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A Parallel Two-Fluid Code for Global
Magnetic Reconnection Studies

J. A. Breslau and S. C. Jardin

Princeton Plasma Physics Laboratory

E-mail: jbreslau@pppl.gov, jardin@pppl.gov

This paper describes a new algorithm for the computation of two-dimen-

sional resistive magnetohydrodynamic (MHD) and two-uid studies of mag-

netic reconnection in plasmas. It has been implemented on several parallel

platforms and shows good scalability up to 32 CPUs for reasonable problem

sizes. A �xed, non-uniform rectangular mesh is used to resolve the di�erent

spatial scales in the reconnection problem. The resistive MHD version of

the code uses an implicit/explicit hybrid method, while the two-uid ver-

sion uses an alternating-direction implicit (ADI) method. The technique

has proven useful for comparing several di�erent theories of collisional and

collisionless reconnection.

Key Words: extended MHD, magnetic reconnection

1. INTRODUCTION

Magnetic reconnection is a universal phenomenon. The annihilation of magnetic

�eld lines with the attendant conversion of magnetic �eld energy to thermal and

kinetic energy occurs both in astrophysical regimes such as solar ares, accretion

disks, and magnetospheric substorms [1] and in laboratory plasmas, such as toka-

maks and reversed �eld pinches [2]. In spite of its ubiquity, there is much about

the magnetic reconnection process that is still not well understood, and it is con-

sequently the subject of a great deal of active research and debate [3].

A typical plasma undergoing magnetic reconnection is characterized by a spatial

separation into two regions. One is an outer, \ideal" region in which magnetic

�eld gradients are small and the evolution of the plasma is governed by the non-

dissipative equations of ideal MHD. The reconnection itself occurs in an inner,

\di�usion" region in which the magnetic �eld reverses direction over a short dis-

tance, resulting in a high current density and necessitating the inclusion of one

or more non-ideal terms that become important where spatial gradients are steep.

Although reconnection occurs in a small, localized region, it results in topological
1
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changes in the magnetic �eld structure that strongly a�ect the evolution of the

global plasma.

Previous two-dimensional numerical studies of reconnection have typically taken

one of two approaches to deal with this separation of scales. They have either

restricted their attention to the vicinity of the di�usion region [4]{[9]; or they have

advanced both regions using the equations of reduced MHD [10]{[13]. The former

approach has the disadvantage of requiring the speci�cation of boundary conditions

for the mass inow and outow rates. If these rates are determined by the di�usion

layer physics, it is diÆcult to determine them from these local studies. The global

approach avoids this problem but has typically required the omission of potentially

important physical e�ects, such as compressibility and out-of-plane �elds and ows,

in the interest of computational eÆciency.

Ideally, one would like to model the global reconnecting plasma using a complete

set of compressible MHD equations on a mesh �ne enough to resolve the details of

the inner reconnection region. The parallel code described in this paper does this,

solving the two-uid MHD equations to time-evolve a model system for magnetic

reconnection consisting of merging spheromaks or ux tubes with varying relative

helicities. EÆcient parallelization and non-uniform mesh spacing allow it to solve

for the global plasma accurately while simultaneously providing high resolution of

the narrow current sheet structures.

The following section outlines the considerations that went into the numerical

modeling of the reconnection problem, and the decisions that were made. Following

that, we present the results of some convergence checks. We conclude with some

examples of useful results.

2. MODELING THE RECONNECTION PROBLEM

2.1. The System of Equations

The two-uid MHD equations being solved consist of the following:

continuity:

@�

@t
+r � (�v) = 0 (1)

force balance:

�

�
@v

@t
+ v � rv

�
= J�B �rp+ �r2v (2)

low-frequency Maxwell's equations:

@B

@t
= �r�E (3a)

J = r�B (3b)

r �B = 0 (3c)
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generalized Ohm's law:

E + v �B = �J+
J�B�rpe

ne
(4)

electron and ion pressure equations:

@pe
@t

+ ve � rpe = �
5

3
per � ve +

2

3

�
�jJj2+r �

�
mi�e
Z + 1

r
pe
�

�
�Q

�
(5)

@pi
@t

+ v � rpi = �
5

3
pir � v +

2

3

�
��v � r2v +r �

�
mi�i
Z + 1

r
pi
�

�
+ Q

�
: (6)

Here � is the mass density, ve = v� j=ne is the electron uid velocity, p = pe+pi is

the sum of the electron and ion uid pressures, � is a scalar viscosity, � is a scalar

resistivity, �e;i are scalar thermal conductivities, and Q represents the transfer of

heat between the two species as speci�ed by Braginskii [14].

The single-uid (resistive MHD) equations consist of (1){(4) and the sum of (5)

and (6) in the limit 1=ne ! 0 so that the right-hand-side of (4) contains only the

resistive term, and ve ! v. A still simpler, but less physical, system can be arrived

at by eliminating (1), (5), and (6), holding plasma density and pressure constant in

time and space. Solutions of all three sets of equations are implemented by versions

of the code described in this paper.

2.2. Geometry

Cylindrical. The code was �rst developed to look at axisymmetric spheromak

merging. The default version therefore uses cylindrical coordinates R, �, and z,

treating �̂ as the ignorable direction. Each row in the non-uniform mesh corre-

sponds to a particular value of z, and each column to a particular value of R.

The most general form for a magnetic �eld satisfying (3c) in an axisymmetric

system is in terms of two scalar functions  (R; z) and g(R; z):

B = r��r + gr�: (7)

Note that this follows from the introduction of an axisymmetric magnetic vector

potential of the form

A = r��r
�  r�; (8)

where g and 
 are related by

g = �?
?
 �

@2


@R2
�

1

R

@


@R
+
@2


@z2
: (9)

With the choice of the poloidal ux  and toroidal �eld amplitude G � g=R as the

two �eld variables to advance in time, the r � B = 0 condition remains satis�ed

automatically. The current density can then be calculated as

J = r�B = rg �r�+�?
? r�: (10)
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Combining (3a), (3b), and (4), the time evolution of these new �eld variables is

given by

@ 

@t
+ ve � r = ��?

? (11)

@G

@t
= �̂ � r�

�
ve �B� �r�B +

rpe
ne

�
(12)

Cartesian. A Cartesian version of this code also exists, in which R̂ ! x̂ and

�̂! ŷ. Here the magnetic �eld is written

B = ŷ �r +Gŷ; (13)

while the current density is given by

J = rG� ŷ +r2 ŷ: (14)

Equations (11) and (12) still hold, with the substitutions �?
?
! r2 and �̂ ! ŷ

respectively.

2.3. Boundary Conditions

Conducting walls. We regard the plasma as being con�ned within a metal box

with perfectly conducting walls. The wall boundary conditions for the magnetic

�eld variables  and G are determined by the requirement that the tangential

electric �eld vanish at the plasma/conductor boundary. Eq. (4) implies that the

tangential current must vanish there as well. The component of the in-plane current

density parallel to the walls is accordingly set to zero by zeroing the appropriate

(�rst) derivative of G. In the Cartesian case, this is equivalent to simply imposing

even symmetry of G at the top and side boundaries, while in the toroidal case,

the boundary conditions at the sides are dependent to some extent on the radial

position of the walls. The out-of-plane current density parallel to the walls must

be zeroed at these boundaries as well, which means zeroing �?
?
 . Again, in the

Cartesian case this just imposes odd symmetry across conducting boundaries, while

the toroidal case has an R-dependence in the boundary condition at the sides.

Toroidal axis. In the toroidal case, the right boundary is always a wall, but the

left boundary may either be a wall (at R > 0) or the symmetry axis (at R = 0).

The boundary conditions on velocity at R = 0 in cylindrical geometry are that the

radial and toroidal velocities should go to zero, while vz has even symmetry. The

axis boundary conditions on the other variables are obtained by Taylor expansions

about R = 0. Neither G nor  has a zeroth-order term in its expansion (they are

odd in R), so both vanish on axis. The density and pressure are even in R. The

density, for example, can be written (at a �xed value of z)

�(R) = �(0) + c1R
2 + c2R

4 + : : : (15)
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with c1 and c2 constants independent of R. Its value at the axis can therefore be

calculated to second order from the two values to the right:

�(0) �
4�(�R)� �(2�R)

3
: (16)

The same extrapolation is used for the pressure.

Midplane symmetry. The resistive MHD version of the code incorporates the

assumption of reection symmetry about the midplane of the reconnection process

in order to gain a free two-fold increase in speed. The bottom boundary of the

mesh is not a wall but a reection boundary.  , �, p, and vR have even symmetry

about this boundary; vz and v� have odd symmetry there. The toroidal �eld G can

have either even or odd symmetry about the midplane or be identically zero. These

three cases correspond to co-helicity, counter-helicity, or null helicity reconnection

respectively (see Section 4.1).

Left-right symmetry. The Cartesian MHD case contains an additional degree

of reection symmetry, about a line passing vertically through the X-point, per-

pendicular to the midplane. The left boundary is accordingly made a reection

boundary, with  , G, �, p, and vz even and vR and v� odd. This gives another

doubling of execution speed.

Hall symmetry. The new terms introduced in the adjustment to a two-uid

code destroy the two reection symmetries just mentioned. However, the co- and

null helicity cases in Cartesian geometry possess a new type of symmetry of their

own: a double reection, or, equivalently, a 180Æ rotation. That is, the left half of

the mesh is identical to the right half rotated through 180 degrees. It is therefore

possible to make use of this symmetry to once again restrict computation to half

the mesh.

2.4. Discretization on a Non-Uniform Mesh

The reconnecting system is expected to contain at least two di�erent spatial scales

of interest: the global scale and the scale of the current sheet thickness. The most

natural way in which to attempt to resolve systems withmultiple scales is to vary the

spacing of the mesh on which the equations are discretized, packing the cells tightly

in the regions containing �ne structure and leaving them more coarse in the regions

with little spatial variation. One way to accomplish this is to use adaptive mesh

spacing, in which the mesh size and shape change dynamically in response to the

steepness of gradients in the evolving system. For the systems under consideration

here, however, the inherent symmetry makes it possible to predict in advance the

location and orientation of the current sheet where the highest resolution will be

needed: it will be a horizontal line at the midplane of the mesh. This makes it

possible to use a much simpler scheme in which a particular spatially varying mesh

spacing is chosen at the beginning of a simulation and then left constant over the

course of the run.

For explicit �nite di�erent schemes (those in which the values of the variables

at the old time are used to approximate the spatial derivatives that are used to

advance to the new time), the maximum time step size �t for numerical stability is

proportional to (�x)2 for parabolic terms, which contain second derivatives. The
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a. b.

FIG. 1. The two di�erent mesh spacing schemes used by MRC. a. Linear increase of spacing
with row number. b. Geometric increase of spacing with row number outside constant-spacing
�ne zone.

presence of any regions of very small grid spacing can thus unduly restrict the time

step required for the implementation of an explicit scheme. In contrast, implicit

di�erence schemes (those in which the values of the variables at the advanced time

are computed self-consistently based at least in part on evaluation of the spatial

derivatives at the advanced time) are generally numerically stable for all time step

sizes regardless of mesh spacing. The drawback of implicit schemes is that they

require matrix inversions at every time step, making them more time-consuming

per step than their explicit counterparts.

A compromise between these two types of schemes is possible that is particularly

conducive to parallelization (see section 2.6). Since less �ne structure is expected

in the R̂ (or x̂) direction than perpendicular to it, a relatively coarse uniform mesh

(about 100 zones across) is imposed in that direction and solved explicitly. It is

known that the ẑ direction will possess �ne structure in the form of the midplane

current sheet, so the mesh spacing is made �ne in that region, increasing in size

outside of it. This direction is then solved implicitly. Thus there is no restriction

on the time step based on the spacing in this direction. (See section 2.5 below for

more on this splitting technique).

The single-uid MHD version of the code determines the z spacing by a scheme

in which the size of the smallest zone, always located at the midplane, is speci�ed

as a fraction of the size the zones would have if the mesh were uniform. The spacing

is then incremented by a constant amount for each successive zone moving away

from the midplane, with the constant chosen in such a way as to guarantee that

the requested number of total zones just �lls the problem domain (Figure 1a).

In the two-uid version, we instead specify the fraction of the total number of

zones that is to be packed into a region of constant spacing centered on the midplane

and extending out to z = �0:15. Outside this region, the spacing increases by 1%
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per zone until no more increase is needed to �ll the remaining space with the

remaining zones, at which point the spacing again becomes uniform (Figure 1b).

2.5. Numerical Integration

Implicit/explicit hybrid methods.

The time advance method is motivated by the need to maintain second-order

accuracy in time and space, to allow a reasonable time step that is not restricted

by the smallest zone spacing in the reconnection layer, and to be consistent with

eÆcient parallel implementation.

Let n be the time index, j the R (or x) coordinate index, and k the z coordinate

index. We de�ne a state vector U as follows:

U = [�;  ;G; vR; v�; vz; pe; pi] (17)

and adopt the notation that Un
j;k represents the solution at time level tn and spa-

tial location (Rj; zk). The time advance equations (1){(6) can be written in the

linearized form

@U

@t
+ A �

@U

@x
+ B �

@2U

@x2
+ C �

@U

@z
+ D �

@2U

@z2
= 0; (18)

where A, B, C, and D are the 8� 8 Jacobian matrices.

In the single-uid MHD version of our code, we advance (18) using the hybrid

explicit/implicit method

Un+1=2 = L �Un �
�t

2

h
A ��1

xU
n + B ��2

xU
n + �(C ��1

zU
n+1=2

+ D ��2
zU

n+1=2) + (1� �)
�
C ��1

zU
n + D ��2

zU
n
�i

(19a)

Un+1 = Un ��t
h
A ��1

xU
n+1=2 + B ��2

xU
n + �(C ��1

zU
n+1

+ D ��2
zU

n+1) + (1� �)
�
C ��1

zU
n +D ��2

zU
n
��

(19b)

where the operator �m
w denotes the second order �nite di�erence approximation

to the mth derivative with respect to w. The \implicitness" coeÆcient �, logically

restricted to the range 0 < � < 1, is generally chosen to be 1=2 for second-order

accuracy in time. The operator L is de�ned such that

(L �Un)j;k =

0
BBBBBBBBBBB@

�j;k
 j;k
Gj;k

1

2
(vR j�1;k + vR j+1;k)

v� j;k
1

2
(vz j�1;k + vz j+1;k)

pe j;k
pi j;k

1
CCCCCCCCCCCA

n

(20)
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I.e., for the two poloidal velocity components vR and vz , the explicit piece of (19)

has the character of the Lax-Wendro� method, while for all other components of

U, it behaves like the simpler (and less dissipative) predictor-corrector method.

For dissipation coeÆcients � � 10�2 and � � 10�5, this scheme has been found to

remain numerically stable for tens of thousands of time steps.

The Alternating Direction Implicit method.

In the two-uid case, the retention of the Hall term in Ohm's law [those terms

in Equation (4) proportional to 1=ne] makes the hybrid scheme just presented

impractical. This can be seen by considering the linearized form taken by the

Cartesian versions of (11) and (12) for small perturbations about a constant �eld

B0x̂ on time scales suÆciently rapid to freeze out the ion motion:

@ ~ 

@t
=
B0

ne

@ ~G

@x
(21)

@ ~G

@t
= �

B0

ne

@3 ~ 

@x3
(22)

These equations have traveling wave solutions (known as \whistler" waves) whose

dispersion relation

!2 =
k4B2

0

n2e2
(23)

indicates a phase velocity that varies inversely with wavelength. Because the mesh

contains perturbations with wavelengths as small as 2�x, where �x is the minimum

spacing, the Courant-Friedrichs-Lewy condition on the time step in an explicit

solution of these equations is

�t �
ne(�x)2

�B0

: (24)

The quadratic dependence on �x is restrictive even in the vicinity of the poloidal

�eld null; as B0 increases, any explicit scheme will clearly become impractical. Thus

a fully implicit treatment is called for.

The most straightforward method would be to evaluate all terms in the di�erence

scheme at the advanced time level. For a grid of linear size N , this would result in an

(8N2)� (8N2) banded matrix with band size 8N . Instead, we base our solution on

the Alternating-Direction Implicit (ADI) Method [16]. This is a splitting method,

in which one alternates between treating the derivatives in one direction implicitly

and the other explicitly each for half a time step. As with the hybrid scheme

above, each matrix equation solved advances just one column (or row) of the mesh,

yielding block tridiagonal arrays of manageable size. Schematically, the algorithm

is as follows:

Un+1=2 = Un �
�t

2

�
A ��1

xU
n + B ��2

xU
n

+ C ��1
zU

n+1=2 + D ��2
zU

n+1=2
�

(25a)
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Un+1 = Un+1=2 �
�t

2

�
A ��1

xU
n+1 + B ��2

xU
n+1

+ C ��1
zU

n+1=2 + D ��2
zU

n+1=2
�

(25b)

Note that both equations are now half-steps.

The state vector U is augmented in this version with a ninth element, J�=R =

�?
?
 =R2 (or Jy = r2 ) in order to allow implicit evaluation of third spatial deriva-

tives arising from the Hall terms in (12) without adding two extra bands to the

block tridiagonal matrix.

The ADI method has the same linear numerical stability properties as the fully

implicit method, i.e., there is no restriction on the size of the time step. In its prac-

tical implementation, however, the step must still be kept fairly small for purposes

of accuracy. Even this fails to fully solve the numerical stability problems arising

from the inclusion of the Hall term. There remains a tendency for short-wavelength

numerical noise in the out-of-plane current density to grow quickly and swamp the

physical solution. This problem is addressed by the addition of arti�cial higher

order dissipation terms to the poloidal magnetic �eld and momentum equations.

These terms are treated explicitly, but have time-dependent coeÆcients that are

constrained to be just stable for all time step sizes. We utilize a \hyper-resistivity"

term of the form

@ 

@t
= : : :�

2(�z)4

ne �t

�
@4 

@x4
+
@4 

@z4

�
: (26)

Note that the hyper-resistivity vanishes when 1=ne ! 0 and it is not needed. We

also employ a \hyper-viscosity" of the form

@vp
@t

= : : :�
0:2(�z)4

�t

�
@4vp
@x4

+
@4vp
@z4

�
; (27)

where the subscript p 2 R; z represents the velocity components in the symmetry

plane. Finally, an increased physical viscosity (separate from the arti�cial hyper-

viscosity) is added along the walls, taking the form

�(R; z) = �0 + �w
X
walls

exp

�
�
d2

�2

�
; (28)

where �0 is the \background" viscosity of the original code, �w is the elevated value,

d represents the perpendicular distance of the point (R; z) from the given wall, and

� is the characteristic width of the viscous boundary region. Typically, � = 0:05

and �w = 0:1, while for comparison, �0 falls in the range 10�4 to 0:1.

The time step in the single-uid implicit/explicit hybrid code is limited by the

parabolic terms in the explicit (R or x) dimension; the dominant restriction is

typically �t � (�x)2=2�. In contrast, the two-uid ADI version's maximum step

size is free of this restriction. However, we �nd that when the Hall term is non-

zero, the maximum practical time step is proportional to �z=c, where c is the fast

magnetosonic wave speed. This is because the hyper-resistivity and -viscosity coef-

�cients, each e�ectively proportional to �t�1, must be suÆciently large to stabilize
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r r r

- R̂ (explicit)

6

ẑ
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PE 1 PE 2 PE 3 PE N
�
�

B
B

Boundary columns

FIG. 2. Schematic view of the 1D domain decomposition used by MRC.

the advancement scheme against numerical noise originating from the Hall term.

These terms limit the constant of proportionality in this Courant-like condition to

approximately 0:3 in practice. Nevertheless, the ADI scheme makes it possible to

use step sizes as much as 80 times larger than what would be allowed under the

explicit restrictions.

2.6. Parallelization

Domain decomposition. MRC makes use of a one-dimensional domain decom-

position, dividing the mesh into strips that extend vertically from top to bottom.

This is illustrated schematically in Figure 2. The �gure makes it evident that the

bottom of the mesh falls at the midplane of the physical domain. The number of

adjacent columns to be assigned to each processing element is determined at run-

time by simply dividing the total number of columns in the mesh by the number of

processes in the run (with provision for assigning di�erent numbers of columns to

di�erent processes in the event that this ratio is not an integer). In addition to its

proper columns, each process has one or more \ghost" columns on either side of its

segment of the mesh; these ghost columns store the values in the adjoining columns

located on the neighboring processors, which must be obtained by point-to-point

communications.

When combined with the implicit/explicit hybrid algorithm described above, this

scheme has several advantages:

� The implicit steps, which require the direct solution of large sparse banded

matrix equations, are all done on data distributed in the vertical direction in a single

column. Since any one column is contained entirely within a single process, this

most time-consuming operation (occupying more than 80% of the total runtime in

single-processor benchmarks) can be done without any interprocess communication.

This makes favorable scaling possible.

� Because the execution time of the matrix solution algorithm is independent of

the contents of the matrix, the time each process spends on the implicit portion
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FIG. 3. Parallel speedup of the magnetic reconnection code on an Origin 2000. Comparison
with Amdahl's law indicates a parallel fraction of approximately 99%.

of the time step is simply proportional to the number of columns it contains. The

assignment of the same number of columns to each process is therefore suÆcient to

achieve good load balancing.

� The explicit half-time-step is second-order in space, so that the evaluation

of derivatives in the horizontal direction at any point requires information only

about the nearest neighbors to that point. It is therefore necessary to maintain

and communicate only a single ghost column on each side of each process, keeping

the amount of data to be communicated reasonably small compared to the total

amount in the mesh.

� This communication is itself parallelizable in the sense that PE 3 can send its

right boundary information to PE 4 at the same time that PE 1 is sending the

corresponding information to PE 2, and so on. The communication time therefore

does not increase with increasing N .

The major drawback of this type of domain decomposition is that it limits the

maximum number of processors that can be used to no more than the number of

columns; in practice, two or three columns per processor are necessary for rea-

sonable eÆciency. This places upper limits on the scalability of the code for any

constant problem size.

Parallelism and ADI.

1D domain decomposition provides acceptable parallel eÆciency for the MHD

version of the code (Figure 3), but requires modi�cation for the two-uid version.

With the numerical scheme now implicit in both directions, all the data in the mesh

must be broken up into blocks, transposed, and redistributed across all processors



12

twice each time step in order to ensure that the matrix solution is always done over

data residing on a single PE.

The subroutines that perform the system-wide transposition of the global data

array exist in two versions. The �rst performs all its operations at once, in be-

tween implicit half steps. Ghost columns or rows are then swapped, and the next

half step is performed. The other version represents an attempt to boost the ef-

�ciency of the expensive vector all-to-all operation by making use of non-blocking

communication. In the non-blocking version of the code, each column (or row) is

broken up and sent as soon as it has been computed. Although the send command

is initiated immediately, it is not required to be completed until the following col-

umn (or row) has been computed. This non-blocking approach has been found to

work well on low-bandwidth networks of distributed PCs, where it reduces overall

runtime by as much as 20%. However, on highly optimized supercomputers with

very high interprocess bandwidth, and on shared-memory systems, it yields little

improvement.

In either case, the overall di�erence in execution speed between the hybrid and

ADI versions of the code is about a factor of two. This indicates that the processing

bottleneck in both cases is the implicit matrix solution, which, in the ADI case, has

replaced the explicit stepping routine. The mesh transposition, whether blocking

or non-blocking, does not add signi�cantly to the runtime.

3. CONVERGENCE STUDIES

3.1. Single-uid code

Figure 4 shows the time behavior of the rate of change of poloidal ux  evaluated

at the X-point for runs with identical physical parameters but varyingmesh spacings

and time steps (see Section 4 below for details on the con�gurations of these runs).

As the �gure makes clear, neither a halving of the time step nor a doubling of the

mesh resolution from their base values has any noticeable e�ect on the behavior of

the reconnection rate _ (t).

3.2. Two-uid code

The introduction of hyper-resistivity and hyper-viscosity into the two-uid code

makes convergence a more serious and complex issue for its results. Even for many

of the 1=ne ! 0 cases, which ought to mimic the single-uid results, it is not possi-

ble to achieve numerical stability without retaining some hyper-viscosity coeÆcient.

However, because �t / �z in the ADI code, the magnitudes of the hyper-viscosity

and hyper-resistivity coeÆcients decrease as

CHY PER /
(�z)4

�t
/ (�z)3: (29)

The e�ects of these arti�cial terms may thus be isolated by performing a con-

vergence study in zone size. Figure 5 shows the results of one such study, with

� = 10�3, � = 10�1, and � � �=ne = 0:02. The reconnection time tR is evidently

linear in �z as the latter approaches zero when the Hall term is turned on. The

linear convergence seems to be a consequence of the �rst-order truncation error in

the �nite di�erence approximation for non-uniform mesh spacing. This result nev-

ertheless shows that the e�ect of the numerical dissipation terms on the behavior
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FIG. 4. Time history of reconnection rate _ at X-point for co-helicity study in Cartesian
geometry showing convergence of single-uid code results with �z and �t.

FIG. 5. Convergence of reconnection time with mesh spacing in the two-uid study.
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of the two-uid code is predictable and can be scaled out by comparing as few as

two cases with the same physical parameters.

4. RESULTS

4.1. Benchmarks

First proposed in the 1950s in an attempt to explain coronal heating by solar ares

[17], the Sweet-Parker model of magnetic reconnection is still the basic theory of the

�eld, providing a common point of departure for later re�nements. A stationary,

two-dimensional model based on the equations of resistive MHD, it describes null-

helicity reconnection across an X-shaped �eld null as a purely resistive process

taking place in a long, at, rectangular current sheet whose dimensions determine

the reconnection rate. Under a simple set of assumptions, momentum and mass

conservation arguments predict that the sheet thickness, and thus the plasma inow

rate, should scale in proportion to the square root of the local resistivity.

Initial conditions.

When referring to spheromak or ux tube reconnection, the terms \co-helicity",

\counter-helicity", and \null helicity" refer to the relative orientations of the pre-

vailing toroidal (or out-of-plane) magnetic �elds of the two merging islands. In the

null helicity case, as in the analytical model, there is no toroidal �eld. In the co-

helicity case, strong parallel toroidal �elds tend to reduce the plasma �(� 2p=B2)

and to resist compression. Counter-helicity reconnection involves oppositely di-

rected toroidal �elds which must annihilate at the mid-plane as reconnection pro-

ceeds. The toroidal currents must be parallel in all cases in order for the in-plane

magnetic �elds to be oppositely directed, a prerequisite for reconnection. The

constant-pressure single-uid study described in this section looked at co-helicity

reconnection only.

We begin the simulation with the system in magnetostatic equilibrium so that

the possible e�ects of large initial force imbalances do not inuence the results. A

global Taylor equilibrium [18] is computed with three parallel spheromaks possessing

toroidal current in alternating directions. With constant resistivity, this initial state

would not undergo reconnection; its magnetic �elds would simply decay in place

on the resistive time scale. In order to enable fast reconnection studies, the central

island holding the other two apart must be destroyed rapidly. This is accomplished

by setting an arti�cially high value of resistivity in the region occupied by this

island. Since the sign of  alternates along with the sign of the current and is

positive in the region to be destroyed, the form chosen for the resistivity is the

function

�( ) =

8<
:
��;  � 0

�� + (�+ � ��)

�
1� exp

�
�
�

 
0:075

�2��
;  > 0

(30)

where the constant �� is the normalized resistivity (inverse Lundquist number) of

the bulk plasma, typically ranging from 10�5 to 10�3, and �+ is the arti�cially

elevated resistivity, generally set to 10�1. The Gaussian form of the resistivity

function for positive  ensures continuity of the derivatives of the two branches

of the function across  = 0. With the resistivity in this form, the central island
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initial state middle island gone reconnecting decaying

FIG. 6. Poloidal ux contours during successive phases of co-helicity reconnection. Toroidal
geometry.

straddling the midplane reection boundary is only a transient structure, vanishing

quickly and allowing the reconnection of the remaining islands to proceed.

Results.

Because these simulations follow the global merging problem from the initial

three-island state to the �nal, reconnected single-island equilibrium, a steady state

as described in the Sweet-Parker theory is never reached. Instead, the system

consistently undergoes an irreversible change in global �eld line topology, with all

ux private at the beginning of each run and public at the end. This change occurs

in several distinct identi�able phases, as illustrated in Figure 6:

1. The central island decays away rapidly due to its arti�cially high resistivity.

Its O-point �eld null on the midplane is replaced by an X-point, signaling the

beginning of the reconnection process.

2. The two remaining islands reconnect at the midplane. Private ux becomes

public and plasma in the current sheet is accelerated outward, where it eventually

hits the wall and is diverted back around. A quasi-steady state resembling the

Sweet-Parker picture forms during this phase. Reconnection ends when the X-

point is replaced once again by a new O-point as the merging is completed and a

single island is formed.

3. The new low-energy equilibrium decays in place on the resistive time scale.

This phase is of little interest for the purposes of this study, so runs are generally

terminated at its onset.

The ability of the code to resolve both global and small-scale structures is illus-

trated in Figure 7, which shows the reconnecting plasma at a single instant in time

at successive 10� magni�cations of the vertical scale. Both the global islands and

the narrow current sheet are clearly visible.

The total reconnection time, as characterized by the time taken from the initial

formation of the central X-point to its �nal disappearance, shows a clear and rela-

tively uniform power law scaling with � at each value of the viscosity, as shown in
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FIG. 7. Poloidal ux contours (gray) and toroidal current density contours (black) during
fast null helicity reconnection in Cartesian geometry. The two plots on the right are expanded
views of the boxed regions in the plots to their immediate left.

FIG. 8. Scaling of the total reconnection time with resistivity and viscosity; single-uid,
constant-pressure code.

Figure 8's log-log plot. The power law exponent in each case lies between 0:5 and

0:6, consistent with the Sweet-Parker theory.



17

FIG. 9. Comparison of MHD and two-uid rate scalings of null helicity reconnection.
Cartesian geometry.

4.2. Two-Fluid E�ects

Progress requires the exploration of physics beyond resistive MHD. The two-

uid code, run with the same initial conditions as the single-uid study, yielded

dramatically di�erent results. Whistler wave physics, entering through the Hall

term in (4), greatly accelerated the reconnection rate and broke its dependence on

resistivity, as illustrated in Figure 9.

The high resolution provided by MRC in the central region eased the challenge

of explaining this new result, supporting a theory of collisionless reconnection �rst

put forth by Biskamp, Schwarz, and Drake [19]: There is a separation of scales

between the electron and ion uids in the new system, with the magnetic �eld lines

tied only to the electrons within a distance of one ion skin depth from the X-point;

the ions are e�ectively unmagnetized within this region. Reconnection therefore

occurs within a small region governed by the equations of electron MHD, resulting

in super-Alfv�enic outows at the whistler speed; the actual �eld-line breaking and

reconnecting takes place on a still smaller scale in which the hyper-resistivity term

dominates (Figure 10). The unmagnetized ions simply ow across the �eld lines,

following the fast-streaming electrons to maintain charge neutrality.

5. CONCLUSIONS

Historically, the prevailing 2D incompressible models of collisional magnetic re-

connection have been inadequate, either because of a failure to reproduce the ge-

ometry and dynamics observed in physical systems or because of internal incon-

sistencies. Numerical attempts to adjudicate among them have also been fraught

with problems: insuÆcient resolution, insuÆcient physical models, and unrealistic
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FIG. 10. Out-of-plane electric �eld along themidplaneduring null helicityHall reconnection,
by component. � = 10�4, � = 10�2. Cartesian geometry.

boundary conditions that attempt to prejudge reconnection layer geometry and

merging rates. The Magnetic Reconnection Code is one of the �rst to address all

these issues simultaneously. Its combination of the following attributes appears to

be unique among reconnection codes:

� It solves the full two-uid equations, including the Hall term, electron pressure

gradient term, evolving density and electron and ion pressures, and varying out-of-

plane magnetic �elds.

� It does so on a �ne, non-uniformmesh that fully resolves both the global recon-

nection problem of merging ux cylinders and the local di�usion region geometry.

� It operates at all values of �, including � � 1, appropriate to astrophysical

plasmas.

� It utilizes a parallel scalable implicit algorithm that enables it to accomplish

these tasks eÆciently.

MRC has con�rmed what many previous studies have concluded: in the resistive

MHD domain, in which the plasma is highly collisional, the Sweet-Parker model

applies. There is a long, thin current sheet, with width � B=rB and thickness

/ �1=2. Reconnection is slow, with vin=vA / �1=2 as well. Adding the Hall term to

the standard uid treatment of the plasma profoundly alters the magnetic recon-

nection dynamics. For physically realistic values of the ion skin depth, it provides

fast, resistivity-independent collisionless reconnection across microscopic current

sheets. The whistler-mediated model of collisionless reconnection provides a good

explanation for this phenomenon and is validated by this study.

ACKNOWLEDGMENT

It is a pleasure to acknowledge useful discussions with Drs. R. Kulsrud, W. Park, J. Drake, M.
Yamada, and H. Ji. This work was supported by USDOE Contract No. DE-AC020-76-CH03073.
One of us (JB) was supported by the Fusion Energy Sciences Fellowship Program, administered by
the Oak Ridge Institute for Science and Education for the United States Department of Energy.

REFERENCES



19

1. R. M. Kulsrud, Magnetic reconnection in a magnetohydrodynamic plasma, Phys. Plas. 5, 5
(1998), p. 1599.

2. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch,
Phys. Fluids 6, 4 (1963), p. 459.

3. J. Birn, J. F. Drake, M. A. Shay, et al., GEM magnetic reconnection challenge, J. Geophys.
Res. { Space 106, A3 (2001), p. 3715.

4. J. C. Stevenson, Numerical studies of magnetic �eld annihilation, J. Plas. Phys. 7, 2 (1972),
p. 293.

5. M. Ugai and T. Tsuda, Magnetic �eld-line reconnexion by localized enhancement of resistivity.
Part 1. Evolution in a compressible MHD uid, J. Plas. Phys. 17, 3 (1977), p. 337.

6. T. Hayashi and T. Sato, Magnetic reconnection: acceleration, heating, and shock formation,
J. Geophys. Res. 83, A1 (1978), p. 217.

7. L. C. Lee and Z. F. Fu, Multiple X Line Reconnection. 1. A criterion for the transition from
a single X line to a multiple X line reconnection, J. Geophys. Res. 91, A6 (1986), p. 6807.

8. C. Anderson and F. Jamitzky, A numerical investigation of magnetic reconnection, J. Plas.
Phys. 55, 3 (1996), p. 431.

9. D. A. Uzdensky and R. M. Kulsrud, Two-dimensional numerical simulation of the resistive
reconnection layer, . Phys. Plas. 7, 10 (2000), p. 4018.

10. B. V. Waddell, et. al., Non-linear growth of the m=1 tearing mode, Nucl. Fus. 16, 3 (1976),
p. 528.

11. D. Biskamp and H. Welter, Coalescence of magnetic islands, Phys. Rev. Lett. 44, 16 (1980),
p. 1069.

12. W. Park, D. A. Monticello, and R. B. White, Reconnection rates of magnetic �elds including
the e�ects of viscosity, Phys. Fluids 27, 1 (1984), p. 137.

13. R. G. Kleva, J. F. Drake, and F. L. Waelbroeck, Fast reconnectionin high temperatureplasmas,
Geophys. Res. Lett. 2, 1 (1995), p. 23.

14. S. I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, edited by M.
A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

15. R. D. Richtmyer and K. W. Morton, Di�erence Methods for Initial-Value Problems, 2nd

Edition (Interscience Publishers, New York, 1967), p. 360.

16. N. Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, Cam-
bridge, UK, 1999), p. 84.

17. E. N. Parker, Sweet's mechanism for mergingmagnetic �elds in conducting uids, J. Geophys.
Res. 62 (1957), p. 509.

18. J. B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic �elds, Phys.
Rev. Lett. 33, 19 (1974), p. 1139.

19. D. Biskamp, E. Schwarz, and J. F. Drake, Two-uid theory of collisionless magnetic reconnec-
tion, Phys. Plas. 4, 4 (1997), p. 1002.



03/26/01

External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Library, R61, Rutherford Appleton Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, MTA KFKI-ATKI, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Insitute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Plasma Physics Laboratory, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Shih-Tung Tsai, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho

Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Mr. Dennis Bruggink, Fusion Library, University of Wisconsin, USA
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San

Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


