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Parametric excitations of fast plasma waves by

counter-propagating laser beams

G. Shvets and N. J. Fisch

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

Short and long wavelength plasma waves can become strongly coupled in the

presence of two counter-propagating laser pump pulses detuned by twice the

cold plasma frequency !p. What makes this four-wave interaction important

is that the growth rate of the plasma waves occurs much faster than in the

more obvious co-propagating geometry.

An important nonlinear process in plasma physics is the beatwave excitation of the

electron plasma wave using high-frequency lasers, with applications including plasma heat-

ing and current drive [1,2], studying and controlling the ionosphere [3], and accelerating

charged particles [4,5]. In this Letter we demonstrate that a fast plasma wave with phase

velocity close to the speed of light can be generated by crossing two counter-propagating

laser beams, which are detuned by j�!j � 2!p, where !p = (4�e2n0=m)1=2 is the plasma

frequency, �e and m are the electron charge and mass, and n0 is the plasma density. The

counter-propagating geometry departs from the geometry employed in the traditional plasma

beatwave accelerator (PBWA) approach to generating fast plasma waves for particle accel-

eration, which utilizes co-propagating laser pulses [6] detuned by �! = !p.

That a plasma wave can be driven unstable by the 2!p beatwave was originally proposed

by Rosenbluth and Liu (RL) [7], who calculate a growth rate of a fast plasma wave RL �

!pa0a1=2 (co-propagating lasers). Note that this decay is high-order, with growth rate

going as pump amplitude squared. Thus, for pump waves of sub-relativistic intensity, i.e.

a0; a1 � 1, this decay instability is too slow to be of great practical interest.
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What we propose here is that a counter-propagating pump geometry results in a growth

rate also second order in the pump amplitude, but strongly enhanced by the factor 2!2
0=!

2
p
.

We consider the four-wave interaction, in which the four participating waves are: the counter-

propagating lasers, and two plasma waves, one (slow) with about twice the laser wavenumber,

and one (fast) with the small wavenumber (!p=c). For the similar reason why Raman

backscattering is much faster than Raman forward scattering, here the counter-propagating

geometry enhances the growth rate, but now in the much di�erent context of a four-wave

interaction in which there is decay to a fast plasma wave capable of particle acceleration.

To proceed, consider then the interaction of two counter-propagating laser beams (la-

beled by 0 and 1), with the corresponding normalized vector potentials given by ~a0;1 =

a0;1(~e� exp (i�0;1)+c: c: ), where ~e+(�) = (~ex� i~ey)=2, �0 = k0z�!0t, and �1 = k1z+!1t. We

assume that the duration of the forward-moving laser pulse is short (several plasma periods)

and the duration of the backward-moving pulse is twice the length of the plasma. Tenu-

ous plasma !p � !0 is assumed, ensuring that the lasers propagate almost as in vacuum:

vg0 � c and j~k0 � ~k1j � 2k0. The 4-wave instability we consider involves a short-wavelength

(slow) and a long-wavelength (fast) plasma wave. The wavenumber of the slow wave is

ks = 2k0 � kp. The wavenumber of the fast wave kp is determined by the group velocity of

the short pulse vg: kp = !p=vg � !p=c.

Just as for the co-propagating geometry, the time-averaged ponderomotive force ~F =

�mc2r(~a0 � ~a1) � 2k0mc2 sin (2k0z ��!) due to the pump lasers drives the plasma waves:

�� + !2
p
� = ik0c

2a0a1e
i[�!t�2k0z] + c: c:; (1)

where � � z � z0 is the Lagrangian electron displacement. For the co-propagating

geometry, RL [7] used a single-wave ansatz for the plasma electron displacement � =

A(t) sin [kz � !pt+ �(t)]. The single-wave ansatz used by RL, however, is not suÆciently

general for the case of counter-propagating lasers. Consider instead then the two-wave

ansatz:

� = Af sin [kpz0 � !pt+ �f ] +As sin [ksz0 � !pt+ �s]; (2)
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where Af (�f ) and As (�s) are the amplitudes (phases) of the fast and slow plasma waves.

For simplicity, in the analytic calculation we assume monochromatic laser waves. Short-

pulse e�ects are numerically treated later in the paper. Substituting z = z0 + �, where � is

given by Eq. (2), into the RHS of Eq. (1) yields

@2�

@t2
+ !2

p
� = ik0c

2a0a1
X
k;l

(�1)k+l Jk(2k0Af )Jl(2k0As)

eik[kpz0�!pt+�f ]eil[(ksz0�!pt+�s]ei[�!t�2k0z0 ] + c: c:; (3)

where Jk;l are Bessel functions, and �! = !0�!1 � 2!p+Æ!. In writing the RHS of Eq. (3),

we used the identity ei� sin� =
X
k

Jk(�)e
ik�. A set of purely time-dependent equations can

now be obtained by separating the z0 dependent terms on both sides of Eq. (3). Thus,

substituting Eq. (2) into LHS of Eq. (3) and matching the corresponding harmonics of kpz0

and ksz0 on both sides of the equation, we can write for the (k = 0; l = 1) and (k = 1; l = 0)

terms the following:

@�

@t
= Æ! �


2
B

4
!pG(Af ; As) sin� (4)

@(k0Af)

@(!pt)
=


2
B

4
J0(2k0Af)J1(2k0As) cos � (5)

@(k0As)

@(!pt)
=


2
B

4
J1(2k0Af )J0(2k0As) cos�; (6)

where � = �s + �f + �=2 + Æ!t, 
2
B
= 4a0a1!

2
0=!

2
p
is the square of the electron bounce

frequency in the optical lattice created by the interference of the counter-propagating lasers,

and

G(Af ; As) =
J0(2k0Af)J1(2k0As)

k0Af

+
J1(2k0Af )J0(2k0As)

k0As

:

Higher order Bessel terms are of the same order in the plasma wave amplitudes 2k0Af;s, and

are assumed small.

At resonance (Æ! = 0), the relative phase � locks at � = 0. For small amplitudes of the

plasma waves, 2k0Af;s � 1, Eqs. (5,6) can then be linearized, predicting the simultaneous

exponential ampli�cation of the fast and slow waves with the growth rate 
i = !2
0a1a0=!p. In
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a nutshell, this is the principal result of this work: fast plasma wave capable of accelerating

relativistic particles can be produced with a high temporal growth rate 
i. This growth rate

is much higher than that predicted by RL for the co-propagating lasers: 
i=RL � 2!2
0=!

2
p
.

The fast wave Af grows so rapidly because it is parametrically coupled to the slow wave As.

The coupling mechanism is the ponderomotive force due to the counter-propagating optical

mixing of the laser beams.

An important practical issue is the sensitivity of the instability to the deviation from the

exact two-plasmon resonance Æ!. For the �nite frequency detuning from resonance Æ! 6= 0,

there is an intensity threshold: phase-locking takes place only if 
2
B
=2 > Æ!=!p. Here,

again, the counter-propagating geometry o�ers an advantage over the co-propagating case:

the intensity threshold is given by

q
I0I1[W=cm2] = 1:4� 10�3(Æ!=!p)n0[cm

�3] (7)

For example, if the laser wavelengths are �0 = 0:8�m and �1 = 1:0�m, and plasma density

is n0 = 1019 cm�3 (corresponding to !0 � !p = 2:5!p), the geometric mean of the laser

intensities should exceed the threshold value of 8:0�1015W/cm2. Since this threshold is not

too high, the instability is quite robust to the plasma inhomogeneity and detuning errors.

Equations (4,5,6) can be simpli�ed by noting that, from the last two equations,

J0(2k0Af)=J0(2k0As) = const. If both waves start out negligibly small, the constant is

equal to unity, and one can assume that Af = As at all times. This assumption is only

meaningful when the instability signi�cantly ampli�es both As and Af , so that the small

absolute di�erence of the initial amplitudes is unimportant. The equations for the phase

and the normalized amplitude u = 2k0As = 2k0Af become

_� = (Æ!=!p)� 
2
B

J0(u)J1(u)

u
sin� (8)

_u =

2
B

2
J0(u)J1(u) cos �; (9)

where the dot indicates a derivative with respect to !pt. The conserved invariant of Eqs. (8,9)

is H = 
2
B
u2 sin�� 2(Æ!=!p)F (u), where
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F (u) =
Z

u

0
dx

x2

J0(x)J1(x)
:

Note is that F (u) diverges for u! �0, where �0 = 2:405 is the �rst zero of J0.

For the excitation which starts out in�nitesimally small H � 0, and the sin� can be

expressed in terms of the amplitude u. The expression for the cos � is then substituted into

Eq. (9):

_u =
J0(u)J1(u)

2

"

4
B
�

4F 2(u)(Æ!)2

u4!2
p

#1=2
: (10)

Equation (10) gives the trajectory of the wave amplitude as a function of time. The plus

(minus) sign corresponds to the increasing (decaying) portions of the trajectory. For a �nite

detuning Æ!, the \motion" of u is periodic between its initial starting value u0 and the

maximum value umax.

For a perfect laser detuning Æ! = 0, the mode amplitude has a stable attractor at

u = �0. Since �0 > 1, Eq. (3) no longer holds because of the breaking of the slow wave [8].

For 0 < (Æ!=!p) < 
2
B
=2 the amplitude u oscillates periodically between its initially small

value u0 and umax < �0 which is found by solving the equation F (umax)=umax = 
2
B
!p=2Æ!.

This equation has no solutions for (Æ!=!p) < 
2
B
=2, i. e. there is no instability. De�ning Æ!

according to 
2
B
=2 = (1 + �)(Æ!=!p), we plotted in Fig. 1 the temporal evolution of u for a

�xed 
B = 1 and three di�erent detunings corresponding to � = 0:2; 0:1; 0:05.

Analytic progress can be made in the limit of u < 1, which is, in any case, the applicability

limit of Eq. (3). Then F (u) = u2+3=16u4+:::, and the maximumamplitude can be evaluated

as umax = 4
q
�=3. The oscillation period is given by (Æ!)T = 8

q
2=3 ln [2umax=u0]=umax,

where u0 � umax is the initial mode amplitude. Figure 1 con�rms that the smaller is the

peak amplitude of the wave, the longer is the oscillation period.

The physics of the amplitude oscillation can be understood as follows. Initially, u is very

small, and since the ratio F (u)=u2 is approximately a constant, the relative phase is locked

at a constant � = sin�1 2(Æ!=!p)=

2
B
. As u undergoes an exponential growth, the phase

\unlocks" and drifts towards � = �=2, at which time the amplitude peaks at u = umax and
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starts dropping. After the amplitude drops to its initial value u0, the phase locks again, and

the process repeats.

While the fastest instability corresponds to �! = !s+!f , it is instructive to understand

qualitatively how two plasma oscillations !s and !f (fast and slow) can become strongly

coupled by a beatwave which has a frequency �! 6= !s + !f . It turns out that both !f

and !s are shifted from !p in the presence of the lasers. The simpli�ed description of the

instability, expressed by Eqs. (4-6), predicts that the frequency shifts are proportional to

(a0a1)
2. Indeed, consider the small-intensity regime (Æ!=!p)� 
2

B
=2. Then using � � (Æ!)t

and expanding Bessel functions to the lowest order in As;f , it can be shown from that both

�s and �f acquire a time-averaged drift _�s;f = �Æ
s;f , where Æ
s = Æ
f = 
4
B
=(32Æ!=!p).

Therefore, in the presence of the nonresonant beatwave the frequencies of both modes are

shifted in the direction of (Æ!). A rough estimate of the instability threshold can be obtained

by requiring that Æ
s + Æ
f = (Æ!=!p). This results in 
2
B
= 4(Æ!=!p), overestimating the

earlier obtained expression for the intensity threshold by a factor 2. As shown below, there is

an additional mechanismof shifting the frequency of the slow plasma wave via backscattering

the short laser pulse. This frequency shifting can signi�cantly modify the threshold intensity.

Since multiple plasma and laser waves are involved, Eqs. (4-6) describe the instability

only approximately. Some of the missed e�ects are: (i) plasma perturbation driven at

frequency �!; (ii) modi�cation of a1 by the backscattering of a0 o� this driven density

perturbation; (iii) the renormalization of the slow wave frequency due to its interaction with

the short laser pulse. Therefore, we supplement the above calculation by a more rigorous

two-scale particle simulation, which takes advantage of the scale separation between the

short period of the slow plasma wave and a much longer period of the fast wave. We also

assume for simplicity that the forward propagating laser pulse a0 is much shorter than a1.

The small-scale dynamics of the plasma electrons is characterized by their location (or

phase) �j = �0+ �1 � 2k0zj inside the optical lattice produced by the interference of the two

lasers. Equations of motion for the j0s electron in a reference frame moving with the short

pulse are described in Refs. [9,10]:
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��j + 
2
B
sin (�j ��0�) = �

1X
l=1

n̂le
il�j � ~ez + c: c:; (11)

where a dot denotes a derivative with respect to � = !p(t� z=c), n̂l = i
D
e�il�j=l

E
�0=2

is the

l�th harmonic of the small-scale electron plasma wave averaged over one lattice period, and

�0 = �!0=!p. The global electric �eld ~ez = 2!0eEz=mc!2
p
is generated owing to the average

momentum deposition from the lasers into the plasma [11]. In normalized units, equations

for ~ez and a1 can be written as

@~ez

@�
=
D
_�j
E
�0=2

;
@a1

@�
= �i

!pa
�

0

4!0

D
e�i�j

E
�0=2

(12)

Equations (11,12), supplemented by the initial conditions at � = �1, are numerically solved

using macro-particles. As an initial condition, we assume that at � = �1 plasma is uniform

(n̂l = 0 for all l) and stationary ( _�j = 0 for all j), and that a small initial fast plasma wave is

present (~ez = ~e0). The presence of a much larger plasma wave inside the short pulse (taken

here in the form a0 = 0:5�a0[tanh (��=�L) + 1]) indicates an instability.

The fast electric �eld Ez obtained by integrating Eqs. (11,12) is shown in Fig. 2 for two

sets of laser �eld amplitudes a0 and a1. Simulation parameters are !0=!p = 10, !0 � !1 =

2:5!p, and ~e0 = 10�3. In Fig. 2(a) a0 = a1 = 0:06 were assumed �xed. Evolving a1 according

to the second Eq. (12) did not result in any signi�cant change of Ez. We also simulated the

case of the �xed a0 = 0:19 and a1 = 0:015, which did not show any instability since in this

case 
2
B
is smaller then in Fig. 2(a). However, when a1 was self-consistently evolved, a large

electric �eld was excited, as shown in Fig. 2(b). This result is a manifestation of the physics

which was not included in the above two-wave analysis which predicted that the threshold

for the instability is determined by the frequency detuning Æ! and 
2
B
= 4a0a1!

2
0=!

2
p
, which

only depends on the product of the laser amplitudes, not on the individual amplitudes.

As was explained earlier, the instability threshold arises because the �nite 
2
B
is needed

to shift the frequencies of the fast and slow plasma waves to compensate for the frequency

detuning Æ!. However, there may be other mechanisms of frequency shifting unaccounted

for by the two-wave treatment. In particular, it follows from Eq. (12) that a slow wave with
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amplitude n̂1 � e�i� excites a backward wave Æa1 = !pa
�

0n̂=4!0(�0 � 1), which then forms

a beatwave with a0 and acts back on the plasma electrons. Substituting Æa1 into Eq. (11),

obtain an additional frequency shift of the slow plasma wave Æ
+
s
= !2

p
ja0j2=4!0(�! � !p).

For the simulation parameters of Fig. 2(b), this additional frequency shift, independent of

a1, e�ectively reduces the Æ! = 0:5!p frequency mismatch. Hence, 
2
B
required to bridge the

remaining gap is reduced as well. For the simulation parameters of Fig. 2(a) this reduction

was negligible because of the smallness of a20.

The relatively modest intensity threshold, given by Eq. (7), can be further lowered by em-

ploying a chirped laser pulse. Frequency chirp Æ!(�) also provides the bene�t of suppressing

the Raman backscattering of the more intense short pulse which can evolve from noise [12].

In Fig. 3 we plotted the amplitudes of the fast and slow plasma waves, ~ez and hcos �ji, for

a linearly-chirped Gaussian pulse. Assuming that �1 = 1�m, the central frequency of the

laser !0 = !1 + 2:35!p corresponds to �0 = 810 nm, and the plasma frequency !p=!1 = 0:1

corresponds to n0 = 1019 cm�3, the pulse pro�le is as follows: a0 = 0:15 exp [��2=2� 2
L
] with

�L = 25 (160 fs FWHM) and dÆ!=d� = �9:5 � 10�3!p (3% bandwidth). The initial fast

plasma wave ~e0 = 10�3 and a1 = 0:0165 have been assumed. In this example an accelerating

plasma �eld of up to 9 GeV/m is generated.

In conclusion, we showed that large-amplitude fast plasma waves might be very e�ec-

tively excited by two counter-propagating laser pulses detuned by approximately two plasma

frequencies. In this arrangement, a slow plasma wave is incidentally excited, which is very

e�ective in coupling the laser energy to the very useful for particle acceleration fast plasma

wave.

This work was supported by the DOE Division of High Energy Physics.
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FIGURES

FIG. 1. Fast and slow wave amplitude u = 2k0Af as functions of time for three detunings:


2
B
=2 = (1 + �)(Æ!=!p). Initial excitation u0 = 10�3, 
2

B
= 1

FIG. 2. Solid line: fast electric �eld ~ez , dashed line: normalized intensity of short pulse a
2
0n.

(a) a0 = a1 = 0:06, �xed a1; (b) a0 = 0:19, a1(� = 0) = 0:015, and a1 is solved for from Eq. (12)

FIG. 3. Solid line: fast electric �eld ~ez , long-dashed line: normalized intensity of short pulse

a
2
0n, dashed line: density bunching of the slow plasma wave Re(n̂1) = hcos �ji. Rapidly-varying

part part of n̂1 is the driven plasma response inside the laser pulse.
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