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Abstract

A two-dimensional wave propagation code, developed specifically
to simulate correlation reflectometry in large scale fusion plasmas is
described. The code makes use of separate computational methods
in the vacuum, underdense and reflection regions of the plasma in
order to obtain the high computational efficiency necessary for corre-
lation analysis. Simulations of TFTR plasma with internal transport
barriers are presented and compared with one-dimensional full-wave
simulations. It is shown that the two-dimensional simulations are re-
markably similar to the results of the one-dimensional full-wave anal-
ysis for a wide range of turbulent correlation lengths. Implications for
the interpretation of correlation reflectometer measurements in fusion
plasma are discussed.
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1 Introduction

Reflectometry[1, 2] is routinely used to infer turbulent fluctuation lev-
els and correlation lengths in both small-scale laboratory plasma[3, 4]
and large-scale fusion research devices[5]. The basic technique is to
launch an electromagnetic wave with frequency chosen so that there
exists a reflection layer in the plasma. The time-dependent reflected
signal is collected either by the transmitting antenna, or by a nearby
receiving antenna. The time-dependent product of the reflected signal
and a local oscillator is accumulated.

The measurements are of two types: the coherent reflected signal
strength measured at the transmitting antenna and the cross corre-
lation between signals at a reference frequency, ω0 and a number of
secondary frequencies ω1, chosen so that the range of reflection points
encompasses the turbulent correlation length. The cross-correlation
signal monotonically decays with increasing separation between re-
flection points.

Computationally, various models have been applied to simulate the
signal expected for models of turbulent fluctuations imposed on an
otherwise smooth plasma profile. One-dimensional models, either in
the geometrical optics approximation[6] or solutions of the full-wave
equation[7] have been routinely used to infer the relation between
measured correlation functions and the properties of the turbulent
fluctuations. Mazzucato[8] extended the one-dimensional analysis by
considering scattering from two-dimensional turbulence in a planar
plasma profile. Recently, Lin et al.[9] have solved the two-dimensional
full-wave equation for a single scattering realization in realistic geome-
try, appropriate to Alcator CMOD. However, to date, two-dimensional
full wave analysis has not been applied to computation of correlation
reflectometry.

In this paper we describe a two-dimensional wave propagation code
which has been constructed in order to help interpret the experimental
signals from large scale tokamak experiments. To facilitate quantita-
tive comparison between computational and experimental results, the
model includes a realistic antenna radiation pattern and the capabil-
ity to input experimentally inferred two-dimensional profiles[10, 11]
of density, electron temperature and magnetic field strength. We find
that the convergence of the coherent and cross-correlation signals is
quite slow with increasing ensemble size – typically several hundred
realizations are required to obtain a meaningful result. An efficient
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computational algorithm is therefore a prerequisite if a model is to be
a useful part of the data analysis process. The algorithm presented
here is sufficiently fast (requiring 30 CPU seconds for computation of
a single realization in a large tokamak) to make this practical. Effi-
ciency is obtained by several means. First, the computational domain
is divided into regions as shown in Figure (1). The full-wave equa-
tion is solved only where necessary (near the reflection layer). An
implicit algorithm is used to speed approach to steady state. Else-
where, computationally less demanding models suffice: The paraxial
approximation is used in the underdense plasma. The wave field is
projected through vacuum using the free-space Green’s function.

The model is described in Section II. Results are presented in Sec-
tion III, in which a comparison of one- and two-dimensional results for
experimental profiles in a TFTR discharge is shown. It is found that
the results of the two-dimensional correlation analysis bear a remark-
able similarity to those obtained from the one-dimensional full wave
simulations over a wide range of turbulent scale lengths. Implications
of this result for the interpretation of correlation reflectometry and
future directions are presented in Section IV.

2 Computational Model

The propagation of the electric field amplitude E(x, t) is described by
the wave equation

2iω
∂E

∂t
+ LE = 0 , (1)

with
L ≡ c2∇2 + ω2ε . (2)

where we have made the assumption of quasi-monochromaticity at
frequency ω. Here E(x, t) is a complex field amplitude, in terms of
which the full time-space variation is given as

E(x, t) = <[ exp(−iωt)E(x, t) ] (3)

where < designates the real part. The time variation of E(x, t) is
assumed slow compared to that of the phase factor. The plasma di-
electric ε is modeled by the magnetized cold plasma X or O mode
dielectric[12] with electron thermal corrections added[13, 14]. For
large tokamaks, thermal effects result in significant shifts in the re-
flection point relative to the cold plasma result.
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Since the wave transit time (∼ Ln/vgr ∼ 100 cm/c ∼ 3 · 10−9 sec)
is short compared to the time over which the turbulent fluctations
vary (∼ 10−5 sec), a set of steady solutions is computed for a given
macrosopic profile and microwave parameters. The relative amplitude
δnks of the microscopic fluctuations at each wavevector k for simu-
lation s is assigned in terms of an assumed fluctuation spectrum Ik,
specifically |δnks| ∝ I

1/2
k . The phases of the fluctuations are chosen

randomly. Thus, for simulations s and s′, and wavevectors k and k′,
the fluctuation correlation satisfies

〈δn∗
ksδnk′s′〉 = δkk′δss′ Ik . (4)

The inverse Fourier transform of δnk yields the relative fluctuation
amplitude δn(x)/n0(x) where n0(x) is the smoothly varying equilib-
rium density profile. The total density

n(x) = n0(x)
[
1 + δn(x)

]
(5)

For comparison with experimental data the spectral intensity is
parameterized by an amplitude I0, a mean wavevector km and a two-
dimensional width ∆k. The specific form chosen for the simulation
results presented below is

Ik = I0 exp−
{[ (k− km) · R̂

∆k · R̂
]2

+
[(k− km) · Ẑ

∆k · Ẑ
]2}

(6)

where R̂ (resp. Ẑ) are unit vectors in the radial (resp. vertical)
directions in the poloidal plane. Many (usually several hundred) runs
are made for a given choice (I0, km, ∆k). An average over the solution
ensemble is identified with the experimentally obtained time series
data.

A major challenge is that the computational domain – a poloidal
cross section – measures many wavelengths in both dimensions. The
wavelength of the probing radiation is set by the parameters at the
desired reflecting layer. In large scale tokamaks such as JT60 and
TFTR, the wavelength is 2 to 3 mm. The distance between the an-
tenna and reflecting layer is typically 2 meters, of which approximately
50 - 100 cm is in plasma, with the remainder in vacuum. Propagation
in vacuum is most efficiently handled by making use of the free-space
Green’s function to project the wave field between the antenna and
plasma boundary. Considering, then, only the plasma region for direct
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numerical solution, the radial extent of the computational domain,
LR ∼ 400λ. Even for a well-collimated incident beam, curvature of
the reflecting layer and turbulent scattering typically lead to a finite
cone angle of order ±30◦ for the reflected radiation. Thus the vertical
extent LZ is also of order 400λ.

An explicit solution of the wave equation requires a timestep which
satisfies the Courant stability condition. Assume discretization on a
grid of cell size ∆d = λ/nd with nd points per wavelength in the d =
{R, Z} direction. Then, ∆t ≤ min(∆R, ∆Z)/(2c), with c the speed
of light. Solving for a time of order the crossing time τcr ∼ 2LR/c,
requires Nt = max{NR, NZ} time steps with Nd = ndLd/λ. The CPU
time per time step τstep = CNRNZ , with C ∼ 5 · 10−6 sec on a fast
RISC workstation. Typically nR = 20, nZ = 2, so that Nt ∼ 104

and NRNZ ∼ 107. A single such run takes of order 100 CPU hours.
Hundreds of runs are required to achieve statistically significant results
for a given set of parameters, making an explicit solution impractical.

For these reasons we use an implicit algorithm, which is stable for
arbitrarily large time step, limited only by accuracy considerations.
We write

(
2iω

∆t
+

1
2
L)En+1 = Sn (7)

for En+1 ≡ E[(n + 1)∆t]. Here the source

Sn = (
2iω

∆t
+

1
2
L)En ,

involves quantities at only the nth time level. Inversion of the Lapla-
cian on the left hand side then becomes the limiting step. By mak-
ing use of the observation that, experimentally, the wavevectors are
aligned principally along one of the (cartesian) coordinate directions
(R), an efficient iterative solution can be employed – the line Ja-
cobi method[15]. Introducing iteration index m, the Laplacian (L =
LR + LZ) is solved directly in R and iteratively in Z:

(
2iω

∆t
+

1
2
LR)En+1,m = −1

2
LZEn+1,m−1 + Sn . (8)

Taking m = 5 is sufficient, given the rapid convergence.
The solution time for realistic large tokamak profiles on four Com-

paq 750Mhz Alpha 21264 processors (with domain decomposition into
radial strips, and with essentially perfect scaling with processor num-
ber) is of order 10 minutes – marginally acceptable for required through-
put.
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Because |c∇ε/ωε| << 1 away from the reflection layer, further
efficiency is obtained there through the use of the paraxial approxi-
mation. Defining the radial wavevector kR(R) ≡ √

ε(R, Z0) and phase
φ ≡ ∫ R dRkR along the centroid, Z = Z0, of the incident wave packet
and decomposing the field into incoming (I) and reflected (R) compo-
nents,

E(x, t) = EPI exp (−iφ) + EPR exp (iφ) (9)

we have, away from the reflection point,

±2i
∂

∂R
k

1/2
R EP + LZk

1/2
R EP + [ε(R, Z)− ε(R, Z0)]k

1/2
R EP = 0 , (10)

with the + (resp. −) sign taken for EPI (resp. EPR) and where the
time variation is ignored as slow compared to the wave transit time
across the simulation domain. Again, the solution in R is done im-
plicitly, requiring an inversion of LZ . This is done directly through
Gaussian elimination.

In summary, as shown in Figure (2), the computation proceeds as
follows:

1. Specify the (complex) incident amplitude at the antenna plane.

2. Project the incident amplitude onto the plasma boundary using
the free space Green’s function.

3. Solve the paraxial equation for EPI up to a surface R = RFW

within a few wavelengths of the reflection point.

4. From RFW inward solve the full-wave equation, Eq. (1), implic-
itly for E, with EPI as the incoming wave amplitude. Advance
the solution until steady state is reached.

5. Take the outgoing component ER of E as an initial condition for
the reflected paraxial field

EPR(RFW , Z) = ER(RFW , Z) . (11)

Apply Step 3, then Step 2 in the outgoing direction to compute
the amplitude of the reflected field at the receiver plane.

The method is efficient and accurate. A single realization for a
system size of 360× 240 λ2 takes 30 CPU seconds to solve on a single
alpha processor.
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3 Results

A principal result of the computations is the value of both the coherent
reflected signal, g(ω), and the cross correlation r(ω0, ω1). These are
constructed from the numerical results as follows: For probe frequency
ω let EAI(ω, Z) and EAR(ω, Z) designate the complex incident and re-
flected field amplitudes at R = RA, with RA the radius of the antenna
plane (Figure 2, right hand side). For any function Φ(R = RA, Z),
define the projection

M(ω) ≡
∫

dZ EAR(ω, Z)E∗
AI(ω, Z) , (12)

Let 〈 〉 denote an average over the run ensemble. Then

g(ω) ≡ 〈M(ω)〉√〈|M(ω)|2〉 , (13)

and
r(ω0, ω1) ≡ 〈M(ω0)M(ω1)〉√〈|M(ω0)|2〉 〈|M(ω1)|2〉

. (14)

Results for g and r from two series of simulations are presented
in Figure 3, together with their values as calculated from a 1-D full
wave simulation. Both were done for a typical TFTR plasma (shot
#65601, at time 2.5 sec). The main plasma parameters are: major
radius: 2.93 m, minor radius: 1.06 m, magnetic field: 4.0 T, central
density: 1.0 · 1020 m−3, and central electron temperature: 7.0 keV. X-
mode waves were launched horizontally into the plasma midplane at 11
frequencies between 121 and 137 GHz (vacuum wavelengths between
0.248 and 0.219 cm) from an antenna of focal length 135 cm located
at R = 400 cm, Z = 0.

One series (left hand side of Figure 3) was performed for a tur-
bulent radial correlation length λcR = 0.2 cm , the other for λcR =
2.0 cm. The poloidal correlation length λcZ = 0.4 cm. The short
poloidal correlation length was chosen so as to maximize the difference
expected between two-dimensional and one-dimensional simulations.
The volume-averaged relative fluctuation level, f =

∫
V d2x (δn/n)2/ V =

2.5 · 10−5. These parameters were achieved by choosing, in Eq. (6),
∆k · R̂ = 10 cm−1 and 1 cm−1, ∆k · Ẑ = 5 cm−1, km = 0, and I0 =
4π(∆k · R̂)(∆k · Ẑ)f .

It can be seen that the calculated 2-D cross correlation agrees
remarkably well with the 1D calculations[7] over this wide variation of
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radial correlation lengths. The fact that the coherent reflected signal
is systematically higher in the 2D calculations can be explained by
the scattering of waves out of the receiver aperture. Nevertheless, it
is remarkable that the one- and two-dimensional coherent refleciton
coefficients bear such a strong similarity, given the very short poloidal
correlation lengths used in these simulations.

Shown in Figure 4 is the variation in |g| with number of runs in
the ensemble. Because of the slow rate of convergence, five hundred
simulations were performed at each frequency. Thus, each point in
Figure 3 represents an ensemble average of 500 separate runs.

A measure of the resolution expected from correlation reflectom-
etry is shown in Figure 5 where the full-width half maximum of |r|
is plotted vs. that of the radial density correlation length both from
the 2-D simulations (squares) as well as from a series of 1-D simula-
tions (solid line). Again, one- and two-dimensional results are nearly
identical and indicate a resolution limit less than 1 cm.

4 Discussion

The surprising result of this analysis is that the correlation and co-
herent reflection level is essentially identical to that obtained with a
1-D full-wave analysis despite the fact that the transverse wavenumber
of the perturbations is of the order of the wavelength of the probing
beam. To understand this result in greater detail, many more simu-
lations are certainly required. However, in a recent work, [9] it was
pointed out that the curvature of the reflecting layer can have a sig-
nificant effect to broaden the spectral response of the receiver for high
transverse wavenumbers. Similar results have also been obtained us-
ing a 2-D full-wave analysis on the JT-60U tokamak[16], suggesting
that the close correspondence of 2-D and 1-D simulations observed in
our analysis may also hold for other large scale devices. However, the
same analysis outlined in this paper needs to be repeated on a case
by case basis to confirm the similarity of 2-D and 1-D simulations.
Indications that the 2-D and 1-D simulations can also diverge signifi-
cantly in their predictions is shown in the case of X-mode to O-mode
correlation reflectometry performed on a laboratory scale facility [7].
In that case, the different radiation patterns at the reflecting layer
for very different wave frequencies can lead to a degradation of the
correlation coefficient at low fluctuation levels which is not apparent
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in the 1-D analysis.
These results were computed only for microwave beams launched

normal to the surface of reflection. An important issue for future in-
vestigation is how sensitive the correspondense of the 1-D and 2-D
simulations of the radial correlation are to small angles of misalign-
ment of the waves incident on the reflecting layer or for a receiver
slightly misaligned to the direction of specular reflection. Such sys-
tematic studies of correlation reflectometry in large scale facilities are
now computationally tractable with the advent of efficient full-wave
algorithm as discussed in this study.

5 Conclusion

A two-dimensional simulation program has been developed specifically
to model reflectometry measurements in large tokamaks. By imple-
menting algorithms tailored to the vacuum, underdense plasma and
reflection layer regions, the high efficiency required for statistical stud-
ies has been achieved.

Results have been presented for a relatively large and relatively
short radial correlation length of model density fluctuations. These
results pertain to waves injected at normal incidence to the surface of
reflection. Future studies will include an investigation of the degree
to which the correspondence of one-dimensional and two-dimensional
simulations breaks down with oblique angles of incidence.

The authors thank Doug McCune for help with the importation of
TRANSP generated TFTR profiles.

This work is funded by DOE Contract No. DE-AC02-76CH03073.
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Figure Captions

FIGURE 1. Electron density profile Ne(R, Z) used for reflectometry
simulations. The profile is reconstructed from TFTR Enhanced Re-
verse Shear shot #65601 at time 2.5 sec. The rectangular domains la-
beled “FULL WAVE” (resp. “PARAXIAL APPROXIMATION”) are
the regions in which Eq. (1) (resp. Eq. (10)) are solved. The solutions
are matched on the dotted strip R = 319 cm, −13 cm ≤ Z ≤ 13 cm.

FIGURE 2. Counterclockwise, from upper right: (1.) Real (blue)
and Imaginary (red) components of the prescribed incident field am-
plitude EAI(Z) at the antenna plane, R = 400 cm. Pseudocolor plots
of: (2.) The intensity of the incident component |EPI(R, Z)|2 in the
paraxial domain (3.) |E(R, Z)|2 in the full-wave region. (4.) The
intensity of the reflected component |EPR(R, Z)|2 in the paraxial do-
main. (5.) The final subplot shows the outgoing field amplitude
EAR(Z) at the antenna plane, as in subplot (1). The pseudocolor
plots extend over subsets of the respective computational domains in
which the field strengths are non-negligible. The computational do-
main for the paraxial solution extends from 319 cm ≤ R ≤ 400 cm,
−40 cm ≤ Z ≤ 40 cm. The computational domain for the full-wave
solution extends from 313 cm ≤ R ≤ 319 cm, −13 cm ≤ Z ≤ 13 cm.

FIGURE 3. Top: Magnitude of the cross-correlation coefficient |r(ω0, ω1)|
vs. the separation between reflection points. Bottom: The magnitude
of coherent signal |g(ω)| vs. location of the reflection point at the
plasma midplane relative to that for f = 128 GHz. Left hand plots
are for a radial correlation length λcR = 0.2 cm. Right hand plots are
for λcR = 2.0 cm. Other parameters: Volume averaged relative fluc-
tuation level = 2.5 · 10−5, poloidal correlation length λcZ = 0.4 cm.

FIGURE 4. Measurement of the ensemble averaged coherent reflected
signal g, Eq. (13), at a probe frequency of 128 GHz vs. the number of
simulations included in the ensemble.
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FIGURE 5. Measured value of the full-width half-maximum of |r(ω0, ω1)|
vs. that of the density correlation function from full-wave 1-D simu-
lations (solid line) and 2-D simulations (squares).
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