  increases, the bootstrap current driven by increased plasma pressure 

causes the poloidal magnetic field and plasma iota to increase.   Two such equilibria, confirmed 

by convergence studies, will be compared, one just above marginal stability at β  = 4.3% and one 

far above marginal stability, at β  = 6.8%.   Figs. 2 and 3 show profiles of the pressure derivatives 

and iota, for these equilibria.  The TERPSICHORE code suite module VVBAL7 was used to find 

the eigenvalues of the ballooning equation.   In Fig. 4 is shown the radial dependence of the 

growth rates, for a range of betas above the marginal stability point, parametrized by α =  θk = 0. 
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The results, λ(s,α,θk), of ballooning stability calculations were assembled into databases 

for the 4.3% and 6.8% β  equilibria. Calculations were made for 129 flux surfaces in the radial 

coordinate, and for 101 values of the parameter α, from 0 to 2π/3, and for 21 values of the 

parameter θk, from 0 to 2π .  The resulting three-dimensional isosurfaces λ(s,α,θk) for stable (λ < 

0) and unstable (λ > 0) ballooning modes show features of localized structures, quite different 

from those seen for other stellarators or the rippled tokamak. 

In Figures 5 and 6 are shown examples of the three-dimensional structures found at 4.3% 

β   for unstable and stable values of the ballooning eigenvalue.  Additional figures illustrating the 

features described below for the QAS configurations and the tokamak case, with a slightly 

different colormap, may be viewed at the AIP Electronic Publication Auxilliary Publication 

Service (EPAPS) through the online version of this paper. 

 In general the unstable spectra at both 4.3% β  and 6.8% β  are less complex than the 

stable spectra. The unstable ballooning spectra consist primarily of bands or continuous tubules 

of instability near the outer edge of the plasma, where shear is very low and instability is more 

easily driven.  For all cases there is weak dependence on the ballooning angle, stronger 

dependence on the field line α and strongest dependence on s, the magnetic surface. At 4.3% β , 

(Fig. 5) we find topologically spherical isosurfaces at λ=0.25 which become topologically 

cylindrical surfaces at lower positive λ values. As λ decreases toward 0, the cylindrical surfaces 

narrow in s and extend toward each other along α, along with the appearance of a connecting 

plane when λ=0.025. The marginal isosurface, λ=0, is shown in Fig. 6 with thickness 

corresponding to data cube grid spacing, ∆s=0.01: two cylinders connected by a plane.   At 6.8% 

β  planar (α, θk) isosurfaces are found at λ = 0.05, which break up into shreds as the eigenvalue is 

increased above 2.4. 



  

 - 9 - 

  In the stable spectra, unusual topologically distinct structures are found in the different 

ranges of λ, with similar structures occurring for both the low and high-β  equilibria. At 4.3% β     

for λ = -0.2, the isosurface exhibits a helical structure which rotates about an axis along the θk 

direction. The structure is radially and toroidally localized within a small range of α with the 

isosurface helix open toward the plasma center. At 4.3% β  and λ = -0.45, stable isosurface tubes 

are found, again aligned in the θk-direction, localized in s and α.  At 6.8% β , similar isosurface 

structures in the stable spectrum occur, although more global in extent, and located at two planes 

in s, corresponding to low order rational flux surfaces (see Fig. 3-4).  The complex structure of 

the datacube for the QAS ballooning mode spectra has been examined with the powerful 

visualization tool, AVS-EXPRESS. 

 When the maximum eigenvalue for all flux surfaces is plotted for the 4.3% β  case, the 

usual choices (θk = 0, α = 0) are found to correspond to average levels of instability and do not 

represent anomalously low or high eigenvalues. Stellarator symmetry is apparent with reflection 

about α = π/6 and 3π/6.  The alpha dependence of the eigenvalue for the 4.3% β  equilibrium 

repeats after 2π/3 and is symmetric about α = 0, π/3, 2π/3, 3π/3, etc. Contours of unstable 

eigenvalues for both equlibria show the localization in α and s of the unstable modes. 

 In Figure 7 is shown the ballooning eigenfunction and potential, V, of Eq. 3, for flux 

surfaces near the magnetic axis and the plasma edge.  Eigenfunction localization is seen to 

increase near the plasma edge where the magnetic shear is weak or zero.  Similar low-shear 

localization of the eigenfunction was also found by Dewar and Cuthbert9 for the H-1NF heliac.  

They showed that the localization was not due to magnetic shear by setting it artificially to zero,  

instead attributing it to Anderson localization. 
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For the stable and unstable spectra of equilibria above the ballooning limit, there is weak 

dependence of λ(s,α,θk) on the ballooning angle, strong dependence on the field line alpha and 

strongest dependence on s, the magnetic surface radial coordinate. These findings are similar to 

those from the ballooning stability analysis9 for H-1NF, while the ten field period stellarator 

ballooning stability datacube10 showed stronger dependence on θk and s, but weak dependence 

on α. While localized structures have been found for the ten field period stellarator and the H1-

NF heliac, it is somewhat surprising to find them also in the QAS because this is supposed to 

have tokamak-like properties. 

The QAS is next compared to a related axisymmetric case. A plasma equilibrium based 

on the pressure and boundary parametrizations used for the 4.3% β  QAS configuration, is 

obtained, keeping only toroidal n=0 plasma major radius and boundary harmonics.  This leads to 

a two-dimensional equilibrium, β=7%, with similar values of B, A, Raxis.  The field line 

transform, iota, is much lower [ι(0)=0.02, ι(1)=0.22 ] because there is no external transform as 

previously provided by the stellarator coils and described by three-dimensional boundary 

coefficients.  A distinct difference in the isosurfaces λ(s,α,θk) and the ballooning mode stability 

is found as expected.  Most dramatic is the simplicity of the tokamak isosurface structures.  The 

axisymmetric case shows no α dependence, no toroidal localization, as there are no driving terms 

with this symmetry. 

 

IV. DISCUSSION AND CONCLUSION 

In solutions of the ballooning equation, expected to limit high β  performance for the 

compact quasiaxially symmetric stellarator, we find toroidal localization of ballooning mode 

eigenvalue isosurfaces with new, topologically distinct structures not seen in previous studies of 
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other stellarator configurations.   The relative complexity of the QAS ballooning spectrum 

isosurfaces for NCSX is driven by the complexity of the magnetic configuration, since boundary 

coefficients with only n=0 components lead to isosurfaces with no toroidal dependence.  

Anderson localization and spherical isosurfaces, indicative of strong quantum chaos, have been 

identified and are discussed below.   

Anderson localization occurs in response to broken symmetry (here axisymmetry), as 

seen in the localization of electron wavefunctions in disordered solids.  It was first identified as 

localized structures in the electron conduction band arising from disorder in a crystalline matrix 

due to impurity doping. In one-dimensional quantum systems it is now well known that disorder 

results in normal modes that are exponentially localized. In plasmas several authors18,19 have 

shown that Anderson localization arises from quasiperiodicity of equilibrium quantities along a 

field line. 

The iota profiles in Fig. 3 show weak and reversed shear near the QAS plasma edge.  

Weak shear reduces the strength of the secular terms, ~ (θ−θk), in the ballooning equation Eq. 2, 

which in axisymmetric systems are responsible for localization of the ballooning eigenfunction. 

In contrast, localization of the QAS ballooning eigenfunction increases in regions of reduced 

plasma shear as seen in Figure 7, demonstrating that something other than the well known shear 

localization is responsible.  In fact the eigenfunction becomes most peaked where plasma  shear 

is zero, at the surface where ι =0.631. The eigenfunctions for the 4.3% case are shown for θk=0. 

Each surface has a different shape so that the poloidal angle at which the eigenfunction is 

maximum changes with s.  Localization correlates with increasing aperiodicity of the ballooning 

potential (Fig. 7).  The effective toroidal ripple,20 which is one measure of this breaking of 

axisymmetry, changes by four orders of magnitude across the plasma (Fig. 8).  We conclude that 
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as has been found in H-1NF and HSX, the QAS also exhibits Anderson localization, occurring 

where shear is reduced and axial symmetry is broken. 

At 4.3% β , at the highest eigenvalues, we have found topologically spherical isosurfaces. 

Ray tracing in such cases shows strong “quantum chaos”21. This description for the paths of rays 

of high-k⊥ MHD waves or instabilities does not mean that the plasma behavior is chaotic, but 

that the mathematics of quantum chaos theory must be used for instabilities far above the 

marginal point of the equilibrium. An additional complication in using ideal MHD with ray 

tracing to construct global ballooning modes is a k-space runaway. Introduction of a reflecting 

cutoff in k⊥ to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths 

ergodically filling the allowed phase space, indicating that the global spectrum must be described 

using the language of quantum chaos theory.  

Can the Dewar-Glasser8 WKB ballooning mode method still be used to estimate the β 

limit of the QAS?   A necessary condition for the validity of ideal MHD ballooning theory is that 

the equilibrium scale length, Leq, be much larger and the ion gyroradius, ρi, much smaller than 

k⊥, the perpendicular wavelength:  k⊥Leq>>1, (k⊥ρi)2<<1. For the NCSX QAS, ρi ~ 1cm.   For 

some stellarator equilibria, k⊥ has been estimated from the isosurface structures, making use of 

the method of WKB ray tracing9,10 and derivation of semiclassical quantization conditions for the 

eigenfunction. In contrast, for the spherical isosurfaces of high eigenvalue surfaces of H-1NF, 

the mathematics of quantum chaos and statistical density of states was needed.  To examine the 

validity of the ballooning mode β  limit, it is the marginal isosurface, λ=0, which is of interest.  

At both 4.3% β  and at 6.8% β  we find that this surface is not simply connected.  At 4.3% β , it 

consists of a planar surface tangent to two topologically cylindrical surfaces, with axes parallel to 

θk.  Other stellarators have also been found to have topologically cylindrical surfaces, but with 
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axis aligned in the α-direction, not along θk.  Work is in progress to develop new methods for 

regularizing the WKB ray tracing and quantization cond itions in this case, to estimate k⊥ and 

possible FLR stabilization. The ray tracing for the QAS surfaces may not follow simple paths, as 

the rays may trace out paths on either or both of the cylinders, transiting through the connecting 

plane and moving onto and off the cylinders in a random and stochastic fashion. The complexity 

of the marginal isosurface suggests that the WKB method of high-n ballooning stability 

calculations breaks down, and that fully three-dimensional, MHD codes such as CAS3D, 

TERPSICHORE and Spector 3D are required to predict a maximum β for the QAS. 

Can this new way of looking at a stellarator provide insight into improving the QAS 

concept?  The QAS, with a complex harmonic magnetic spectrum, exhibits complex localized, 

unstable isosur face structures for the MHD ballooning modes, which will also affect calculations 

of the anomalous transport of particles and kinetic energy in the QAS, for example with 

gyrokinetic ballooning calculations22.  For representative nonaxisymmetric cases, collisionless, 

electrostatic drift mode calculations have shown large (factors > 2) changes in instability growth 

rates, which depend on the field line variable α23,24.  To achieve optimal stellarator performance 

it will be important to verify that the complex magnetic spectrum, which provides good 

neoclassical particle confinement and MHD stability, does not cause unacceptable increases in 

anomalous transport. 
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 FIGURE CAPTIONS 

Figure 1.  The outermost flux surface of the three field period quasiaxially symmetric stellarator. 

Figure 2.  Derivatives of the pressure profile for two ballooning unstable equilibria of the QAS, obtained 

with fixed boundary VMEC.  Steeper pressure results in higher β , but also drives MHD instability. 

 Figure 3. Iota profiles of two ballooning unstable equilibria of the QAS.  Higher pressure drives 

bootstrap currents which increases the field line transform iota at 6.8%  compared to 4.3% β . 

Figure 4.  Ballooning eigenvalues as a function of the radial coordinate for a β  scan above the 

ballooning limit of QAS3_LI383.  129 radial flux surfaces are used. Singular points occur where rational 

values of q are found and for locations of very low shear. 

Figure 5. Ballooning spectrum of 4.3% β  QAS configuration: The eigenvalue isosurface near the plasma 

edge for the unstable mode at λ(s,α,θk)=0.25, comprises two topologically spherical surfaces. Also 

shown is the plane in (s,α) at θk = 0.  The colormap at the bottom of the figure identifies stable 

eigenvalues in blue and green and unstable eigenvalues in red and beige.  A crosssection of the marginal 

isosurface is located on the (s,α) plane at the separation between red and green contours.  The full 3-

space is reduced to show toroidal flux, s, from 0.8 to 1.0; field line variable α from 0 to 2π/3; ballooning 

parameter θk, from 0 to 2π .  

Figure 6. Ballooning spectrum of 4.3% β  QAS configuration: the marginal isosurface at λ(s,α,θk) = 0, 

for the same color map and reduced 3-space as in Fig. 5. Also shown is the (s,α) plane at θk = 2π/3.  

Figure 7. The localization of the ballooning mode eigenfunction for 4.3% β  and the ballooning 

potentials on flux surfaces near the magnetic axis and the plasma edge. The eigenfunctions are 

normalized to the same maximum value. The ballooning potential is increasingly aperiodic far from the 

magnetic axis, where axial symmetry is more strongly broken. 

Figure 8. Effective field line ripple for the QAS at 4.3% β . 
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