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ABSTRACT

A Stark-tuned optically pumped far-infrared CH3OH laser[1] at 119 µm has been

successfully applied in the Far Infrared Tangential Interferometer/Polarimeter

(FIReTIP) system [2] for the National Spherical Torus Experiment (NSTX). The

system will provide temporally and radially resolved 2-D electron density profile

[ne(r,t)] and toroidal field profile [BT(r,t)] data. In the 2001 campaign, a single channel

interferometer system has been operated and tested for the Faraday rotation

measurement. A plan for improvement and upgrading of the FIReTIP is discussed.

1. Introduction

In general interferometry systems for large plasma devices, the heterodyne far-infrared laser
system (10 µm < λo <1000 µm) has been extremely popular.  There are two well known
techniques in modulating the frequency; the frequency shift has been introduced by either by a
mechanically rotating grating or two laser systems with a constant cavity difference frequency
tune. In both cases, the maximum achievable frequency modulation is limited by the speed of the
rotating grating (<100 kHz) and the intrinsic narrow gain bandwidth available in these molecular
FIR lasers (<2 MHz), respectively.  

In the TFTR interferometer system based on two identical lasers operating at 119 µm, two
problems arose from the low modulation frequency (~1MHz). One was the loss of fringe counts
when the change of density exceeded the bandwidth of the counting system that is limited by the
modulation frequency itself. Such a rapid change in density occurred during a sudden disruption or
when solid pellets were injected. This shortcoming can certainly be improved upon if the
modulation frequency can be significantly increased. The main reason is that the basic principle of
interferometry is based on measuring the changes of phase between two sinusoidal beat
frequencies [cos(ωif t) and cos(ωif t+φ(t))]. Here, ωif  is the modulation frequency and φ(t) is
proportional to the plasma density along the direction of the probe beam. If the rate of change of
the plasma density is large so that dφ(t)/dt is larger than ωif , it is impossible to measure the density.
To ensure that the measurement can be made at all times, the following condition must be
satisfied;
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The other difficulty is a practical problem associated with the thermal expansion of laser
cavities that will change the operating modulation frequency. There are number of techniques
available to lock the operating frequency. In principle, at a higher modulation frequency, there is
more room to tolerate the range of variation whether the system employs a specific technique or
not. A Stark-tuned FIR laser was suggested by Mansfield[1] for this application, since the
modulation frequency can be significantly increased without loss of laser power.

The primary goal of this paper is to demonstrate an application of the Stark-tuned FIR laser
system in the Interferometry/Polarimetry system on NSTX that was intended to measure the
toroidal magnetic field. Simultaneously, temporally resolved (up to ~500 kHz) 2D density profile
information will be available as well. Since the laser wavelength of 119 µm is an ideal wavelength
for NSTX parameters, the system design is based on three FIR lasers including a Stark-tuned laser
operating at 119 µm together with the accumulated wisdom from the TFTR multichannel infrared
interferometer [MIRI] system [3]. Successful demonstration of the interferometry system and
preliminary test results from Faraday rotation warrant an ambitious upgrading plan for the system.

2. Principles

In an interferometry/polarimetry system, the O-mode polarized radiation in the magnetically
confined plasma undergoes a phase shift given by

φ x( ) = 2.8 ×10−15λ n( ′ x )d ′ x 
o

x

∫

In the presence of a parallel magnetic field component, BT, the polarization of the wave is
Faraday rotated through an angle

Ψ x( ) = 2.6 ×10−13λ2 n( ′ x )B
T

( ′ x )d ′ x 
o

x

∫

With a sufficient number of chords spanning the plasma, interferometry data can be inverted to
yield the temporally and radially resolved plasma density ne(r,t). Polarimetry data can be

subsequently inverted to yield the time dependent parallel magnetic field BT(r,t).

The FIReTIP system design for NSTX is based on a wavelength of 119 µm that is ideal for
NSTX plasma parameters. At this wavelength, the expected signal to noise ratio for interferometry
and polarimetry is excellent. The interferometer system will have ~10 fringes shift and the
polarimetry system will have a Faraday rotation of ~10 degrees while the refraction of the beam is
at a minimum (less than ~0.5 mm) as shown in Fig. 3 in Ref. 2. Due to an access limitation, the
present system consists of seven beam lines that enter at three separate toroidal locations at Bay K
on NSTX as shown schematically in Fig. 1. Each beam traverses a different chord along the
horizontal midplane of the device, reflects from a suitably placed corner cube retro-reflector, and
traverses back through the plasma to return to a common point for detection.

There has been significant progress in Faraday rotation measurement. The technique we are
implementing on this system is modulation of polarization of the probe beam. A major limitation
of the rotating half-wave plate used in the MTX measurement is the limited modulation rate (< 10
kHz) that can be created by the mechanically rotating plate. This limitation can be removed by
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replacing the rotating plate by an additional far-infrared (FIR) laser. In this approach pioneered by
Rommers and Howard on RTP [4], the rotating elliptically polarized wave is formed by injecting
two co-aligned counter-rotating circularly polarized laser beams into the plasma. This scheme is
illustrated in Fig. 4 of Ref. 2. The beams, generated by separate FIR lasers with frequencies ω1 and

ω2, are slightly offset to allow the use of heterodyne detection methods.

Fig. 1. Seven channel FIReTIP system will have fan view of beam lines. Three
entrance windows and tangencies of each beam lines are provided

The FIReTIP system utilizes an approach similar to that used on RTP. In this case, however,
the FIR lasers operate at 119 µm with a difference frequency ω1–ωLO = 4.0±1.0 MHz and

ω2–ωLO = 6.0±1.0 MHz. The LO frequency shift of 5 MHz is obtained using the Stark tuned FIR
laser in addition to two FIR lasers operating with a frequency difference of 2 MHz. This generates
interferometer and polarimeter signals at 6.0 and 4.0 MHz.  Phase lock loop circuits and a tracking
system [5] are utilized to upconvert the laser signals to 24.0 MHz, whereupon flip-flop based
fringe counter circuits measure the interferometer signal(s), and a quadrature phase comparator
system makes Faraday rotation measurements with high temporal resolution. Note that only a
single detector is required for each chord in the tangential interferometer system.

3. Laser System

The laser system consists of three FIR lasers which are equally pumped by the grating-tuned
CO2 laser delivers ~70 W. The conventional two FIR lasers are described in Ref. 3. The design of
the Stark-tuned FIR resonator is quite similar to the one described in Ref. 4. The resonator consists
of a rectangular Pyrex tube with inside dimension of 22 x 9.5 mm. The two large inside faces of
the rectangular tube are coated by evaporating a conducting film of Al. The rectangular tube is
surrounded by a double cylindrical water jacket so that the entire structure is water cooled and free
from electrical breakdown. The input coupler consists of a flat Au-coated copper mirror with a
centered 4-mm input coupling hole. A hybrid metal-dielectric mirror with a 6-mm Si aperture is
employed as the output coupler which is commonly used in most high power FIR laser systems.
The output of the two conventional FIR lasers was ~40 mW and that of the Stark laser was ~20
mW. The applied voltage was ~400 V to avoid an occasional break down at the operating pressure
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(~50 mT at the pump side of the gas system) which was lower than the test set up used in Ref. 1.
The spectral performance of the Stark-tuned laser was very much consistent with the results in
Ref. 1. An example of the beat frequencies are shown in Fig. 2. The choice of this frequency was
to optimize the output power while minimizing operational risks including electrical breakdown.

Fig. 2. The actual operating frequency of the interferometer system is illustrated. (right
hand side is ~7 MHz which is the edge of upper bound and middle one is ~4 MHz.
The beating frequency between the non-Stark lasers is ~3 MHz.

4. Optical system configuration

The beam propagation is largely divided into three sections. First and second sections consist
of two focusing mirrors that collimate the laser beams (effective beam waist of ~0.4 cm) to an
appropriate size (beam waist of ~2.2 cm) so that splitting and detection can be arranged with
collimated beams. The final section is propagation through the plasma and retro-reflectors.

The partial layout of optical components is shown for the first three channels in Fig.3.
Electroformed Cu meshes will be utilized as beam splitters and partial reflectors. The
characteristics of these metal meshes have been studied in detail [6] and are known to distort beam
polarizations for non-normal incidence. In order to split the probing beam into seven parts which
will be directed to retro-reflectors with a minimum polarization change, the reflection angles are
maintained at ~10 degree. Splitting the LO beam into seven parts can be achieved with these beam
splitters too. They will be directed to each of the Schottky diode corner cube detectors and
polarizing grids with which the interferometer and polarimeter signals are to be measured.
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Fig.3. Optical arrangement for the first three channels. FIR # 1 and #2 are combined by
polarizer and propagates as two different circular polarizations. Stark laser is used as
local oscillator only. 4 and 5 stands for metal mesh with 400 lpi and 500 lpi,
repectivley.

Each beam will be guided to the mid-plane where
quartz windows are located at Bay K of NSTX as shown
in Fig. 4. The thickness of crystal quartz is adjusted so
that the reflection at the surface is minimum for this
wavelength. For channels # 1 and #2, two exit windows
are located at Bay F where retro-reflectors are mounted
on the base plate of the Thomson scattering detection
system.

Fig. 4. 3-D CAD design of FIReTIP system. Beams from the optical table are entering
the window at Bay K through optical tower.
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5. Preliminary experimental results and upgrade plan

During the 2001 campaign, the goal was to demonstrate a single channel interferometer and the
feasibility of Faraday rotation measurement. During this commissioning period, two major
trouble-shootings were performed. First, the laser operation was hampered by magnetic influence
which mainly came from OH and PF systems. Note that the laser system was hardened in the
TFTR magnetic environment. This implies that the magnetic impact on the laser system has been
much worse compared to that of the TFTR operation. The reason was that the change of OH flux
and PF field was much stronger due to the short pulse length. Second, vibrations transmitted
through the floor influenced the optical components to oscillate at their resonance frequencies.
Typical resonance frequencies were ~30 Hz and 50 Hz. The optical tables are now isolated with
vibration dampening materials to suppress these oscillations.

 Since the Bay K, where a temporary entrance window was installed, is scheduled to be
redesigned, one channel was aligned at the tangency of ~66 cm [close to channel #2]. In this
campaign, a single channel operation was successful and test results of Faraday rotation
measurements were acquired before the August shut down.  Sample density data [second trace]
and quadrature signals from the Faraday rotation measurements [last two traces] are shown in Fig.
5 together with other waveforms of the discharge. During this shut down time we intend to
redesign the optical tower so that two more channels will be added including the very edge
channels before completion of the full system. Also, small oscillations in density traces which
originated from the floor vibration will be isolated by activating an air cushion system on the
optical tables for the next run time.

Fig. 5. A measured line average density (second trace) and quadrature signals (last two
traces) from Faraday rotation measurement with other waveforms.
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6. Summary

We have successfully demonstrated the advantage of Stark-tuned laser system on NSTX
interferometry/polarimetry system. This paper presents a description of Interferometer/polarimeter
system emphasizing the usage of the Stark-tuned laser system. The successful operation of a
single channel system warrants upgrading the system up to the full design specification.
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