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Abstract

An exploration of stellarator configuration spacez for quasi-axisymmetric

stellarator (QAS) designs is discussed, using methods which provide a more global

view of that space. To this end, we have implemented a “differential evolution”

(DE) search algorithm in an existing stellarator optimizer, which is much less

prone to become trapped in local, suboptimal minima of the cost functionχ than

the local search methods used previously. This search algorithm is complemented

by mapping studies ofχ overz aimed at gaining insight into the results of the au-

tomated searches. We find that a wide range of the attractive QAS configurations

previously found fall into a small number of classes, with each class correspond-

ing to a basin ofχ(z). We develop maps on which these earlier stellarators can be

placed, the relations among them seen, and understanding gained into the physics

differences between them. It is also found that, while still large, the region ofz

space containing practically realizable QAS configurations is much smaller than

earlier supposed.

PACS #s: 52.55.Hc, 52.25.Fi, 52.35.Py
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I. Introduction

The search for attractive stellarator designs has been greatly enhanced by the

development of optimization codes which search configuration spacez using a

specified cost functionχ(z). Such codes have been used extensively in the design

of W7-X (Wendelstein-VII-X),1 HSX (Helically Symmetric eXperiment),2 and

more recently, by the NCSX (National Compact Stellarator eXperiment) group3

in designing a proposed quasi-axisymmetric stellarator (QAS). These optimizers

have used search algorithms which are ‘local’,i.e., which make use of derivatives

in the local topography ofχ(z) to decide in which direction to move along a sin-

gle trajectory inz, such as the steepest-descent and related Levenberg-Marquardt

(LM) methods.4 The NCSX optimizer (Stellopt) uses the LM algorithm. While

efficient in suitable cases, such methods often become trapped in local, subopti-

mal minima of the cost function, in the large and sometimes highly corrugated

z space. This makes human involvement an essential part of the optimization

loop, in which the systemz position or the weights inχ are adjusted to dislodge

Stellopt from local minima. Surmounting this difficulty is a first objective of this

work, performing more global searches inz space through implementing a variant

(Stellopt-DE) of Stellopt, which uses a “differential evolution” (DE) algorithm.5,6

This is far less prone to become locally trapped, and thus permits a more robust,

though more time consuming, exploration ofz space.

The DE algorithm is similar to genetic algorithms (GAs),7 but suited to explo-

ration of a continuous space. Unlike local methods, these do not require taking

derivatives, but evolve a sequence of generationsg = 0, ...gmax, each generation

comprised of an ensemble ofNp system points{zi}(g), (i = 0, ...Np − 1) dis-
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tributed over the space to be explored, and with a simple rule for obtaining the

(g + 1)th generation from thegth. Because the evolution is of a cloud of system

points, rather than of a single point along one trajectory, the evolution of the DE

population can provide a less myopic map of thez space topography compared

with that from traditional local algorithms.

Obtaining such a map ofz space is important, both for understanding and for

finding optimal designs. Up to now, the LM optimizer (Stellopt-LM) has obtained

promising QAS configurations after a complicated sequence of optimizer runs and

human adjustments, and there has been little knowledge of how close the various

configurations are to each other, how many different types of good QAS designs

there may be, and what their distinguishing features are. In addition to providing

an optimization algorithm less prone to the local-well weakness of local methods,

a second objective of this work is to enhance insight of this sort, by providing a

more global view of the space in which Stellopt has been searching and identify-

ing configurations. We find (cf. Secs. IV and V) that a wide range of the attractive

QAS configurations previously studied falls into a small number of classes, with

each class corresponding to a well or ‘basin’ ofχ. By mappingχ(z) over useful

sections of the fullz space, we obtain maps showing these basins, their relative po-

sitions, and gain insight into the physics separating them. Configurations known

to have related ancestry tend to fall near one another on the map, as one might

expect. The maps also indicate that, while the fullz space is in principal enor-

mous, the region of that space containing configurations which are (in a sense to

be defined) practically realizable is much smaller than one might have supposed

(though still large). While these maps are not complete or definitive, they begin

to put limits on the domain being explored, and to convertterra incognitainto
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something with a known geography.

The remainder of this paper is organized as follows. In Sec. II we introduce

some needed notation, and briefly discuss features of the operation of Stellopt and

ancillary codes which are used for the optimization process. The DE algorithm

is introduced in Sec. III, and some of its characteristics discussed. In Sec. IV

the method is employed in studying the QAS region of stellarator configuration

space. The search leads to a study of the topography ofχ in z space, and to

the development of a simple taxonomy for the QAS configurations on which the

NCSX team has focussed. Sec. V provides some discussion of the results of the

foregoing sections.

II. Preliminaries

The cost functionχ(z) is given in Stellopt by

χ2 =
∑

i

χ2
i =

∑
i

w2
i χ̂

2
i , (1)

where thewi are the weights of the various contributionsχ̂2
i to χ2. To com-

puteχ2, Stellopt first calls the VMEC code8 to compute a magnetohydrodynamic

(MHD) equilibrium, and then additional codes to compute the differentχ̂2
i , which

make use of the equilibrium information. VMEC can compute both fixed and

free-boundary equilibria. In the fixed-boundary case,z specializes to the set

X = {Xj=1,···,Nx} ≡ {Rm1, Zm1 , Rm2, Zm2, · · ·} of Fourier amplitudes defin-

ing the plasma boundary[R(θ, ζ), Z(θ, ζ)], plus a small number of other quan-

tities such as central pressurep0 and enclosed toroidal fluxΦa needed to satisfy

certain constraint targets, such as the desired plasmaβ and toroidal field. Here,

m ≡ (m, ñ = n/Nf ) are poloidal and toroidal modenumbers per period, with
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Nf equal to the number of field periods,θ and ζ are the poloidal and toroidal

azimuths,R is the major radius andZ is the height above the midplane. In the

free-boundary case,z may be given by the setI = {Ij} of currents in a given coil

set, plus the few additional quantities just mentioned.

Various transport figures of merit have been used in Stellopt. A simple and

standard one often used for studying QA configurations, employed in the present

work, is the quasisymmetry measureχ2
Bmn ≡ 〈∑m,n6=0 B2

mn/B2
00〉s, where the

Bmn are the Fourier amplitudes of magnetic field strengthB in Boozer flux co-

ordinates, and〈...〉s denotes a weighted average (these weights distinct from the

wi above) over flux surface labels. Kink stability (χ2
K) is computed using the

Terpsichore code,9 and ballooning stability (χ2
B) is computed with the COBRA

code.10 Other contributions toχ2 include constraints on the desired plasma aspect

ratioA, volume-averagedβ, rotational transformι(s), maximum curvature of the

plasma surface, and minimum plasma major radiusR. Such constraints are im-

posed through contributions toχ2 in the same manner as the transport and stability

constraints. Any of these contributions may be switched on or off, or their relative

contribution changed by changing the correspondingwi.

III. The DE Algorithm

As noted above, the DE algorithm is similar to genetic algorithms (GAs), but

suited to exploration of a continuous space. Here we briefly specify the method

and touch on some of its properties. The reader is referred to the fuller discussion

in the original work.5,6

As indicated in Sec. I, the optimizer is initialized in generationg = 0 with
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an ensemble ofNp system points{zi}(g = 0) distributed in some way over the

D-dimensionalz space. For generationg + 1, a new pointzi(g + 1) is generated

from those in generationg by first using the rule

vi = zb(g) + (zr2(g)− zr3(g))F (2)

to produce trial vectorvi. HereF is a input parameter, typically in the interval

[.5, 1], multiplying the difference between 2 randomly-selected system points of

generationg, and setting the spread of trial points for generationg + 1. r2,3 are

random numbers∈ [0, Np−1], andzb(g) is a third element of generationg, whose

choice varies with the particular DE ‘strategy’ chosen. Other strategies arise from

adding 2 difference vectors instead of the single one in (2). For the studies in this

paper, strategy ‘DE/best/1’ is employed,6 meaning thatzb(g) is thez having the

lowestχ in generationg, and that only a single difference vector is employed.

Next, L of the componentsvi
j of vi are ‘mutated’ to produce trial vectorui,

similar to crossover in the GA, according to

uj =




vj for j = n, n + 1, ...〈n + L− 1〉D
(zi)j(g) otherwise

Here,L ∈ [0, D−1] is the length of the mutated sequence, chosen with probability

P (L = ν) = P ν
c , with Pc the ‘crossover probability’, and〈m〉 = m moduloD.

Finally, if the cost function valueχ(ui) is smaller than that forzi(g)), ui

replaces that member:zi(g + 1) = ui. In the studies discussed here, the choices

F = .9, Pc = 1 have been made, the latter implying that no mutation is used. This

has been found to produce adequate diversity in the population.

From (2), withF ∼ 1, one sees that the trial points for generationg + 1 will

have a spread comparable to that of the current ensemble about the current-best

point zb. If the points lie across only a single basin, the ensemble center will
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remain in that basin, and the search will converge rapidly to the bottom of that

well. If on the other hand the(g+1)th best is toward the edge of thegth ensemble,

as would occur if the present ensemble lies generally on a slope, or if points at the

edge have encountered a new and deeper well, the focus of the search can shift,

and permit hunting in new wells. Thus, it is important that the initial ensemble be

spread widely enough, in order that the evolution not be simply a convergence to

the initial well bottom.

With this scheme, consistent with the guidance given5,6 for good convergence

performance, we will takeNp ' 7D in the runs discussed here.gmax for con-

vergence also scales withD. As a rule of thumb, we findgmax ∼ 10D. Thus,

the total time for a run usingNCPU processors isT = Np × gmax × T1/NCPU '
70D2T1/NCPU , with T1 the CPU time to evaluate a singleχ(z). On the R10000

processors in the Origin 2000 Nirvana machines at LANL, including a VMEC

equilibrium calculation, and a Terpsichore evaluation of kink stability, we find

T1 ' 15 minutes. TakingD = 30, about945× 103/NCPU min = 15750/NCPU hr

are thus needed to run to an optimum. Thus, havingNCPU ∼ 100 (as is the case

on an Origin 2000) makes such calculations accessible.

In the process of convergence in a space withD > 1, one finds a ‘dimensional

contraction’ in the DE ensemble (see Sec. IV), in which the ensemble converges

most rapidly along the directions inz in which the largest variations inχ are

found, followed by slower convergence along directions in which successively

smaller variation occurs. The intermediate, pre-converged states of the DE en-

semble thus can be of as much interest as the fully-converged state, or the final

state coming from a local method – instead of a single optimalz, they typically

possess asetof zi, with nearly optimalχ values, but spread appreciably overz
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space. Especially since the implementedχ does not fully capture human criteria

for an optimum, this property can be helpful, as will be seen.

IV. Stellopt-DE Applications

To illustrate some of these features of a DE search, we first show a DE study

parallelling a series of LM studies done11 to investigate the operational flexibility

of the reference NCSX configuration LI383, using the “M1017” set of modular

coils (Fig. 1). This calculation thus uses VMEC in free-boundary mode, andz

space has dimensionD = 11. For j = 1 − 9, zj = Ij are the currents in the

4 distinct types of modular coils, in the 1 set of auxiliary TF coils, and 4 equiv-

alent currents for the dipole, quadrupole, hexapole, and octupole fields used to

represent the PF contribution toB. z10 is the central pressurep0 andz11 is the

enclosed toroidal fluxΦa. These are adjusted in order to satisfy constraints for a

target plasmaβ, and to keep the plasma limited by a specified first wall boundary.

Following the heuristic rules noted in Sec. III, we takeNp = 80 ' 7×D for this

search.

In Fig. 2(a-c) are shown projections of the DE population onto 2 particularzj,

j = 6 and 8, (a) for generationg = 0, (b) for the superposition of generations

g = 0 − 49, and (c) forg = 49. The choice ofzj used for plotting is arbitrary,

and the appearance is similar for other pairs. The initialization randomly selects

zj values between 0.8 and 1.2 times those for LI383, producing the rectangular

filled region in Fig. 2a. Betweeng = 0 andg = 49, the ensemble spreads as the

algorithm searchesz space, as seen in Fig. 2b. This is followed by a dimensional

contraction to the nearly 1-D form shown in Fig. 2c. Finally, in Fig. 2d is shown
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the cost function valueχ(z) versusz6 for g = 49, with the boundary line showing

the locus of the cloud of values which would appear for the same superposition of

generations as in Fig. 2b. One sees that the DE evolution thus far has produced a

rangeof configurations, all having costχ comparable to the single value found by

the Stellopt-LM runs, and with best valueχb ' 6.41, slightly better than the best

χLM ' 6.43 produced by the LM searches.

However, in practical terms, a configuration with lowerχ2 is not necessarily

actually a better configuration, because the cost function does not perfectly ex-

press what a good configuration really is. First, in addition to physics figures of

meritχ2
i one does regard as a measure of goodness, such asχ2

Bmn or χ2
K, the cost

function also contains target constraints, such as the desired beta, or minimum

major radius, whose relation to physics goodness is unclear, but whose contribu-

tions toχ2 can nevertheless dominate the physics contributions. Additionally, the

physics figures of merit do not always perfectly reflect the characteristic they are

intended to. For example,χ2
Bmn, intended to measure confinement quality, is only

a rough measure of ripple transport, and does not include axisymmetric or turbu-

lent transport at all. And finally, in a given run, someχ2
i are sometimes switched

off, for various reasons. These deficiencies are common to both the present LM

and DE versions of Stellopt.

One way the physics- versus target- constraint problem can be dealt with is

illustrated in Fig. 3, which shows a scatter plot ofχ2
Bmn versusχ2

K for an interme-

diate generation for a free-boundary run similar to that in Fig. 2. As in Fig. 2d, this

produces an ensemble of configurations with similar values ofχ2, but with differ-

ing breakdowns intoχ2
i . While all are comparably good as measured by the full

χ2, only a few, falling within the boxed region, are regarded as satisfactory, since
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we are interested in configurations which areboth quasiaxisymmetric and kink

stable. For comparison, we include here configuration ‘A’ in Fig. 3, the optimum

arrived at by the LM optimizer.

From the numerous searches with Stellopt-LM carried out by the NCSX team,

a number of different fixed- boundary QA configurations with promising char-

acteristics have been identified. One would like to know how these (and other)

configurations are related to each other, how different they are from each other,

and whether there might be other QA configurations inz space, as yet undiscov-

ered, which are comparably or perhaps more attractive than those already found.

In addition to the current NCSX reference configuration LI383,11 here we shall

also make use of 4 additional QAS configurations, all havingNf = 3 periods

and fairly low aspect ratio (Table 1): PG2, a QAS developed by P. Garabedian12

to achieve good stability through a deep magnetic well, C82, an earlier reference

configuration13 constrained to fit inside the PBX vacuum vessel, II75286b (ab-

breviated II75), a configuration obtained starting from LI383 with a greater target

value of edge transform [ιa(II75) ' .75 at β = 4%, versusιa(LI383) ' .65],

and A4k2.45b4.75b (abbr. A4k2), a configuration obtained starting from C82

but with enhanced elongation, which improves kink stability. For brevity, we re-

fer to the resultant stellarators as configurations 1-5, in the order just given. The

configurations are specified by the surface shape, hence the fixed-boundary spe-

cializationz → X is being used. The dimensionality needed to describe all 5

configurations within theX description isD0 = 60.

To compare these on an equal footing, we rescale each of them to haveR00 =

1.68 m, andΦa = 0.54 Wb (the LI383 reference values). We refer to the resultant

configurations as 1a-5a. These configurations were developed targetting different
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objectives, and thus are local optima for differing sets of weights{wi}, and so

differingχ. To make comparison among them, one must choose a single set{wi},

for which stellarators 1a-5a will no longer be optima. Values ofwi were chosen

from the prescription that each of thew2
i χ̂

2
i contributes equally to the totalχ2

when itsχ̂2
i equals an acceptably small target value. For example, the QA weight

wBmn is calculated from the conditionw2
Bmnχ̂

2
Bmn = 10 whenχ̂2

Bmn = .015, and

the kink weightwK is calculated fromw2
Kχ̂2

K = 10 whenχ̂2
K ≡ λ2

K = (−10−5)2,

whereλK is the kink eigenvalue from Terpsichore, negative for unstable modes.14

Accordingly, with the prescribed set{wi}, we run Stellopt-LM on each of con-

figurations 1a-5a, to obtain new local optima, called 1b-5b, respectively. We find

that these lie fairly near the original configurations 1a-5a (Fig. 4). Here, we have

introduced the simple norm|z| ≡ (
∑′

j z2
j )

1/2, where the prime on
∑

j excludes

from the sum the extra, nongeometric quantities such asp0 andΦa introduced in

Sec. II. Configurations 1a-5a and 1b-5b are shown in poloidal cross section at

ζ = 0 andπ in Figs. 5, and 6, resp. This convergence of Stellopt-LM to 5 distinct

minima when started from 5 different locations inz illustrates the tendency of lo-

cal methods mentioned in Sec. I to become trapped in local, suboptimal minima.

As a second DE application, we now take theD = 5 subspace spanned by

these 5 ‘seed’ configurationsz1b−5b, and allow Stellopt-DE to search this space.

The selection of the space makes use of knowledge found using the LM optimizer,

but the search within this space is unbiased,i.e., the DE optimizer has no infor-

mation on where these optima lie. From a best cost valueχb(g = 0) = 31.6 at

generationg = 0, χb falls to 3.16 atg = 24 and 2.65 atg = 54, about 87% and

73%, respectively, ofχ(LI383 b) = 3.62 andχ(A4k2 b) = 3.63, the lowest 2 of

the 5 seed values for the{wi} used. Thus, without information on the locus of the
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LM optima, the DE method appreciably improves on the 5 local minima found

previously by LM plus human interaction.

As with application 1, however, a configuration with lowerχ is not necessarily

actually a better configuration. In this case,χ does not include a penalty for sharp

corners. The result is illustrated in Fig. 7, which shows cross sections of the

lowest-χ configuration at generationg = 24 noted above. It lies quite close to

A4k2 b in z space, only 2.9 cm away, compared with 19.2 cm from LI383b. One

notes that the tips atζ = 0.0 have become too sharp to be realizable with practical

coils (i.e., coils which are not too near the plasma).

As a third application, therefore, we investigate a similar subspace spanned by

5 seed configurations 1c-5c, with each obtained beginning as before with config-

urations 1a-5a, but now running Stellopt-LM with a penaltyχ2
κ included for high

curvature of the outer flux surface. Important elements of theχ2 decomposition of

these configurations are given in Table 2, along with some other important physi-

cal parameters. The resultant LM-optimal configurations 1c-5c (Fig. 8) again lie

fairly near 1a-5a, and retain their qualitative character in poloidal cross-section,

as one sees comparing Figs. 5 with Figs. 8a and b. Configurations 1c and 4c lie

quite near each other (unsurprising because configuration 4a derives from 1a), and

these and 2c have a bullet-like shape with positive triangularity atζ = π, while the

remaining 2 seeds, 3c and 5c, have negative triangularity and are indented around

θ = 0. The resemblance of these two is also unsurprising, since, as noted above,

5a derives from 3a. Thus, theζ = π cross section shapes suggest a division into 2

classes of configurations. A refinement of this simple picture is suggested by the

ι profiles for these 5 stellarators shown in Fig. 8d: instead of 2c (=PG2c) resem-

bling 1c and 4c, it now resembles 3c and 5c. An overall taxonomy suggested by
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these two characteristics is thus 1c and 4c in class A, 2c in hybrid class B, and 3c

and 5c in class C.

Doing an unbiased DE run in theD = 5 space spanned by configurations

z1c−5c, the results are similar to those application 2: From a best cost value

χb(g = 0) = 42.1 at generationg = 0, χb falls to 3.53 byg = 16, and thereafter

remains quite flat, reaching 3.47 byg = 52, about 94% and 59%, respectively of

χ(LI383 c) = 3.66 andχ(A4k2 c) = 5.84. The configuration with the lowestχ

for g = 52 just mentioned lies only 1.0 cm from LI383c and 1.9 cm from the

related II75c (the 2 lowest-χ c-configurations), versus 17.1 cm from A4k2c.

While the 5 seed configurations span a 5-dimensional subspace ofz, as noted

there are 2 pairs of closely related configurations among these,viz., (1c,4c) and

(3c,5c). For the first pair, 1c=LI383c is closest to the reference configuration

LI383, and has lowerχ for the sets{wi} used here. Both members of the second

pair are of interest: 3c=C82c is close to the earlier reference configuration C82,

while 5c=A4k2c has the lowerχ. Thus, we now further restrict our space of

study to that containing 1c,2c, and either of 3c or 5c. Choosing 3c first, the 3 seed

vectors (1c,2c,3c) are all contained in a 2-D space, spanned by

z = z1c + a1(z
2c − z1c) + a2(z

3c − z1c), (3)

for all values of coefficientsa1,2. Thus, from a 5-D subspace ofz chosen to contain

much of the interesting physics uncovered by numerous studies with Stellopt-LM,

we arrive at a 2-D space which contains much of the physics interest of that 5-D

subspace, but over which visualization and physical interpretation of the variation

of important quantities are far easier, our main purpose for this portion of the

study.
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Accordingly, in Fig. 9 is shown a contour plot ofχ over the(z10, z20) plane,

computed from a regular ensemble ofz in the space. The increment between

successive contours is∆χ = 50. Again, the choice ofz10 andz20 is somewhat

arbitrary, and does not affect our conclusions. One observes a central ‘ridge’

running roughly vertically, with peak values aroundχ ' 300. Configurations

1c=LI383 c and 2c=PG2c lie in a triangle-shaped valley to the left of this ridge

(χ in the range 0-50), and 3c=C82c lies in a second valley to its right. No val-

ues are given outside the curve bounding all the contours shown, because VMEC

or sometimes TERPSICHORE fails to converge there. The configurations in this

region are too exotic (and thus probably less realizable) for these codes to op-

erate successfully. Thus, while Stellopt-LM has been searching an in-principle

unboundedz space, that space is bounded, and far smaller than one might have

supposed, if one regards failure of VMEC or TERPSICHORE as a good indicator

that the configuration is impractical. Moreover, across the limited range of prac-

tical configurations, one notes thatχ manifests only a few maxima and minima.

This 2-D picture is consistent with results along 1-D curves inz between inter-

esting configurations reported earlier,14 and provides an explanation for the small

number of attractive QAS classes which previous search has uncovered, included

in the taxonomy just discussed.

Some insight into the physical origin of the topography ofχ may be seen

from the breakdown into its component parts. In Fig. 10 are shown contour plots

of (a) χK and (b)χBmn over the same region as Fig. 9. One notes thatχK is

by far the dominant factor (the contour spacing in Fig. 9b is only∆χ = 2),

with χBmn having a significant role only in the flat triangular valley of near kink

stability(χK ' 0), where the minimum inχBmn near the triangle’s lower tip very
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nearly coincides with the position of the overall optimum LI383c. One sees that

the central ridge is due to increased kink instability as configurations pass from

the positive to negative triangularity form.

In Fig. 11 we show the projection over the(z10, z20) plane of a similar 2-

D space, but now using the set (1c,2c,5c) of seed vectors. This subspace is thus

rotated slightly about thez2c−z1c axis from the (1c,2c,3c) space of Figs. 9 and 10,

and one again sees points 1c and 2c in a different cut of the elongated valley of near

kink stability, next to the ridge of relative kink instability, with the third seed, now

5c, again appearing on the other side of this ridge right near the code convergence

boundary which limits the region. The convergence region is somewhat larger

than that for the (1c,2c,3c) space, and has some extra features toward the largez10

side. However, the generic features discussed for the (1c,2c,3c) space are true for

the (1c,2c,5c) space as well, including the dominance ofχ2
K in determining the

overall topography ofχ2.

V. Discussion

We have implemented and exercised the DE algorithm in the Stellopt opti-

mizer in both fixed- and free-boundary searches of stellarator configuration space,

and found that it is, as expected, much less inclined to become trapped in local

suboptimal minima than the local LM algorithm, which has been used by Stel-

lopt until now. Stellopt-DE improved very slightly on the best value found using

Stellopt-LM for free-boundary studies of operational flexibility. It made some-

what greater improvement (∼ 30%) in a fixed-boundary run in a 5-D restricted

space containing 5 previously-discovered interesting QAS configurations. In both
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cases, the intermediate generations of the DE search have produced asetof con-

figurations which differ appreciably, but have almost the same total value ofχ.

As expected, a single run with the algorithm takes appreciably longer (typically a

factor of 7-10) than a single LM run. However, the LM optimizer typically must

be run several times, with human readjustment between runs, in order to arrive

at a good optimum. For the applications studied thus far, Stellopt-DE has found

configurations improving somewhat, but not dramatically, on those developed by

the Stellopt-LM searches. We regard this as providing additional confidence that

the LM+human approach the NCSX team has used to date to find good QAS con-

figurations is working.

As noted, a configuration with optimalχ is not necessarily an optimal config-

uration in practical terms, because of a gap between the figures of meritχ̂2
i used

in χ2 and the criterion a human designer applies in judging goodness of the stel-

larator, and also because of the way both physics figures of merit and other target

constraints are combined inχ. These are deficiencies of both the current LM and

DE versions of Stellopt.

A further weakness of simply using either optimizer is that they do not provide,

by themselves, much insight into why they arrive at the configurations they do,

how many good configurations there may be, and what their distinguishing fea-

tures are. The more global search pattern of the DE method has led us to address

this, attempting to visualize the topography ofχ over z-space. By examining a

subspace which contains a range of quite different candidate configurations found

earlier, we found a taxonomy of a small number of QAS classes into which the

optimization runs fall, and a map on which this taxonomy and all the configura-

tions examined can be placed, and the relationship among them viewed. We find 3
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principal QAS classes, designated A, B and C, lying on the 2 sides of a ridge inχ,

which is produced by enhanced kink instability as the configurations deform from

the positive triangularity atζ = π of classes A and B to the outward-indented,

negative triangularity of class C. Class A is typified by LI383, the current NCSX

reference design, class B by PG2, a design developed elsewhere,12 and class C by

A4k2 or C82, an earlier reference design.

Moreover, this map indicates that the extent∆zj in componentszj over which

one finds realizable configurations is not very large, when measured by the typ-

ical scale lengthLj for χ to go from a maximum to a minimum. For the maps

shown here, one has∆zj/Lj ∼ 2 − 4. This implies that the number of different

QAS classes, as defined by the number of principal basins ofχ over the realiz-

able region ofz space, is also not large, consistent with the small number (3) of

main classes found in the present study. This picture is presently conjectural. It

assumes that failure of VMEC or TERPSICHORE is a good indicator that the

configuration is too exotic to be practical. While the collection of interesting seed

configurations used to form the reduced space for the mapping here represent a

great deal of earlier searching, it is not clear that there are not other, possibly su-

perior basins in some direction not accessed by optimizer runs. And the size of

∆zj/Lj in some of those directions may not be as small as the directions examined

thus far. Moreover, one would expect the precise topography ofχ to change as

important parameters here held constant (such as targetβ, or numberNf of field

periods) are varied, and with these, the number and specific location of the basins

may change. However, the picture provides a view which is consistent with the

accumulated record of searches thus far for attractive QA stellarators, and which

offers the possibility of a large reduction in the uncertainty and complexity of our
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understanding of stellarator configuration space.
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Config LI383 PG2 C82 II75 A4k2

R[m] 1.73 1.70 1.46 1.82 1.64

Ip[kA] 150. 150. 200. 120. 230.

RBt[m− T] 2.05 2.02 1.66 2.16 1.85

A 4.4 4.3 3.4 4.8 4.0

βmax(%) 4.2 3.5 3.9 4.0 4.8

ι0 .39 .15 .26 .46 .30

ιa .65 .46 .47 .75 .48

χ̂2
Bmn .015 .095 .027 .012 .016

Table 1: Seed configurations ‘a’

Config 1c 2c 3c 4c 5c

A 4.4 4.4 4.0 4.4 4.2

β(%) 4.2 4.1 4.2 4.2 4.2

ι0 .41 .14 .24 .39 .20

ιa .65 .67 .65 .65 .65

χ2 13.4 112 52.1 14.0 34.1

χ2
K .123 42.4 2.68 .135 .159

χ2
Bmn 8.96 38.5 14.2 8.58 13.8

χ2
κ 2.33 2.46 11.1 2.76 8.01

Table 2: Some important physics parameters for configurations ‘c’
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Figures

FIG. 1. The “M1017” set of modular coils for the NCSX LI383 configuration,

showing the 4 different types of modular coils.

FIG. 2. (a-c)Projections of the DE population ontoz6 andz8 for generations (a)

g = 0, (b)g = 0 − 49, and (c)g = 49 for DE flexibility study of the LI383

configuration. (d)χ versusz6 for the same study, forg = 49.

FIG. 3. Scatter plot ofχ2
Bmn versusχ2

K for an ensemble of configurations from a

free-boundary run all having comparable values of totalχ.

FIG. 4. Diagram showing the distances (in cm) inz space between the 10 seed

configurations 1a-5a and 1b-5b used in the fixed-boundaryD = 5 restricted

space.

FIG. 5. Poloidal cross sections of seed configurations 1a-5a atζ = 0 andζ = π.

FIG. 6. Poloidal cross sections of seed configurations 1b-5b atζ = 0 andζ = π.

FIG. 7. Poloidal cross sections of the lowest-χ configuration at generationg = 24

in fixed-boundary application 2.

FIG. 8. Poloidal cross sections of seed configurations 1c-5c at (a)ζ = 0, (b)ζ = π,

and (c)ζ = π/2. (d)Rotational transformι of these configurations versus

s ≡ Φ/Φa.

FIG. 9. Contour plot ofχ(z) over the(z10, z20) plane for fixed-boundary applica-

tion 3, using the set (1c,2c,3c) of seed basis vectors.

FIG. 10. Contour plots of component parts (a)χK(z) and (b)χBmn(z) over the

(z10, z20) plane for the calculation of Fig. 9.

FIG. 11. As Fig. 9, but now using the set (1c,2c,5c) of seed basis vectors.
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