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Nonlinear gyroviscous force in a collisionless plasma

E. V. Belova

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Nonlinear gyroviscous forces in a collisionless plasma with temperature variations are

calculated from the gyrofluid moments of the gyrokinetic Vlasov equation. The low-frequency

gyrokinetic ordering is assumed, and an additional finite Larmor radius (FLR) expansion in

a parameter ε⊥ ≡ (k⊥ρ)2 < 1 is performed. This approach leads naturally to an expression

for the gyroviscous force, (∇· πg), in terms of the gyrocenter distribution function, thus

including all resonant effects, and represents a systematic FLR expansion in a general form

(no assumption of any closure is made). The obtained results can be used, in particular, in

kinetic calculations, and allow the inclusion of FLR corrections into the usual drift-kinetic

formulation via particle stress tensor. The expression of (∇· πg) is also calculated in terms

of the particle-fluid moments by making the transformation from the gyrocenter to particle

coordinates. The calculated (∇· πg) represents a modification of the Braginskii gyroviscosity

for a collisionless plasma with ∇T 6= 0. It is compared with previous calculations based

on the traditional fluid approach. As a byproduct of the gyroviscosity calculations, we

derive a set of nonlinear reduced gyrofluid (and a corresponding set of particle-fluid) moment

equations with FLR corrections. The equations exhibit a generalized form of the “gyroviscous

cancellation”, which appears in an arbitrary high moment equation of an infinite set of fluid

equations.

PACS numbers: 52.65.Tt, 52.25.Dg, 52.65.Kj
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I. INTRODUCTION

For many problems arising in space and laboratory plasmas, the thermal Larmor radius

of a particle species (ions or electrons) is small compared to the equilibrium scale lengths,

as well as the perpendicular (with respect to the background magnetic field) wavelengths

of interest. Simplified physical models are often used to describe the low-frequency phe-

nomena in such a plasma. A magnetohydrodynamic (MHD) fluid description or a standard

guiding-center (drift-kinetic) formulation represent the lowest order approximations for col-

lisional and collisionless plasmas, respectively. When finite Larmor radius (FLR) effects are

important, corrections can be introduced in these models in a perturbative way by making

an expansion with respect to the small parameter ε ∼ ρ/L ∼ ω/ωc, where ρ/L is the ratio

of the Larmor radius to the perpendicular scale length, and ωc is the cyclotron frequency.

There are two different approaches to the derivation of FLR fluid equations. In the first

and more traditional approach1, a set of FLR equations is derived directly via a systematic

expansion of the hierarchy of fluid moments of Vlasov equation. When, in addition, a closure

relation (collisional, for example) is assumed, a closed set of magnetohydrodynamic, FLR-

corrected, fluid equations can be obtained1–3.

The second approach is based on a set of nonlinear gyrokinetic equations4–6, derived

assuming the gyrokinetic ordering:

ε =
ρ

Ln

∼ ω

ωc

∼ k‖
k⊥

� 1; εδ =
δF

F0

∼ eϕ

T
� 1; ε⊥ = (k⊥ρ)2 ∼ 1. (1)

Here Ln is the equilibrium density gradient scale length, k‖ and k⊥ are the parallel and

perpendicular wave numbers, ϕ is the perturbed electrostatic potential, δF and F0 are the

perturbed and equilibrium distribution functions, and ε ∼ εδ are the expansion parameters.
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In the second approach, a set of gyrofluid equations7–9 is obtained by taking moments of

the gyrokinetic Vlasov equation. As a result, these equations are formulated in terms of

the moments of the gyrocenter distribution function, rather than the particle distribution

function. The gyrocenter-fluid (GF) moments can be expressed in terms of the particle-fluid

(PF) moments, producing a set of nonlinear reduced fluid equations with FLR corrections.

The gyrofluid formulation greatly simplifies the derivation of the reduced FLR fluid equations

as compared to the usual fluid moment approach. This simplification comes from the reduced

dimensionality of the gyrokinetic Vlasov equation (no gyroangle dependence), in which the

expansion with respect to the small parameter ε ∼ εδ has already been made. An additional

advantage of the gyrofluid approach is the separation of the equilibrium and perturbed fields,

which allows different scale lengths for the background fields and the perturbation. Thus,

it is valid for (k⊥ρ) ∼ 1, however, in practice, an expansion in ε⊥ = (k⊥ρ)2 can be made to

facilitate the transformation between the gyrocenter-fluid and particle-fluid moments.

In this paper, we derive the FLR corrections to the particle stress tensor for a collisionless

plasma using the gyrokinetic formulation. The goal of this calculation is twofold. First, the

FLR corrected stress tensor expressed in terms of the gyrocenter distribution function can be

used to include the higher order FLR corrections into the drift-kinetic model. It can be used

directly or as a part of the ion perpendicular current calculation in the numerical/analytical

schemes, which rely on the so-called particle closure10,11. For k⊥ρ� 1, such a scheme can

be considerably cheaper and more efficient than a gyrokinetic one. Second, the particle-

fluid gyroviscosity, πg, is obtained by expressing the gyrocenter-fluid moments in terms of

the particle-fluid moments. The fluid expression so obtained yields a useful benchmark

for comparison with similar calculations based on the standard fluid approach2,3,12. The
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calculated gyroviscous force allows one to incorporate FLR (diamagnetic) effects into a fluid

description of plasma.

It is well known that in the fluid description, in the limit of small but finite Larmor

radius, the FLR corrections can be included in the momentum equation in the form of the

gyroviscous stress tensor1. The Braginskii fluid equations were derived assuming collisional

ordering, and neglect the contribution of the higher-order fluid moments (heat fluxes, in

particular) into the gyroviscosity. It has recently been demonstrated3 that in a plasma with

temperature variations, the contributions to the gyroviscous stresses from the gradients of

the heat flux are comparable to that of the velocity gradients. The self-consistent inclusion

of the heat fluxes is also important for the so-called gyroviscous cancellation2,3,12, when

T 6= const. (The gyroviscous cancellation is usually understood as the cancellation of the

convective derivative associated with the diamagnetic velocity from the total time derivative:

d′/dt = d/dt− (V∗ ·∇), when the gyroviscous force is included in the momentum equation.)

In this paper, the expression for the gyroviscous force is obtained in terms of the par-

ticle distribution function, and all higher order moments are retained without truncation.

Therefore, it represents a systematic FLR expansion in a general form (no assumption of

any closure is made), and includes all relevant kinetic effects. In addition, the gyroviscous

cancellations are recovered automatically, since the diamagnetic velocity does not appear

in the total time derivative in the gyrofluid equations. Results of our calculations are in

general agreement with those of Smolyakov3, who used an alternative fluid approach. It is

demonstrated, in particular, that the previous discrepancy between calculations based on

the fluid theory3 and the gyrofluid derivation7 is related to the inconsistent treatment of the

parallel heat fluxes in Ref. 7.

4



This paper is organized as follows. In Sec. II, we present the gyrokinetic Vlasov equation

and the relation between the particle phase-space and the gyrokinetic phase-space variables

used in this paper. Our calculations are based on the nonlinear gyrokinetic equations4–6,

and are carried out up to the second order in ε, εδ, assuming the gyrokinetic ordering Eq. (1).

A general gyrofluid equation is derived in Sec. III. A relation between the gyrocenter-fluid

moments and the particle-fluid moments, and a general reduced fluid moment equation are

also presented. The derivation is greatly simplified by the small Larmor radius assumption,

k⊥ρ� 1, and the expansion in ε⊥ is carried out through O(ε⊥) order. The first six reduced

FLR-corrected fluid equations are presented, and these equations are compared with the

previous fluid and gyrofluid results. The parallel component of the gyroviscous force is

found from the parallel component of the nonlinear FLR-corrected momentum equation.

The derivation of the perpendicular component of (∇· πg) is presented in Sec. IV, where

two different forms of the gyroviscous force2,12 are given and discussed. A summary and

conclusions are given in Section V.

II. GYROKINETIC VLASOV EQUATION

The gyroviscous forces are calculated assuming a low beta plasma, using the electrostatic

approximation, and neglecting the magnetic curvature terms. To simplify notation, we set

e = mi = c = 1 throughout the paper. The gyrokinetic equations used in this paper are

derived using the action-variational Lie perturbation method4,13,5. The derivation is carried

out in two steps. First, the guiding-center equations of motion are derived. This is done by

making a transformation from physical space coordinates, z = (x, v‖, v2
⊥/2B, θ0), to guiding-

center coordinates Z′ = (X′, U ′, µ′, θ′) in such a way that the gyroangle dependence in a
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guiding-center Hamiltonian is “transformed away”, and the resulting equations of motion are

gyroangle independent. The coordinate transformation is the near identity transformation

with small parameter being ε = ρ/L, and eliminates the gyroangle dependence associated

with the background inhomogeneities. When magnetic curvature is neglected, “new” and

“old” variables are simply related by: X′ = x− ρ, U ′ = v‖, µ′ = v2
⊥/2B, θ′ = θ0.

The gyroangle dependence introduced by the perturbed field is removed by the second

transformation from the guiding-center to gyrocenter coordinates: Z′ → Z = (X, U, µ, θ).

The small parameter εδ associated with this transformation is the perturbation amplitude,

and the gyrokinetic equations used in this paper are second order accurate in εδ. In this

order, the guiding-center and gyrocenter coordinates are related by:

Zj(Z′) = Z ′j + Gj
1 +

1

2
Gi

1

∂Gj
1

∂Z ′i + Gj
2, (2)

where Gj
1 and Gj

2 are the components of the generating vector of the first order and second

order (in the perturbation amplitude) transformations respectively, given by (n = 1, 2)

Gn = −b̂∂Sn/∂U − 1
B
b̂×∇Sn

GU
n = ∇‖Sn

Gµ
n = ∂Sn/∂θ

Gθ
n = −∂Sn/∂µ

The equations for the scalar functions S1 and S2 = O(ε2
δ) are determined by the choice of the

transformation (2), and are given up to O(εεδ, ε
2
δ) in the Appendix. The lowest order solution

for S1 is S1 =Ψ̃ /B, where Ψ̃=
∫ θ ϕ̃ dθ, and ϕ̃= ϕ − 〈ϕ〉 is the gyroangle dependent part

of the perturbed electrostatic potential ϕ = ϕ(X+ ρ, t).

The gyrocenter distribution function is gyroangle independent, F = F (X, U, µ), and

satisfies the gyrokinetic Vlasov equation4,5:
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∂F

∂t
+
(
b̂U +

1

B
b̂ ×∇〈Φ〉

)
· ∇F − b̂ · ∇〈Φ〉 ∂F

∂U
= 0, (3)

where b̂ = B/B and Φ = ϕ− 1
2B

∂(ϕ̃2)/∂µ + 1
2B2 b̂ · ∇Ψ̃×∇ ϕ̃, and angular brackets denote

the gyroaveraging. We will assume that ∇‖F0 = 0. Note that the gyrokinetic ordering

implies that ∇⊥δF ∼ ∇⊥F0 ∼ ε, where from now on ε will denote both ε and εδ.

It is possible to directly calculate the stress tensor in terms of the gyrocenter distribution

function by using Eq. (2) and making a coordinate transformation in the integral P =

∫
vv f d3v. However, since we are only interested in the expression for the force, ∇ ·P, the

calculations can be simplified. Thus in this paper, we are using the gyrofluid approach to

derive a set of FLR corrected fluid equations, and the parallel component of the gyroviscous

force is obtained from the parallel momentum equation. The perpendicular component of

∇ · P is calculated by expressing the perpendicular fluid velocity in terms of the gyrofluid

moments through O(ε2) order.

II. REDUCED FLUID EQUATIONS

A. Gyrofluid equations

In the gyrofluid approach7,8, a set of coupled nonlinear gyrofluid equations is obtained

by taking moments of the gyrokinetic Vlasov equation (3). Due to the ordering (1), the first

order O(ε) accurate Vlasov equation and the first order accurate transformation between the

gyrocenter-fluid and the particle-fluid moments are sufficient7 to derive the fluid equations

valid up to O(ε2). We define the general gyrocenter-fluid (GF) moment as

Mkl(X, t) ≡ ‖µkU l‖GF =
∫

µkU lF dµdU (4)

Multiplying the gyrokinetic Vlasov equation Eq. (3) by µkU l, and taking the integral, we
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obtain two equations

for l - even:

d′Mkl

dt
+∇‖Mkl+1 +

1

2B2

{
∇2
⊥ϕ, Mk+1l

}
= 0 (5)

for l - odd:

d′Mkl

dt
+∇‖ (Mkl+1 + lMkl−1ϕ) +

1

2B2

{
∇2
⊥ϕ, Mk+1l

}
+

l

2B
Mk+1l−1∇‖∇2

⊥ϕ = 0 (6)

where d′/dt ≡ ∂/∂t + (vE · ∇), and {f, g} ≡ b̂ · ∇f × ∇g. In the derivation, it has been

assumed that Mkl = O(1) for any l - even, and Mkl = O(ε) when l is odd, and terms of order

higher than O(ε2) have been neglected. An expansion with respect to small parameter ε⊥ has

been made in the gyrokinetic Vlasov equation, so that 〈Φ〉 = J0 ϕ + O(ε2) ≈ (1 + µ
2B
∇2
⊥)ϕ,

where J0 is the Bessel function. Equations (5) and (6) are the gyrofluid equations written

in a general form, and valid up to O(ε2) and O(ε⊥) order. The equations for GF density

N = M00, parallel momentum NV‖ = M01, and the GF perpendicular and parallel pressure,

P⊥ = BM10 and P‖ = M02 can be obtained from Eqs. (5) and (6). To the same order in ε⊥

and with the same assumptions, these equations agree with the gyrofluid equations given by

Brizard7.

B. Relation between gyrocenter-fluid and particle-fluid moments

In this Section we derive a relation between the gyrocenter-fluid and particle-fluid mo-

ments to first order accuracy in ε and ε⊥. Higher-order O(ε2) terms are not needed for the

derivation of the reduced fluid equation, because their contribution in the particle-fluid equa-

tions is an order higher than that considered in this paper. We define a general particle-fluid

moment as:

8



mkl(x, t) ≡ ‖µkU l‖PF =
∫

(v2
⊥/2B)k(v‖)l f d3v (7)

In terms of guiding-center distribution function, Fgc, the PF moment can be written as4:

mkl(x, t) =
∫

µkU l Fgc(Z) δ(X + ρ− x) d6Z (8)

where d6Z = Bd3X dUdµdθ. Using the relation between the guiding-center distribution

function and the gyrocenter distribution function given in the Appendix, it becomes:

mkl(x, t) =
∫

µkU l

[
F +

ϕ̃

B

∂F

∂µ

]
δ(X + ρ− x) d6Z (9)

After the Larmor radius expansion, the PF moment in terms of GF moments to first order

in ε and ε⊥ is:

mkl = Mkl +
1

2B
∇2
⊥Mk+1l +

(k + 1)

B2
Mkl∇2

⊥ϕ (10)

For l - odd, the last term on the RHS is O(ε2), and should be dropped. The difference

between PF and GF moments is O(ε⊥), and to this order, the inversion of the Eq. (10) is

trivial:

Mkl = mkl − 1

2B
∇2
⊥mk+1l − (k + 1)

B2
mkl∇2

⊥ϕ (11)

C. Particle-fluid moment equations

In this Section the relation between the GF moments and the PF moments, Eq. (10),

and the gyrofluid equations Eqs. (5) and (6) are used to derive the evolution equation for

PF moment mkl. The calculations are carried with O(ε2) and O(ε⊥) accuracy. Taking the

time derivative d′/dt of the PF moment mkl, and using the Eqs. (10) and (6), we obtain

d′mkl

dt
= −∇‖ (Mkl+1 + lMkl−1ϕ)− 1

2B2

{
∇2
⊥ϕ, Mk+1l

}
− l

2B
Mk+1l−1∇‖∇2

⊥ϕ

+
1

2B

d′

dt
∇2
⊥Mk+1l +

(k + 1)

B2
Mkl

d′

dt
∇2
⊥ϕ
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Now we can substitute the GF moments in terms of the PF moments, neglecting O(ε3)

and O(ε2
⊥) terms, and use the commutation relation7 d′/dt∇2

⊥ = ∇2
⊥d′/dt + {∇2

⊥ϕ, }/B−

2∇⊥ · {∇⊥ϕ, }/B to obtain

for l - even:

d′mkl

dt
= −∇‖mkl+1 + mkl(k + 1)

d′

dt
∇2
⊥ϕ/B2 −∇⊥ · {∇⊥ ϕ, mk+1l}/B2, (12)

for l - odd:

d′mkl

dt
= −∇‖mkl+1 − lmkl−1∇‖ϕ−∇⊥ · {∇⊥ ϕ, mk+1l}/B2 (13)

+
[
(k + 1)mkl+1/B

2 − lmk+1l−1/B
]
∇‖∇2

⊥ϕ,

where d′/dt = ∂/∂t+(vE ·∇). When the equilibrium distribution function is bi-Maxwellian,

the last term in the Eq. (13) is proportional to (p
(0)
‖ − p

(0)
⊥ ) and can be neglected if the

zero-order pressure anisotropy is small. In this case, the FLR corrections in the odd-l

moment equations appear only in the nonlinear (ε2
δ) term. The equations (12) and (13)

represent an infinite set of coupled FLR-corrected reduced fluid equations derived through

O(ε2) and O(ε⊥) order. Note that these particle-fluid equations exhibit a generalized form of

“gyroviscous cancellation” (a cancellation of the (v∗ ·∇) term from the total time derivative

on the LHS).

D. Example: first six reduced fluid equations

Using the general form of the particle-fluid equations (12) and (13), the time evolution

equations for the first four particle-fluid moments n = ‖1‖PF = m00, nv‖ = ‖U‖PF = m01,

p⊥ = ‖Bµ‖PF = Bm10, and p‖ = ‖U2‖PF = m02, becomes

d′n
dt

= − ∇‖ (nv‖) +
n(0)

B2

d′

dt
∇2
⊥ϕ− ∇⊥ ·{∇⊥ ϕ, p⊥}/B3 (14)
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d′p⊥
dt

= − ∇‖ ‖UµB‖+
2p

(0)
⊥

B2

d′

dt
∇2
⊥ϕ− ∇⊥ ·{∇⊥ ϕ, ‖µ2‖}/B (15)

d′p‖
dt

= − ∇‖ ‖U3‖+
p

(0)
‖

B2

d′

dt
∇2
⊥ϕ− ∇⊥ ·{∇⊥ ϕ, ‖U2µ‖}/B2 (16)

n
d′v‖
dt

= − ∇‖ p‖ − n ∇‖ ϕ− ∇⊥ ·{∇⊥ ϕ, ‖Uµ‖}/B2 +
p

(0)
‖ − p

(0)
⊥

B2
∇‖ ∇2

⊥ϕ (17)

These equations are written in terms of the particle-fluid moments, and the index “0” is

used for the equilibrium quantities. Using the notation of Ref. 7, the third and fourth-order

moments can be written as follows:

‖Uµ‖B = p⊥v‖ + q
(⊥)
‖ , ‖U3‖ = 3p‖v‖ + 2q

(‖)
‖ , (18)

‖µ2‖B2 =
2p2

⊥
n

+ 2R⊥, ‖U2µ‖B =
p⊥p‖

n
+ R×. (19)

Here q‖ = q
(⊥)
‖ + q

(‖)
‖ is the parallel heat flux, and R⊥ and R× are the components of the

energy-weighted stress tensor R. From the time evolution equations for the third-order

moments m11 and m03, the equations for the components of the parallel heat flux can also

be derived

d′q(⊥)
‖

dt
= −∇‖ ‖µU2‖B + T⊥ ∇‖ p‖− ∇⊥ ·{∇⊥ ϕ, ‖µ2U‖B − T⊥‖µU‖}/B2 (20)

+
T

(0)
⊥

nB2
(p

(0)
‖ − p

(0)
⊥ ) ∇‖ ∇2

⊥ϕ

d′q(‖)
‖

dt
= − 1

2
∇‖ ‖U4‖+

3

2
T‖ ∇‖ p‖ − 1

2
∇⊥ ·{∇⊥ ϕ, ‖µU3‖ − 3T‖‖µU‖}/B2 (21)

In Eqs. (20) and (21), the equilibrium distribution function, f (0), is assumed to be bi-

Maxwellian, and T⊥ = p⊥/n and T‖ = p‖/n are the perpendicular and parallel temperatures.

When the FLR corrections are neglected, these equations take a simple form

d′q(⊥)
‖

dt
= − p‖ ∇‖ T⊥− ∇‖ R× (22)

d′q(‖)
‖

dt
= − 3

2
p‖ ∇‖ T‖− ∇‖ R‖ (23)
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The equations for R and other higher-order moment equations can be obtained from Eqs. (12)

and (13) in the same way. This infinite set of coupled fluid equations cannot in general be

closed unless some assumption about the distribution function is made.

It is worth-while to compare our FLR fluid equations Eqs. (14)-(21) with the previous

FLR fluid derivations. For an equilibrium with p
(0)
⊥ = p

(0)
‖ , the first four FLR-corrected

reduced fluid equations (for the density, parallel velocity, and the perpendicular and par-

allel pressures) have been derived earlier using both the gyrofluid7 and the direct fluid3

approaches. Our continuity equation Eq. (14) includes the contributions of the nonlinear

polarization flow, and agrees with the equation obtained earlier3,7. There has been disagree-

ment between the FLR corrections to the parallel momentum equation obtained from the

gyrofluid equations7, and those calculated using the fluid theory3. Our parallel momentum

equation, Eq. (17), agrees with that of the fluid calculations by Smolyakov3. As the deriva-

tion of the Eq. (17) shows, there is an additional cancellation of the terms proportional to

the perturbed perpendicular temperature, when the contributions of the parallel heat fluxes

are consistently included. In particular, the term ∼ d′(∇2
⊥q

(⊥)
‖ )/dt, which appears when the

GF moment is expressed via PF moments: NV‖ = nv‖ − ∇2
⊥‖µU‖/2B, had been neglected

in the previous gyrofluid derivation of parallel momentum balance. However, from Eq. (22),

it follows that the contribution from this term is of the same order as other FLR corrections,

and it must be retained when δT⊥ 6= 0.

Our particle-fluid equations for the perpendicular and parallel pressure, Eqs. (15)

and (16), include the FLR corrections in a form of the “generalized polarization term”.

Such corrections have been derived previously from the corresponding gyrofluid pressure

equations7. The FLR-corrected pressure equations obtained in our paper are in general
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agreement with that of the earlier calculation, except for the extra term ∼ p2∇2
⊥∇‖v‖, which

appears in the equation for p⊥ in Ref. 7. This term is cancelled out, when the difference

between the GF and PF parallel heat fluxes (Q
(⊥)
‖ and q

(⊥)
‖ ) is taken into account. From

Eq. (10) one has: ‖Uµ‖PF = ‖Uµ‖GF +∇2
⊥‖Uµ2‖/2B, which combined with relation between

v‖ and V‖ gives

q
(⊥)
‖ − Q

(⊥)
‖ =

1

2
∇2
⊥‖Uµ2‖ − p⊥

2nB
∇2
⊥‖Uµ‖ ≈ p2

⊥
2nB2

∇2
⊥v‖

which is correct up to O(ε), and where the higher order moments on the RHS have been

neglected.

IV. DERIVATION OF THE GYROVISCOUS FORCE

A. Parallel component of (∇· πg)

The FLR-corrected parallel momentum equation Eq. (17) can be used to find the parallel

component of gyroviscous force. We will define the PF gyroviscosity tensor πg by:

πg= P− pCGL − ρvv, (24)

where P is the stress tensor, and pCGL = p⊥(I − b̂b̂) + p‖ b̂b̂ is the particle-fluid Chew-

Goldberger-Low14 (CGL) pressure tensor. Then the parallel component of the fluid momen-

tum equation becomes

n
dv‖
dt

= − ∇‖ p‖− (∇· πg)‖ −n ∇‖ ϕ (25)

To the order considered in this paper, the total time derivative in Eq. (25) can be written as

d/dt = ∂/∂t +v
(1)
⊥ ·∇ , where we have neglected the parallel convective derivative, and used

the lowest order expression for the perpendicular fluid velocity, v
(1)
⊥ = vE +v∗. In this paper

13



we define the diamagnetic velocity in terms of p⊥ as: v∗ = b̂×∇p⊥/(nB). The comparison

of Eqs. (25) and (17), gives the expression for the parallel gyroviscous force in terms of the

PF moments

(∇· πg)‖= −(nv∗ · ∇)v‖ +
1

B2
∇⊥ ·{∇⊥ ϕ, ‖Uµ‖} − p

(0)
‖ − p

(0)
⊥

B2
∇‖ ∇2

⊥ϕ (26)

The first term in Eq. (26) is responsible for the “gyroviscous cancellation”, and the other

two are the FLR corrections (the last term on the RHS side can be neglected, when the

equilibrium pressure anisotropy is small). Note that our expression for (∇· πg)‖ does not

include the parallel vorticity gradient obtained in previous studies2,12. It can be shown7,

that this cancels from the parallel momentum equation when other FLR corrections of the

same order O(ε2) are included self-consistently.

B. Perpendicular component of momentum equation

In the previous Section, we have found the parallel component of momentum equation

from the gyrofluid equations up to O(ε2) and O(ε⊥). The advantage of the gyrofluid method

is that the second-order accurate (in ε) equations can be obtained from the first-order accu-

rate gyrokinetic equations, which simplifies the calculations considerably. Unfortunately, the

perpendicular component of the GF momentum equation cannot be derived in the same way

(the GF moment of
∫
V⊥F dUdµdθ vanishes, where V⊥ = B ∂ρ/∂θ is the particle perpen-

dicular velocity associated with its cyclotron motion). It can be recovered, however, when

the PF perpendicular momentum is expressed in terms of the moments of the gyrocenter

distribution function F through the second order in ε, and expanded in ε⊥.

Namely, using the PF momentum equation,

n
dv⊥
dt

= − ∇⊥ p⊥− (∇· πg)⊥ +n(E⊥ + v ×B) (27)

14



the perpendicular fluid velocity can be found by expanding in ε

v
(1)
⊥ = v∗ + vE (28)

v⊥ = v∗ + vE +
1

nB
b̂× (∇· πg) +

1

B
b̂× dv

(1)
⊥

dt︸ ︷︷ ︸
O(ε2)

(29)

where d/dt = ∂/∂t + v
(1)
⊥ · ∇ . If the particle-fluid velocity v⊥ is calculated up to O(ε2), the

perpendicular component of gyroviscous force can be found using Eq. (29). In terms of the

guiding-center variables the perpendicular momentum can be written as4:

nv⊥(x, t) ≡
∫

w⊥f(w,x, t) d3w =
∫

V⊥Fgc δ(X + ρ− x) d6Z (30)

In order to express Eq. (30) in the gyrocenter moments, the relation between the guiding-

center distribution function, Fgc, and the gyrocenter distribution function, F , can be used.

This relation is given in the Appendix. Keeping all nonlinear terms through the second

order, and expanding in ε⊥, we obtain:

nv⊥ =
1

B
b̂×∇P⊥ + NvE +

1

4B
b̂ ×∇(∇2

⊥‖µ2‖)− 3

2B
b̂ ×∇χ⊥ (31)

− N

B2

(
∂

∂t
+ V∗ · ∇

)
∇⊥ϕ +

1

B3
b̂×∇(∇⊥ P⊥· ∇⊥ ϕ) +

1

2B2
vE(∇2

⊥P⊥)

+
N

2B3
b̂×∇(∇⊥ ϕ)2 − 3P⊥

4B4
∇2
⊥

∂

∂t
∇⊥ϕ

where the RHS of Eq. (31) is written in terms of the GF moments, and the GF diamagnetic

velocity is defined as V∗ = b̂ × ∇P⊥/(NB), and χ⊥ = −(P⊥/B) b̂ · ∇ × vE . Eq. (31)

can be used, for example, in kinetic calculations, and it allows one to determine the ion

perpendicular current, including FLR and inertia effects, in terms of three GF moments: N ,

P⊥ and ‖µ2‖.

To obtain the particle-fluid version of Eq. (31), the GF perpendicular pressure and

density on the RHS of Eq. (31) have to be written in terms of the PF moments. First-order

15



accurate relation between N and n is sufficient, and it can be obtained from Eq. (11). The

perpendicular pressure moment is needed up to O(ε2), and this can be calculated in the same

way as the v⊥ moment in Eq. (30). Thus, we find:

P⊥ = p⊥ +
1

2
nv2

⊥ −
1

2
∇2
⊥‖µ2‖ − 2p⊥

B2
∇2
⊥ϕ− 2

B2
∇⊥ϕ · ∇⊥p⊥ − n

2B2
(∇⊥ϕ)2 (32)

N = n− 1

2B2
∇2
⊥p⊥ − n

B2
∇2
⊥ϕ (33)

In terms of particle-fluid moments, neglecting O(ε2
⊥) terms, nv⊥ becomes:

nv⊥ = n(v∗ + vE) +
1

2B
b̂ ×∇

(
χ⊥ − 1

2
∇⊥2 ‖µ2‖+

1

nB2
(∇⊥ p⊥)2

)
(34)

− n

B2

d

dt
∇⊥ ϕ− 3p⊥

4B4
∇2
⊥

∂

∂t
∇⊥ϕ

Equation (34) includes FLR corrections to the drift velocity, Eq. (28), and nonlinear polar-

ization drifts. The last term represents the FLR correction to the polarization drift velocity.

This term is O(ε
1/2
⊥ ) order higher than other terms in Eq. (34), but it can be important

in some applications (thus, it allows one to obtain the correct dispersion for kinetic Alfven

wave15 when Eq. (34) is used in two-fluid electromagnetic calculations). For simplicity, this

term will be neglected in the subsequent calculations. The divergence of the above expression

for the perpendicular momentum, which enters the continuity equation, can be calculated:

∇ · (nv⊥) = vE · ∇n− n

B2

d′

dt
∇2
⊥ϕ +

1

B3
∇⊥ ·{∇⊥ϕ, p⊥}

where we used the relations ∇⊥ · d′(∇⊥ϕ)/dt = d′(∇2
⊥ϕ)/dt and ∇⊥ · (v∗ · ∇)∇⊥ϕ = −∇⊥ ·

{∇⊥ϕ, p⊥}/(n(0)B). Thus, the continuity equation, Eq. (14), which has been derived from

gyrofluid equations, can be recovered again from Eq. (34).

From Eqs. (34) and (29), the perpendicular component of the gyroviscous force can now

be found

16



(∇· πg)⊥= −n
dv∗
dt

+ ∇⊥ χ̃ (35)

where χ̃ is defined as

χ̃ ≡ 1

2
χ⊥ − 1

4
∇⊥2 ‖µ2‖+

1

2nB2
(∇⊥ p⊥)2 (36)

The structure of the calculated (∇· πg)⊥, Eq. (35), is similar to that obtained by Hazeltine

and Meiss12 for the ∇T = 0 case. The diagonal part of Eq. (35) can be cast in a more

familiar form

χ̃ = − p⊥
2B

b̂ · ∇ × v⊥ − 1

4B
b̂ · ∇ × q

(⊥)
⊥ (37)

where the first term is a parallel vorticity term12, and the second term appears due to a

finite temperature gradient. The component of the perpendicular heat flux is defined by

q
(⊥)
⊥ ≡ (1/2)

∫
(w⊥)2w⊥f d3w. In the leading order, it can be shown that

q
(⊥)
⊥ = B b̂×∇‖µ2‖ − 2p⊥v∗ =

2p⊥
B

b̂×∇T⊥ +
2

B
b̂×∇R⊥. (38)

Therefore, when temperature variations (and R⊥) are neglected, our expression for (∇· πg)⊥

reduces to that of Hazeltine and Meiss12.

An alternative expression for the perpendicular gyroviscous force has been derived by

several authors2,3. The relation between two different forms of gyroviscosity can be found

from the equation for the perpendicular pressure including FLR corrections. Thus, using

equation (15) for p⊥, it can be shown that

dv∗
dt

= (v∗ · ∇)v⊥− 1

n
b̂×∇(∇‖ ‖Uµ‖) (39)

which allows us to write the perpendicular gyroviscous force in a different form:

17



(∇· πg)⊥= −n(v∗ · ∇)v⊥ + b̂×∇(∇‖ ‖Uµ‖)+ ∇⊥ χ̃ (40)

The first term in Eq. (40) is responsible for the gyroviscous cancellation in the perpendicular

momentum equation, and other two terms represent off-diagonal and diagonal FLR correc-

tions to the ion stress tensor. Note that previous attempts2,3,12 to find a relation between

two different representations of the gyroviscous force, Eqs. (35) and (40), failed because they

did not account for the pressure anisotropy. Our derivation demonstrates that, to the order

which Eq. (39) is valid, both expressions for the perpendicular component of gyroviscous

force are equivalent. Substituting Eq. (35) and Eq. (40) into (27), the corresponding two

different forms of the FLR corrected ion perpendicular momentum equation can be obtained

n
dvE

dt
= − ∇⊥ (p⊥ + χ̃) + n(E⊥ + v×B) (41)

n
d′v⊥
dt

= − ∇⊥ (p⊥ + χ̃)− b̂×∇(∇‖‖Uµ‖) + n(E⊥ + v×B) (42)

In previous work, the perpendicular component of the gyroviscous force, including tempera-

ture variations, was calculated from the fluid equations by solving the stress tensor evolution

equation2,3. An expression for (∇· πg)⊥, similar in structure to Eq. (40), was obtained. How-

ever, in the derivation by Chang and Callen2 the contribution of the perpendicular heat flux

was neglected, and their expression for χ̃ is missing a second term proportional to ∇T⊥. As

Eq. (38) shows, the perpendicular heat flux is comparable to v⊥ in a plasma with nonuniform

temperature. Calculations by Smolyakov3 included the heat fluxes and other third-order mo-

ments. For the case δT⊥ = δT‖, the temperature gradient corrections in Eq. (40) agree with

those derived in Ref. 3. Thus, for isotropic temperature, it can be shown that q
(⊥)
⊥ = 4/5q⊥,

where q⊥ = q
(⊥)
⊥ + q

(‖)
⊥ is the total perpendicular heat flux vector. However, in the general

case of anisotropic temperature, our results are in partial disagreement with the fluid theory

18



results3, possibly, because the fluid calculations did not distinguish between the two parts

of the perpendicular heat flux, q
(⊥)
⊥ and q

(‖)
⊥ .

C. Gyroviscous force in terms of gyrocenter distribution function

Components of (∇· πg) given by Eqs. (26), (35) and (40) have been calculated in terms

of PF moments. In this Section, the expression for the gyroviscous force is given in terms of

the GF moments. It is convenient to define the GF gyroviscous stress tensor as

Πg = P− P⊥(I− b̂b̂)− P‖b̂b̂ (43)

where P⊥ = ‖µB‖ and P‖ = ‖U2‖ are GF perpendicular and parallel pressure. In the

models relying on kinetic (particle) closure schemes10,16, the energetic ion stress tensor is

usually approximated by the CGL pressure tensor, PCGL = P⊥(I− b̂b̂)+P‖b̂b̂, and particle

dynamics is described using the drift-kinetic or gyrokinetic approximation. For k⊥ρ� 1,

the next order FLR corrections can be included via the GF gyroviscosity tensor (43). The

gyrofluid gyroviscosity tensor, Πg, is related to PF tensor πg by

Πg = πg + ρvv +
(
p⊥ − P⊥ − ρv2

⊥/2
)

(I− b̂b̂) +
(
p‖ − P‖ − ρv2

‖
)
b̂b̂ (44)

where the difference between PF and GF pressure moments has been included in the def-

inition of Πg. Expressing particle-fluid moments in terms of gyrocenter-fluid moments, or

using Eq. (31) directly, it can be shown:

(∇ ·Πg)⊥ = N(vE · ∇)V⊥ + b̂×∇
(
∇‖‖µU‖

)

+ ∇⊥
(

1

4
∇2
⊥‖µ2‖ − 3

2
χ⊥ + NV∗ · vE

)

(∇ ·Πg)‖ = N(vE · ∇)V‖ +∇‖
(

1

2B
∇2
⊥‖U2µ‖ − χ⊥

)
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+
1

B2
∇⊥ ·{∇⊥ϕ , ‖Uµ‖}+

1

2B2
{ϕ ,∇2

⊥‖Uµ‖}/2

where the RHS is written in terms of GF moments, so that NV‖ =
∫

UF dUdµ, and V⊥ =

vE + V∗. Note that the difference between PF and GF pressure moments is of the same

order as other FLR corrections, and it must be taken into account in the calculations of

∇ ·P.

V. SUMMARY

In this paper we have presented the derivation of nonlinear gyroviscous forces in a

collisionless plasma with temperature variations using gyrokinetic formalism. First, a set of

nonlinear gyrofluid equations has been derived in a general form by taking moments of the

gyrokinetic Vlasov equation, and expanding with respect to ε⊥ = (k⊥ρ)2. A corresponding

set of reduced fluid equations is obtained by expressing the gyrocenter-fluid moments in

terms of particle-fluid moments. These FLR fluid equations exhibit a generalized form

of “gyroviscous cancellation”, which appears in an arbitrary high moment equation of an

infinite set of fluid equations. The parallel momentum equation, thus obtained, contains

FLR corrections up to O(ε⊥) order in a form of the parallel component of gyroviscous force.

The perpendicular component of the gyroviscous force is found by calculating the per-

pendicular fluid velocity in terms of gyrocenter-fluid moments and expanding in ε⊥. This

calculation has been carried out through second-order in the gyrokinetic smallness parameter

ε, and includes all relevant nonlinear FLR corrections and polarization drifts. Two different

forms of the perpendicular gyroviscous force, Eqs. (35) and (40), have been presented, and

these are shown to be related by the FLR fluid equation for the perpendicular pressure.

In the derivation of the reduced fluid equations and gyroviscous forces, the FLR cor-
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rections have been systematically accounted for by keeping higher-order moments of the

distribution function. It is shown that when the plasma temperature is nonuniform, the

contributions of the parallel and perpendicular heat fluxes into the gyroviscous stress tensor

are comparable to those of the velocity gradients. The disagreement between the previous

fluid and gyrofluid calculations2,3,7 is due to the inconsistent treatment of those heat fluxes.

The gyroviscous forces and reduced fluid equations derived in this paper can be used

to include FLR effects into a fluid description of plasma, and serve as a useful benchmark

for similar fluid derivations. However, the fluid description, even with the FLR corrections

rigorously retained, has to rely on an approximate closure scheme, and generally fails to

include other kinetic effects, such as the parallel dynamics and resonant wave-particle inter-

actions. The FLR corrections to the ion stress tensor calculated in terms of the moments of

the gyrocenter distribution function represent a systematic FLR expansion, which includes

all relevant kinetic effects. Therefore, it can be used in kinetic calculations, for example,

to include FLR effects into a drift-kinetic formulation. For the case when k⊥ρ� 1, such a

scheme is more efficient that the gyrokinetic model.

The FLR corrections presented in this paper have been derived assuming a uniform

background magnetic field and electrostatic perturbations. These assumptions are commonly

used in the derivation of the gyroviscous stress2,3,12, and can be justified when the magnetic

curvature and finite-beta effects are small and can be accounted for in a perturbative way,

for example, in a large aspect ratio tokamak plasma. Since FLR effects are considered as

a small correction as well, it is consistent to include the field variation and electromagnetic

effects elsewhere in the model. In the general case, however, the magnetic curvature part of

the stress tensor and the electromagnetic FLR effects are important, and should be retained.
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The present calculations could be straightforwardly extended to include these effects by using

the general geometry electromagnetic gyrokinetic equations4.
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APPENDIX

The scalar function S1 related to the first order (in εδ) gyrocenter transformation satisfies

the equation17,18:

∂S1

∂t
+ U∇‖S1 + B

∂S1

∂θ
=ϕ̃

Expanding the solution up to O(εεδ), we have S1 = S
(1)
1 + S

(2)
1 , where

S
(1)
1 =

1

B
Ψ̃

S
(2)
1 = − 1

B2

∫ θ
(

∂ Ψ̃

∂t
+ U ∇‖Ψ̃

)
dθ ′

For the second order gyrocenter transformation5 we have:

B
∂S2

∂θ
= −G1 · ∇ϕ̄−Gµ

1

∂ϕ̄

∂µ
− 1

2

[
(G1 · ∇ ϕ̃) + Gµ

1

∂ ϕ̃

∂µ
+ Gθ

1

∂ϕ

∂θ

]

+
1

2

[
〈G1 · ∇ ϕ̃〉+ 〈Gµ

1

∂ ϕ̃

∂µ
〉+ 〈Gθ

1

∂ϕ

∂θ
〉
]

where ϕ̄ = 〈ϕ〉 is the gyroaveraged scalar potential.

In the derivation of the FLR fluid equations (Section III), the first order gyrocenter

transformation is sufficient, and the gyrocenter and guiding-center variables are related by:

Zj = Z ′j +Gj
1, where the components of the generating vector can be found using the lowest

order solution for S1 = S
(1)
1 . In this order, the guiding-center distribution function, Fgc, can

be expressed in terms of the gyrocenter distribution, F , using the pullback transformation13

Fgc = T ∗
1 (F ) = exp(Gj

1 ∂/∂Zj)F , so that

Fgc = F + G1 · ∇F + Gµ
1∂F/∂µ + GU

1 ∂F/∂U,

which also follows from: Fgc(Z
′) = F (Z(Z′)).
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The calculation of the perpendicular fluid velocity (Section IV) in terms of the

gyrocenter-fluid moments requires second order transformation. The guiding-center and

the gyrocenter distribution functions are then related by

Fgc = F + Gj
1

∂F

∂Zj
+

1

2
Gj

1

∂

∂Zj

(
Gi

1

∂F0

∂Z i

)
+ Gj

2

∂F0

∂Zj

It is convenient to separate linear and quadratic terms in ϕ (related to the first and second

order transformation respectively) in the expression for Fgc

Fgc = F + F (1) + F (2)

where F (1) = Gj
1∂F/∂Zj, and F (2) = 1

2
Gj

1 ∂(Gi
1∂F0/∂Zi)/∂Zj + Gj

2 ∂F0/∂Zj . Using the

equation for Gµ
2 = ∂S2/∂θ, and neglecting the third order terms, the nonlinear part can be

simplified:

F (2) =
1

2
(Gµ

1 )2∂2F0

∂µ2
−
(

1

B
G1 · ∇ϕ̄ +

1

B
Gµ

1

∂ϕ̄

∂µ
− 1

2
〈G1 · ∇Gµ

1〉 −
1

2

∂

∂µ
〈 (Gµ

1 )2 〉
)

∂F0

∂µ

Substituting the expressions for components of the generating vector Gj
1 and S1, to the

second order in ε and εδ:

F (1) = − 1

B2
b̂×∇ Ψ̃ ·∇F +

1

B
∇‖Ψ̃

∂F0

∂U
+

ϕ̃

B

∂F

∂µ
− 1

B2

[
∂ Ψ̃

∂t
+ U ∇‖Ψ̃

]
∂F0

∂µ

F (2) =
ϕ̃2

2B2

∂2F0

∂µ2
+

(
1

B
b̂×∇ Ψ̃ ·∇ϕ̄− ϕ̃

∂ϕ̄

∂µ
− 1

2B
〈b̂×∇ Ψ̃ ·∇ ϕ̃〉 +

1

2

∂

∂µ
〈 ϕ̃2 〉

)
1

B2

∂F0

∂µ

The last term in the equation for F (1) comes from S
(2)
1 , the higher-order in ω/ωci solution for

S1. It is usually neglected in calculations4,6, because 〈Ψ̃ (x− ρ)〉 = 0, and its contributions

to the density and parallel current integrals are zero. However, it is important to keep this

term in the perpendicular current calculations, because it is related to the perpendicular

inertia (polarization current) part of j⊥.
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