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Abstract

A pedagogical review of the historical development and current status (as of early 2000) of systematic
statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and
methodology, not practical applications. Particular attention is paid to equations and formalism appropriate
to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence
is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given
of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those
are developed independently, then shown to be special cases of the direct-interaction approximation (DIA),
which provides a central focus for the article. Various methods of renormalized perturbation theory are
described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose.
A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern
approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian
closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in
the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a
realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-
physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous
topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and
fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of
both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and
scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations, stochasticity criteria for
quasilinear theory, formal aspects of resonance-broadening theory, Novikov’s theorem, the treatment of weak
inhomogeneity, the derivation of the Vlasov weak-turbulence wave kinetic equation from a fully renormalized
description, some features of a code for solving the direct-interaction approximation and related Markovian
closures, the details of the solution of the EDQNM closure for a solvable three-wave model, and the notation
used in the article.
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1 INTRODUCTION

“It is open to every man to choose the direction of his striving; and also every man may
draw comfort from Lessing’s fine saying, that the search for truth is more precious than its
possession.” — Einstein (1940).

This article is devoted to a review of the conceptual foundations of statistical descriptions of
turbulence in fully ionized, weakly coupled, classical plasmas as the discipline is understood at the
end of the 20th century. 1 Particular attention is paid to plasmas in strong magnetic fields, both
because of their importance to the magnetic confinement approach to thermonuclear fusion (Furth,
1975; Wesson, 1997) and because the physics is closely related to the behavior of neutral fluids. The
goals are to unify disparate approaches, exhibit deep underlying connections to other fields (notably
quantum field theory and neutral-fluid turbulence), and provide historical perspective. The emphasis is
on philosophy and systematic mathematical techniques. It is hoped that awareness of unifying themes
and techniques will aid the reader in organizing the abundance of information, clarify disagreements
between competing theories, foster appropriate skepticism about new approaches, and give one a
better appreciation of the roots of the back-of-the-envelope estimates that are frequently employed
in practice. Most of the basic themes discussed in this article are not specific to plasma physics and
should interest anyone intrigued by nonlinear behavior.

The article is not a review of most of the vast experimental, computational, and theoretical
research that falls under the aegis of plasma turbulence. Motivations and a few highly idealized
physical models that illustrate the formalism will by and large be distilled from applications arising
in fusion research, but no attempt will be made to even-handedly survey the many fascinating and
detailed practical applications that arise in astrophysics, fusion, or other places (National Research
Council, 1986). For some of those, entry points to the literature can be found in the recent collection
edited by Sudan and Cowley (1997), which records the activities of the most recent research workshop
focused on plasma turbulence. A short review by the present author that addresses some of the
topics elaborated below can also be found there (Krommes, 1997c). A useful introductory overview of
selected issues in plasma turbulence was given by Similon and Sudan (1990). Some modern practical
applications of turbulence theory to fusion were described in some detail by Itoh et al. (1999) and
reviewed by Yoshizawa et al. (2001).

Given that turbulence is ubiquitous in many important plasma applications, including magnetic

1 Work discussed in this article is limited to that published before 2000, except for a few selected papers
related to themes developed in this review. Notably, (i) the pedagogical article by Grossmann (2000) describes
current understanding of the submarginal onset of shear-flow turbulence [see Sec. 9 (p. 210)]; (ii) the work by
Krommes and Kim (2000) serves as a minireview in its own right of some plasma-physics literature on zonal
flows, the statistical interactions of disparate scales, and related issues [Secs. 7.3 (p. 189) and 12.7 (p. 248)];
and (iii) the review article by Yoshizawa et al. (2001) describes some of the more practical fluid and plasma
turbulence issues, particularly those related to inhomogeneity, and is nicely complementary to the present
article.
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fusion, the need for a fundamental and systematic theory of plasma turbulence may appear to be
self-evident. In reality, however, most theoretical “calculations” of turbulent plasma transport are
still done at the level of primitive mixing-length estimates articulated 35 years ago (Kadomtsev,
1965), and actual research on systematic, mathematically justifiable approximations is almost
nonexistent within the plasma community. To the extent that more quantitative results have been
required, the overwhelming response has been to adopt the brute-force approach of direct numerical
simulations (DNS 2). That is both understandable and reasonable. Nevertheless, analytical theory
has its place. Clever physics-based techniques are required even to derive equations that can be
efficiently used in DNS [see the discussion of gyrokinetic and gyrofluid equations in Appendix C
(p. 267)]. Moreover, it is difficult to make sense of the plethora of simulation data without a
detailed and systematic theoretical superstructure, particularly in view of an abundance of theoretical
misconceptions that have proliferated over the years. Formal methods are invaluable in deriving
and justifying heuristic procedures. Finally, the turbulence problem presents one of the outstanding
intellectual challenges of modern science; it is interesting in its own right.

The prospective student of plasma turbulence faces a daunting challenge. She is confronted
with literally thousands of articles on nonlinear plasma behavior, 3 frequently in the context of
extremely complicated confinement geometries and fusion scenarios. Focusing on papers of obviously
conceptual nature helps to provide initial orientation, but those almost inevitably assume background
in hydrodynamic (neutral-fluid) turbulence, a discipline under development since the early 1900s;
contemporary literature in that field is quite sophisticated (HydrotConf, 2000). Mathematical
turbulence theory was pioneered by workers in the field of neutral fluids, the incompressible Navier–
Stokes equation (NSE) providing the fundamental mathematical model. Very much can be learned
from that outstanding research, so there will be strong overlap between certain parts of the present
article and discussions of statistical turbulence theory for neutral fluids. The collection edited by
Frost and Moulden (1977) contains useful introductory articles on fluid turbulence and associated
mathematical techniques. Some review articles on fluid turbulence are by Orszag (1977), Rose and
Sulem (1978), and Kraichnan (1991); recent books 4 are by McComb (1990), Frisch (1995), and
Lesieur (1997). There are also strong connections to quantum field theory and the theory of critical
phenomena; some useful books are by Zinn-Justin (1996), Binney et al. (1992), and Goldenfeld (1992).
Applications of dynamical systems analysis to turbulence problems were described by Bohr et al.
(1998). Some important early books on plasma turbulence are by Kadomtsev (1965), Sagdeev and
Galeev (1969), and Davidson (1972), but those do not achieve the breadth and unification for which
the present article strives. A recent review article that discusses some of the more practical aspects
of modeling turbulence in fluids and plasmas is by Yoshizawa et al. (2001); some of those topics were
treated in more detail by Itoh et al. (1999).

Some of the implications of fluid-turbulence theory for plasmas were discussed by Montgomery

2 The principal abbreviations used in this article are summarized in Appendix K.1 (p. 302).
3 A useful survey of important topics in plasma physics can be found in volumes 1 and 2 of the Handbook
of Plasma Physics, edited by Rosenbluth and Sagdeev (1984).
4 The emphases in these books are loosely orthogonal. Frisch (1995) gives an elegant introduction to 3D
turbulence, including an authoritative discussion of intermittency. McComb (1990) [a worthy successor to
the earlier, now out-of-print, book by Leslie (1973b)] is strong on statistical and field-theoretic methods such
as the direct-interaction approximation. Lesieur (1997) emphasizes Markovian statistical closures and much
real-world phenomenology, including two-dimensional turbulence.
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(1977) and Montgomery (1989). In Secs. 1.1 (p. 9) and 1.2 (p. 10) I shall expand on his remarks
and briefly describe the important similarities and differences between turbulence in plasmas and in
neutral fluids. That introductory discussion is not self-contained, being intended to quickly inform
experts about the emphasis and special topics to be discussed here. The topics will all be revisited in
a self-contained way in the body of the article.

1.1 Similarities between plasma and neutral-fluid turbulence

By definition, turbulence involves random motions of a physical system, so statistical descriptions
are required at the outset.

1.1.1 The statistical closure problem

Turbulence is an intrinsically nonlinear phenomenon, so microscopically it exhibits extreme
sensitivity to initial conditions or perturbations. To extract a macroscopic description that is robust
under perturbations, it is useful to treat the turbulent fields as random variables and to introduce
various statistical averaging procedures. The fundamental difficulty faced by any statistical description
of turbulence is the statistical closure problem, 5 in which the time evolution of cumulants [defined in
Sec. 3.5.2 (p. 59)] of order n for some field ψ is coupled by the nonlinearity to cumulants of order n+1.
For example, if the equation of motion is schematically ∂tψ = 1

2
Mψ2 and one writes ψ = 〈ψ〉 + δψ,

where 〈. . .〉 denotes either a time average (a concept well defined only in a statistically steady state)
or an ensemble average over random initial conditions, 6 then

∂t〈ψ〉= 1
2
M〈ψ〉2 + 1

2
M〈δψ2〉, (1a)

∂t〈δψ(t)δψ(t′)〉=M〈ψ(t)〉〈δψ(t)δψ(t′)〉 + 1
2
M〈δψ(t)δψ(t)δψ(t′)〉, (1b)

and so on. A moment-based statistical closure (approximation) provides a way of expressing a
cumulant of some order (say, 3) in terms of lower-order cumulants, thereby closing the chain of
coupled equations of which Eqs. (1) are the first two members. Representative general discussions of
the statistical closure problem include those by Kraichnan (1962a,b, 1966a, 1972, 1975a, 1988a), Rose
and Sulem (1978), Krommes (1984a,b), McComb (1990), and Frisch (1995).

The statistical closure problem is common to both plasmas and neutral fluids, and indeed to any
nonlinear system that exhibits random behavior. Most work has been done on quadratic nonlinearity.
The familiar Navier–Stokes (NS) equation (NSE) of neutral fluids (Sec. 2.1.1, p. 23) is quadratically
nonlinear, as is the Klimontovich kinetic equation of plasma physics (Sec. 2.2.2, p. 27). Furthermore,
in strongly magnetized plasmas an x-space fluid description is often adequate, giving rise to various
multifield, quadratically nonlinear generalizations of the NSE [see, for example, Sec. 2.4.3 (p. 34)].
The dominant plasma nonlinearity describes advection by E ×B drift motions across the magnetic
field B. A very early but clear paper that discussed the importance of E × B drifts to turbulent
plasma transport was by Spitzer (1960).

5 The discussion here relates to moment-based statistical closures. More generally, one can consider
approximations to entire probability density functions (PDF’s). PDF-based closure methods are discussed in
Sec. 10.4 (p. 224).
6 For some discussion of the differences between various averaging procedures, see Appendix A.7 of Balescu
(1975).
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Although much neutral-fluid research has been on three-dimensional (3D) turbulence, certain
important applications drawn from geophysics (Holloway, 1986) can profitably be described as 2D;
there are profound differences between 2D and 3D turbulence. In plasmas the presence of a strong
magnetic field introduces a fundamental anisotropy between the directions perpendicular and parallel
to B; various 2D or quasi-2D fluid models result (Sec. 2.4, p. 33), and their physical behavior has
much in common with the 2D neutral fluid. An important review article on 2D turbulence is by
Kraichnan and Montgomery (1980).

1.1.2 Fundamental physics vs practical engineering

Just as in neutral fluids, a dichotomy has arisen in plasma research between the “engineering”
and “fundamental-physics” approaches to the description and calculation of turbulence. To date, the
overwhelmingly dominant practical application of plasma physics has been controlled thermonuclear
fusion research (CTR). The extreme practical complexity of magnetic confinement devices such
as the tokamak (Sheffield, 1994) has inevitably led to a predominance of engineering (“mixing-
length”) estimates of “anomalous” 7 transport, confinement scaling laws based on statistical analyses
of experimental data (Kaye, 1985; Kaye et al., 1990), etc. Many analogies can be drawn to practical
applications of neutral-fluid turbulence—statistical closure theory is hopelessly inadequate for the
detailed quantitative design of aircraft, for example. Nevertheless, although the engineering approach
is clearly necessary, the need for systematic physics- and mathematics-based foundations exists in
plasma physics just as it does in neutral fluids.

1.1.3 The role of computing

Finally, the continuing development of ever faster, ever cheaper computing power (Orszag and
Zabusky, 1993) has influenced the fields of plasma as well as neutral-fluid turbulence. In both fields this
shows up most clearly in engineering-type modeling of real physical situations. In fusion research, for
example, a Grand-Challenge “Numerical Tokamak” project (Cohen et al., 1995) attempts to employ
state-of-the-art 3D simulations to address practical issues of turbulence and transport in tokamaks.
(An already enormous and rapidly evolving literature on those topics is not reviewed here.) One
may hope that this aggregation of sophisticated codes will eventually shed light on fundamental and
conceptual issues of plasma turbulence just as recent numerical studies of intermittency have done in
neutral fluids [see, for example, Chen et al. (1993)].

1.2 Differences between plasma and neutral-fluid turbulence

The differences between this review and a conventional review of neutral-fluid turbulence theory
are more numerous than the similarities.

7 Anomalous refers to effects beyond those due to Coulomb scattering involving discrete particles. It is an
unfortunate and somewhat outmoded term that suggests profound mystery and ignorance. In fact, it is the
premise of this article that much of the mystery has now been dispelled.

10



1.2.1 Heuristics vs systematics

Philosophically, there has been in plasma physics a disturbing emphasis on heuristics rather than
systematics. The need for the engineering approach to CTR has already been stated and is not in
question; however, there has been great confusion over what constitutes a properly systematic theory
of plasma turbulence. One goal of this article is to draw this line more clearly. In particular, it
must be emphasized that in the analytical theory of turbulence described here the starting point is
a given nonlinear equation [representative ones are described in Sec. 2 (p. 22)], and the goal is to
deduce by mathematically defensible operations physically measurable properties (usually statistical)
of that equation. This differs substantially from the problem faced by an experimentalist, who can
perform direct measurements but is typically not confident of the (appropriately simple) underlying
equations. Nevertheless, it is worth repeating that a sound theoretical framework can greatly enhance
one’s ability to interpret experimental data.

1.2.2 Rich linear theory of plasmas

Mathematically, profound differences between the NSE and plasmas show up already in linear
theory through distinctive forms of the linear Green’s functions g0:

g0,NSE = [−i(ω + ik2µcl)]
−1, (2a)

g0,plasma = [−i(ω− k · v + iε)]−1δ(v − v′) = [i P(ω − k · v)−1 + πδ(ω− k · v)]δ(v − v′), (2b,c)

where µcl is the classical kinematic molecular viscosity, ε is a positive infinitesimal that ensures
causality, P denotes principal value, and the unmagnetized, collisionless form of the plasma function
is displayed. Linearized Navier–Stokes dynamics describe (in the absence of mean fields) viscous
dissipation. In unmagnetized plasmas, on the other hand, particles free-stream in linear order, and
the Landau resonance ω−k·v = 0 [captured by the delta function in Eq. (2c)] gives rise to collisionless
dissipation (Landau damping). It is important to note that g0,plasma is the particle Green’s function; the
full Green’s function R0 of the linearized Vlasov equation contains an important extra term relating
to self-consistent dielectric response [see Eq. (36a)]. (For the NSE, R0 = g0.) Plasmas can support
a rich abundance of linear motions, including both ballistic particle streaming and collective wave
effects; the waves are supported by the nonresonant particles [described by the principal-value term
in Eq. (2c)]. The dominance of linear phenomena can in some circumstances lead to the possibility of
a weak- rather than strong-turbulence description. (One interpretation of the linear fluid propagator
for small µcl is that all particles are resonant.)

Of course, waves are present in certain descriptions of neutral fluids as well, and weak-turbulence
descriptions have been profitably employed in that context. A frequently cited example is gravity
waves in the ocean (Phillips, 1977). However, it is easier for plasmas to support linear collective
oscillations because of the self-consistent coupling between the particles and Maxwell’s equations in
the presence of the long-range Coulomb interaction. What results is an easily polarizable dielectric
medium that exhibits rich collective behavior, particularly in the presence of a magnetic field. 8

The most fundamental description of plasmas is at the level of a phase-space (position x

8 The literature on microturbulence in magnetized, especially toroidal plasmas comprises many thousands of
papers. One early review article is by Tang (1978).
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and velocity v) fluid. 9 In a useful ordering appropriate for laboratory fusion plasmas, the plasma
discreteness parameter 10 εp is very small (the plasma is “weakly coupled”), so to zeroth order the
many-particle plasma can be idealized as a continuum phase-space fluid. Even in the limit εp → 0,
however, single-particle (ballistic) effects can be important, so it is often natural to view the plasma as
a collection of interacting waves and particles. The simultaneous presence of both waves and particles
means that plasmas have more and different linear decorrelation mechanisms than does the neutral
fluid. Dupree (1969) argued that the presence of such mechanisms actually simplifies the description
of plasma turbulence; certainly they have consequences for the transport of macroscopic quantities
such as particles or heat. Unfortunately, because waves are collective oscillations involving an infinite
number of particles, questions of double counting can arise [see the discussion of clump formalisms in
Sec. 4.4 (p. 119)], a difficulty not present in the neutral fluid.

1.2.3 A nonlinear dielectric medium

Although introductory plasma-physics texts [e.g., Krall and Trivelpiece (1973), Chen (1983),
Nicholson (1983), Stix (1992), Nishikawa and Wakatani (1994), Goldston and Rutherford (1996), or
Hazeltine and Waelbroeck (1998)] stress the calculation and role of the linear dielectric function Dlin,
the true plasma is a nonlinear dielectric medium. The form of the completely nonlinear dielectric
function D is not well understood (or discussed) even for neutral fluids; it is much more complicated
for the plasma. Great confusion has arisen on this point, some of which I hope to dispel in this article.
A thorough discussion of the nonlinear dielectric function for turbulent mediums is given in Sec. 6.5
(p. 170).

1.2.4 Spectral paradigms

Hand-waving discussions of the behavior of turbulent fluids and plasmas often invoke what I
shall call spectral paradigms—scenarios by which energylike quantities are injected, transferred, and
dissipated in the medium. Those for the NSE are quite different from those for typical fusion-plasma
applications. The well-known Kolmogorov scenario for 3D NS turbulence [see, for example, Landau
and Lifshitz (1987), Hunt et al. (1991), and Frisch (1995)] involves energy injection by random
(typically Gaussian) forcing at long wavelengths, nonlinear and semilocal cascade of energy through a
well-defined inertial range of intermediate scales, and viscous dissipation at very short scales. In this
fluid scenario the macroscale Reynolds number is very large and the inertial range is asymptotically
infinite in extent. The detailed physics of the inertial and dissipation ranges, especially higher-order
statistics and intermittency, is the subject of intense current research. For some references, see Sec. 10
(p. 220) and HydrotConf (2000).

9 In plasma-physics jargon, descriptions and/or phenomena that require velocity space are called kinetic
whereas solely x-space descriptions are called fluid. In linear plasma kinetic theory, the fluid limit means
phase velocities greater than the characteristic particle velocity. Compare the adiabatic limit, discussed in
footnote 48 (p. 35).
10 εp is the inverse of the number of particles in a Debye sphere of radius λD: εp

.= (nλ3
D)−1, where

λ−2
D ≡ k2

D
.=
∑

s(4πnq
2/T )s, ns is the density, Ts is the temperature, and qs is the charge of species s.

For strongly coupled plasmas (Ichimaru, 1992), one frequently uses the alternate parameter Γ .= e2/aT ,
where a .= (3/4πn)1/3 measures the interparticle spacing. These parameters are related by Γ = O(ε2/3p ). The
weak-coupling regime is εp � 1 or Γ� 1.
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In plasmas, in contrast, two factors conspire against the development of a well-developed inertial
range: the abundance of linear dissipation mechanisms (Landau damping, in particular), which limit
the minimum excitable scale; and the nature of the forcing, which is often better modeled by a self-
limiting linear growth-rate term than by an external random forcing that can be made arbitrarily
large. 11 This situation unfortunately limits the amount of practically useful asymptotics that can
be done, but fortunately focuses the plasma-turbulence problem more toward the relatively well-
understood issue of transport due to the energy-containing modes. Thus in the present article relatively
little is said about intermittency and higher-order statistics. That is probably the most important way
in which this review fails to adequately describe state-of-the-art research activities in fundamental
neutral-fluid turbulence. Nevertheless, I shall briefly introduce in Sec. 10 (p. 220) a few relevant topics,
including some recent results on the probability density function (PDF) for forced Burgers turbulence,
which both serves as an illustrative mathematical example and arises naturally in a variety of physical
applications.

1.2.5 Interesting mean-field dynamics

In the absence of boundaries or with periodic boundary conditions, the NSE admits solutions
with zero mean velocity. The Vlasov description of plasmas, however, is based on a particle PDF,
which like all PDF’s can be considered (Sec. 3.5.1, p. 59) to be the nonvanishing mean of a singular
microdensity (Sec. 2.2.2, p. 27). At its core the plasma requires (at least) a mean-field theory.

Even when the fluid description of plasmas is adequate (as in fusion contexts it frequently
is), the electromagnetic nature of plasmas guarantees a mean-field dynamics richer than that of
the neutral fluid. Magnetic-field geometries, mean electric fields, background profiles (of density,
temperature, and flow velocity), microturbulence, transport, and extremely complicated boundary
conditions are intricately coupled. Bifurcation scenarios have been identified—first experimentally,
then analytically—in which abrupt transitions between regimes of low (L) and high (H) energy
confinement times occur because of subtle changes in macroscopic conditions. The details are so
complex and applications-specific that those scenarios are largely beyond the scope of this article in
spite of their great practical importance. Nevertheless, a few words on mean-field dynamics can be
found in Sec. 12.6 (p. 245). Additional discussion about the importance and modeling of inhomogeneity
effects in plasmas is given by Yoshizawa et al. (2001).

1.3 Why a theory of plasma turbulence is needed

Although this article is primarily about the systematic mathematical description of plasma
turbulence, it is useful to be aware of the practical applications, experimental data, and intuitive
dynamical considerations that motivate the development of more formal theories.

1.3.1 Transport in plasmas

From the point of view of practical applications such as fusion, the most important output of a
theory of turbulence is the rate of turbulence- or fluctuation-induced transport of some macroscopic

11 However, Rose (2000) has pointed out that in the context of laser–plasma interactions a useful (non-self-
consistent) model is to prescribe the rate of injection of energy into Langmuir waves in a spatially coherent,
temporally incoherent manner.

13



quantity such as density n, momentum p, or temperature T . Typically these quantities are assumed to
have macroscopic variations in the x direction, 12 such as −∂x ln 〈n〉 .= L−1

n
.
= κn. (The mean values of

those fields are said to be the background profiles; Ln is called the density scale length.) The advective
contribution to the spatial particle flux Γ in the x direction is

Γx = 〈δVx(x, t)δn(x, t)〉 =
∑
k

〈δVx,k(t)δn∗k(t)〉, (3a,b)

where δVx is the fluctuation in the x component of the fluid velocity (usually the E × B drift
VE

.
= cE × b̂/B, where b̂ is the unit vector in the direction of the magnetic field) and a discrete

spatial Fourier transform was introduced [see Appendix A (p. 262) for conventions]. Formula (3a)
shows that the flux can be evaluated from an equal-time Eulerian 13 cross correlation function. The
form (3b) shows that transport is determined by the following properties of the turbulent (usually
steady-state) fluctuations: (i) wave-number spectra (including both shape and overall intensity); and
(ii) the phase shift between the advecting velocity and the advected quantity. It is important to
note that although turbulent flux is directly specified by a second-order correlation function, higher-
order correlations enter indirectly in determining the actual spectra and phase shift, according to the
discussion of the statistical closure problem in Sec. 1.1 (p. 9).

If the transport is sufficiently local in space and time [a question still actively debated; see
Sec. 12.4 (p. 241)], it can be described by a Fick’s law 14 such as Γx = −D∂x〈n〉. The particle
transport coefficient D can be estimated from the random-walk formula (Uhlenbeck and Ornstein,
1930; Chandrasekhar, 1943) D ∼ ∆x2/2∆t, where ∆t is a characteristic time and ∆x is the typical
spatial step taken during that time. More precisely, when classical dissipation is very small D can in
principle be calculated from the pioneering formula of Taylor (1921):

D =
∫ ∞

0
dτ 〈δVx(τ )δVx(0)〉, (4)

where δV (τ ) denotes the Lagrangian dependence δV (τ )
.
= δV (x(τ ), τ), x(τ ) being the actual

turbulent trajectory of a fluid element. Formula (4) can be estimated as D ∼ V
2
τac, where V is

the rms velocity fluctuation and τac is a Lagrangian correlation time. Alternatively, a Lagrangian
mixing length ` can be defined by `

.
= V τac; then D ∼ V `. Frequently V and ` can be estimated

by dimensional considerations [Appendix B (p. 264), but see the warning in footnote 175 (p. 141)].

12 Unfortunately, this convention, universally adopted in plasma-physics research, differs from the one used
for geophysical and laboratory flows, for which macroscopic variations are taken to be in the y direction. The
coordinate system usually used for neutral-fluid shear flows—namely, x ≡ streamwise, y ≡ inhomogeneity,
z ≡ spanwise—translates via a cyclic permutation of −1 to z ≡ magnetic-field direction, x ≡ inhomogeneity,
y ≡ orthogonal or poloidal direction.
13 By definition, in an Eulerian correlation function the space and time coordinates are specified
independently. Eulerian correlations are (in principal) easy to measure in the laboratory, for example by
inserting probes. In contrast, in a Lagrangian correlation function the spatial variable is evaluated along
the time-dependent trajectory of a fluid element. Lagrangian correlations are very difficult to measure
experimentally. One technique is optical tagging (Skiff et al., 1989); the state of the art was reviewed by Skiff
(1997). Unfortunately, that is ineffective in the very hot cores of large experiments; appropriate measurement
and visualization techniques are still under development.
14 When self-consistency effects are important, this statement is an oversimplification; see Sec. 6.5 (p. 170).
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However, the difficulties of precisely calculating such Lagrangian quantities are severe in general
(Lumley, 1962; Kraichnan, 1964a; Weinstock, 1976). Much of the statistical theory describeqd in this
article can be viewed as addressing this point in one way or another.

There are both “classical” and turbulent contributions to transport. For plasmas, classical
contributions are defined to be those stemming from Coulomb collisions between two discrete
particles (in the presence of dielectric shielding) and are well understood; see Sec. 2.3.2 (p. 30).
They are formally described by the Balescu–Lenard collision operator [Eq. (32)]; the Landau (1936)
approximation to that operator [Eq. (34)] is usually used in practice. Classical transport was reviewed
by Braginskii (1965).

For transport across a strong magnetic field, the particle transport 15 is intrinsically ambipolar (a
consequence of momentum conservation): D⊥ = ρ2

eνei = ρ2
i νie, where ρs

.
= vts/ωcs is the gyroradius of

species s and νss′ is the collision frequency for momentum exchange between species s and s′. Here
vts

.
= (Ts/ms)

1/2 and ωcs
.
= qsB/msc are the thermal velocity and gyrofrequency, respectively.

Classical discreteness effects are very small in hot plasmas. A representative value for the
neoclassical ion thermal diffusivity in the experimental Tokamak Fusion Test Reactor (TFTR; Grove
and Meade, 1985) was 16 5 cm2/s; observed values were several orders of magnitude greater. Such
findings suggest, in agreement with the theory to be introduced in Sec. 1.3.3 (p. 16), that even in the
limit εp → 0 collective effects remain, involving a turbulent mixture of waves and eddies that usually
strongly dominate the transport.

1.3.2 Selected observational data on plasma turbulence

In magnetized plasmas Bohm diffusion, with coefficient

DB
.
= cTe/eB, (5)

provides an important reference level for turbulent transport across a strong magnetic field. In
describing experiments on arc plasma discharges, Bohm (1949) actually wrote D = 104T/B (T in eV
and B in kG), which is usually quoted as D = 1

16
DB . He did not provide a theoretical justification

for the factor of 1
16

; see Spitzer (1960) for some related discussion. For parameters typical of
envisaged fusion reactors, DB is unacceptably large. Early experiments on the stellarator configuration
(Miyamoto, 1978) were plagued by diffusion with the Bohm level and magnetic-field scaling. Taylor
(1961) proved that Bohm’s formula represents the maximum value that cross-field diffusion can attain,
and it was feared that turbulence-induced transport in all magnetic confinement devices might achieve
that maximum. Fortunately, later and more detailed experimental and theoretical research revealed
that the situation need not be so dire. In particular, the magnitude of transport in modern tokamak
configurations is several orders of magnitude below the Bohm level. As we will see in the next section,

15 In the toroidal field configurations characteristic of magnetic confinement, the classical formulas must be
corrected to include neoclassical enhancements (Galeev and Sagdeev, 1967; Rosenbluth et al., 1972; Hinton
and Hazeltine, 1976) due to magnetically trapped particles that execute so-called “banana” orbits (Furth,
1975).
16 Representative TFTR parameter values as quoted by Redi et al. (1995) for shot #67 241 were major
radius R = 2.6 m, minor radius a = 0.96 m, toroidal magnetic field B = 4.5 T, central electron density
ne0 = 3.8× 1013 cm−3, and central electron temperature Te0 = 6.0 keV.
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simple theory typically predicts 17 a gyro-Bohm scaling [Eq. (6)], although controversy remains about
the proper form of the experimentally observed scaling with B (Perkins et al., 1993).

Recent experiments have shown that it is possible to dramatically suppress microturbulence in
the core of TFTR-scale plasmas by working in so-called enhanced reversed shear operating regimes
(Levinton et al., 1995). Although extremely important from a practical point of view, such details are
beyond the scope of this article, which addresses how to quantitatively calculate what happens when
turbulence is actually present.

1.3.3 Introduction to drift-wave transport

Elementary considerations can be used to illustrate formula (3) and motivate the need for a
theory of strong plasma turbulence. If E × B advection occurs in a region with density scale
length Ln, it is reasonable to believe that self-limiting density fluctuations δn can grow no larger
than ∇⊥δn ∼ ∇⊥〈n〉—i.e., if k⊥ is a typical fluctuation wave number, then 18 δn/〈n〉 . (k⊥Ln)−1.
Because electrons stream rapidly along field lines, they tend to establish a perturbed Boltzmann
response [frequently called adiabatic; see footnote 48 (p. 35)]: δn/〈n〉 ≈ e δϕ/Te, where ϕ is the
electrostatic potential. An estimate of the fluctuating E ×B velocity then leads to δVE . V∗, where
V∗ .

= (cTe/eB)L−1
n is the diamagnetic velocity. Alternatively, the characteristic nonlinear advection

frequency δω ∼ k⊥δVE is of the order of the diamagnetic frequency ω∗ .
= kyV∗: δω . ω∗. Drift waves

(Krall, 1968) with characteristic frequencies ω . ω∗ are ubiquitous in confined plasmas with profile
gradients (Horton, 1984, 1999). Order-unity line broadening, δω/ω = O(1), is one characteristic of a
strong-turbulence regime.

One can now estimate the flux (3a) by (temporarily and incorrectly) assuming maximal correlation
between δVE and δn; then Γ ∼ δVE δn ∼ V∗(k⊥Ln)−1〈n〉 ∼ (V∗/k⊥)(〈n〉/Ln) = −D∂x〈n〉, where
D

.
= (k⊥ρs)

−1(ρs/Ln)DB . Here ρs
.
= cs/ωci, where cs

.
= (ZTe/mi)

1/2 is the sound speed and Z is
the atomic number, is called the sound radius (the ion gyroradius computed with the electron
temperature); it was introduced here as a convenient normalization, but appears naturally in more
elaborate theories involving the ion polarization drift [see the derivation of the Hasegawa–Mima
equation in Sec. 2.4.3 (p. 34)]. Theory (essentially dimensional analysis) suggests that k⊥ρs is
characteristically of order unity, in which case

D ∼ (ρs/Ln)DB (6)

—so-called gyro-Bohm scaling. In practice ρs/Ln � 1 so D � DB , in agreement with recent
experimental observations.

The result (6) also follows from random-walk considerations if one estimates ∆x ∼ k−1
⊥ and

∆t ∼ (k⊥V∗)−1 ∼ ω−1∗ . But this approach highlights some uncertainties. It is not clear why the real
mode frequency should determine the autocorrelation time. If an oscillator of frequency Ω is damped
at the rate η, the area under the response curve, a measure of τac, scales with 19 (η/Ω)Ω−1 for η/Ω� 1,

17 More elaborate theories can be compatible with a variety of scalings; see the concluding paragraph of
Appendix B (p. 266).
18 This estimate is called the mixing-length level and is frequently attributed to Kadomtsev (1965). The
overly simplified discussion does not distinguish between electron and ion densities, which in the absence of
polarization-drift and finite-Larmor-radius effects are approximately equal by quasineutrality.
19 Specifically, Re

∫∞
0 dτ exp(−iΩτ − ητ) = η/(Ω2 + η2).
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introducing the possibility of additional parametric dependence [frequently η, which ultimately arises
from nonlinear effects, is proportional to the linear growth rate 20 γ, since it is γ that excites the
turbulence] and suggesting that the estimate (6) is merely an upper bound. One of the goals of a
proper theory of strong turbulence is to systematically determine such nonlinear damping rates and
thus to quantify the proper autocorrelation time to be used in calculations of transport coefficients.

1.3.4 An extended quote from Kadomtsev (1965)

Most of the points made so far in this introductory discussion are far from new. Consider,
for example, the following extended quotation from the Introduction to the seminal, 35-year-old
monograph on plasma turbulence by Kadomtsev (1965) 21 (italics added):

“It is well known that a real plasma is rarely quiescent; as a rule many forms of noise and oscillation arise
spontaneously in the plasma. Langmuir pointed out that these fluctuations represent more than just harmless
oscillations about an equilibrium position and often wholly determine the character of the phenomena
occurring in the plasma. . . .

“Experiments with plasmas in a magnetic field and in particular experiments on magnetic containment
of a high temperature plasma in connection with controlled thermonuclear reactions have revealed further
unexpected phenomena essentially connected with oscillations in the plasma. Prominent amongst these is
the ‘anomalous’ diffusion of a plasma across a magnetic field. . . .

“Following the work of Bohm [(1949)], who suggested that the enhanced diffusion of a plasma is due to
random oscillations of the electric field set up by an instability, the term ‘turbulence’ has been increasingly
applied to this process. . . . [W]hen applying the term ‘turbulence’ to a plasma, it is used in a broader sense
than in conventional hydrodynamics. If hydrodynamic turbulence represents a system made up of a large
number of mutually interacting eddies, then in a plasma we have together with the eddies (or instead of
them), also the possible excitation of a great variety of oscillations. . . .

“During the eddy motion of an ordinary fluid the separate eddies, in the absence of their mutual
interaction, do not propagate in space. When their interaction is included the eddies ‘spread out’ in space
with time, though the corresponding velocity is not large and therefore each separate eddy has a considerable
time available to interact with its neighbours. In this case we are faced with a strong interaction of excitations
and correspondingly with a strong turbulence. On the other hand, during a wave motion the separate wave
packets can separate from one another over large distances. In this case the interaction of separate wave
packets with one another is weak, and we can therefore refer to a weak turbulence. The motion of the plasma
in the weakly turbulent state, constituting a system of weakly correlated waves, shows greater similarity to
the motion of the wavy surface of the sea or the oscillations of a crystal lattice than to the turbulent motion
of an ordinary fluid.

“The theoretical consideration of a weakly turbulent state is considerably facilitated by the possibility
of applying perturbation theory, i.e., an expansion in terms of a small parameter such as the ratio between
the energy of interaction between the waves and their total energy. . . .

“For the case of very small amplitude, when the interaction between the oscillations can be neglected,
one can use the so-called quasi-linear approximation in which only the reaction of the oscillations on the
average velocity distribution function of the particles is considered. . . .

20 It is worth emphasizing that calculations of linear growth rates in realistic confinement geometries are far
from trivial, sometimes requiring large-scale codes (Rewoldt et al., 1982) and hours of supercomputer time.
21 Kadomtsev’s review was first published in Russian in 1964. I cite the 1965 English translation because it
was that book that strongly influenced the predominantly Western plasma-physics research reviewed in this
article.
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“Unfortunately the quasi-linear method has only a fairly narrow field of application, since non-linear
interaction of the oscillations already begins to play a considerable part at not very large amplitudes. . . .

“In the simplest variant of the kinetic wave equation, only three-wave processes are considered, namely,
the decay of the wave k, ω into two waves k′, ω′ and k′′, ω′′, and the merging of two waves into one.
Such processes are important only for dispersion relations ωk = ω(k) for which it is possible to satisfy
simultaneously the laws of conservation of energy and of momentum: k′′ = k − k′, ωk′′ = ωk − ωk′ . When
these conditions are not satisfied, scattering of the waves by the particles is a more important process and
can be taken into account only on the basis of a full kinetic theory. . . .

“Unfortunately, in numerous practical cases one is faced not by weak but by strong turbulence. In
particular, strong turbulence is related to an anomalous diffusion of the plasma across the magnetic field.
To determine the fluctuation spectrum in a strongly turbulent plasma and the effect of these fluctuations
on the averaged quantities, it is sometimes possible to use the analogy with ordinary hydrodynamics and, in
particular, to apply a phenomenological [mixing-length] description of the turbulent motion. . . .

“However, in a plasma other strongly turbulent motions which are different from the eddy motion of an
ordinary fluid may develop. It is therefore desirable to have available more systematic methods for describing
strong turbulence. In our view, such a method may be the weak coupling approximation 22 . . . . In this
approximation, . . . the turbulent motion is described by a system of non-linear integral equations for the
spectral density Ikω and the Green’s function Γkω describing the response of the system to an external force.
As the coupling between the oscillations decreases, this system of equations goes over into the kinetic wave
equation.

“In conventional hydrodynamics, the weak coupling equations have been obtained by Kraichnan [(1959b)]
who showed that in their simplest form the weak coupling equations lead to a spectrum which is different
from Kolmogorov’s spectrum in the region of large k. As will be shown . . . , the reason is that in Kraichnan’s
equations the adiabatic character of the interaction of the short wave with the long wave pulsations is not
taken into account. The consideration of this adiabatic interaction makes it possible to obtain improved weak
coupling equations. . . .

“As we have mentioned earlier, the turbulent diffusion problem goes back to Bohm [(1949)], who put
forward the hypothesis that an inhomogeneous plasma in a magnetic field must always be unstable because
of the presence of a drift current of the electrons relative to the ions. If this be in fact so, the corresponding
instability must lead to a turbulent ejection of the plasma with a velocity of the order of the drift velocity.
According to Bohm, this process can be considered phenomenologically as a diffusion with coefficient of
diffusion of the order DB = 104T/H , where T is the electron temperature in electron volts and H the
magnetic field in kilogauss.

“Bohm’s argument gave rise to the illusion of a universal validity for this coefficient and as a result
attempts to obtain Bohm’s coefficient from more general considerations have continued to this day. 23 It has
now become evident, however, that the coefficient of turbulent diffusion cannot be obtained without a detailed
investigation of the instability of an inhomogeneous plasma and in particular of its drift instability. . . . ”

In large measure the research reviewed in the present article provides a mathematical
systematization of the physical concepts emphasized by Kadomtsev, particularly for the description
of strong plasma turbulence. I discuss quasilinear theory in Sec. 4.1 (p. 90), weak-turbulence theory in
Sec. 4.2 (p. 98), and the direct-interaction approximation (Kadomtsev’s weak-coupling approximation)

22 Kadomtsev is referring to the direct-interaction approximation of Kraichnan (1959b); see Sec. 5 (p. 126)
for detailed discussion.
23 One model that leads unambiguously to Bohm diffusion is the 2D thermal-equilibrium guiding-center
plasma (Taylor and McNamara, 1971). Of course, a turbulent plasma is not in thermal equilibrium, and the
true physics is three dimensional.
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in Sec. 5 (p. 126). Facets of drift-wave turbulence are discussed throughout the article: for example,
fundamental equations in Sec. 2.4 (p. 33); basic nonlinear dynamics and statistical closures in Sec. 8.4
(p. 206); submarginal turbulence mechanisms in Sec. 9 (p. 210); and the wave kinetic equation in
Appendix G.3 (p. 291). I shall use the previous quotation as a focus for my concluding remarks in
Sec. 13 (p. 251).

1.4 Nonlinear dynamics and statistical descriptions

Experimental observations make it abundantly clear that plasmas can be turbulent. Some
indication of the physical and mathematical problems that must be described and solved by a
satisfactory theory of plasma turbulence may be found by surveying the many years of research
on neutral fluids (Monin and Yaglom, 1971; Frisch, 1995) and recent advances in the theory of
nonlinear dynamical systems (Lanford, 1982; Lichtenberg and Lieberman, 1992; Meiss, 1992; Ott,
1993). It is now well known that such systems can exhibit extreme sensitivity to small changes in
initial conditions; that observation is sometimes used to justify various statistical assumptions such
as mixing or ergodicity (Zaslavskǐı and Chirikov, 1972). Gibbsian thermal-equilibrium solutions can
be found for the Euler equation 24 truncated to a finite number of Fourier modes. Although extensive
research on the NSE in the presence of forcing and dissipation shows that actual turbulent steady
states are far from equilibrium, statistical methods have made substantial inroads. A fundamental
difficulty with the statistical approach is that nonlinear systems can also display a tendency toward
self-organization (Hasegawa, 1985). Certain fluid equations admit the possibility of soliton solutions;
in plasmas, the Vlasov equation can support Bernstein–Greene–Kruskal (BGK) modes (Bernstein
et al., 1957). Nonlinear systems can be intermittent; i.e., fluctuations can be distributed sparsely
in space, with turbulent patches intermixed with laminar ones. This observation argues against
theories pinned too closely to Gaussian Ansätze. On the other hand, pronounced intermittency does
not seem to dominate most laboratory plasmas. 25 Extensive analyses of diagnostic and simulation
data seem to support the basic ideas of random-walk processes, so one anticipates that reasonable
quantitative predictions of transport coefficients should be possible at least for idealized situations.
Some general remarks on the relationships between statistical closures and nonlinear dynamics were
made by Krommes (1984b). Many of the topics mentioned in this paragraph have been discussed in
the context of plasmas by Horton and Ichikawa (1996).

Ruelle (1976) stated that “[i]t would be a miracle if the usual procedure of imposing stationarity
. . . and looking for a Gaussian solution would lead to results much related to physics.” Indeed, a
simple argument given in Sec. 3.8.1 (p. 71) proves that the fluctuations in forced, dissipative steady
states cannot be exactly Gaussian. Nevertheless, that does not preclude the possibility that some sort
of quasi-Gaussian hypothesis may be useful if it is applied in an appropriate way. In fact, although
the renormalized statistical moment closures described later retain selected terms of all orders in non-
Gaussian statistics, their structure can both technically and heuristically be understood in terms of a
perturbation theory based on statistics that are Gaussian at lowest order. It is true that in workable
closures the vast majority of all terms is omitted, so it is not surprising that success depends on
the question. Experience shows that conventional low-order moment-based closures can be strikingly

24 The Euler equation is defined to be the NSE with the dissipation set to zero.
25 Nevertheless, experimental observations clearly show that some intermittency is present. For more
discussion, see Sec. 12.4.3 (p. 244).
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successful for predictions of fluxes or spectra even for quite intermittent fluctuations [see Fig. 1 (p. 41)
and Sec. 8.5 (p. 208)]. Nevertheless, predictions of entire PDF’s require more sophisticated treatments;
see, for example, Sec. 10.4.3 (p. 227).

So far the discussion has focused on states of fully developed turbulence. The theory of nonlinear
dynamics is of particular importance in discussing the transition to turbulence; for some general
references, see Eckmann (1981) and Ott (1981). Although transition is largely outside the scope of
this article, the discussion I give in Sec. 9 (p. 210) of mechanisms for submarginal turbulence is best
understood in that context. A somewhat related although much less detailed scenario was proposed
by Manheimer et al. (1976) and Manheimer and Boris (1977); they suggested that information about
turbulent transport can be obtained by assuming that the steady-state profiles sit at linear marginal
stability. Further discussions of that hypothesis and its relation to nonlinear dynamics are given in
Secs. 9 (p. 210) and 12.4 (p. 241).

Clearly, the ultimate theory of turbulence will unify robust statistical predictions with detailed
understanding of the underlying nonlinear dynamics. Some of the useful techniques and results in this
direction were discussed by Bohr et al. (1998).

1.5 Resonance, nonresonance, averaging procedures, and renormalized statistical

dynamics

From the outset, plasma physics must face head-on the linear particle propagator g0 [Eq. (2c)] and
especially its nonlinear generalizations. Distinctive formalisms and lines of research can be classified by
how nonlinear corrections to the free-streaming motion are treated. In weak-turbulence theory (WTT)
waves are the central entities. In the presence of a wave-induced potential, nonresonant particles
nonsecularly oscillate around a streaming oscillation center, which can be defined with the aid of
perturbative transformations that remove interaction terms in the Hamiltonian to desired order.
Those averaging procedures can be viewed as special cases of general ensemble-averaging techniques
and thus nominally fall within the purview of this article. Although a complete account cannot
be given here, modern averaging techniques in the form of Lie transforms are reviewed briefly in
Appendix C (p. 267); they have important applications to the derivations of the gyrokinetic and
gyrofluid equations that underpin the modern description of strongly magnetized plasmas. The role
of the oscillation center in quasilinear theory is discussed in Sec. 4.1.3 (p. 95).

A particle resonant with a single wave can be trapped; if multiple waves are present, stochasticity
is likely to ensue and the resonant particles are likely to diffuse. A description of resonant diffusion is
not accessible from the nonresonant averaging procedures. Furthermore, in the presence of stochastic
diffusion, an intrinsically nonlinear phenomenon, the Landau resonance is broadened, rendering for
sufficiently strong turbulence the clean distinction (2c) between resonant and nonresonant particles
useless; resonant and nonresonant effects are inevitably mixed together in nonlinear regimes. The
formal renormalized statistical methods to be described later handle those general regimes naturally;
they are a significant advance over the approaches based on nonresonant perturbations. With the aid
of such formulations one can smoothly pass from a fully kinetic formalism to a strongly turbulent fluid
description, displaying at least at the formal level a beautiful unification of the statistical dynamics of
the physically disparate plasma and neutral fluid. Some of the material related to this topic [Secs. 6.5.4
(p. 176) and 6.5.5 (p. 178)] is published here for the first time.
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1.6 Outline of the article

In the present article I shall describe the progress that has been made on systematic statistical
formalisms for plasma turbulence, with much reference to earlier corresponding work on neutral fluids.
No claim is made that statistical theories as they presently exist are adequate to describe the full range
of random and coherent nonlinear phenomena known to be exhibited by plasmas, or that such theories
can usefully be applied to the calculations of turbulent transport in complicated practical situations.
It is clear that large-scale direct numerical simulations will continue to play an important role in
quantifying turbulence phenomenology, as will various nonstatistical analytical theories; however,
those are subjects for other review articles.

The subsequent discussion is organized as follows. I begin in Sec. 2 (p. 22) by introducing a
representative sampling of the fundamental equations that are generally used for descriptions of
plasma turbulence. In Sec. 3 (p. 46) I give an elementary introduction to the statistical theory
of turbulence, including both rigorous statistical mechanics and phenomenology [Secs. 3.1 (p. 46)
through 3.8 (p. 71)] as well as statistical closure techniques (Sec. 3.9, p. 76). Section 4 (p. 90) is
devoted to a review of the historical development of statistical theories of turbulent plasmas, including
quasilinear theory (QLT; Sec. 4.1, p. 90), weak-turbulence theory (WTT; Sec. 4.2, p. 98), resonance-
broadening theory (RBT; Sec. 4.3, p. 108), and the clump formalism (Sec. 4.4, p. 119); conceptual
difficulties with the last approach are stressed. In Sec. 5 (p. 126) Kraichnan’s seminal direct-interaction
approximation (DIA), a theory of strong turbulence, is discussed in detail. I turn in Sec. 6 (p. 146)
to the generating-functional formalism of Martin, Siggia, and Rose (MSR; 1973), which provides
a most elegant unification of much earlier research and many clumsy techniques. A brief history
of renormalization techniques is given in Sec. 6.1 (p. 147). The functional apparatus for closure is
described in Sec. 6.2 (p. 153); the DIA emerges as the natural 26 lowest-order MSR renormalization.
Non-Gaussian effects are discussed in Sec. 6.3 (p. 165). A path-integral representation of MSR theory
is given in Sec. 6.4 (p. 166). In Sec. 6.5 (p. 170) the MSR formalism is used to derive a formally
exact expression for the nonlinear plasma dielectric function. The reductions of the renormalized
equations to QLT, WTT, and RBT are indicated, and the important role of self-consistency between
the particles and the fields is stressed. In Sec. 7 (p. 181) various approaches alternative to that of MSR
are described briefly, including Lagrangian methods (Sec. 7.1, p. 181), Markovian approximations
(Sec. 7.2, p. 182), the use of eddy viscosity and the statistical description of interactions of disparate
scales (Sec. 7.3, p. 189), renormalization-group techniques (Sec. 7.4, p. 196), and statistical decimation
(Sec. 7.5, p. 197). Section 8 (p. 199) is devoted to modern developments in the statistical description of
plasmas, including the development and numerical solutions of a new realizable Markovian statistical
closure, the RMC. An introduction to the as yet poorly understood topic of submarginal turbulence
is given in Sec. 9 (p. 210). Some topics relating to higher-order statistics, intermittency, and coherent
structures are discussed in Sec. 10 (p. 220). Variational methods for bounds on transport are described
in Sec. 11 (p. 230). A variety of miscellaneous topics are considered in Sec. 12 (p. 235), including
Onsager symmetries for turbulence (Sec. 12.1, p. 235), the interpretation of various entropy balances
(Sec. 12.2, p. 238), statistical determination of mode-coupling coefficients (Sec. 12.3, p. 241), self-
organized criticality (Sec. 12.4, p. 241), percolation theory (Sec. 12.5, p. 245), some discussion of
the role and dynamics of mean fields (Sec. 12.6, p. 245), and brief remarks on zonal flows and
other long-wavelength fluctuations (Sec. 12.7, p. 248). The present state of affairs and prospects

26 As Martin (1976) has stressed, one should not infer that the formalism is a panacea.
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for the future are assessed in the concluding Sec. 13 (p. 251). Fourier-transform conventions are
recorded in Appendix A (p. 262). A brief review of dimensional and scaling analysis is given in
Appendix B (p. 264). In Appendix C (p. 267) aspects of the derivations of nonlinear gyrokinetic and
gyrofluid equations (central in modern plasma-turbulence research) are described, with particular
focus on methods based on modern Hamiltonian dynamics and Lie perturbation theory. In Appendix D
(p. 279) Chirikov criteria for stochasticity are discussed. Some formal aspects of RBT are considered in
Appendix E (p. 281). The generalization of spectral balance equations to include weak inhomogeneity
is described in Appendix F (p. 286). Details of the derivation of the Vlasov weak-turbulence wave
kinetic equation from the renormalized spectral balance equation are provided in Appendix G (p. 288).
Some miscellaneous discussion of Gaussian functionals is given in Appendix H (p. 293). Salient features
of the author’s DIA code, which has been used to study various problems in statistical plasma physics,
are described in Sec. I (p. 295). Steady-state solutions to a pedagogical three-mode version of the
EDQNM closure are derived in Appendix J (p. 297). Finally, notation is summarized in Appendix K
(p. 302).

An overview of selected papers discussed in this review is presented in Figs. 34 (p. 260) through 36
(p. 262) as a chronological time line that attempts to put into perspective the relatively recent plasma-
physics research, frequently derivative with respect to seminal work in other fields. The reader may
wish to scan those figures now, then return to them at the conclusion of the article. One cannot help
but be impressed by the broad scope and very high quality of the pioneering research on neutral
fluids, to which plasma physics owes a very large debt.

2 FUNDAMENTAL EQUATIONS AND MODELS FOR PLASMA

DYNAMICS

“Unaware of the scope of simple equations, man has often concluded that nothing short of
God, not mere equations, is required to explain the complexities of the world.” — Feynman

et al. (1964).

Turbulence is intrinsically a nonlinear phenomenon. Although much of the formalism to be
discussed below will be quite general, it must ultimately be applied to specific nonlinear equations.
Therefore I discuss in the present section some of the important equations and models of plasma
dynamics. 27 First, however, it is useful to introduce the fundamental equations of neutral-fluid
turbulence.

2.1 Fundamental equations for neutral fluids

I shall consider two extreme paradigms for the descriptions of neutral fluids: the
incompressible Navier–Stokes equation (Sec. 2.1.1, p. 23); and the infinitely compressible Burgers

27 The emphasis on the analysis of specific nonlinear equations already distinguishes the thrust of this
article from much of the experimental focus in fusion physics, in which the goal, not yet entirely successful,
is to deduce the operative model from appropriate diagnostics. [A somewhat related technique, in which
the effective mode-coupling coefficients of the turbulent plasma are inferred from experimental statistics, is
described in Sec. 12.3 (p. 241).]
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equation (Sec. 2.1.2, p. 25).

2.1.1 The Navier–Stokes equation

The continuity equation for mass density ρm is ∂tρm+∇ · (ρmu) = 0, where u is the fluid velocity.
I consider incompressible flows, ∇ ·u = 0; that constraint permits a constant-density solution. 28 The
incompressible Navier–Stokes equation (NSE) is then

∂tu + u ·∇u = −ρ−1
m ∇p + µcl∇2u, ∇ · u = 0. (7a,b)

Here p is the pressure and µcl is the classical kinematic viscosity (taken to be constant). Given the
incompressibility constraint (7b), one can determine p as a functional of u by taking the divergence
of Eq. (7a) and solving the resulting Poisson equation 29

ρ−1
m ∇2p = −∇ · (u ·∇u). (8)

In the absence of dissipation (µcl ≡ 0), Eq. (7a) is called the Euler equation.
If in Eq. (7a) the velocity is scaled to a typical velocity u and lengths are measured with respect

to a macroscopic scale L, then µcl is replaced by R−1, where the unique dimensionless parameter R
(frequently written as Re) is called the Reynolds number :

R .
= uL/µcl. (9)

Further discussion of R is given in Sec. 3.4.2 (p. 57).
When Eq. (7a) is subjected to nontrivial boundary conditions, turbulence can arise for sufficiently

large R; see many interesting visualizations in van Dyke (1982) and discussions by Lesieur (1997).
Upon averaging Eq. (7a) over many realizations of the turbulence, one finds the equation for the mean
velocity U

.
= 〈u〉 to be ∂tU + U ·∇U = ρ−1

m ∇ · T, where T
.
= −P I + 2ρmµclS + τ and

S
.
= 1

2
[(∇U ) + (∇U)T ], τ

.
= −ρm〈δu δu〉. (10a,b)

S is called the rate-of-strain tensor. The very important nonlinear term τ is called the Reynolds
stress 30 (Reynolds, 1895). It describes the effects of the fluctuations on the mean flow (through
turbulent transport of momentum, or turbulent viscosity); a good discussion was given by Tennekes
and Lumley (1972). In general, if one is to understand the macroscopic flow, one must either compute
or approximate τ . There are analogs of τ in all of the plasma equations to be described shortly. For
some discussion of nontrivial mean fields, see Sec. 12.6 (p. 245).

28 In theoretical discussions of incompressible turbulence, the constant ρm is frequently taken to be 1.
Although I shall usually retain ρm in the subsequent formulas for dimensional purposes, the equations will
be generally correct only for the case of constant ρm.
29 Note that the solution of Eq. (8) gives p as a spatially nonlocal functional of u. The effects of boundaries are
felt everywhere in the fluid; if the boundary is slightly changed, the effect is instantaneous. Physically, such
influences are transmitted by sound waves that propagate with infinite phase velocity in the incompressible
limit (which corresponds to zero Mach number).
30 τ is frequently defined without the minus sign. However, the present convention is correct for a positive
stress.
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To learn about properties of the fluctuations, it is useful to study energetics. Let the total velocity
be broken into mean and fluctuating parts, u = U + δu. Then the fluctuations obey

∂tδu + δu ·∇U + U ·∇δu + δu ·∇δu− 〈δu ·∇δu〉 = ρ−1
m ∇ · (−δp I + 2ρmµclδs), (11)

where δs is given by formula (10a) with U replaced by δu. Upon dotting Eq. (11) with δu and
averaging the result, one obtains [see, for example, Tennekes and Lumley (1972)] a balance equation
for the turbulent energy density E .

= 1
2
ρm〈|δu|2〉:

∂tE = −∇ ·W + P −D, (12)

where

W
.
= 〈δu(1

2
ρm|δu|2 + δp)〉 − 2ρmµcl〈δs · δu〉, P .

= τ : S, D .
= 2ρmµcl〈δs: δs〉. (13a,b,c)

W is the energy flux, P is called the production (of fluctuations), and D (clearly positive definite) is
called the dissipation. (D is a generic symbol applicable to all such balance equations; for the NSE, the
dissipation is conventionally represented by ε.) Production involves the interaction of the Reynolds
stresses with the mean strain; it is clearly a property of the large scales (P ∼ U3/L). 31 Dissipation,
however, is negligible at the large scales. Furthermore, under a spatial average with reasonable
boundary conditions the divergence of the energy flux vanishes, leading to the space-averaged balance
equation 32

∂tE = P −D. (14)

These observations strongly suggest that steady turbulent states are achieved by a flow of energy from
the large scales to the small ones. [This conclusion is correct for 3D, but must be modified for 2D; see
Sec. 3.8.3 (p. 74).]

For situations with nontrivial boundary conditions that can support a mean strain, P serves as
the driving term whereby turbulent fluctuations are excited. Analysis of this drive requires detailed
study of the turbulent dynamics of the energy-containing fluctuations. Sometimes, however, as when
one is studying properties of the very small scales of turbulence, such large-scale details are of no
concern. In those cases it is common to impose periodic boundary conditions on Eq. (7a) (so that
the mean field vanishes), but then to include a random, solenoidal Gaussian forcing f ext(x, t) on the
right-hand side of the NSE (7a) in order to ensure that a steady state is maintained against the
viscous damping. If f ext is intended to model the production terms, then its spectral support ought
to be at long wavelengths at least in 3D.

It is frequently useful to introduce the vorticity 33 ω = ∇× u, a measure of the local circulation
of the flow. An alternate representation of Eq. (7a) is

∂tu = u× ω − ρ−1
m ∇(p + 1

2
ρmu

2) + µcl∇2u, (15)

31 One estimates u .= 〈δu2〉1/2 ∼ U , a dimensional result that assumes fluctuations are excited by interactions
with the macroscopic flow. More generally, it is better to write P ∼ u3/L, which embraces the case (discussed
in the next paragraph) in which the mean field vanishes and the system is stirred externally.
32 Such spatially averaged balance equations form the starting point for variational approaches to rigorous
upper bounds on transport; see Sec. 11 (p. 230).
33 Some remarks on the significance of vorticity were made by Saffman (1981).
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where the identity u×(∇×u) = ∇(1
2
u2)−u·∇u was used. The vorticity equation follows immediately

as

∂tω = ∇× (u× ω) + µcl∇2ω, (16a)

which with the identity ∇ × (A × B) = A∇ · B + B ·∇A − (B∇ ·A + A ·∇B) together with
∇ · u = ∇ · ω = 0 reduces to

∂tω + u ·∇ω = ω ·∇u + µcl∇2ω. (16b)

In a 2D approximation in which ∂z = 0, so ω = ω ẑ, the vortex-stretching term ω · ∇u on the
right-hand side of Eq. (16b) vanishes and one arrives at the 2D vorticity equation

∂tω + u ·∇ω = µcl∇2ω. (17)

The equations of strongly magnetized plasma are closely related to Eq. (17) because of the 2D nature
of the E × B velocity. Because that equation conserves all powers of vorticity on the average in
the absence of dissipation whereas Eq. (16b) does not, there are important differences between the
dynamics of two- and three-dimensional turbulence.

It is natural to formulate a balance equation for energy E because the nonlinear terms in the NSE
conserve E under spatial averaging; one says that E is a quadratic nonlinear invariant. A second
quadratic invariant is the fluid helicity 34

H .
= ρmu · ω, (18)

as can be shown from Eqs. (15) and (16a). This quantity vanishes identically in 2D; in 3D it vanishes
for homogeneous, isotropic turbulence with mirror symmetry. That H does not vanish for isotropic
turbulence without mirror symmetry is important in the theory of the magnetic dynamo (Sec. 2.4.8,
p. 43).

2.1.2 Burgers equation

It is also useful to mention Burgers’s nonlinear diffusion equation (Burgers, 1974)

∂tu(x, t) + uux − µcl uxx = f ext(x, t), (19)

written here with external forcing. Although this equation is reminiscent of the NSE, it is really
very different since it is missing the nonlocal pressure term; the Burgers equation describes infinitely
compressible turbulence and is local. It is generally studied in 1D, 35 but can be formulated in higher
dimensions as well. It is sometimes used to test statistical approximations to the NSE in a simpler
context, is of interest in its own right (it displays a tendency to form shocks and highly intermittent

34 Helicity is related to the degree of linkage or knottedness of vortex lines, as discussed, for example, by
Moffatt (1969).
35 The 1D initial-value problem for the Burgers equation can be solved exactly by means of the Cole–Hopf
transformation u = −2µcl ∂x ln v, which reduces Eq. (19) to the linear diffusion equation for v. Nevertheless,
the form of the solution is not useful for performing statistical averages over random forcing or initial
conditions.
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states), and also arises in certain plasma applications (Sec. 2.4.7, p. 42) and in modern work on self-
organized criticality (Sec. 12.4, p. 241). It is the first spatial derivative of the Kardar–Parisi–Zhang
(KPZ) equation (Kardar et al., 1986)

∂th+ 1
2
h2
x − µclhxx = f ext

h , (20)

where h is the fluctuation in the height of an interface: u = −∂xh. Some general discussion of the
Burgers equation, interface dynamics, and their relation to turbulence was given by Bohr et al. (1998).
Some recent results on Burgers intermittency are described in Sec. 10.4.3 (p. 227).

2.2 Exact dynamical equations of classical plasma physics

In the classical approximation, which is adequate for a wide variety of physical applications,
the N -particle plasma can be described exactly by the set of 2Nd coupled (scalar components of)
Newton’s laws. In rare situations those can actually be numerically integrated as they stand [the
so-called molecular-dynamics approach; see, for example, Verlet (1967), Hansen et al. (1975), and
Evans and Morris (1984)], but the N2 scaling of the operation count makes this direct approach
impractical for large numbers of particles 36; in a modern tokamak such as TFTR (footnote 16, p. 15),
N might approach Avogadro’s number (approximately 6× 1023). Clever particle simulation techniques
for weakly coupled plasmas (Birdsall and Langdon, 1985) achieve an O(N) scaling, but cannot be
discussed here. An alternate analytical approach is to consider first exact, then approximate equations
for low-order PDF’s of the particles. Two equivalent and formally exact descriptions are used: the
Liouville equation, for the smooth N -particle PDF in the so-called Γ space of all 2Nd coordinates and
momenta; and the Klimontovich equation, for the singular density in the so-called µ space of a typical
particle whose coordinates are x and v and whose species is s. For some early textbook discussions of
plasma kinetic theory, see Montgomery and Tidman (1964) and Montgomery (1971b). A recent book
that includes some related material is by Balescu (1997).

2.2.1 Liouville equation

The Liouville equation has been described in many textbooks [for example, Hoover (1991) or
Evans and Morris (1990)]; it has the general form

∂

∂t
fN (1, 2, . . . , N, t) +

N∑
i=1

∂

∂zi
(żifN) = 0, (21)

where fN is the N -particle PDF, z stands for {x,v, s}, and 1 ≡ z1. (The set {z1, t1} is frequently
denoted just by 1; the underline denotes all coordinates except time.) Upon successively integrating
over all but 1, 2, . . . , N − 1 coordinates, one is led to the conventional Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy that links the one-particle PDF f , the pair correlation
function g, the triplet correlation function h, and so on; a particularly elegant discussion was given
by Ecker (1972). 37 As the BBGKY form of the statistical hierarchy will not be used explicitly in the

36 Tractable situations arise, among other places, in the theory and application of non-neutral plasmas; see,
for example, Dubin and O’Neil (1988a) and Dubin and Schiffer (1996).
37 A BBGKY formalism for fluid turbulence was given by Montgomery (1976).
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following analysis, I shall not write it here. Nevertheless, it is well worth noting that the Liouville
equation is linear, and that both it and the derived BBGKY hierarchy are time reversible. It may
seem remarkable that such equations can adequately describe dissipative turbulence; the issue has
been discussed by Orszag (1977). The resolution is that the characteristics of the Liouville equation
(Newton’s second laws of motion) are highly nonlinear and can exhibit stochasticity; if the hierarchy
is closed by any reasonable kind of coarse-graining or statistical averaging procedure, nonlinear and
dissipative equations result.

2.2.2 Klimontovich equation

The Klimontovich equation (Klimontovich, 1967) 38 evolves the microscopic µ-space density

Ñs(x,v, t)
.
=

1

ns

Ns∑
i=1

δ(x− x̃i(t))δ(v − ṽi(t)), (22)

where tildes denote random variables, s is a species label, Ns is the number of particles of species s,
and ns

.
= Ns/V is the mean density of species-s particles in the volume V . By time-differentiating

Eq. (22), one finds

[∂t + v ·∇ + (Ẽ + c−1v × B̃) · ∂s]Ñs = 0, (23)

where ∂ ≡ (q/m)∂v and Ẽ and B̃ are the microscopic electric and magnetic fields. Self-energy
interactions [terms i = j in the product Ñ(x,v, t)Ñ(x′,v′, t) ∼ ∑

i

∑
j] are to be discarded in the

nonlinear term. This equation is appealing for several reasons: its mathematical characteristics are the
equations of motion, so it is closely related to numerical “particle-pushing” schemes (Hu and Krommes,
1994); and it is quadratically nonlinear (since Ẽ, B̃ ∝ Ñ according to Maxwell’s equations), so it fits
neatly into conventional analytical theories of turbulence (Rose, 1979).

For simplicity I shall mostly ignore magnetic fluctuations, 39 so B̃ = B is an externally specified
background magnetic field. Effectively, we will work in the electrostatic approximation.

The Klimontovich density is normalized 40 such that

〈Ñ (1, t)〉 = f(1, t), 〈δÑ(1, t) δÑ(1′, t)〉 = n−1
1 δ(1, 1′)f(1) + g(1, 1′, t), (24a,b)

etc. Here δ(1, 1′) is the product of a Kronecker delta function in the species indices and a Dirac
delta function in the other phase-space coordinates. The average of Eq. (23) then reproduces the first

38 Although plasma physicists tend to cite Klimontovich (1967), the equation is well known to kinetic theorists
generally. Martin et al. (1973) confusingly called it the “Liouville equation.”
39 This is done solely for pedagogical purposes. In no way should this be taken to imply that magnetic
fluctuations are never important (Mackay, 1841, p. 304). They are obviously important in radiation
phenomena (Dupree, 1964), but can also play a role in transport by altering the dispersion properties of
the linear waves (“finite–β effects”) or by inducing stochastic diffusion of magnetic field lines (Rechester and
Rosenbluth, 1978; Krommes et al., 1983).
40 In finite volumes there are normalization subtleties, relating to the distinction between “generic” and
“specific” distribution functions, that cannot be discussed here; see, for example, Schram (1966) and Ecker
(1972).
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member of the BBGKY hierarchy,

Df/Dt = −∂ · 〈δE δN〉 = −∂ · Êg, (25)

where the Vlasov operator is

D/Dt
.
= ∂t + v ·∇ + (E + c−1v ×B) · ∂ (26)

and Ê is the linear operator that determines Ẽ from Ñ . In more detail, Ẽ is determined from Poisson’s
equation ∇ · Ẽ = 4πρ̃. The solution can thus be represented by Ẽ = ÊÑ ≡ ∫

dt′
∑
s′
∫
dx′∫dv′×

Êss′(x,v, t; x
′,v′, t′)Ñs′(x

′,v′, t′). Explicitly, the Fourier transform of Ê with respect to x− x′ is the
non-Hermitian kernel

Êss′,k(v, t; v′, t′) = εk(nq)s′δ(t− t′), (27)

where εk
.
= −4πik/k2 is the Fourier transform of the field of a unit point particle.

It must be stressed that the g term on the right-hand side of Eq. (25) contains all fluctuation-
related effects, both those related to discrete-particle effects (classical n-body collisions) and all
possible turbulence-related nonlinear collective processes.

2.3 Nonlinear kinetic equations for plasmas

In many laboratory situations one has εp � 1; such plasmas are almost collisionless. The
continuum limit εp → 0 can be thought of as arising from a chopping process (Rostoker and
Rosenbluth, 1960) in which particles are successively divided in two, doubling the density n and
halving the particle charge q and mass m at each step. This preserves the charge density nq and
the charge-to-mass ratio q/m, so the plasma frequency ωp

.
= (4πnq2/m)1/2 is invariant under the

rescaling. In order to also preserve the thermal velocity vt, a natural statistical measure that remains
relevant in the collisionless limit, the temperature must be halved. Then the Debye length λD is also
invariant; note λDωp = vt. The chopping process is thus consistent with the orderings n = O(ε−1

p ),
{q,m, T} = O(εp), {ωp, vt, λD} = O(1). For example, one quickly finds that the minimum impact
parameter b0

.
= e2/T is O(ε2p/εp) = O(εp); the previously mentioned result (footnote 10, p. 12) that

the strong-coupling parameter Γ is O(ε2/3p ) also follows immediately.

2.3.1 Collisionless kinetic equations

In the limit εp → 0 explicit discreteness terms, such as those involving b0, can be dropped from the
BBGKY hierarchy, giving the Vlasov cumulant hierarchy (Davidson, 1967, 1972). That is an infinite
coupled hierarchy of n-point cumulants in which the first member retains the form (25) (it is not the
Vlasov equation), but the evolution equations for g and higher cumulants do not contain εp. Although
it is common in the literature to initiate a theory of “Vlasov turbulence” by writing f = 〈f〉 + δf ,
that makes no sense in the context of the hierarchy because f is a PDF, hence is already averaged. 41

What is intended is to write the Klimontovich density as the sum of mean and fluctuating parts,

41 Rose (2000) has stressed that a different point of view may be useful. Because Vlasov dynamics are highly
nonlinear, they may be susceptible to symmetry-breaking perturbations that lead to solutions that are not
asymptotically time-translation invariant in a strong sense; i.e., they are turbulent. If the symmetry is broken
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Ñ = f + δN , then to work in the continuum limit εp → 0. When fluctuations arising from both
particle discreteness and collective effects are completely negligible, g can be ignored and one recovers
the Vlasov equation Df/Dt = 0, a mean-field theory.

The Vlasov equation is necessary for the description of collisionless phenomena with frequencies
comparable to or higher than the gyrofrequency ωc

.
= qB/mc. For lower-frequency phenomena,

however, the Vlasov equation is unwieldy, both analytically and numerically, and it is better to
turn to a gyrokinetic (GK) description in terms of the particle gyrocenters, which move slowly
across the magnetic field with the E ×B drift VE and the magnetic (gradient and curvature) drifts
(Chandrasekhar, 1960; Spitzer, 1962; Northrop, 1963b; Bernstein, 1971)

V d
.
= ω−1

c [ 1
2
v2
⊥b̂×∇ lnB + v2

‖b̂× (b̂ ·∇)b̂]. (28)

In a straight, constant magnetic field B = Bẑ, for which the magnetic drifts vanish, the simplest
collisionless nonlinear gyrokinetic equation (GKE; Frieman and Chen, 1982; Lee, 1983; Dubin et al.,
1983) is (Appendix C, p. 267)

∂F

∂t
+ v‖

∂F

∂z
+ VE ·∇⊥F +

(
q

m

)
E‖

∂F

∂v‖
= 0, (29a)

where F (x, µ, v‖, t) is the PDF of gyrocenters, µ is the magnetic moment [an adiabatic invariant
(Appendix C.1.1, p. 267) that is conserved in the GK approximation], and the overlines indicate
the effective (gyration-averaged) fields seen by the gyrocenters. In the Fourier representation ϕk

.
=

J0(k⊥v⊥/ωci)ϕk; to the extent that k⊥v⊥/ωci 6= 0 (J0 6= 1), one refers to finite-Larmor-radius (FLR)
effects. To Eq. (29a) must be adjoined the gyrokinetic Poisson equation (Appendix C.1.6, p. 274)

∇2ϕ+ ε⊥∇2
⊥ϕ = −4πe(ZnG

i − ne) (29b)

(for overall charge neutrality, ne = Zni), where ε⊥ ≈ ω2
pi/ω

2
ci is the perpendicular dielectric constant

(Chandrasekhar, 1960) of the so-called gyrokinetic vacuum (Krommes, 1993a, 1993c) that describes
the effects of the ion polarization drift velocity (Chandrasekhar, 1960)

V pol
i

.
= ω−1

ci ∂t(cE⊥/B). (30)

The importance of the GK formulation cannot be overstated; it provides the basis for much modern
analytical theory and a huge body of numerical simulations. Derivations of the GKE are reviewed in
Appendix C.1 (p. 267).

Typically ε⊥ is large; the condition ω2
pi/ω

2
ci � 1 defines the so-called gyrokinetic regime (Krommes

et al., 1986) that is relevant for fusion plasmas. The opposite regime ω2
pi/ω

2
ci � 1 is called the

drift-kinetic regime. It is described by the drift-kinetic equation, in which J0 → 1 and ∇2ϕ =
−4πe(Zni − ne). Finally, when parallel motion is completely ignored one obtains the guiding-center
plasma model

∂tF + VE ·∇⊥F = 0. (31)

by external noise, it may be possible to let the strength of the noise approach zero and to recover a fluctuating
distribution with nonzero variance. By analogy with Ising and other models that undergo symmetry-breaking
transitions to ordered states (Forster, 1990), it may be simpler to consider symmetry-breaking perturbations
to Vlasov dynamics than to begin with the full N -body ensemble.
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That model [closely related to the dynamics of point vortices moving in two dimensions (Kraichnan,
1975b)] prominently figured in early attempts to understand the nonlinear behavior of plasma
dynamics in strong magnetic fields (Taylor and McNamara, 1971; Vahala and Montgomery, 1971). 42

For general magnetic fields the operator ∂z in Eq. (29a) must be generalized to b̂·∇. One can then
analyze several important situations: (i) the effects of (background) magnetic shear ; (ii) self-consistent
magnetic perturbations; and (iii) spatially and/or temporally random magnetic fields. Magnetic shear
has important practical consequences that are largely beyond the scope of this review, although see
Sec. 12.6.3 (p. 246). Magnetic fluctuations arise from currents according to Maxwell’s equations. For
sufficiently small β (the ratio of plasma pressure to magnetic-field pressure), the currents are parallel
to B and it is sufficient to derive the perturbed magnetic field from just the parallel component of the
vector potential A: B = B0 + ∇ × (A‖ẑ). The resulting approximation describes field-line bending
and the evolution of shear-Alfvén waves, but ignores compressional Alfvén waves. The assumption of
a random perturbed magnetic field is a useful device 43 that enables one to assess the consequences
of particle transport in systems with broken flux surfaces (Krommes et al., 1983; vanden Eijnden and
Balescu, 1996).

2.3.2 Collisional kinetic equations

In classical, weakly coupled (0 < εp � 1) plasma kinetic theory (Montgomery and Tidman, 1964),
a kinetic equation analogous to the Boltzmann equation can be derived from various physical and/or
formal points of view. For simplicity I assume B = 0. Fokker–Planck techniques (Chandrasekhar,
1943) that take into account the physics of the motion of shielded test particles 44 lead (Ichimaru,
1973) to a physically clear derivation of the Balescu–Lenard (BL) equation (Balescu, 1960; Lenard,
1960) Dfs/Dt = −Cs[f ], where

Cs[f ]
.
=− ∂

∂v
·
[
π

(
q2

m

)
s

∑
s

(nq2)s

∫
dv
∫

dk

(2π)3

εk ε∗k
|Dlin(k,k · v)|2 δ(k · (v − v))

42 The guiding-center model [see, for example, Joyce and Montgomery (1973) and Kraichnan (1975b)] is an
interesting dynamical system worthy of a review of its own. Nevertheless, because of space constraints and
the practical importance of parallel motion, discussion of this model is limited in the present article to only
a few scattered remarks and references.
43 In the context of particle transport in stochastic magnetic fields, the application of standard statistical
techniques to passive-advection kinetic equations with random magnetic fields was first done by Krommes
et al. (1983). See also Rosenbluth et al. (1966) for a seminal paper on the quasilinear description of stochastic
magnetic fields.
44 The concept of a shielded test particle is one of the central ideas of plasma kinetic theory. Formally, it arises
by expanding the BBGKY hierarchy or the equivalent Klimontovich equation in the small plasma discreteness
parameter εp and proving that to lowest order the natural entity is a discrete test particle surrounded by
its (Vlasov-continuum) shielding cloud. Early work was by Rostoker and Rosenbluth (1960). The results—
notably, the Test Particle Superposition Principle (Rostoker, 1964a, 1964b)—are described both in formal
treatises on plasma kinetic theory (Montgomery and Tidman, 1964; Montgomery, 1971b) and in elementary
textbooks (Krall and Trivelpiece, 1973). More modern proofs of the Superposition Principle, based on the
two-time statistical hierarchy discussed by Krommes and Oberman (1976a), were given by Krommes (1976).
Turbulent generalizations are discussed in Sec. 6.5.3 (p. 173).
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·
(
fs

1

ms

∂fs
∂v
− 1

ms

∂fs
∂v

fs

)]
(32)

and

Dlin(k, ω)
.
=1 +

∑
s

ω2
ps

k2

∫
dv

k · ∂f̄s/∂v

ω − k · v + iε
(33)

is the linear dielectric function. Although the present article is not a review of classical kinetic theory
(Frieman, 1967, 1969; Montgomery, 1967, 1971b), it is nevertheless useful to recall the interpretation
of the various parts of Eq. (32), as such understanding has provided key insights and motivations
(some misguided) for various developments of plasma turbulence theory. Dimensional analysis reveals
that C ∼ σnv, where σ

.
= b20 is the classical collisional cross section, n is the mean density of scatterers,

and v is a characteristic relative velocity. The term in f (∂vf) describes velocity-space diffusion; the
term in (∂vf)f represents the polarization drag or self-consistent backreaction of the test-particle-
induced shielding cloud on the test particle; it is responsible for conservation of momentum and
kinetic energy. (The proper treatment of self-consistency in plasma turbulence theory is a recurring
theme throughout this article.) The spatial and dynamical structure of the total shielded test particle
is represented by Dlin(k, ω), with ω evaluated at the characteristic transit frequency k ·v of a particle
moving with velocity v and impact parameter b = k−1. The δ(k ·(v−v)) arises because the scattering
is computed perturbatively (quasilinear approximation) using straight-line orbits as the zeroth-order
approximation. The k integration describes the accumulated effect of particles with a distribution of
impact parameters b ∼ k−1.

Equation (32) does not contain the effects of large-angle two-body collisions (Boltzmann’s
contribution), so a large-wave-number cutoff at b−1

0 is required. 45 However, because of the presence of
dielectric shielding, the wave-number integral can be shown to possess a natural infrared wave-number
cutoff at k ≈ kD. One then recovers the Landau collision operator (Landau, 1936)

Cs,s[f ]
.
=−2π

(
e2

m

)
s

(ne2)s lnΛ
∂

∂v
·
∫

dv U(v − v) ·
(

1

ms

∂

∂v
− 1

ms

∂

∂v

)
fs(v)fs(v), (34)

where 46 Λ
.
= λD/b0 and U(u)

.
= (I−ûû)/|u|. This is the form that is generally used in most theoretical

and computational analyses of classical (Braginskii, 1965) and neoclassical (Rosenbluth et al., 1972;
Hinton and Hazeltine, 1976) transport.

More formally, the BL operator arises by inserting the linearized solution of the equation for the
Klimontovich fluctuation δÑ into the right-hand side of Eq. (25) (Klimontovich, 1967; Wu, 1967;
Montgomery, 1971b). The Green’s function R0 for the linearized Klimontovich equation obeys

g−1
0 R0 + ∂f · ÊR0 = 1, (35)

45 Various authors have derived uniformly valid collision operators that do not require a wave-number cutoff;
see, for example, Frieman and Book (1963).
46 The form Λ = λD/b0 must be modified in the presence of large magnetic fields B and, at sufficiently high
energies, to satisfy the Heisenberg uncertainty principle; the details are not important here. For very large B,
so that ρ � λD, one must reconsider the derivation of the collision operator to take account of nuances of
guiding-center transport. Representative calculations are by Dubin and O’Neil (1988b, 1997).
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where g0
.
= (∂t + v ·∇)−1 is the free-particle Green’s function (propagator) whose Fourier transform

is Eq. (2c); the last term on the left-hand side of Eq. (35) describes the self-consistent polarization
effect of the particles on the fields. Comparison with Eq. (26) reveals that R0 is also Green’s function
for the linearized Vlasov equation, which explains why Vlasov dynamics figure so prominently in
many-particle plasma kinetic theory. One can verify by direct calculation that

R0 = g0 − g0∂f · (Dlin)−1Êg0, ÊR0 = (Dlin)−1Êg0. (36a,b)

These are the formal statements that to lowest order in εp bare test particles [the first term on the
right-hand side of Eq. (36a)] carry their shielding clouds (the second term) along with them. It is
remarkable that Eqs. (36) generalize without change in form to fully renormalized turbulence theory.
This crucial result is derived in some detail in Sec. 6.5 (p. 170).

The linearization implies that a vast host of nonlinear processes are ignored. First, of course,
discrete n-particle collisions are ignored for n ≥ 3, but those are very small for εp � 1. More
significantly, nonlinear collective phenomena, which exist even for εp → 0, are ignored; those comprise
all of the turbulence effects (both weak and strong), including n–wave and wave–wave–particle
interactions, resonance broadening, trapping, etc.

An alternate derivation (Frieman, 1967; Montgomery, 1967) of the BL operator proceeds from
the BBGKY hierarchy by dropping the triplet correlation function in the equation for g. With the
further neglect of the bare two-particle interaction term (large-angle scattering), the Green’s function
for the resulting left-hand side factors into the product of two one-particle (Vlasov) Green’s functions,
showing the equivalence to the linearized Klimontovich solution. 47

In all approaches it is the full Vlasov response function R0, including [Eq. (36a)] both free-
streaming motion and self-consistent dielectric shielding, that underlies the Test Particle Superposition
Principle (footnote 44, p. 30). A renormalized response function R prominently figures in the formal
turbulence theories described in Secs. 5 (p. 126) and 6 (p. 146).

The gyrokinetic equation with collisions can be obtained by adding the appropriately gyro-
averaged collision operator to the right-hand side of Eq. (29a).

The forms (32) and (34) of the classical collision operator provide initial insights about the
problems to be faced by a theory of plasma turbulence. As in classical theory, one must deal with not
only turbulent diffusion but also self-consistent backreaction. One may expect some sort of nonlinearly
modified dielectric function to appear. Indeed, Mynick (1988) has advanced a “generalized Balescu–
Lenard” (gBL) operator for Vlasov turbulence by asserting a precise analogy to Eq. (32). Nevertheless,
one must be very cautious. For turbulent situations particles are scattered away from their free
trajectories, collective effects dominate over discrete ones [calling into question the specific form of
the shielding term in Eq. (32)], the actual form of the nonlinear dielectric function is very involved,
and a formal description based on velocity-space effects may not be appropriate or practically useful
when turbulent motions on hydrodynamic scales (long wavelengths and times) dominate the physics.
All of these problems will be addressed and at least partially resolved later in the article.

In fact, a more appropriate transition to the formalism of strong plasma turbulence might be had
by reviewing selected results from the theory of strongly coupled many-particle plasmas (εp & 1).
Unfortunately, space limitations preclude such a discussion here; see, for example, Ichimaru (1992).

47 A renormalized version of this factorization was used by Krommes and Oberman (1976a) to derive a
renormalized plasma collision operator that included the effects of convective cells; see Sec. 5.10.1 (p. 143).
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2.4 Nonlinear fluid models for plasmas

In many important situations the details of the kinetic (velocity-space) effects are unimportant,
so fluid models are appropriate. I briefly describe some of the more important ones here, and shall
return to some of them later in the article.

2.4.1 Introduction to the fluid closure problem

I have already mentioned the statistical closure problem, the central difficulty of turbulence theory.
Interestingly, in attempting to derive fluid equations from the more fundamental kinetic equations,
one encounters a fluid closure problem that is closely related to the statistical one. It has prominently
figured in recent derivations of simulation models for tokamak turbulence and in a variety of other
areas. I introduce the fluid closure problem in this section, deferring a more detailed discussion to
Appendix C.2 (p. 276).

By definition, a fluid moment (such as density or momentum) is a weighted velocity integral of the
kinetic PDF. The difficulty with obtaining closed fluid equations arises most fundamentally from the
streaming term v ·∇ (Vlasov theory) or v‖∇‖ (gyrokinetic theory); in gyrokinetics additional closure
problems arise from the dependence of the magnetic drifts and effective potential ϕk on v. The nth
velocity moment of a kinetic equation such as ∂tF + v‖∇‖F + · · · = 0 is coupled to the moment
of order n + 1 by the streaming term. If only the explicitly shown terms are retained, a simple
device makes this problem mathematically identical to the statistical closure problem for passive
advection. Namely, write F = (1 + χ)F0, where F0 is a time-independent PDF that is often taken
to be the Maxwellian distribution FM . Then use Dirac notation to write χF0 ≡ |χ 〉; also introduce
a corresponding bra such that 〈ψ | = ψ. It is now natural to define a scalar product such that
〈ψ | χ〉 .= ∑

s

∫
dv ψs(v)χs(v)F0,s(v). This scalar product is equivalent to an ensemble average taken

with probability measure F0; the fluctuating density is δns = 〈nsδs,s | χ〉. When F0 is Maxwellian,
the velocity is Gaussianly distributed. The fluid closure problem for ∂t|χ 〉 + v‖∇‖|χ 〉 = 0 with
Maxwellian background is then formally equivalent to a problem of passive advection by a time-
independent Gaussian velocity. As I shall describe in Sec. 3.3 (p. 52), exactly this model has previously
been discussed in detail as a paradigm for the difficulties of statistical closure for strong turbulence
(Kraichnan, 1961), so many results on strong-turbulence closures have immediate applicability to the
fluid closure problem.

In classical transport theory the fluid closure problem is dealt with by the procedure of Chapman
and Enskog (Chapman and Cowling, 1952), who exploited an asymptotic ordering in the inverse of the
collision frequency to obtain rigorously closed equations (Braginskii, 1965) valid for timescales much
longer than the collision time and wavelengths much longer than the collisional mean free path. This
procedure cannot be justified for high-temperature plasmas, for which the collision frequency is very
small. Chang and Callen (1992a,b) discussed a formally exact generalization. Hammett and Perkins
(1990) advocated a more pragmatic approach in which unknown cumulants are parametrized in terms
of known ones in such a way that the linear fluid response well matches the linear kinetic response.
Because the collisionless dissipation mechanism is Landau damping [well understood (van Kampen
and Felderhof, 1967) as a phase-mixing phenomenon], such closures are sometimes called Landau-
fluid closures. There are relations to the theory of Padé approximants and orthogonal polynomial
expansions, as discussed by Smith (1997). See Appendix C.2 (p. 276) for further discussion.
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2.4.2 Zakharov equation

Zakharov (1972) derived the following system of equations for the slowly varying envelope ψ of
nonlinear Langmuir oscillations and ion density n:

∇2[i(∂t + νe) +∇2]ψ = −∇ · (nE), (∂2
t + 2νi ∂t −∇2)n = ∇2|E|2, (37a,b)

where E
.
= −∇ψ and νe and νi are linear damping terms. In the limit in which the time derivatives

in Eq. (37b) may be neglected, this system reduces to the nonlinear Schrödinger equation (Benney
and Newell, 1967), which in 1D and in the absence of linear damping is

i ∂tE +∇2E + (|E|2 − 〈|E|2〉)E = 0. (38)

Such equations have been the subject of extensive investigation; generically, they exhibit strongly
nonlinear, often coherent behavior including collapse, the formation of solitary solutions, etc.
Unfortunately, much of that important research cannot be discussed here because of space limitations
and a lack of perceived relevance to practical problems of strongly magnetized plasmas. [For more
information and references, see the early reviews of Thornhill and ter Harr (1978) and Rudakov
and Tsytovich (1978) as well as the more recent work of Dyachenko et al. (1992).] The equations
do prominently figure in various problems of laser–plasma interactions, and important statistical
analyses have been done of them; see, for example, DuBois and Rose (1981), Sun et al. (1985), and
DuBois et al. (1988). A separate review article on related topics is warranted. A review of Langmuir
turbulence was given by Goldman (1984); see also the short introduction to that subject by Similon
and Sudan (1990).

2.4.3 Hasegawa–Mima and Terry–Horton equations

Equations of central importance to the fundamental theory of microturbulence in tokamaks and
other systems with fluctuations driven by gradients of macroscopic parameters are the Hasegawa–
Mima (HM) equation (HME) and its generalization, the Terry–Horton (TH) equation (THE).
The HME is arguably the simplest generic description of the nonlinear behavior of drift waves. It
is used in several places in this article to illustrate general theory.

The original derivation of the HME (Hasegawa and Mima, 1978) proceeded from fluid equations
expressed in particle coordinates [often referred to in plasma physics as the equations of Braginskii
(1965)]. However, it is far more concise and elegant to proceed from the GKE (29a) (Dubin et al.,
1983). Temporarily, let us ignore particle discreteness (classical dissipation). For simplicity, consider
the fluid limit Ti → 0 (i.e., ignore FLR effects). Then, upon integrating Eq. (29a) over the velocity
coordinates (µ and v‖), one arrives at the continuity equation for the gyrocenter density:

∂tn
G + ∇ · (VE n

G) +∇‖(uG
‖ n

G) = 0. (39)

For the ions, large inertia suggests that uG
‖i is negligible (this approximation is relaxed in more

sophisticated descriptions that include ion sound propagation). One also assumes a frozen-in-time
background (mean) density profile, varying in the x direction such that −∂x ln 〈n〉 .= L−1

n ≡ κ = const,
and recalls the definition of the diamagnetic velocity V∗ given in Sec. 1.3.3 (p. 16). Then the ions obey
∂t(δn

G
i /〈n〉i) + V∗∂y(eδϕ/Te) + VE ·∇(δnG

i /〈n〉i) = 0. The electron response could also be analyzed
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from appropriate gyrofluid equations, as in Sec. 2.4.5 (p. 38). For present purposes, however, one
simply asserts a linear, almost adiabatic response 48:

(δne/〈n〉e)k,ω ≈ (1− iδk)(eδϕ/Te)k,ω. (40)

(Electron polarization is negligible, so nG
e ≈ ne.) The last two equations can be combined with

the GK Poisson equation (29b) to yield a closed equation for the electrostatic potential. Before
doing so, however, it is usual to introduce a convenient set of normalized variables [called gyro-Bohm
normalization after the scaling (6)] in which one normalizes velocities to cs, perpendicular lengths to ρs,
and times to ωci; this makes the normalized V∗ equal to ρs/Ln. It is then reasonable to normalize δϕ
to Te/e (the natural units for a perturbed Boltzmann distribution) and δn to 〈n〉. This normalization
is frequently used in gyrokinetic particle simulations. Nevertheless, an alternate normalization (also
called gyro-Bohm) is possible. 49 If one anticipates that saturated fluctuation levels will scale with κ,
it is reasonable to normalize δϕ to (Te/e)κρs; correspondingly, one normalizes δn to 〈n〉κρs. In the
dimensionless time (κρs)ωcit, the equations are unchanged in form (with V∗ equal to unity). In either
normalization the resulting equations for the potential and density fluctuations are

∇2
⊥δϕ = −(δnG

i − δne), (41a)

∂tδn
G
i + V∗∂yδϕ+ VE ·∇δnG

i = 0, (41b)

δne = (1− iδ̂)δϕ. (41c)

Upon inserting Eq. (41c) into Eq. (41a), one obtains

δnG
i = (1 + χ̂)δϕ, where χ̂

.
= −∇2

⊥− iδ̂. (42a,b)

Finally, upon inserting Eq. (42a) into Eq. (41b), one obtains the equation of Terry and Horton (1982)
[see also Horton and Ichikawa (1996)]:

(1 + χ̂)∂tδϕ+ V∗∂yδϕ+ VE ·∇(χ̂ δϕ) = 0. (43)

(One noted that VE ·∇δϕ = 0.) In x space δ̂ is a generally nonlocal operator (denoted by the caret),
so χ̂ is as well; Eq. (43) is more tractable in k space, where δ̂ and χ̂ become purely multiplicative.

48 “Adiabatic” is used here not in the thermodynamic sense but rather as “very slowly varying.” In plasma
kinetic theory adiabatic response refers to fluctuations whose frequencies obey ω � k‖vt. In this limit particle
density perturbations approach the Boltzmann distribution δn/〈n〉 ≈ q δϕ/T by rapidly streaming along the
magnetic field lines. Typically, electrons obey the adiabatic ordering ω � k‖vte whereas ions obey the
opposite “fluid” ordering ω � k‖vti. In linear theory the small nonadiabatic correction −iδ̂ can be calculated
by detailed solution of the GKE. Dimensionally δ̂ = O(γ lin/Ω), where γ lin is the linear growth rate and
Ω is the real frequency. In nonlinear theory the iδ model (40) [sometimes attributed to Waltz (1983)] is an
approximation that has been criticized (Gang et al., 1991; Liang et al., 1993) on the reasonable grounds that
nonlinear corrections to γ lin are missing.
49 For the general theory of dimensional analysis and scaling, see Appendix B (p. 264).
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In Eq. (42b) the ∇2
⊥, inherited from the GK Poisson equation, describes the effect of the ion

polarization drift. That is not an ion FLR effect, contrary to frequent assertions, as it survives in the
limit Ti → 0. Furthermore, it is not small. 50

The statistical dynamics of such equations are strongly constrained by invariants of the nonlinear
terms; see Sec. 3.7.2 (p. 68). The THE has the single nonlinear invariant

Z̃ =
∑
k

Z̃k, Z̃k
.
=

1

2
|1 + χk|2|ϕk|2. (44a,b)

(The tilde denotes a random variable, a property of a particular realization; statistically averaged
quantities will be written without tildes, e.g., Z .

= 〈Z̃〉.) One has

∂tZ̃ = κΓ̃, (45)

where

Γ̃
.
= Re

∑
k

δVEx,kδn
∗
s,k =

∑
k

kyδk|ϕk|2 (46a,b)

(s = e or i) is the species-independent (intrinsically ambipolar) value of the random gyrocenter
flux. [As noted in Sec. 1.3.1 (p. 13), only the nonadiabatic correction δk enters in expressions for
turbulent fluxes.] This result demonstrates a significant deficiency of the THE. The average of Eq. (45),
∂tZ = κΓ, is a degenerate form of the general balance equation

∂tI = P −D (47)

[cf. Eq. (14)], where I is a nonlinear invariant and the overline implies both spatial and statistical
averaging. In the present case the production term P is proportional to the flux Γ, but the dissipation
term D is absent, implying that either the turbulent flux vanishes if a statistical steady state is
achieved or, more likely (Krommes and Hu, 1994), the system does not saturate in the absence of
dissipation. This is a deep result that is discussed further in Secs. 3 (p. 46) and 12.2 (p. 238). The cure
is to insert, either by hand or systematically, dissipation into the ion equation (41b). One example is
provideded by the Hasegawa–Wakatani equations discussed below in Sec. 2.4.5 (p. 38).

The THE is complicated by the presence of nonadiabatic electron response in two places: linear
theory; and the nonlinear term. According to Eq. (42b), the full TH nonlinearity is composed of two
parts: the polarization-drift nonlinearity VE ·∇(−∇2

⊥δϕ); and the E×B nonlinearity VE ·∇[iδ̂(δϕ)].
Properties of Eq. (43) with a particular model of dissipative effects were discussed by Liang et al.
(1993). At the other extreme, if the nonadiabatic contributions are neglected both linearly and

50 Stix (1992, p. 402) might appear to suggest that polarization provides a correction of higher order in ω/ωci
to the basic drift-wave dispersion relation. Nevertheless, that remark is misleading; the correction is order
unity.
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nonlinearly, 51 one arrives at the equation of Hasegawa and Mima (1978) 52:

(1−∇2
⊥)∂tδϕ+ V∗∂yδϕ+ VE ·∇(−∇2

⊥δϕ) = 0. (48)

The HME is conservative; it contains neither growth nor dissipation and is a generalization of
the 2D Euler equation. (The absence of dissipative effects arises, of course, from the neglect of
contributions from a collision operator C; those will be reinstated in the subsequent discussion of the
Hasegawa–Wakatani equation.) Indeed, the term ∇2

⊥δϕ is just the z component δω of the vorticity
fluctuation due to the E ×B motion: ∇×VE [ϕ] = ∇× (ẑ ×∇ϕ) = ∇2

⊥ϕ
.
= ω. Thus the HME can

be written

∂t(δω− δϕ)− V∗∂yδϕ+ VE [δϕ] ·∇δω = 0. (49)

This equation possesses two quadratic invariants, 53 the energy Ẽ and the (potential) enstrophy W̃:( Ẽ
W̃

)
.
=
∑
k

(
1
k2

)
Ẽk, Ẽk .

=
1

2
(1 + k2)|δϕk|2. (50a,b)

These conserved quantities play important roles in the nonlinear statistical dynamics of the equation,
as discussed in Sec. 8.4 (p. 206).

If the terms explicitly involving δϕ are neglected, Eq. (49) becomes the 2D neutral-fluid Euler
equation in the vorticity representation [Eq. (17) with µcl = 0; see also the guiding-center model (31)],
which has been studied extensively. However, although this observation is instructive, such neglect is
physically unjustified. The first δϕ term in Eq. (49) arises from the nearly adiabatic response of the
electrons, which rapidly stream along the magnetic field lines and exhibit a nearly Boltzmann response.
This behavior is essentially three dimensional and cannot be ignored [at least for long-wavelength
fluctuations (k⊥ρs � 1), which, as one will see, are the important ones]. The second δϕ term represents
the presence of a background density gradient, imparts a crucial wavelike component to the dynamics,
and [in more complete descriptions; cf. Sec. 2.4.5 (p. 38)] is ultimately responsible for a variety of
instabilities.

As it stands, the conservative HME (δ̂ = 0) predicts vanishing particle transport because there
is no phase shift between density and potential, although dimensional analysis (Appendix B, p. 264)
predicts gyro-Bohm scaling. It is conventional to insert linear dissipative effects by hand; such models
are called forced HM equations and have entirely nontrivial statistical dynamics (Ottaviani and

51 If, on the other hand, one neglects the ∇2
⊥ in Eq. (42b)—i.e., ignores the polarization-drift nonlinearity—

one arrives at an equation studied earlier by Horton (1976). The neglect is justifiable for very long wavelengths,
k2
⊥ρ

2
s � γ/ω, but note that it is k⊥ρs that enters, not k⊥ρi. That is, this k2

⊥ term does not describe an
FLR effect; it remains finite as Ti → 0 (footnote 50, p. 36). In gyrokinetics one nominally orders k⊥ρs = O(1),
so neglect of this term is dubious.
52 The HME is intimately related to the nonlinear equation for Rossby waves (Charney and Stern, 1962;
Dickinson, 1978) in geophysics; it is frequently called the Charney–Hasegawa–Mima equation.
53 These conservation laws can be proved in either k space or x space. The latter proof proceeds by multiplying
Eq. (49) by (ϕ, ω)T , integrating over x, integrating by parts, and recalling that ω = ∇2

⊥ϕ. The diamagnetic
term can be formed into a perfect y derivative whose integral vanishes under periodic boundary conditions.
For the nonlinear term, (i)

∫
dxϕVE · ∇ω =

∫
dx E · VE ω = 0 (the E × B drift does no work), and

(ii)
∫
dxωVE ·∇ω =

∫
dx ∇ · (VE

1
2ω

2) = 0. Note that in the limit of small δ̂ the TH invariant is Z̃ ≈ Ẽ+W̃ .
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Krommes, 1992). The real utility of the HME lies in its clean description of the polarization-drift
nonlinearity; it is an important limit to which more complete, possibly kinetic theories should reduce.

Direct numerical simulations and statistical theories of the HM and TH equations are described
in Sec. 8.4 (p. 206).

2.4.4 Generalized Hasegawa–Mima dynamics

The HME is a reasonable model provided that k‖ 6= 0. It must be modified for fluctuations with
k‖ = 0 (sometimes called convective cells 54), whose response is strongly nonadiabatic. Although the
precise response can be obtained from the gyrokinetic equation, a common approximation (Dorland,
1993; Hammett et al., 1993) is to constrain the electrons to not respond at all for k‖ = 0. This

requirement changes the 1 in Eqs. (41c) and (42a) to the operator 55 β̂, where β̂ vanishes for k‖ = 0

and is the identity operator otherwise (i.e., β̂ projects onto the k‖ 6= 0 subspace), and leads for δ̂ = 0
to the generalized Hasegawa–Mima equation

(β̂ −∇2
⊥)∂tδϕ+ V∗∂yδϕ+ VE [δϕ] ·∇[(β̂ −∇2)δϕ] = 0. (51)

Like the THE, Eq. (51) possesses only the single invariant Z
δ̂=0

, where Z is defined by Eq. (44)
(Lebedev et al., 1995; Smolyakov and Diamond, 1999). It figures importantly in the theory of zonal
flows and other long-wavelength fluctuations; see Sec. 12.7 (p. 248).

2.4.5 Hasegawa–Wakatani equations

The TH description is fundamentally incomplete in that the nonadiabatic (dissipative) electron
response (∝ iδk) is simply specified (it must ultimately be computed from a subsidiary kinetic theory),
not determined self-consistently. In more sophisticated fluid models, dissipative processes enter more
naturally. One such model was developed by Hasegawa and Wakatani (1983) and Wakatani and
Hasegawa (1984), who considered nonadiabatic response due to electron–ion collisions.

To derive the Hasegawa–Wakatani (HW) model from the GKE, one rejects Eq. (40) in favor of
an explicit calculation beginning from Eq. (39) for the electrons. Since electron inertia is negligible,
a simplified electron momentum equation is 0 ≈ −neeE‖ − ∇‖Pe − nemeνeiu‖e, where P

.
= nT ;

temperature fluctuations and ion parallel motion are neglected for simplicity. This can be rewritten
as u‖e = D‖∇‖(ϕ − ne), where D‖

.
= v2

te/νei is the classical parallel diffusion coefficient. Upon
substituting for u‖e, one can reduce the electron continuity equation in the usual gyro-Bohm units
to dδne/dt = α̂(δϕ − δne) − κ∂yδϕ, where α̂

.
= −ω−1

ci D‖∇2
‖. Upon recalling the GK Poisson

equation (29b), one can replace the δni equation by dω/dt = α̂(δϕ− δne). The latter two equations
are the HW equations in the absence of perpendicular dissipation. Dissipative effects may be added by
hand, but also follow systematically from a careful treatment of collisional gyrokinetics (not discussed

54 Frequently convective cell is used to refer to any fluctuation with k‖ = 0. More specifically, it is also the
name of a particular linear normal mode of 2D magnetized plasmas, as discussed by Krommes and Oberman
(1976b); see Sec. 5.10.1 (p. 143).
55 Krommes and Kim (2000) used the notation α̂ instead of β̂, but that conflicts with the operator defined
in Sec. 2.4.5 (p. 38) in conjunction with the Hasegawa–Wakatani equations.
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here). One may summarize the HW system in the form usually used for computation 56 as

dω

dt
= α̂(ϕ− n) + µcl∇2

⊥ω,
dn

dt
= α̂(ϕ− n)− κ ∂ϕ

∂y
+Dcl∇2

⊥n, (52a,b)

with ω
.
= ∇2

⊥ϕ. All variables represent fluctuations in these equations.
It is straightforward to show that the HW system possesses the four nonlinear invariants

V .
= 1

2
〈|∇ϕ|2〉, W .

= 1
2
〈ω2〉, Ne .= 1

2
〈n2〉, X .

= 〈ω n〉 = −〈∇ϕ ·∇n〉. (53a,b,c,d)

Therefore the combination

Ni .= 1
2
〈(n− ω)2〉 = 1

2
〈δn2

i 〉, (54a,b)

where the gyrokinetic Poisson equation (41a) was used in obtaining Eq. (54b), is also an invariant.
Because Ni is a physically interesting quantity, one may use it in place of the cross correlation X .
One may also use the fluid energy E .

= V + Ne in place of Ne. Straightforward algebra shows that
these quantities evolve according to

∂tV =−〈ϕ | α̂ | (ϕ− n)〉 − µcl〈ω2〉, (55a)

∂tW = 〈ω | α̂ | (ϕ− n)〉 − µcl〈|∇ω|2〉, (55b)

∂tE = κΓ− 〈(ϕ− n) | α̂ | (ϕ− n)〉 − µcl〈ω2〉 −Dcl〈|∇n|2〉, (55c)

∂tNi = κΓ−D, (55d)

where

D .
= µcl〈|∇ω|2〉 − (µcl +Dcl)〈∇n ·∇ω〉 +Dcl〈|∇n|2〉 ≥ 0. (56)

The proof that D ≥ 0 follows from a Schwartz inequality. 57 Because α̂ ∝ −∂2
z is a positive-semidefinite

operator, the dissipation of E is also positive semidefinite. The parallel dissipations of V and W are
of indefinite sign. Note the absence of (explicit) parallel dissipation in Eq. (55d).

56 Often one or more of the dissipative terms like µcl∇2 → −µclk
2 are generalized to −µcl(k)k2, where

µcl(k) contains terms of positive order in k2 (hyperviscosity).
57 The spatial average together with the Cartesian dot product can be interpreted as a scalar product. Then
(writing µ and D instead of µcl and Dcl to avoid clutter)

D = (
√
µ ‖∇ω‖)2 − (µ+D)〈∇n |∇ω〉+ (

√
D ‖∇n‖)2. (f-1)

By a Schwartz inequality, |〈∇n |∇ω〉| ≤ ‖∇n‖ ‖∇ω‖. Thus

D ≥ (
√
µ ‖∇ω‖)2 − (µ+D)‖∇n‖ ‖∇ω‖+ (

√
D ‖∇n‖)2. (f-2)

From (
√
µ−
√
D)2 = µ− 2

√
µD +D ≥ 0, one proves that µ+D ≥ 2

√
µD. Thus

D ≥ ‖√µ∇ω −
√
D∇n‖2 ≥ 0. (f-3)
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Equations (52) are intrinsically three dimensional since α̂ is an operator. 3D simulations of
Eqs. (52) and similar equations are feasible and have been done both with and without magnetic
shear [see, for example, Guzdar et al. (1993)]; the results are essential to the theory of submarginal
turbulence (Sec. 9, p. 210). However, in the simplest model α̂ is replaced by the constant parameter
α

.
= ω−1

ci k
2
‖D‖ for constant k‖ 6= 0; in this approximation Eqs. (52) form a 2D system that is

amenable to rapid computation. That system can be viewed as a paradigm useful for demonstrating
and understanding certain features of plasma turbulence. The equations may have some relevance to
fluctuations in the cold edges of tokamaks, but exploring the practical ramifications or deficiencies of
such models is not the focus of this article.

The 2D HW system with constant α exhibits several important conceptual features [for a review,
see Koniges and Craddock (1994)]: (i) The linear theory exhibits a density-gradient-driven instability
that is determined from the equations themselves, 58 not inserted ad hoc. The eigenvalues of the linear
matrix coupling ω and n describe two modes, one unstable (for some wave numbers) and propagating
in the electron diamagnetic direction, the other always stable and propagating in the ion diamagnetic
direction. (ii) The system contains a single parameter α that can be varied to exhibit different physical
regimes. (a) For α � 1 consistent balance requires that n = ϕ to lowest order in α−1. This becomes
exact as α → ∞; then subtracting Eq. (52b) from Eq. (52a) yields the HME in the limit of zero
dissipation. For finite α � 1 Eqs. (52) behave as a forced, dissipative HME with small growth rate
γ/ω � 1; this regime is called the adiabatic regime. (b) For α � 1 the vorticity equation almost
decouples from the density equation and reduces to the 2D Euler equation. The density is almost
passively advected by the E × B velocity. [The diamagnetic term in Eq. (52b) can be considered
to be a random forcing.] Because of the analogy to the 2D Euler equation, α � 1 is called the
hydrodynamic regime. Here the growth rate is of the order of the real frequency: γ/ω ∼ 1.

It is interesting to see how the HW invariants reduce to those of TH and HM. Ni reduces to the
TH invariant U for δ̂ = 0. E reduces to the HM E [Eqs. (50)] as α̂ → ∞, for then one has ne → ϕ;
similarly, V +Ne →W, the potential enstrophy.

Equations (55d) and (55c) show that statistically steady states with positive flux can be achieved,
production of turbulent fluctuations (the κΓ term) being balanced by positive definite dissipation.
Aspects of the transition to turbulence of the HW system (52) were considered by Vasil’ev et al. (1990).
The equations have been simulated by several groups (Koniges et al., 1992; Biskamp et al., 1994; Hu
et al., 1995), and there is general agreement on the principle features. The particle transport Γ(α)
that follows from DNS is shown by the solid line in Fig. 1 (p. 41). A distinctive scaling Γ ∼ α−1/3 is
exhibited for α � 1. This is consistent with the prediction of scaling analysis (Appendix B, p. 264)
applied (LoDestro et al., 1991) to the simplified system arising by dropping the α term in Eq. (52b).
For large α the ordering γ/ω � 1 suggests a weak-turbulence treatment [see Sec. 4.2 (p. 98)]; this leads
(Hu et al., 1995, 1997) to the scaling 59 Γ ∼ α−2. The other curves in Fig. 1 (p. 41) will be discussed
in Sec. 8.5 (p. 208). In particular, the lowest curve, which closely tracks the exact solution, is the
prediction of the so-called Realizable Markovian Closure (RMC). Much of this article will be devoted

58 For the physics of the instability, see Hu et al. (1997).
59 Interestingly, Connor–Taylor analysis applied to the large-α regime predicts (LoDestro et al., 1991) the
scaling Γ ∼ α−1, which is actually the mixing-length scaling and disagrees with the weak-turbulence analysis.
This paradox can be resolved by arguing (Hu et al., 1997) that the numerical coefficient of the dominant
Connor–Taylor scaling vanishes in this regime, the scaling theory not taking account of the rapid variation
of the linear waves.
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to a development of the analytical techniques that underlie that clearly successful approximation.
The RMC is described in Sec. 8.2.3 (p. 203).

Fig. 1. Particle flux Γ vs adiabaticity parameter α for the 2D Hasegawa–Wakatani equations. Solid line,
direct numerical simulation; dashed line, Realizable Markovian Closure; dotted line, quasilinear prediction.
After Fig. 10 of Hu et al. (1997), used with permission.

Time snapshots of typical x-space vorticity fields for α � 1 show (Koniges et al., 1992) well-
defined vortices amidst a sea of random turbulence. The tendency to form such vortices is well known
from extensive studies of decaying 2D Navier–Stokes turbulence (McWilliams, 1984; Benzi et al.,
1988). However, whereas in strictly decaying turbulence the vortex coalescence proceeds indefinitely,
generating larger and larger scales as t→∞ and an ever-increasing kurtosis [a fourth-order statistic
defined by Eq. (96b)], the forced, dissipative 2D NSE that Eq. (52a) becomes for α � 1 achieves a
balance between the nonlinear advection in the presence of dissipation, which favors the coalescence,
and the linear forcing, which tends to destroy the vortices. The actual steady-state kurtosis measured
for representative parameters was 12. Such a highly non-Gaussian kurtosis presents a challenge for
analytical theory; see Secs. 8.5 (p. 208) and 10.4.2 (p. 225).

In 3D the physics of systems like that of HW become more interesting because of nonlinear
coupling between planes of k‖ = 0 [convective cells ; see footnote 54 (p. 38)] and k‖ 6= 0. Although
such systems can frequently be linearly stabilized by magnetic shear, 60 nonlinear instability remains a
possibility (Biskamp and Zeiler, 1995; Drake et al., 1995). The submarginal turbulence that can result
is discussed in Sec. 9 (p. 210).

60 Magnetic shear is defined in Sec. 12.6.3 (p. 247). A detailed discussion of the effects of magnetic shear on
linear stability would carry us too far afield. Early work was cited by Antonsen (1978), who proved that the
collisionless universal instability possesses only stable eigenmodes in the presence of shear.
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2.4.6 Equations with ion temperature gradients

The HM, TH, and HW equations all describe variants of the universal drift wave (Krall, 1968;
Horton, 1984) driven by gradients in the mean density profile. In the presence of intense ion heating,
as is typical for modern tokamaks, ion-temperature-gradient-driven (ITG) modes (Kadomtsev and
Pogutse, 1970b; Horton, 1984; Cowley et al., 1991) are of considerable interest (Ottaviani et al., 1997).
ITG fluid equations can systematically be derived by taking moments of the GKE in the presence
of mean temperature gradients, then invoking a Landau-fluid closure (Appendix C.2, p. 276). The
equations actually used for modern simulations are substantially too complicated to be recorded
here; see recent representative works such as those of Beer (1995) or Snyder (1999). However, when
FLR effects (Dorland and Hammett, 1993) and the effects of nonconstant magnetic fields are ignored,
one is led to a relatively simple set of fluid equations for a slab ITG mode:

∂tϕ+ VE ·∇n=−∇‖u‖ − ∂yϕ, (57a)

∂tu‖ + VE ·∇u‖ =−∇‖(T + 2ϕ), (57b)

∂tT + VE ·∇T =−2∇‖u− ηi ∂yϕ− ν̂ T, (57c)

where ηi
.
= d ln Ti/d ln ni = LT /Ln and ν̂ ∝ |k‖| arises from a Landau-fluid closure. In the limit

ωT∗ → ∞ the linear dispersion relation for this system is approximately ωk = 11/3(k2
‖c

2
sω

T∗)1/3, where

11/3 = exp(2πin/3) with n = 0, 1, 2. When ωn∗ is kept nonzero, the root n = 0 reduces to the universal
drift wave as ωT∗ → 0. The root n = 1 is the ITG mode, a nonresonant instability that is driven
unstable by negative compressibility; a clear physical picture was given by Cowley et al. (1991). The
root n = 2 is a stable branch of the ITG mode. For tokamak geometries it is important to retain the
effects of magnetic curvature; those can approximately be accounted for (Ottaviani et al., 1997) by
adding a term ωR ∂yT to the left-hand side of Eq. (57a). As ωR is raised from 0, the roots migrate such
that as ωR → ∞ the unstable root becomes ωk ≈ i(ωR ω

T∗)1/2. This curvature-driven ITG mode 61 is
the one considered to be important for experiments.

2.4.7 Nonlinear equations for trapped-ion modes

I have already noted that in toroidal magnetic configurations magnetically trapped particles may
be important. In addition to their contribution to classical transport, trapped populations may lead
to new classes of microinstabilities. Those may be important in a variety of contexts, including space
plasma physics (Cheng and Qian, 1994); the most detailed work has been done on fusion plasma,
a subject by and large too arcane and practically detailed to be described here. Nevertheless, it is
worth mentioning model equations for the trapped-ion mode, as there are interesting links to both
nonlinear dynamics and the theory of 2D turbulence.

The importance of trapped-ion modes was suggested early on in various works by Kadomtsev
and Pogutse [see, for example, Kadomtsev and Pogutse (1970b)]. They considered a two-field set of
coupled equations for the trapped-electron and trapped-ion densities. LaQuey et al. (1975) derived a
one-field model and attempted to consider its nonlinear saturation. Cohen et al. (1976) gave a more
extensive discussion of the one-field equation in 1D. In appropriately dimensionless units the equation

61 In reality the proper treatment of curvature is more complicated than is suggested here. These equations
are presented only for purposes of illustration.
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is

∂ϕ

∂t
+
∂2ϕ

∂y2
+ α

∂4ϕ

∂y4
+ νϕ+

∂(ϕ2)

∂y
= 0. (58)

An equation of this form was also derived by Kuramoto (1978) in the context of chemical reactions
and by Sivashinsky (1977) for the description of flame fronts; it is now known as the Kuramoto–
Sivashinsky (KS) equation. The second-derivative term in y is anti -diffusive; it describes a linear
instability driven by dissipation. The fourth-derivative term, which is stabilizing, arises in this context
from an approximation to ion Landau damping. The ion collision term νϕ is also stabilizing. The last
term is a Burgers-like nonlinearity [cf. Eq. (19)] that leads to the formation of shocks. Cohen et al.
(1976) found chaotic solutions of Eq. (58) and calculated some of their properties analytically; the rich
nonlinear dynamical behavior of the equation has subsequently been studied in considerable detail
[Bohr et al. (1998), Wittenberg (1998), Wittenberg and Holmes (1999), and references therein].

For the fusion application Cohen et al. (1976) emphasized that the 1D approximation was severe
and that detailed predictions from the model should not be believed. Kadomtsev and Pogutse (1970b)
had earlier derived the 2D, one-field equation

∂tn+ 1
2
V̂∗∂yn+ (V̂ 2∗/4ν)nyy + (V∗/4ν)ẑ ×∇(∂yn) ·∇n = 0, (59)

where V̂∗ is the diamagnetic velocity of the trapped ions. Diamond and Biglari (1990) argued that
the 2D nature of this equation was important, as it could lead to broadband strong turbulence. For
further remarks on Eq. (59), see Sec. 3.8.4 (p. 76).

2.4.8 Equations for magnetohydrodynamic turbulence

The plasma equations introduced so far have mostly assumed a spatially and temporally
constant magnetic field. It is not difficult to generalize them to include spatial variations, which
introduces among other things the effect of magnetic shear. The physical effects of magnetic shear
are mostly beyond the scope of this article, but one should appreciate that spatial dependence
of B arises from nontrivial current distributions and boundary conditions. The associated theory
of magnetohydrodynamic (MHD) equilibria is very well developed (Freidberg, 1982, 1987). For
turbulence, however, one is concerned as well with nontrivial time dependence, so one must consider
time-dependent MHD. This subject is vast, and even the part of it that overlaps basic turbulence
theory cannot properly be treated in this article because of space constraints; see Biskamp (1993).
Nevertheless, because MHD not only provides interesting illustrations of some of the fundamental
turbulence concepts but is also useful in many important practical applications, I shall briefly
introduce the basic MHD equations.

The evolution of electromagnetic fields is described by Maxwell’s equations

∇×B =
4π

c
j +

1

c

∂E

∂t
, ∇ ·B = 0, ∇×E = −1

c

∂B

∂t
, ∇ ·E = 4πρ. (60a,b,c,d)

For low-frequency motions the ∂tE term in Eq. (60a) is omitted (giving the pre-Maxwell equations).
For consistency one must then require the quasineutrality condition ρ = 0. The simplest Ohm’s law
in a frame moving with velocity u is

E + c−1u×B = ηclj, (61)
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where a scalar resistivity ηcl is assumed. Straightforward vector algebra leads one to the equivalent
representations

∂tB = ∇× (u×B) + µm,cl∇2B or
dB

dt
= B ·∇u + µm,cl∇2B, (62a,b)

where µm,cl
.
= ηclc

2/4π. The unique dimensionless parameter of Eqs. (62) is the magnetic Reynolds
number 62 Rm

.
= uL/µm,cl.

With A being the vector potential, it is useful to note the analogies A ∼ u, B ∼ ω (B = ∇×A,
ω = ∇ × u). When u is a specified function (possibly stochastic), Eqs. (62a) or (62b) define the
kinematic dynamo problem, which describes the amplification of magnetic fields because of line
stretching. 63 [Note that although Eqs. (62) are analogous to Eqs. (16) for the fluid vorticity ω, the
latter have no analog of the kinematic dynamo because ω is intrinsically linked to u.] If u is instead
allowed to evolve, one must adjoin to Eqs. (62) the generalization of the NSE to include magnetic
forces:

du

dt
=

1

ρm
(−∇p+ c−1j ×B) + µcl∇2u = − 1

ρm
∇(p +

1

2
B2) +

1

4πρm
B ·∇B + µcl∇2u. (63a,b)

The resulting self-consistent dynamo problem is of great current interest, but will mostly not be
discussed in this article because of lack of space.

It is not difficult to show that in 3D the nonlinear terms of Eqs. (62) and (63) conserve 64

E .= 1

2
ρmu2 +

1

8π
B2 (total energy), H .

= ρmu · ω (fluid helicity), (64a,b)

Hc
.
=u ·B (cross helicity), Hm

.
= A ·B (magnetic helicity) (64c,d)

when integrated over a volume on whose boundary (with unit normal n̂) n̂ ·ω = 0 and n̂ ·B = 0. The
interpretation of Hm as the degree of knottedness of magnetic field lines was discussed by Moffatt
(1969).

Consider a system for which the fluid energy is negligible (u ≈ 0). One is left with the two magnetic
invariants E ≈ B2/8π and Hm = A ·B. In a highly conductive fluid (Rm � 1) both E and Hm are
approximately conserved. However, when small-scale fluctuations are excited E is dissipated more
rapidly, since one can verify that

dE/dt = −ηcl|j|2, dHm/dt = −2ηclc j ·B (65a,b)

and Ė contains a higher spatial derivative because j = c∇ × B/4π. [That invariants dissipate at
different rates was called selective decay by Matthaeus and Montgomery (1980).] This faster dissipation
of energy suggested to Taylor (1974b) that the variational principle Minimize E subject to constant Hm

might be used to determine the ultimate magnetic field that results from turbulent relaxation in

62 When u is scaled to the Alfvén velocity, one refers to the Lundquist number.
63 Considerable progress has been made in the dynamical and statistical description of the kinematic dynamo.
For recent work and prior references, see Boldyrev and Schekochihin (2000) and Schekochihin (2001).
64 In 2D the fluid helicity H and the magnetic helicity Hm vanish because ω and A are in the z direction
whereas u and B lie in the x–y plane. However, A .= 〈A2

z〉 is then an independent inviscid invariant (Fyfe
and Montgomery, 1976).
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pinch experiments. The resulting Euler–Lagrange equation is ∇ ×B = λB, where λ is a Lagrange
multiplier; i.e., the relaxed states are force-free, j × B = 0. The consequences of this prediction
have been explored in depth. As reviewed by Taylor (1986) and Taylor (1999), the theory has been
spectacularly successful in predicting quantitative features of magnetic pinches, including the onset
condition for spontaneous magnetic-field reversal and the shapes of the radial field profiles.

2.4.9 Other nonlinear equations

A variety of other nonlinear dynamical equations are important in the literature; some are cited
and/or discussed by Yoshizawa et al. (2001). Conceptually, they mostly present more or less detailed
variations on the themes introduced above, perhaps by providing more elaborate descriptions of the
evolution of the temperature and/or parallel current. A Liouville equation for magnetic field lines was
posed and analyzed by Rosenbluth et al. (1966); a related model was used in the statistical description
of particle transport in magnetic fields by Krommes et al. (1983) and by vanden Eijnden and Balescu
(1996). One should also mention the four-field equations of Hazeltine et al. (1985) and Hazeltine
et al. (1987), which bridge between electrostatic and MHD equations. Very detailed equations for
drift-Alfvén microturbulence have been discussed by Scott (1997).

2.4.10 The essence of the nonlinear plasma equations

To summarize the general properties of all of the equations mentioned so far, they (i) are
nonlinear 65 (typically quadratic, although the nonlinear Schrödinger equation is cubic); (ii) possess, in
the linear approximation, intrinsic sources of free energy (e.g., profile gradients or linear growth rates),
so are self-forced (leading to intrinsic stochasticity excited by either linear or nonlinear instabilities);
(iii) include linear dissipation that can balance the forcing and permit statistically steady states;
(iv) often involve multiple coupled fields; and (v) contain an advecting velocity field, most often the
E ×B velocity, that is usually self-consistently determined from one or more of the advected fields.
These properties help to focus and guide the development of appropriate analytical theories of plasma
turbulence.

3 INTRODUCTION TO THE STATISTICAL THEORY OF

TURBULENCE

“The essential difficulties of the turbulence problem arise from the strongly dissipative
character of the dynamical system and the non-linearity of the equations of motion. The
first of these two characteristics effectively precludes treatment by conventional methods of
statistical mechanics. The second is responsible for the fact that the Navier–Stokes equation
does not yield closed differential equations for the velocity covariance, the statistical quantity
of principal interest. The equations of motion for this covariance contain third-order moments
of the velocity field, the equations of motion for the third-order moments contain fourth-order
moments, and so forth, ad infinitum. A central goal of turbulence theory is the closing of this

65 The kinematic dynamo problem [Eqs. (62) with statistically specified u] is dynamically linear, but is
quadratically nonlinear in random variables. For more discussion of the statistical closure problem for such
cases, see Sec. 3.3 (p. 52).
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infinite chain of coupled equations into a determinate set containing only moments below some
finite order.” — Kraichnan (1959b).

In this and the next several sections I discuss topics in the statistical theory of turbulence.
The present section is introductory: I describe the basic philosophy and goals, present several
solvable models, introduce important dimensionless parameters, give simple random-walk estimates
of transport, define key statistical measures, and survey various strategies that can be used to develop
analytical approximations. In subsequent sections I develop some of those in detail.

3.1 Philosophy and goals

Why does one need a “fundamental” (systematic) theory of turbulence? Useful analogies can be
drawn to Maxwell’s equations of electromagnetism and to the Vlasov equation. Maxwell’s equations
provide the foundation underpinning all of electromagnetic theory and experiment, even though in
many practical electrical-engineering applications they are not solved explicitly. The Vlasov equation
underlies a vast field of linear and nonlinear wave and other collisionless phenomena. In the same spirit
it is important to understand the most general analytical foundations of turbulence even though in
practice much rougher engineering estimates may often be employed.

As I have remarked, turbulence has various facets, both statistical and coherent. In focusing
on statistical approaches rather than descriptions of coherent phenomena, one commits to a basic
philosophy. Upon recalling the goal of calculating transport, one notes that the simplest diffusive
transport problem, a discrete random walk in one dimension, is inherently statistical, so it seems
natural to generalize such ideas as much as possible. Coherent structures may be important, but in
many circumstances they are either subdominant or embedded in a sea of random motions. Because in
some ways statistical theories are simpler than coherent ones (they discard various phase correlations,
for example), it seems reasonable and prudent to develop those first.

This is certainly not to say that statistical methods are either the last word or even at all useful
for certain important problems of nonlinear physics. Some progress in elucidating the dynamical
underpinnings of turbulence was described by Bohr et al. (1998). What needs to be avoided, however,
is the tendency of some workers to dismiss statistical approaches out of hand as being never useful. In
fact, particular statistical theories perform very well indeed for significant questions (e.g., transport)
of central importance to modern applications (e.g., fusion). It is important to understand the reasons
for this success, and we will see that some answers are known. Furthermore, whatever ingredients the
ultimate theory of turbulent phenomena will involve, it seems unreasonable to believe that insights
gained from the statistical approaches will be useless if there is a random aspect of the dynamics at
all.

The goals of a statistical theory of turbulence are both qualitative and quantitative. It is important
to note that if a transport coefficient D is assumed to exist 66 in a particular model, dimensional and
scaling analysis (Appendix B, p. 264) of the primitive equations already determines D to have the
form D/D0 = CF(ε1, ε2, . . .), where D0 is a combination of appropriate dimensional quantities such
as T or B [cf. the Bohm diffusion coefficient DB , Eq. (5)], C is a constant, and F is a dimensionless
function of various dimensionless parameters εi. Qualitative understanding of the turbulent physics

66 This assumption is far from trivial:D may be infinite or may vanish, signifying the need for a more refined
model of the physics. See the last paragraph of Appendix B (p. 266).
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helps one to understand the functional form of F , and most research on practical applications
involving turbulence is devoted to this end. However, quantitative solution of adetailed statistical
approximation is needed to determine the value of C and pin down the precise form of F . 67

Additionally, quantitative analysis is needed to predict detailed wave-number and frequency spectra,
rates of energy transfer between modes, and other quantities such as higher-order statistics or PDF’s
that can be compared with experiment. Of course, such quantities can also be computed (at least
in principle) by diagnosing numerical simulations. The analytical and computational approaches are
complementary. Note that the mere numerical computation of a constant coefficient does not explain
why it has that value. Analytical theories tend to be couched in terms of physically intuitive concepts,
such as diffusion coefficients or mean damping rates, that facilitate back-of-the-envelope estimates
and heuristic explanations. Furthermore, the conceptual formulation of the analytical methods may
suggest specific diagnostics to be employed in the analysis of the numerical data. To date, large-scale
numerical simulations in plasma physics have by and large not lived up to their promise of clarifying
in detail the nonlinear dynamics leading to the measured transport.

Another role of an analytical statistical theory of turbulence is to predict general qualitative
properties that are at least in principle amenable to experimental verification. An important example
is the Onsager symmetries. Those are known to hold for small perturbations of thermal equilibrium,
but their status for general, far-from-equilibrium classes of turbulence has been highly confused in
the literature. A discussion is given in Sec. 12.1 (p. 235).

In this article I concentrate on the systematic analysis of well-specified yet tractable nonlinear
equations such as those described in Sec. 2.4 (p. 33). (The Liouville and Klimontovich equations are
well specified, but are intractable in general.) That is not (nor should it be) the principle focus of
current research in plasma confinement, in which many diverse effects operate simultaneously and
an appropriately simple model that describes an entire device may not exist and has certainly not
yet been found. Sufficient motivation is the intellectual challenge of understanding the nonlinear
plasma state. Furthermore, there exists more than one instance of a dramatic qualitative conclusion
drawn from some heuristic statistical turbulence analysis that turns out upon closer inspection to
be erroneous. Some of the issues are quite subtle and demand a robust and systematic analytical
framework for their resolution.

3.2 Classical Brownian motion and the Langevin equations

“Une particule comme celle que nous considérons, grande par rapport à la distance moyenne des
molécules du liquide, et se mouvant par rapport à celui-ci avec la vitesse ξ subit une résistance
visqueuse égale à −6πµaξ d’après la formule de Stokes. En réalité, cette valeur n’est qu’une
moyenne, et en raison de l’irrégularité des chocs des molécules environnantes, l’action du fluide
sur la particule oscille autour de la valeur précédente, de sorte que l’équation de mouvement
est, dans la direction x, m d2x/dt2 = −6πµa dx/dt + X. Sur la force complémentaire X nous
savons qu’elle est indifféremment positive et négative, et sa grandeur est telle qu’elle maintient
l’agitation de la particule que, sans elle, la résistance visqueuse finirait par arrêter.” 68 —

67 Important issues such as the possibility of thermonuclear breakeven or the ultimate economy of fusion
reactors sometimes come down to numbers.
68 “A particle such as the one we consider, large in comparison with the mean distance between the molecules
of the fluid, and moving with respect to the latter with velocity ξ, is subject to a viscous resistance equal to
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Langevin (1908).

As I will discuss in Sec. 3.3 (p. 52), the formal structure of the turbulence problem involves a
multiplicatively nonlinear random coefficient. Let us begin, however, by examining equations with
additive random forcing. Those are much simpler to analyze and the results have wide applications,
including certain Langevin representations of statistical closures [see Secs. 5.3 (p. 132) and 8.2.2
(p. 201)].

3.2.1 Statement of the classical Langevin equations

The key example, to which I will refer a number of times in this article, is the system of classical
Langevin equations (Langevin, 1908; Uhlenbeck and Ornstein, 1930) for the Brownian motion of a
large test particle (e.g., pollen or a hydrogen ion) of mass M randomly kicked by a sea of much smaller
particles (e.g., air molecules or electrons) in thermal equilibrium at temperature T :

ẋ = v, v̇ + νv = ã(t). (66a,b)

The damping term ν describes the mean frictional drag imparted by the medium to the test particle
whereas the random acceleration ã describes the random excitation due to the individual kicks; it is
usually taken to be Gaussian white noise with 〈ã〉 = 0 and

F (t, t′) .
= 〈δã(t)δã(t′)〉 = 2Dvδ(τ )I, (67a,b)

where τ
.
= t−t′ and Dv is a constant (the short-time velocity-space diffusion coefficient, as will be seen

shortly). The Einstein relation (Einstein, 1905) Dv = T/Mν is a statement of energy conservation
and the fluctuation–dissipation theorem (Martin, 1968). Montgomery (1971a) discussed the relation
of the Langevin equations to Boltzmann’s equation. In plasmas such equations can be justified [and
formally derived from the Landau collision operator (34)] for the classical motion of a heavy ion due
to collisions with light electrons (Braginskii, 1965). However, their intuitive content is valuable quite
generally.

Several features of this Langevin system are important for the discussion of turbulence theory to
follow. (i) The delta function on the right-hand side of Eq. (67b) reflects a coarse-graining of the time
scale; the microscopic events (Coulomb collisions, in classical kinetic theory) occur on a timescale
much shorter than the time interval with which the motion of the test particle is resolved. It can
more revealingly be written δ(τ ) = τ−1

ac δ(τ/τac), where τac is a microscopic autocorrelation time. In
near-equilibrium discrete plasmas τac ∼ ω−1

p = λD/vt, the time for a thermal particle to traverse a
Debye cloud. Turbulent plasmas may support a variety of autocorrelation times; cf. the quasilinear τac,
Eq. (152). (ii) The Gaussian assumption reflects a belief that the individual microscopic interactions
are statistically independent. This is a Markov approximation that can usually be justified with the aid

−6πµaξ according to the Stokes formula. In reality, this value is but an average, and due to the irregularity
of collisions with the neighboring molecules, the action of the fluid on the particle oscillates around the
aforementioned value, so that the equation of motion in the x direction is m d2x/dt2 = −6πµa dx/dt + X.
As regards the additional force X , we know that it may equally well be positive or negative, and that its
magnitude is such that it maintains the motion of the particle, which would otherwise be stopped by the
viscous resistance.” I am grateful to A. Schekochihin for this translation.
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of the central limit theorem 69 under an appropriate coarse-graining in time; see the next paragraph.
(iii) The drag coefficient ν is a statistical property of the underlying microscopic fluctuations. This is
evident both on physical grounds and from the Einstein relation relating it to Dv.

The relationship between the coarse-graining of the timescale and the Gaussian assumption
requires further discussion. The statistics at the end of one microscopic interaction of duration τac

are not Gaussian even if they were at the beginning of the interval, because nonlinearity induces
non-Gaussian effects. (This is the issue surrounding the justification of Boltzmann’s Stosszahlansatz.)
However, consider a time interval ∆t� τac. During such an interval, many microscopic interactions
will occur. Let the ith kick, of duration τac, be δvi. The associated acceleration is δvi/τac, and the

total acceleration during ∆t is δa(∆t) =
∑∆t/τac
i=1 δvi/τac. If the kicks are independent (a reasonable

lowest-order idealization), then to the extent that ∆t/τac � 1, δa(∆t) is the sum of many independent
random variables and one can appeal to the central limit theorem to conclude that δa(∆t) is essentially
Gaussian and independent of the actual statistics of the microscopic accelerations. If ∆t is taken to
scale with τac (for example, ∆t = 5τac), then in the limit τac → 0 ∆t also shrinks to 0 and one recovers
the Gaussian white-noise approximation.

Equation (67b) shows that Dv =
∫∞
0 dτ 〈δax(t+ τ )δax(t)〉, a special case of Taylor’s formula (4).

By describing the properties of the Langevin equations in terms of microscopic fluctuations, one
needs to rely less on their classical interpretation. When classical weakly coupled kinetic theory is
appropriate, ν and Dv can be computed simply; for plasmas, the calculation reduces to the solution
of the linearized Klimontovich equation (Sec. 2.2.2, p. 27). When, on the other hand, the microscopic
events (those on the shortest dynamical timescale of interest) are highly nonlinear, other techniques
must be employed. Those are just the statistical closure approximations for turbulence; they will be
discussed later.

3.2.2 Solution of the classical Langevin equations

Now consider the solution of the Langevin equations (66) for times longer than the microscopic
correlation time τac (in the classical Langevin theory, τac → 0). Because Eqs. (66) are linear, the
quantities x(t) and v(t) can be found by a straightforward Green’s-function approach. For example,
the velocity fluctuation is the time convolution of Green’s function for Eq. (66b) with the random
acceleration. Because integration, a linear operation, can be represented as the limit of a discrete
Riemann sum, one may appeal to the theorem that any sum of Gaussian variables is again Gaussian.
Hence x and v are (jointly) Gaussian, and the entire probability density functional (Sec. 3.5.1, p. 59)
is specified by the two-time correlation matrix of those variables. The calculations are straightforward.
As a special case, the first- and second-order equal-time moments (in 1D for simplicity) conditional
on initial conditions (x0, v0) at t = 0 are (Uhlenbeck and Ornstein, 1930; Wang and Uhlenbeck, 1945)

〈v | x0, v0〉 = e−νtv0, 〈x | x0, v0〉 = x0 + (1− e−νt)λmfp,0, (68a,b)

〈δv2〉 = V 2
t (1− e−2νt), 〈δx δv〉 = λmfpVt(1− e−νt)2, (68c,d)

〈δx2〉 = λ2
mfp(2νt− 3 + 4e−νt − e−2νt), (68e)

69 The central limit theorem (Feller, 1967) states that under certain restrictions the sum of n independent
random variables becomes Gaussian as n→∞.
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where Vt
.
= (T/M)1/2, λmfp,0

.
= v0/ν, and λmfp

.
= Vt/ν. The short- and long-time limits of these results

are collected in Table 1 (p. 50). In particular, one has v-space diffusion with diffusion coefficient 70

Dv = V 2
t ν for 0 = τac < t < ν−1. For νt � 1 the velocity of the test particle thermalizes to Vt and

x-space diffusion ensues with diffusion coefficient Dx = V 2
t /ν = λ2

mfpν. The latter result is the usual
random-walk formula for a diffusion process with step size λmfp and step time ν−1. 71

Table 1
Limits of the classical Langevin statistics. Here Dv

.= V 2
t ν and D‖

.= V 2
t /ν. λmfp,0 and Vt are defined after

Eq. (68).

νt� 1 (short times) νt� 1 (long times)

〈v | x0, v0〉 (1− νt)v0
(collisional slowing down)

0
(randomization of directed velocity)

〈x | x0, v0〉 x0 + v0t

(free streaming)
x0 + λmfp,0

(randomized in a mean free path)

〈δv2〉 2Dvt

(v-space diffusion)
V 2
t

(thermalization)

〈δx δv〉 Dv t
2

(integral of v-space diffusion)
D‖

(parallel transport)

〈δx2〉 2
3Dv t

3

(double integral of v-space diffusion)
2D‖t

(x-space diffusion)

In the collisionless limit the spatial dispersion 〈δx〉2 = 2
3
Dvt

3 figures importantly in the
justification of quasilinear theory [Sec. 4.1.2 (p. 91) and Appendix D (p. 279)] and in Dupree’s
resonance-broadening theory (Sec. 4.3, p. 108). Aspects of the collisionless equal-time PDF
corresponding to these Langevin dynamics are discussed in Sec. 12.6.3 (p. 246) and Appendix E.1.2
(p. 284).

In magnetized plasmas an appropriate Langevin model comprises Eqs. (66) (for motion along B)
plus ẋ⊥ = V ⊥(t) with 〈δV ⊥(τ )δV ⊥(0)〉 = 2D⊥δ(τ )I. Such models have figured in discussions of
transport in stochastic magnetic fields (Krommes et al., 1983; Balescu et al., 1995; vanden Eijnden
and Balescu, 1996).

70 According to the theory of classical random walks, a velocity-space diffusion coefficient scales as
Dv ∼ ∆v2/∆t. However, one must not infer from the result Dv = V 2

t ν that ∆v ∼ Vt and ∆t ∼ ν−1,
which would mean one huge kick in one collision time. Instead, the duration of a kick is ∆t = τac = εν−1,
where ε is a small parameter that is taken to zero in the classical Langevin problem. (Physically, ε is
the plasma discreteness parameter εp.) The size of a kick is ∆v =

√
ε Vt. [This is consistent with the

representation F (τ) = 2Dvτ
−1
ac δ(τ/τac). The coefficient of the dimensionless delta function is (∆v/∆t)2,

or ∆v = (τacDv)1/2 = (ντac)1/2Vt.] Then Dv = limε→0(
√
ε Vt)2/(εν−1) = V 2

t ν. When one coarse-grains over a
microscopic timescale, one must take that scale to zero as the last limiting operation.
71 In the presence of a background magnetic field, the Langevin calculation generalizes in a straightforward
way; one merely solves the full Lorentz equations of motion, including gyrospiraling, at the cost of possibly
tedious algebra (Kursunoglu, 1962). As a special case, one obtains for νt� 1 the familiar result 〈δx2〉 = 2D⊥t,
where for ωc � ν one finds D⊥ ≈ ρ2ν, ρ being the gyroradius.
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The form of the two-time velocity correlation function C(t, t′) .
= 〈δv(t)δv(t′)〉 is also instructive.

For a thermalized particle (νt, νt′ →∞), the statistics become stationary and C is found to depend
on only τ

.
= t− t′ according to

C(τ ) = V 2
t e−ν|τ |. (69)

This result holds even for motion across a magnetic field, but consider parallel motion for simplicity.
Then for τ

>
< 0 Eq. (69) is seen to involve R(±τ ), where R(τ )

.
= H(τ )e−τ is Green’s function for

the left-hand side of Eq. (66b). [H(τ ) is the Heaviside unit step function defined in Appendix K.2
(p. 304).] It is revealing to consider the temporal Fourier transform:

C(ω) =
2νV 2

t

ω2 + ν2
= |R(ω)|2F (ω), (70)

where

F (ω) = 2Dv or F (τ ) = 2Dvδ(τ ) (71a,b)

is the covariance of the forcing δã. Equation (70) provides a clean statement of the steady-state
balance between forcing (F ) and dissipation (ν, encapsulated in R); see related discussion in the
vicinity of Eq. (12) of Fox and Uhlenbeck (1970). By inverse Fourier transformation, it leads to the
interesting alternate representation

C(τ ) = R(τ ) ? F (τ ) ? R†(τ ), (72)

where R†(τ ) .
= R(−τ ) and ? denotes convolution. It can be shown that the form (72) transcends

its derivation and is retained in general turbulence theory; see the discussion at the end of the next
paragraph.

It is impossible to overstate the conceptual importance of these physically elementary and
mathematically straightforward results. Without a firm grasp of the heuristic content of the classical
Langevin problem at hand (especially the roles of the various timescales, the random-walk scalings of
diffusion coefficients, and the concept of a balance between forcing and dissipation), attacks on the
turbulence problem will likely degenerate into a morass of unrecognizable (and probably incorrect)
mathematics. Several of the important statistical closures to be derived, including the DIA, can be
developed in terms of rigorous Langevin representations, the mere existence of which guarantees
important realizability properties. Furthermore, the general form of the equations provides a welcome
unification. Indeed, the Langevin balance between random acceleration and coherent drag, particularly
in the form (72), generalizes to a highly nonlinear spectral balance equation for turbulent fluctuations,
as discussed in Secs. 5.4 (p. 133) and 6.2.2 (p. 155). One important difference between classical
and turbulence theory is that whereas in classical theory the autocorrelation time is taken to be
vanishingly small [reflected by the delta function in Eq. (71b)], so that microscopic, sub-τac dynamics
are not seen, in general turbulence theory τac must be obtained as a self-consistent property of the
fluctuations. In some cases a separation of timescales need not exist; in strong turbulence both τ−1

ac

and ν meld into a single, nonlinearly determined damping rate Σ. It can be said that the essence of
the turbulence problem is the “opening up” and the self-consistent determination of the microscopic
dynamics. Of course, that is just what is done in the derivation of the Balescu–Lenard collision
operator. However, both that operator as well as the previous Langevin model benefit from properties
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of thermal equilibrium. (In the Langevin calculation the fluctuation level is known once the background
temperature is specified. At the microscopic level the result V 2

t = T/M is ultimately a consequence of
a Gibbs distribution for the combined system of test particle plus background.) The extra difficulty
of a theory of turbulence is that the statistical distribution is far from equilibrium, so its form is
not known explicitly. In the course of solving the balance equation, both the fluctuation level and
autocorrelation time are obtained simultaneously. In general, one must deal with the coupling of
multiple spatial scales as well. Thus with I being intensity, the classical form C(ω) = 2νI/(ω2 + ν2)
generalizes to the transcendental equation

Ck(ω) = |Rk(ω; Σk,ω[I ])|2Fk(ω; Σk,ω[I ]), (73)

where Ik
.
= (2π)−1

∫∞
−∞dω Ck(ω) and an appropriate form is given for Σ[I ]. The bracket notation is

used to indicate that Σ may depend functionally on I . Powerful ways of determining that functional
dependence are discussed in Sec. 6 (p. 146).

The linear, additively forced Langevin example leads directly to the concept of the spectral balance
equation. However, the classical problem has nothing to say about the determination of ν, a property
of nonlinear microscopic dynamics. To provide insights into that problem, I discuss in Sec. 3.3 (p. 52)
a solvable problem with multiplicative statistics. First, however, a few words on nonclassical random
walks are in order.

3.2.3 Generalized Brownian motion; Lévy flights

It must be emphasized that the classical diffusion law 〈δx2〉 ∝ t is a very special case. For
arbitrary nonlinear physical processes, there is no reason why lim∆x,∆t→0 ∆x2/∆t should be finite
and nonzero. More generally, 〈δx2〉 ∝ tα is possible, with α = 2 being called ballistic, 1 < α < 2
being called superdiffusion, and α < 1 being called subdiffusion. Such processes arise from various
kinds of accelerated or “sticky” motion as particles execute their random walks. A short and readable
introduction to such Lévy flights was given by Klafter et al. (1996); see also Zumofen et al. (1999).
More information and references can be found in Balescu (1997). By generalizing the classical Langevin
theory sketched above, Mandelbrot (1982) showed how to construct fractional Brownian motion that
possesses an α 6= 1; see, for example, the review by Feder (1988). Obviously, a complete turbulence
theory should be able to cope with such unusual processes. At this point one should simply appreciate
that although the structure of the classical Langevin problem is enormously instructive, it does not
capture all possibilities.

3.3 The stochastic oscillator: A solvable example with multiplicative statistics

“There arise from the dynamical equations an infinite hierarchy of coupled equations which
relate given ensemble averages to successively more complicated ones. . . . This situation, which
commonly is called the closure problem, arises even when the nonlinear stochastic terms are
linear in the dynamic variables.” — Kraichnan (1961).

The simplicity of the Langevin systems discussed in the last section arose because the random
forcing entered additively. In practice, however, multiplicative statistics are more common [cf. the
advective nonlinearities in the Navier–Stokes, MHD, gyrokinetic, and other equations discussed in
Sec. 2 (p. 22)]. In the present section I discuss an extremely instructive solvable model, the so-called
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stochastic oscillator (SO). 72 The model can be derived from radical simplifications of the nonlinear
terms of the NS or GK equations [see point (ii) below]; it also arises naturally in various physical
applications such as stochastic line broadening in magnetic spin resonance (Kubo, 1959). Variants of
this model have been frequently used to illustrate the merits and deficiencies of various attacks on the
statistical closure problem. 73 The most important reference in this context is by Kraichnan (1961);
see also the earlier work by Kraichnan (1958a) and the review by Krommes (1984a). A generalization
was used by Kraichnan (1976a) in his treatment of the role of helicity fluctuations on magnetic-field
diffusion; see Sec. 10.3 (p. 223) for further discussion. For modern plasma-physics applications, see
Krommes and Hu (1994) and Krommes (2000b). A special limit of the model also describes exactly the
linear part of the Landau-fluid closure problem introduced in Sec. 2.4.1 (p. 33); see Appendix C.2.2
(p. 278).

The model is the following primitive equation for a random variable ψ:

∂tψ(t) + iω̃(t)ψ = 0. (74)

Here ω̃(t) is a Gaussian random variable with zero mean and specified, stationary covariance
Υ(t, t′) = Υ(τ ) characterized 74 by an autocorrelation time τ lin

ac . The reason for the superscript lin
is described in point (iii) of the next paragraph. For the initial conditions on ψ, see the last paragraph
of this section.

The model is intended to capture several important features of the typical quadratically nonlinear
primitive equations that arise in practice (Sec. 2, p. 22): (i) As emphasized by Kraichnan (1961),
although Eq. (74) is linear in the dynamical variable ψ it is quadratically nonlinear in random
variables. It thus displays the same closure problem that plagues more complicated equations: the
equation for a cumulant of order n involves a cumulant of order n + 1. (ii) The form iω̃ of the
random coefficient echoes the structure of the spatial Fourier transform of an advective nonlinearity
Ṽ ·∇; in the limit that the advecting field has infinite wavelength, the correspondence is exact with
ω̃
.
= k · Ṽ . [For some related discussion, see Krommes (2000b).] (iii) The presence of a characteristic

autocorrelation time τ lin
ac in Υ(τ ) suggests the linear-theory-induced decorrelation mechanisms of

steady-state turbulence such as wave dynamics or particle streaming; see Sec. 4.1 (p. 90). [For physical
problems Υ(τ ) is best interpreted as a Lagrangian correlation function. Thus the effective τ lin

ac can
be finite even for a static Eulerian correlation function provided that the latter has nontrivial spatial
variation.]

One property that Eq. (74) does not share with the equations of Sec. 2.4 (p. 33) is that it models
passive advection (the statistics of ω̃ are specified and are independent of ψ; cf. the kinematic dynamo
problem) whereas in most physical situations the advecting velocity is determined self-consistently,
being a (usually linear) functional of ψ itself [cf. the Vlasov equation (E = E[f ]) or GF models
involving E × B advection (VE = VE[ϕ])]. There are important differences between the statistical
descriptions of problems with passive and self-consistent advection. (In particular, self-consistent
problems possess symmetries and conservation laws that are not shared by passive ones.) Another
simplification is the absence in Eq. (74) of a nontrivial linear response or dependence on independent
variables such as x or v. For example, the characteristic linear streaming term v ·∇ of Vlasov theory

72 See van Kampen (1976) for discussion of more complicated second-order oscillator models.
73 Feynman strongly believed in the utility of “toy models” (Mehra, 1994).
74 For definiteness one usually takes Υ(τ) = β2 exp(−|τ |/τ lin

ac ). This exponential form is demanded by Doob’s
theorem (Wang and Uhlenbeck, 1945; Papoulis, 1991) if the processes giving rise to ω̃ are Markov.
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is absent. Such linear effects provide important decorrelation mechanisms; in the stochastic oscillator,
those are encapsulated in the prescribed τ lin

ac .
For initial conditions one usually takes either (Kraichnan, 1961) ψ(0) = 1 or asserts a centered

Gaussian distribution for ψ0
.
= ψ(0). The latter choice (Krommes, 1984a) is closer in spirit to the

behavior of Navier–Stokes-like equations, so I follow it here; dynamical linearity permits one to take
〈|ψ0|2〉 = 1 without loss of generality. If ω̃ and ψ0 are statistically independent, it is easy to show that
〈ψ0〉 = 0 implies 〈ψ(t)〉 = 0.

3.3.1 Response function for the stochastic oscillator

The great merit of Eq. (74) as a pedagogical example is that the primitive dynamics can be solved
explicitly (Kubo, 1962b, 1963), whereas the dynamically nonlinear equations that arise in practice
cannot. Thus cumulants of any order can be calculated from the exact solution and compared with
various closure approximations. Introduce the unit step function H(τ ) that ensures causality, and
define ψ+(t)

.
= H(t)ψ(t). One then finds ψ+(t) = R̃(t; 0)ψ0, where

R̃(t; t′) .
= H(τ ) exp

(
−i
∫ t

t′
dt′′ ω̃(t′′)

)
(75)

is the random infinitesimal response function or random Green’s function that obeys 75

∂tR̃(t; t′) + iω̃(t)R̃ = δ(t− t′). (76)

In the present dynamically linear problem there is no difference between infinitesimal and finite
response; more generally, though, it turns out to be the infinitesimal response function that is most
useful, a possibly counterintuitive result. In problems of self-consistent advection the equation for the
response function is more complicated because the random frequency must be perturbed as well; see
further discussion in Sec. 3.9.1 (p. 77). In all cases the mean infinitesimal response function R

.
= 〈R̃〉

is of great importance, as we will see in Secs. 5 (p. 126) and 6 (p. 146). In the present model the
significance of R is emphasized by the easy-to-prove fact

C+(τ ) = R(τ )〈|δψ0|2〉. (77)

Only one dimensionless parameter can be built from the two dimensional parameters β and τ lin
ac

remaining in the problem, the Kubo number(Kubo, 1959, 1962b; Toda et al., 1995; van Kampen, 1976)

K .
= βτ lin

ac . (78)

K is a normalized measure of the linear autocorrelation time, and the size of K relative to unity
controls the behavior of the time correlations and infinitesimal response. For example, the exact mean

75 The semicolon between t and t′ is intended to remind one that the function is causal; a comma is used
for the two-sided correlation function C(t, t′). More generally, the arguments to the right of the semicolon
denote when infinitesimal perturbations were applied, and the arguments to the left denote when response
was measured—for example, the “two-in, one-out” response function is R(t; t′, t′′). For more discussion of
response functions, see Sec. 3.5.4 (p. 64).
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infinitesimal response function R(t; t′) can be calculated from Eq. (75) and the Gaussian property to
be

R(τ ) = H(τ ) exp[−(βτ lin
ac )2(τ/τ lin

ac − 1 + e−τ/τ
lin
ac )], (79)

or in terms of the dimensionless time τ
.
= βτ , R(τ ) = H(τ ) exp[−K2(K−1τ − 1 + e−K

−1τ)]. One
identifies two regimes: short-time (τ < τ lin

ac or τ < K),

R(τ ) ≈ H(τ ) exp(−1
2
τ2) = H(τ ) exp(−1

2
β2τ 2); (80)

and long-time (with the inequalities reversed),

R(τ ) ≈ H(τ ) exp(−Kτ) = H(τ ) exp(−β2τ lin
ac τ ). (81)

The area under R(τ ) is thus controlled by the size of K. For K > 1 the short-time regime dominates
and the area is O(β−1); for K < 1 times longer than τ lin

ac dominate and the area is O(β−1K−1). That
the short-time R does not decay as a simple exponential is a signature that the statistics of ψ are not
Gaussian-Markov in that regime, according to Doob’s theorem. Note that for K =∞ R lies entirely
in the short-time regime, whose strongly non-Gaussian nature makes it difficult to treat.

3.3.2 Transport estimates

The behavior of R(τ ) can be seen to be in accord with simple estimates of diffusion coefficients
if one makes the correspondence β = k V , where k is a characteristic wave number and V is the
rms level of a very-long-wavelength advecting velocity. The spatial Fourier transform of the Green’s
function for a diffusion equation is Gk(τ ) = H(τ ) exp(−k2Dτ ), having area (k2D)−1. Upon comparing
this area with the above results for R(τ ) and identifying k with k at this crude level of analysis, one
finds

D ∼ V 2
τ lin
ac (K < 1) or D ∼ V /k (K > 1). (82a,b)

Equation (82a) is sometimes called the quasilinear or weak-turbulence form of the diffusion coefficient

(D ∼ V
2
) while Eq. (82b) is called the strong-turbulence form (D ∼ V

1
). It is said that the

quasilinear scaling possesses the classical exponent 2 whereas the strong-turbulence scaling possesses
the anomalous exponent 1. [More refined considerations of transport in strong-turbulence regimes
lead to an exponent that differs slightly from 1; see Sec. 12.5 (p. 245).] The appearance of anomalous
exponents is discussed from a deeper perspective in Sec. 6.1.2 (p. 150) and Appendix B (p. 264).

Both of the results (82) follow from the general random-walk estimate D ∼ V
2
τac, where the true

autocorrelation time for the random process is

τac = τ lin
ac (K < 1) or τac = (k V )−1 = β−1 (K > 1). (83a,b)

In other words, K = τ lin
ac /β

−1 is the ratio of the linear autocorrelation time to the nonlinear one, and
it is always the shorter of those that controls the random walk. Of course, as a function of K the
weak- and strong-turbulence regimes are smoothly connected. Note that one unrealistic feature of
such simple models is that they exhibit no stochasticity threshold; transport exists for any nonzero
fluctuation level.
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For cross-field transport in strong magnetic fields, the characteristic velocity is the E × B
velocity: V ∼ VE ∝ B−1. One is thus led to anticipate a crossover from a weak-turbulence scaling
D ∼ B−2 to a strong-turbulence, Bohm-like scaling D ∼ B−1 when the fluctuations grow so large that
(kVE)−1 < τ lin

ac , provided that neither τ lin
ac nor k depend on B. B-independent k amounts to kL = O(1),

where L is a macroscopic length; Eq. (82b) can be writtenD ∼ (kL)−1(V L). If, on the other hand, k is
determined by microscopic physics, kρs = O(1), then one recovers gyro-Bohm scaling from Eq. (82b):
D = (kρs)

−1(ρs/L)(V L).
The properties (82) and (83) are general features of transport problems that any sensible statistical

closure theory should be expected to reproduce. The stochastic-oscillator results will serve as a very
useful guide as one proceeds to develop various approximations in Sec. 3.9 (p. 76).

The oscillator model discussed here contains neither forcing nor dissipation. If those are added,
the final fluctuation level depends on the balance between forcing and dissipation. Although that
provides a more faithful representation of the structure of realistic turbulence problems, I shall not
pursue it here but instead refer the reader to the closely related discussion by Krommes (2000b).

3.3.3 Random oscillator with nondecaying response function

For later discussion of the fidelity of statistical closures, it is useful to introduce a slightly more
complicated variant of the simple oscillator:

∂tψ(t) + ia cos(t+ θ̃)ψ = 0, (84)

where θ̃ is a random phase distributed uniformly on the interval [0, 2π) and a is a constant. The
significant feature of this model, which possesses a non-Gaussian random multiplicative coefficient,
is that its mean response function, R(τ ) = H(τ )J0(2a sin(1

2
τ )), does not approach zero as τ → ∞.

This behavior is intended to model various features of integrable or coherent phenomena that present
significant challenges for statistical theories. As we will see, those challenges have not been fully met
to date. For example, the response function of the DIA (Sec. 5, p. 126) for this model incorrectly
decays to 0 as τ →∞ (Sec. 5.6.1, p. 137).

3.4 Dimensionless parameters for turbulence

The two most important dimensionless parameters for turbulence problems are the Kubo
number K and the Reynolds number R. In many heuristic discussions of plasma turbulence, these
parameters are often not distinguished clearly or are confused.

3.4.1 Kubo number K

In principle, some sort of Kubo number—a property of the advecting velocity field—can be defined
for any kind of problem involving passive advection that evinces an autocorrelation time τac. (In this
section, to avoid clutter and to permit a later generalization I omit the superscript lin from τac.)
Specifically, introduce the macroscopic eddy turnover or circulation time τL

.
= L/u, where u is the

characteristic rms velocity and L is the system size. τL is the time for the macroscopic flow to advect
a perturbation across the entire system, or for an eddy of the order of the system size to turn over
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once. Then

K .
=

autocorrelation time

eddy turnover time
=
τac

τL
=
uτac

L
. (85)

The principal difficulty is that usually the advecting field is a function of both x and t, so the
appropriate τac to be used in the definition (85) should be a Lagrangian autocorrelation time, which
is difficult to compute precisely. This point was discussed in the context of the Vlasov stochastic-
acceleration problem by Dimits and Krommes (1986).

3.4.2 Reynolds number R

Additionally, if the problem involves linear dissipation, another dimensionless parameter, the
Reynolds number R (often denoted as Re in fluid problems), can be constructed (Rott, 1990). For
an equation such as that of Navier and Stokes (either passive or self-consistent), one introduces the
hydrodynamic or classical diffusion time τh

.
= L2/µcl. This is the time for a perturbation to diffuse

by microscopic classical processes across the entire system. Then

R .
=

classical diffusion time

eddy turnover time
=
τh
τL

=
uL

µcl
. (86)

For example, a simple dissipative and passive model that generalizes the stochastic oscillator to include
dissipation 76 in a finite-sized domain and thus contains both R and K is the generalized reference
model of Krommes and Smith (1987) [see also Krommes and Ottaviani (1999)]:

∂tT (x, t) + ũ(t)Tx − µclTxx = 0, (87a)

with boundary conditions

T (0, t) = ∆T, T (L, t) = 0. (87b)

3.4.3 The R–K parameter space

For passive problems K and R are independent parameters, so the dynamical behavior must
be classified in terms of an R–K parameter space, displayed in Fig. 2 (p. 58). Various regimes are
evident. 77 Let a dimensional flux be called Γ [the bar stands for volume average, an operation that
is explicitly exploited in Sec. 11 (p. 230)] and let its dimensionless version be called γ

.
= Γ/(u|∆T |).

Also introduce an effective diffusivity D such that Γ = −D(〈∆T 〉/L). Of course, dimensionally

D ∼ ∆x2/∆t ∼ ∆v2∆t. (88a,b)

One has D = uLγ. It is clear from this latter relation that D does not necessarily describe local
transport on scales much smaller than L; in general, it is a global property of the entire slab.

76 For general passive advection it is not conventional to call the dissipation coefficient µcl. That is done in
this pedagogical discussion in order that a uniform notation involving a (generalized) Reynolds number can
be used.
77 For a more thorough version of the following discussion, see Krommes and Smith (1987).
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In the model (87) there always flows at least the classical flux γcl = µcl/(uL); according to Eq. (86),
γcl = R−1. To estimate advective contributions, it is convenient to use Eq. (88b) with ∆v ∼ u and
∆t = min(τac, τh, τL). For τac < τh (K < R) and τac < τL (K < 1), one obtains the usual quasilinear
result Dq ∼ u2τac or γq ∼ K (K < R, K < 1). Krommes and Smith (1987) called this regime the
kinetic-quasilinear regime on the grounds that it is usually kinetic processes (e.g., free streaming) that
determine τac, henceK. For τh < τac (K > R) and τh < τL (R < 1), a hydrodynamic-quasilinear regime,
one obtains Dh ∼ u2τh or γh ∼ R (R < K, R < 1). Finally, when τL < τac (K > 1) and τL < τh
(R > 1), one obtains a strong-turbulence regime with D ∼ uL or γ ∼ 1 (R > 1, K < 1). The three
major regimes are delimited by the solid lines OX, XB, and XC in Fig. 2 (p. 58). It is straightforward
to deduce that the advective contribution to transport dominates to the right of line AXC, which is
thus the most interesting part of parameter space. The original SO model corresponds to R =∞, so
sits either in the kinetic-quasilinear regime (K < 1) or the strong-turbulence regime (K > 1).

For self-consistent fluid problems the autocorrelation time is not an independent parameter; one
must take τac = min(τh, τL), which corresponds to the curve OXB in Fig. 2. In particular, in a
strongly turbulent fluid problem the effective K is O(1). However, in self-consistent kinetic (Vlasov-
like) problems τac can persist as an independent parameter related to the streaming motion of the
particles through the wave packets; see the discussion of the quasilinear autocorrelation time in
Sec. 4.1.2 (p. 91).
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Fig. 2. The parameter space of Reynolds number R and Kubo number K [after Fig. 2 of Krommes and Smith
(1987), used with permission].
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3.5 Key statistical measures

Having demonstrated some simple solvable models that display important features of the
statistical closure problem, I turn in the next several subsections to a survey of the formal techniques
that can be brought to bear on the statistics of such models as well as on the much more difficult PDE’s
of plasma physics, for which useful exact solutions do not exist in general. I begin with the key measures
that can be used to quantify the statistical behavior of such systems.

3.5.1 Probability density functions

The most complete description of a continuous random variable x̃ (sometimes calledX) is provided
by the PDF 78 PX(x) ≡ P (x); the probability that x̃ takes on the value x in an interval dx is P (x)dx.
The nonrandom variable x is called the observer coordinate. A useful identity is 79 P (x) = 〈δ(x− x̃)〉.
A good introduction to probability theory can be found in Papoulis (1991); see also Feller (1967).
A review of various properties of and methods related to PDF’s was given by Pope (1985); see also
Haken (1975).

In practice one deals more frequently with random fields ψ(x, t) that are parametrically dependent
on space and time. Then one must consider most generally the fully multivariate (including the
entire continuum of space and time points) probability density functional P [ψ]; the brackets indicate
functional dependence. The meaning of and manipulations with such functionals can be understood
(Beran, 1968; Zinn-Justin, 1996) by discretizing the space and time axes and considering ordinary
functions of the very large number of variables representing the values of the fields at each of the
discrete points in space-time. Seminal discussion in the physics literature was given by Feynman
(1948b), whose work is further reviewed in Sec. 6.1 (p. 147); see also Mehra (1994, Chap. 10.4).
Because probability density functionals are central to the later discussion of renormalized field theory
in Sec. 6 (p. 146), some of the details are elaborated in Appendix H (p. 293).

Because of the wealth of information contained in even a 1D PDF, PDF methods are still in
their infancy [see Sec. 10 (p. 220) for further discussion]. Much better developed are moment-based
approximations.

3.5.2 Moments and cumulants

The nth moments of the PDF P (x) are defined by Mn
.
= 〈xn〉 (these may be infinite). The Fourier

transform of P (x), Z(k) =
∫∞
−∞dx e−ikxP (x), can be written

Z(k) = 〈exp(−ikx̃)〉. (89)

78 The PDF is called P in order to distinguish it from the one-particle “distribution function” f of kinetic
theory, which is normalized differently:

∫∞
−∞dxP (x) = 1 whereas

∫∞
−∞dx dv f(x, v) = V , where V is

the volume. Note that this usage of the phrase “distribution function” is confusing because in standard
probability theory a distribution function FX(x) is the probability that X achieves a value less than x; i.e.,
FX(x) =

∫ x
−∞dxPX(x).

79 This identity is nontrivial if x̃ depends on another random variable z̃ and the average is performed
with PZ(z). It lies at the heart of the path-integral representation of renormalized field theory, as discussed
in Sec. 6.4 (p. 166).
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Z(k) is called the characteristic function. The characteristic function of the Gaussian PDF P (x) =
(2πσ2)−1/2 exp[−(x − x)2/2σ2] is ZG(k) = exp(−ikx − 1

2
k2σ2). Z(k) is also the moment generating

function, since a formal Taylor expansion of the exponential leads to

Z(k) =
∞∑
n=0

(−ik)n

n!
Mn, Mn =

∂nZ(k)

∂(−ik)n

∣∣∣∣∣
k=0

. (90a,b)

[M0 = 1 because P (x) is normalized.] For the use of moment generating functionals in statistical field
theory, see Sec. 6.2 (p. 153).

It is not required that moments of all orders exist. A simple counterexample is the Cauchy or
Lorentzian PDF P (x) = π−1a/(x2 +a2), for which even-integer moments for n ≥ 2 are infinite. In this
case the difficulty is manifested in Fourier space by the appearance of a branch point at the origin
for the characteristic function Z(k) = e−|k|a. Such PDF’s with infinite variance arise in the context
of violations of the central limit theorem. Lévy (1937) inquired about the class of PDF’s of the sum
c0z =

∑n
i=1 cixi that obeyed the scaling relation φ(x) = n1/γPn(n

1/γx) subject to the constraint
cγ0 =

∑n
i=1 c

γ
i . He proved that the characteristic function obeyed Z(k) ∝ exp(−|k|γ) for γ ≤ 2. The

special value γ = 2 recovers the Gaussian PDF; processes with γ < 2 have infinite variance. However,
Lévy flights with finite variance can be constructed (Zumofen et al., 1999). Further discussion and
references can be found in Balescu (1997).

Even when they exist, moments need not uniquely determine a PDF. Carleman’s criterion
(Carleman, 1922; Wall, 1948) states that the PDF is determined if

∑
n(1/M2n)

1/2n diverges. 80

Kraichnan (1985) discussed appropriate procedures for dealing with PDF’s that violate Carleman’s
criterion. For some early related discussion, see Orszag (1970b).

Moments form a poor basis for statistical approximations since they typically grow at least
exponentially rapidly with order; for example, a centered Gaussian distribution with unit variance
has M2n = (2n − 1)!!. Another, usually undesirable property is that truncation of Eq. (90a) leads to
a singular description of P (x) in terms of derivatives of delta functions. For example, if Eq. (90a) is
truncated at second order one finds P (x) ≈ δ(x)−M1δ

′(x) + 1
2
M2δ

′′(x).
Cumulants (Kubo, 1962a) usually provide a better description than do raw moments. Formally,

cumulants Cn ≡ 〈〈xn〉〉 are generated from the logarithm of the characteristic function: with
W (k)

.
= lnZ(k), one writes by definition

W (k) =
∞∑
n=1

(−ik)n

n!
Cn, Cn =

∂nW (k)

∂(−ik)n

∣∣∣∣∣
k=0

. (91a,b)

Combinatoric properties of the logarithm then lead to a cluster expansion that relates the moments
to the cumulants. For several random variables denoted by 1, 2, . . . , the first few members of the
cluster expansion are

M(1) =C(1), (92a)

80 That is not true if the moments increase more rapidly than exponentially with order. An example of a PDF
that violates Carleman’s criterion is the log-normal PDF for a variable ε defined such that z .= ln ε is Gaussian
with mean z and variance σ2. One has P (ε) = (2πε2σ2)−1/2 exp[−(ln ε−z)2/2σ2] and Mn = exp(nz+ 1

2n
2σ2).

This distribution figured prominently in early discussions of intermittency (Kolmogorov, 1962; Frisch, 1995)
and also arises in the theory of passive advection (Schekochihin, 2001).

60



M(1, 2) =C(1)C(2) + C(1, 2), (92b)

M(1, 2, 3) =C(1)C(2)C(3) + [C(1)C(2, 3) + 2 terms] + C(1, 2, 3), (92c)

M(1, 2, 3, 4) =C(1)C(2)C(3)C(4)

+ [C(1)C(2)C(3, 4) + 5 terms] + [C(1)C(2, 3, 4) + 3 terms]

+ [C(1, 2)C(3, 4) + 2 terms] + C(1, 2, 3, 4). (92d)

For random vectors x and y with jointly Gaussian statistics, only the first two cumulants C(x) ≡
〈〈x〉〉 = 〈x〉 and C(x,y) ≡ 〈〈x yT 〉〉 = 〈δx δyT 〉 survive.

Upon combining Eqs. (89) and (91a), one obtains a rule for interchanging averaging and
exponentiation that is often useful in practice:

〈exp(−ikx̃)〉 = exp

( ∞∑
n=1

(−ik)n

n!
Cn

)
→ exp(−ik〈x̃〉 − 1

2
k2〈δx̃2〉) (Gaussian). (93a,b)

The latter result is often employed in Dupree’s resonance-broadening theory (Sec. 4.3, p. 108).
Simple manipulations with the multivariate form of Eq. (93a) can be used to prove that the

cumulant of any two statistically independent variables vanishes (Kubo, 1962a). This result provides
physical insight to the cluster expansion, which is well known as the Mayer cluster expansion (Mayer,
1950) in many-body kinetic theory and as Wick’s theorem in quantum field theory (Wick, 1950; Zinn-
Justin, 1996). In the context of Coulomb interactions between charged particles, the term C(1)C(2, 3)
in Eq. (92c) is illustrated in Fig. 3.

1

2

3

Fig. 3. Illustration of the Mayer cluster (cumulant) expansion. Imagine three charged particles interacting
with the Coulomb potential (denoted by a dashed line). The various terms of the cumulant expansion (92c)
are generated by turning off the interactions between one or more of the particles in all possible ways. Even
when particle 1 does not interact with particles 2 and 3, as depicted in the figure, there is still a probability of
finding the particles somewhere in phase space; the drawing corresponds to the term C(1)C(2, 3) in Eq. (92c).

Since all cumulants of order higher than 2 vanish for a Gaussian, it might be hoped that PDF’s that
are “nearly” Gaussian will possess higher-order cumulants that are small. Unfortunately, “nearly” is ill
defined. If the cumulants grow smaller with order sufficiently rapidly, then reasonable approximations
can sometimes be obtained by truncating the cluster expansion at some order. 81 Nevertheless, even
if a particular cumulant is small, if it has the wrong sign and the cumulant expansion is truncated
inappropriately, the resulting PDF may not be normalizable. Furthermore, innocent-looking PDF’s
can have cumulants that grow with order. Kraichnan (1985) pointed out the simple PDF

P (x) = (2π)−1/2x2 exp(−1
2
x2), (94)

81 This is the scheme used in classical plasma kinetic theory.
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for which 82 C0 = 1, C2n+1 = 0, C2 = 3, and C2n = −(−1)n[(2n)!/n] for n > 1. In such cases superior
and more versatile representations may be found by expanding the PDF in orthogonal polynomials
(Kraichnan, 1985); see Sec. 3.9.12 (p. 89).

Typical moment-based (more properly, cumulant-based) statistical approximations provide closed
equations for the first few cumulants. The most important cumulants have special names. If the mean
field 〈ψ〉 is nonvanishing, it is crucial to retain it. An example is the Klimontovich density Ñ , whose
mean is the one-particle distribution function f = 〈Ñ〉; the Vlasov equation (closed in terms of f) is
a mean-field theory. However, descriptions based solely on the mean fail to capture a great deal of
physical information. For example, it has been remarked 83 that if male ⇔ 1 and female ⇔ −1, the
mean value 〈gender〉 = 0 does not quite capture the essence of the problem (Gray, 1994).

The most common moment-based approximations are second order, based on the covariance
C(1, 1′) .

= 〈δψ(t)δψ(1′)〉. In the moment hierarchy C is driven by a multipoint generalization of the
skewness parameter S, a normalized triplet correlation function:

S
.
= 〈δψ3〉/〈δψ2〉3/2; (95)

for a Gaussian, S = 0. Because the three-point correlation function is related to the rate of energy
transfer between modes (Sec. 3.8.1, p. 71), which does not vanish for forced, dissipative turbulence,
such turbulence cannot be Gaussian. This observation is fundamental in statistical turbulence theory.

Typical fourth-order statistics are the flatness F or the kurtosis K:

F
.
= 〈δψ4〉/〈δψ2〉2, K

.
= F − 3; (96a,b)

for a Gaussian, 84 F = 3 and K = 0. It is not hard to find non-Gaussian PDF’s. Although the sum
of two Gaussian variables is Gaussian, their product is not. An explicit example (a bilinear random
flux) is discussed in Sec. 10.1 (p. 221).

The kurtosis is frequently said to be a measure of intermittency, although that is not entirely in
accord with the refined definition of intermittency given by Frisch (1995). 85 A simple definition of an
intermittent flow is one in which laminar and turbulent regions are intermixed. Let the fractional area
occupied by turbulence be ε, and consider a fluctuating field δψ that vanishes in the laminar region and
is approximately Gaussian in the turbulent region. Then K = ε(3〈δψ2〉2)/(ε〈δψ2〉)2 − 3 = 3(1− ε)/ε.
For this simple model, a 50% mixture of laminar and turbulent regions has K = 3; a flow that is
20% turbulent has K = 12. In Sec. 2.4.5 (p. 41) I mentioned simulations of the HW model, which

82 The result C2 = 3 corrects a misprint in Kraichnan (1985). The characteristic function is Z(k) =
(1− k2)e−k2/2.
83 Unfortunately and with apologies, the identity of the original author of this incisive observation is lost
among the more than 800 references on statistics in the library system of Princeton University, illustrating
that a good idea is much more memorable than even the most elegant formal mathematics.
84 The flatness of a scalar function of a Gaussian vector need not equal 3. For example, for a Gaussian
vector u in 3D, 〈|u|4〉/〈|u|2〉2 = 5

3 .
85 According to Frisch, a random signal is intermittent at small scales if the flatness of the high-pass filtered
signal grows without bound with the filter frequency. That includes the simple definition involving intermixed
laminar and turbulent regions given in the text immediately following this footnote reference, but it excludes
such self-similar functions as fractional Brownian motion. For more discussion of intermittency, see Frisch
and Morf (1981).
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leads to mixtures of coherent vortices and turbulence, for which such a large value of kurtosis was
actually measured.

The values of S, K, and other similar statistics are not entirely arbitrary; they must obey
realizability inequalities, as described next.

3.5.3 Realizability constraints

As we have seen, in a moment-based closure a moment (or cumulant) of some order is
approximated in one way or another by terms of lower-order quantities. That leads to an economy of
description; however, there is no guarantee that the resulting equations are well behaved. In particular,
it is not assured that the infinity of realizability constraints associated with the very existence of a PDF
are preserved.

Realizability constraints stem from the intrinsic non-negativity of a PDF. A trivial example of such
a constraint is that the mean square of a random variable x is non-negative (“positive semidefinite”).
This result follows immediately from the definition: 〈x2〉 .

=
∫∞
−∞dxP (x)x2 ≥ 0. Less trivially,

this conclusion also applies to the mean-square fluctuation from the mean (the second cumulant),
〈δx2〉 ≥ 0, which implies the constraint (97a) below. When x is a physical variable such as an electric
field or fluid velocity, the theorem states that quadratic energylike quantities must be non-negative.

This result may appear to be obvious. Nevertheless, for any particular moment-based closure,
which provides approximate time-evolution equations for such energylike quantities, there is no
guarantee that the constraint is preserved in the course of time, and it is easy to demonstrate
approximations for which it is not (Kraichnan, 1961). Typically, if an energylike quantity goes negative,
it does so catastrophically and diverges to ±∞ in a finite time. A telling example of this behavior
that is highly relevant to the theory of drift waves in plasma is described in Sec. 8.2.1 (p. 201).

The condition 〈δx2〉 ≥ 0 is but one example of an infinite number of constraints that can be
deduced (Wall, 1948; Kraichnan, 1979, 1980, 1985) by asserting the positive-semidefiniteness of 〈F 〉,
where F is any non-negative function. That is equivalent to requiring that 〈Q2

r(x)〉 > 0, where Qr is
the rth orthogonal polynomial. 86 The first two of the resulting constraints are

〈x2〉 − 〈x〉2 ≥ 0, 〈x4〉 − 〈x2〉2 ≥ (〈x3〉 − 〈x〉〈x2〉)2/(〈x2〉 − 〈x〉2). (97a,b)

The latter equation constrains the relationship between the kurtosis and skewness statistics: For a
centered distribution, Eq. (97b) reduces with the aid of the definitions (95) and (96) to K ≥ S2 − 2.
For example, this constraint is satisfied by the example (94), for which S = 0 and K = −4

3
.

An excellent introductory discussion of realizability inequalities, including additional difficulties
that arise when the random variables have compact support, was given by Dubin (1984b). He
illustrated some of the issues by describing applications to the logistic map

xn+1 = λxn(1− xn) (0 ≤ λ ≤ 4), (98)

properties of which have been intensively studied in the literature (May, 1976).
There are appropriate generalizations of the realizability constraints for several random variables.

When the set of variables is the infinitely multivariate collection of all x’s and all t’s, the constraints
become quite difficult to work with explicitly; however, their very existence is profound.

86 It is not necessary to introduce the orthogonal polynomials; see Theorem 86.1 of Wall (1948) and the last
exercise on p. 5 of van Kampen (1981).
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The importance of realizability constraints for turbulence was recognized quite early (Kraichnan,
1959b, 1961; Orszag and Kruskal, 1968). Kraichnan (1979, 1980) used them to suggest a computational
scheme in which moments of order higher than fourth never appeared. They have also figured in crucial
ways in several recent developments, both theoretical and computational, of interest to plasma physics.
Those are described in some detail in Secs. 8.2 (p. 201) through 10 (p. 220).

Realizability constraints are necessary but not sufficient. For example, as defined above they
place no constraint on the mean of a random variable. Suppose that variable is the Klimontovich
microdensity Ñ . Then one knows (Sec. 2.2.2, p. 27) that 〈Ñ 〉 = f , which is proportional to the one-
particle PDF. The fundamental constraint that f ≥ 0 is not guaranteed by the theory of realizability
inequalities.

3.5.4 Response functions

The ψ cumulants (multipoint correlation functions) are basically measures of fluctuations. Because
a fluctuation, once arisen, must decay in a statistical steady state, it is also useful, both heuristically
and technically, to introduce independent measures of dissipation. Those are provided by the so-called
response functions. Consider a nonlinear field equation of the form

∂tψ(1) + iL̂ψ +N [ψ] = η̂(1), (99)

where L̂ is a linear operator, N is a nonlinear functional, and η̂ is an arbitrary source field. 87 The
random infinitesimal response function R̃ is defined by R̃(1; 1′) .

= δψ(1)/δη̂(1′)|η̂=0; it obeys

∂

∂t
R̃(1; 1′) + iL̂R̃+

∫
d1

(
δN (1)

δψ(1)

)
R̃(1; 1′) = δ(1− 1′), (100)

where the functional chain rule was used. 88 The mean infinitesimal response function R (response
function, in brief) is then R(1; 1′) .

= 〈R̃(1; 1′)〉. It is not easy to find closed equations for R because the
coefficient δN/δψ in Eq. (100) depends on the random variable ψ; i.e., Eq. (100) has a multiplicative
random coefficient and thus possesses the closure problem.

Higher-order response functions such as

R(1; 1′, 1′′) .
=

〈
δ2ψ(1)

δη̂(1′)δη̂(1′′)

〉∣∣∣∣∣
η̂=0

(101)

can be similarly defined in terms of the functional Taylor coefficients of ψ[η̂], which in general depends
on η̂ through all orders because of the nonlinearity.

Equation (100) can be used to succinctly describe the difference between self-consistent and
passive problems. Let N [ψ] ∼ Vψ. (Physically, V represents an advecting velocity; I ignore details
such as gradient operators for this general discussion.) In a self-consistent problem V = V [ψ] depends

87 The hat notation maintains consistency with the general MSR formalism of Sec. 6 (p. 146).
88 For an introduction to functional derivatives, see Beran (1968) or any textbook on variational calculus.
R̃ is nothing but the linearization of Eq. (99) with respect to an infinitesimal source, subsequently rescaled
to unit amplitude at t = t′ + ε.
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functionally on ψ; in a passive problem it does not. Thus

δN
δη̂

=


VR̃ (passive)

VR̃+

(
δV
δψ
R̃

)
ψ (self-consistent).

(102)

The extra term in the self-consistent response describes the backreaction of the advected field on
the advecting velocity; it leads, for example, to an energy-conservation law absent from the passive
problem.

For two-point statistics one thus has available the covariance C(1, 1′) as a measure of fluctuations
and the response function R(1; 1′) as a measure of dissipation. 89 In turbulence theory the development
of coupled and closed nonperturbative equations for 〈ψ〉, C , and R was pioneered by Kraichnan with
his famous DIA, to be described in Sec. 5 (p. 126). An elegant generalization of the cumulant formalism
was found by Martin et al. (1973); their work will be described in Sec. 6 (p. 146).

3.6 Alternate representations and properties of second-order spectra

The correlation function C(1, 1′) can be discussed in either x space, k space, or other bases such
as wavelets (Farge, 1992). For homogeneous turbulence k space is particularly suitable. Thus one
may consider C(k), the Fourier transform with respect to x−x′. However, certain superior alternate
representations are also in common use.

3.6.1 Energy spectral density

Instead of C(k) one frequently considers the energy spectral function E(k), from which the
total energy E can be calculated according to E =

∫∞
0 dk E(k), where k

.
= |k|. Thus the volume

element in k space is included in E(k), so the physical dimensions of E(k) are independent of
spatial dimensionality d. No assumption about isotropy is made at this point; if the turbulence is
anisotropic, E(k) includes a nontrivial average over solid angle in k space and does not provide a
complete description of the wave-number spectrum. Although use of E(k) is completely standardized
in neutral-fluid theory, in plasma physics mean-squared fields [sans volume element, i.e., C(k)] are
often plotted instead.

The energy spectrum is the derivative E(k) = dE(k)/dk of the cumulative energy spectrum
E(k) .

= C<(k), where C<(k) is a low-pass-filtered version of C(x) that contains wave-number
components less than k in magnitude. A detailed discussion of the filtering procedure was given
by Frisch (1995).

3.6.2 Structure functions

Instead of the two-point correlation function C(1, 1′), it is often useful to consider the structure
function

S(1, 1′) .
= 〈[δψ(1)− δψ(1′)]2〉 = 2[C(1, 1)− C(1, 1′)]. (103a,b)

89 In thermal equilibrium C and R are related via the fluctuation–dissipation theorem; see Sec. 3.7.1 (p. 67).
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A lucid discussion was given by Frisch (1995), who emphasized the importance of such functions for
describing random processes with stationary increments. 90 Spatial structure functions are often used
in analyses of the statistics of the small scales of turbulence. 91 They have been seldom employed
in plasma physics to date, but see the application discussed by Krommes (1997a) and in Sec. 4.4
(p. 119).

3.6.3 The Taylor microscale

The Taylor microscale λT (Taylor, 1935) is a measure of the second derivative of the correlation
function at the origin. Specifically, for a homogeneous, isotropic function C(x,x′) = C(ρ), where
ρ
.
= |ρ| and ρ

.
= x− x′, λT is defined by

C(ρ)/C(0) = 1− ρ2/λ2
T + · · · (ρ→ 0). (104)

Alternatively,

λT
.
=

(
−C ′′(0)
2C(0)

)−1/2

=

(∫∞
0 dk k2E(k)

2
∫∞
0 dk E(k)

)−1/2

. (105a,b)

Note that the numerator of Eq. (105b) is the enstrophy or mean-squared velocity shear:∫ ∞

0
dk k2E(k) = 〈|ω|2〉, (106)

where ω
.
= ∇ × u is the vorticity. Thus kT

.
= λ−1

T is a normalized measure of the rms velocity shear
(Krommes, 1997a, 2000b). For further discussion of the role of turbulent velocity shear, see Sec. 12.7
(p. 248).

Another interpretation of λT arises by evaluating the Navier–Stokes energy dissipation ε, Eq. (13c),
for homogeneous, isotropic turbulence. One finds (Taylor, 1935)

ε = 15µcl u
2/λ2

T =
15

2
µcl

∫ ∞

0
dk k2E(k), (107a,b)

where u is the rms level of any Cartesian velocity component. The result (107a) might lead one
by dimensional reasoning to associate λT with the characteristic scale at which viscous dissipation
occurs. However, that conclusion is false for high Reynolds-number turbulence. It would be correct if
E(k) decayed exponentially rapidly [consider inserting a Gaussian shape into Eq. (107b)]. However, as
will be discussed in Sec. 3.8.2 (p. 73), the actual (Kolmogorov inertial-range) spectrum is algebraic,
E(k) ∝ ε2/3k−5/3, out to a Kolmogorov dissipation wave number kd � kT (after which it falls off
rapidly). Indeed, if that spectrum is inserted into Eq. (107b) and the definition (9) of the Reynolds
number R is used, one finds

ε1/3 ∝ R−1
∫ kd

0
dk k1/3 ∝ R−1k

4/3
d , (108)

90 An example of a nonstationary random process with stationary increments is the Brownian path x̃(t), the
solution of ˙̃x = ṽ(t) for delta-correlated ṽ.
91 Note that any k = 0 component of the fluctuations cancels out in the definition of the structure function.
That is, Eq. (103) is invariant under the addition of a constant ψ0 to δψ.
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so the dominant contribution to dissipation comes from the vicinity of the upper limit. If ε is to be
O(1) (production at the large scales), it then follows that 1 ∼ R−1k2

T ∼ R−1k
4/3
d , or

kT = O(R1/2), kd = O(R3/4). (109a,b)

Thus kd � κT as claimed and merits its interpretation as the dissipation wave number. k−1
d is called

the Kolmogorov microscale.
The Taylor microscale figures crucially in the theory of the so-called clump algorithm, one crude

procedure for estimating saturation levels in plasma turbulence that is critiqued in Sec. 4.4 (p. 119)
and shown to suffer from misapprehensions about the interpretation of λT . Those difficulties were
explained by Krommes (1997a, 2000b).

3.7 Statistical dynamics of thermal equilibrium

Turbulence, being intrinsically forced and dissipative, represents a state that is far from thermal
equilibrium. Nevertheless, particular properties of thermal-equilibrium solutions obtained in the
absence of forcing and dissipation importantly figure in the qualitative description of nonequilibrium
steady states.

3.7.1 Fluctuation–dissipation theorems

One of the most profound results of equilibrium statistical mechanics is the fluctuation–dissipation
theorem (FDT; Martin, 1968; Toda et al., 1995), which states that the equilibrium fluctuation
spectrum C and a particular linear response function K (different from R) are proportional. This
result is by no means intuitively obvious; indeed, it is remarkable since C describes finite-amplitude
fluctuations whereas K describes the response to an infinitesimal perturbation of the Hamiltonian.

A well-known consequence of the classical FDT for discrete many-particle systems is that for
weakly coupled plasmas the thermal-equilibrium fluctuation spectrum is 〈δE2〉(k)/8π = 1

2
T/(1+k2λ2

D)
[see, for example, Ecker (1972)]; this result is frequently used to test particle simulation codes (Lee,
2000). The generalization of this result to gyrokinetic plasmas is both important and subtle (Krommes,
1993c). For further discussion, see Appendix C.1.7 (p. 276).

Kraichnan (1959a) proved an FDT that directly links C and R and is of more direct relevance to
the theory of turbulence. By considering a hypothetical weak coupling of two initially isolated systems
in thermal equilibrium, he showed [see also Orszag (1977)] that in thermal equilibrium

C+(k, ω) = R(k, ω)C(k), (110)

where C+(ω) is the temporal Fourier transform of the one-sided function H(τ )C(τ ) and C(k) is
the equal-time wave-number spectrum (independent of time in the steady state). The physical
distinction between R and the K of the original FDT is that R describes the response to infinitesimal
perturbations additive to the equations of motion whereas K describes the response to perturbations
additive to the Hamiltonian, which become multiplicative perturbations to the equations of motion.
The specific mathematical relations between R and K were discussed by Krommes (1993b), who
illustrated some of the formulas with the guiding-center model (31) of cross-field transport. See also
the discussion of dielectric response in Sec. 6.5 (p. 170).
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The importance of an FDT like Eq. (110) for a theory of turbulence is that it provides a
powerful constraint that any statistical theory relating R and C should satisfy in the limit of thermal
equilibrium. Because that limit is achieved by removing forcing and dissipation from the equations
of motion, the constraint is on the nonlinear structure of the theory and is entirely nontrivial. As we
will see in Sec. 8.2 (p. 201), the fluctuation–dissipation relation (110) also serves as a plausible Ansatz
that can be employed (with varying degrees of fidelity) even in highly nonequilibrium situations. The
practical advantage of such a relation is that the two-time dependence (or the frequency spectrum)
can be described by one independent function rather than two.

3.7.2 Gibbs ensembles for turbulence

It is well known that the existence of Liouville’s theorem
∑
i ∂(żi)/∂zi = 0, where the zi’s are

the phase-space coordinates, permits an equilibrium statistical mechanics (Tolman, 1938). Let φn be
one of a complete set of real orthonormal eigenfunctions such that a general field ψ can be expanded
as ψ(x, t) =

∑
n ψn(t)φn(x). For homogeneous turbulence and periodic boundary conditions, plane

waves are appropriate eigenfunctions. Assume that when the equation of motion is truncated to a finite
number of those eigenfunctions, an inviscid constant of motion exists of the form Ĩ =

∑
n ψ

2
n(t). (The

tilde denotes a quantity that is in principle a random variable although here it is actually constant
in each realization; the corresponding mean quantity is denoted I .

= 〈Ĩ〉.) It can then readily be
shown (Kraichnan, 1965a; Kraichnan and Montgomery, 1980) that the ψn obey Liouville’s theorem
with ψn = zn. Accordingly, a Gibbs distribution P [ψ] ∝ exp(−αĨ[ψ]) is an equilibrium (and stable)
solution of Liouville’s equation. This predicts an equipartition spectrum for the ψn, as was first shown
for some important special cases in the pioneering paper by Lee (1952). If there are several constants of
motion Ĩi, one is led to multiparameter Gibbs distributions, P [ψ] ∝ exp(−∑i αiĨi[ψ]), and nontrivial
generalizations of the equipartition spectrum.

The absolute equilibrium distributions do not describe turbulence, which is a forced, dissipative
state with nonvanishing net energy flow from mode to mode. 92 Nevertheless, they are important in
several ways: they can be used to partially test numerical simulations and statistical closures; and
they also suggest that the nonlinear terms will transfer energy (or other invariants in some cases) in
the direction that would tend to bring the wave numbers to their thermal equilibrium level. Of course,
for actual forced, dissipative turbulence that attempt is defeated for wave numbers in the dissipation
range, where the steady-state spectrum must lie far below the equilibrium prediction. See further
discussion in Sec. 3.8 (p. 71).

A difficulty with Gibbs’s procedure as applied to the equations of turbulence is that the full set of
constants of motion may not be known or may be infinite. Fortunately, usually the conservation of an
infinite set of quantities does not survive truncation to a finite k space or other bases (Kraichnan and
Montgomery, 1980); frequently only the quadratic quantities survive. If one were to fail to recognize
one or more of the quadratic invariants, qualitatively incorrect results could arise 93; see the following
discussion of the two-parameter Gibbs distribution.

Another issue is that Gibbs’s form is not the unique stable solution of the Liouville equation.

92 Some general aspects of the distinctions between equilibrium and turbulence were discussed by Kraichnan
(1958b).
93 Higher-order invariants may be important as well; see the discussion in Secs. 5.10.3 (p. 144) and 7.2.1
(p. 183) of the problem of three interacting modes, in which in addition to energy and enstrophy a cubic
Hamiltonian invariant is also nonlinearly conserved.
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Strictly speaking, if the {Ĩi} have the same values in all realizations, then the distribution should
be microcanonical, P [ψ] ∝ ∏

i δ(Ii − Ĩi[ψ]). The usual justification for Gibbs’s form is to evaluate
averages by a saddle-point integration that exploits the number of modes as a large parameter. The
differences between the microcanonical and canonical distributions were discussed by Kells and Orszag
(1978), who performed numerical simulations of systems with small number of degrees of freedom and
compared the results with the theoretical predictions of the various equilibrium ensembles.

The (inviscid) HM equation (48) provides an important and nontrivial example of these ideas.
As discussed in Sec. 2.4.3 (p. 37), the HME conserves two quadratic invariants, the energy Ẽ and
the enstrophy W̃ [defined by Eqs. (50)]. Those quantities remain invariant if one removes from the
spectrum all triad interactions with the magnitude of any leg larger than some kmax, which I shall
subsequently assume has been done. (In the following discussion, all k’s are really k⊥’s.) One is then
led to the two-parameter Gibbs distribution

P [ϕ] ∝ exp[−∑k(α + βk2)Ẽk] (111)

(the sum is over the independent Fourier components; ϕk and ϕ−k are not independent because of
the reality condition ϕ−k = ϕ∗k), which in turn leads to mean values E .

= 〈Ẽ〉 and W .
= 〈W̃〉 with the

equilibrium wave-number spectrum Ek .
= 〈Ẽk〉 = (α+ βk2)−1.

As was pointed out in Sec. 2.4.3 (p. 37), if the 1 is neglected in the factor (1 + k2), the
HM description reduces to that of the 2D Euler equation (Onsager, 1949; Joyce and Montgomery,
1973). Kraichnan (1975b) has given an extensive discussion of the two-parameter Gibbs distribution
for that case; his results can be taken over directly. Let M be the number of modes remaining in the
truncated spectrum and introduce the mean energy and enstrophy per mode, respectively, E .

= E/M
and W .

=W/M . Also define the dimensionless parameters

α
.
= E α, β

.
= E β, α̂

.
= α/β = α/β. (112a,b,c)

Specifying (α, β) then determines (E ,W) and vice versa :

( E
W

)
=

1

2β

〈(
1
k2

)(
1

α̂ + k2

)〉
k

, (113)

where 〈. . .〉k denotes the wave-number average over the discrete spectrum: 〈A〉k
.
= M−1 ∑

kAk. Now
introduce the ratio of enstrophy to energy, which is the square of a dimensionless wave number κ:
κ2 .

=W/E =W/E . Then

κ2 = (2β)−1 − α̂, β
.
= 1

2
〈(α̂+ k2)−1〉k. (114a,b)

The usual situation is that one is given {E ,W} (prescribed, say, as initial conditions). The
associated α and β can then be found as follows. Replace the set {E ,W} by {E , κ2}. Invert Eq. (114a)
with the aid of Eq. (114b) to give α̂(κ2). Then β is known from Eq. (114b) and α follows from
Eq. (112c). The actual α and β can then be obtained from Eqs. (112).

Not all combinations of {E,W} or {α, β} are accessible. A striking result is that in a discrete
spectrum (kmin > 0) one or the other of α or β may be negative, corresponding to negative-temperature
equilibrium states. The parameter space can be analyzed by demanding that E, W , and Ek be non-
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negative, 94 and one can identify three regimes:

I: α < 0

k2
min≤κ2≤ k2

a,

−k2
min≤ α̂ ≤ 0,

−∞≤ α ≤ 0,

∞≥ β ≥ k−1
a ;

II: α, β > 0

k2
a≤ κ2≤ k2

b ,

0≤ α̂ <∞,

0≤ α ≤ 1,

k−1
a ≥ β ≥ 0;

III: β < 0

k2
b ≤κ2≤ k2

max,

−∞< α̂ ≤−k2
max,

1≤ α ≤∞,

0≥ β ≥−∞.

The qualitative features of this behavior are summarized in Fig. 4 (p. 71), which plots the
approximation obtained by assuming that the spectrum is dense and spherically truncated (Kraichnan,
1975b): M ≈ π(k2

max − k2
min),

β ≈ 1

2
ln

(
α̂+ k2

max

α + k2
min

)
/(k2

max − k2
min), k2

a ≈
k2

max − k2
min

ln(k2
max/k

2
min)

, k2
b ≈

1

2
(k2

min + k2
max). (115a,b,c)

Regime I corresponds to negative-α states; symmetrically, regime III corresponds to negative-β states.
States with highly negative α have the longest-wavelength modes excited to very high levels and have
small ratios of enstrophy to energy. For states with highly negative β, the excitation is concentrated
at the shortest wavelengths and the ratio of enstrophy to energy is large.

A frequent argument is that the equilibrium wave-number distribution of the invariants provides
a clue about the behavior of nonequilibrium dynamics; the nonlinear terms strive to relax the
system to equilibrium, but are thwarted by forcing and dissipation. For example, the existence of
the negative α (large-energy, long-wavelength) and negative β (large-enstrophy, short-wavelength)
equilibrium regimes suggests that a nonequilibrium HM system forced at intermediate wavelengths
may exhibit a dual cascade in which energy is transferred to long wavelengths while simultaneously
enstrophy is transferred to short wavelengths. This point is pursued in Sec. 3.8.3 (p. 74). Dual cascades
exist in nonhelical MHD [see Eqs. (64)] as well; a readable introduction was given by Montgomery
(1989).

Although two-parameter Gibbs distributions are frequently discussed because of the practical
importance of 2D turbulence, they are not the only possibility. For example, it was noted in Sec. 2.4.5
(p. 39) that the nonlinear terms of the HW equations conserve four quadratic invariants; the

94 Considered as a function of α̂, Ek is singular at α̂ = −k2
min and α̂ = −k2

max, and one can verify that
the region −k2

max < α̂ < −k2
min is forbidden since one or more of the Ek would be negative. To analyze the

behavior in the vicinity of α̂ = −k2
min, write α̂ = −k2

min + ε/M . Then one can see that β ∼ ε−1 → +∞ as
ε→ 0+. For fixed E , which will always be assumed in considering the various limiting cases, one can see that
also β → +∞. The behavior of α .= αE follows from α = α̂β = (−k2

min + ε/M)β ≈ −k2
minβ → −∞. One also

has κ2 → −α̂→ k2
min. Symmetrical behavior ensues in the vicinity of α̂ = −k2

max− ε/M , where the roles of α
and β as well as kmin and kmax are reversed. The other interesting points are α̂ = 0 and α̂ = ±∞. Define
the special wave numbers ka and kb according to k2

a
.= 〈k−2〉−1

k , k2
b = 〈k2〉k. [That kb ≥ ka is a consequence

of the Schwartz inequality applied to the identity 〈(k2)(k−2)〉 = 1.] Then at α̂ = 0 one finds E = (2βk2
a)
−1,

W = (2β)−1, and κ2 = k2
a. As α̂ → +∞ one has E = (2α)−1, W = (2α)−1k2

b , and κ2 = k2
b . Since for fixed E

α remains finite, one can see that β → 0+ as α̂ → +∞. The point α̂ = −∞ is obtained continuously from
α̂ = +∞ as β passes continuously through 0 from above.
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Fig. 4. Parameter space for a two-parameter Gibbs distribution, displayed as a function of α̂ .= α/β. The
solid curves plot κ2, the ratio of enstrophy to energy. The chain-dashed curves plot α; the chain-dotted curves
plot β. The inverse temperatures α and β are seen to pass continuously through 0 as functions of κ2.

corresponding four-parameter Gibbs distribution was discussed by Koniges et al. (1991) and used
by Hu et al. (1995) to partially verify numerical solutions of statistical closures [see Sec. 8.5 (p. 208)].
A three-parameter Gibbs equilibrium for a model of electromagnetic turbulence was discussed by
Craddock (1990).

3.8 Spectral paradigms

Since transport is fully determined by two-point spectral functions [see Eq. (3b)], it is important
to have an intuitive understanding of the characteristic shapes of wave-number spectra and of the
directions of flow of energy and other nonlinear invariants in k space. Various scenarios can arise;
they are called spectral paradigms. The characteristic spectral paradigm for the quasi-2D turbulent
fluctuations of strongly magnetized plasma is quite different from the standard one for the 3D NSE.

3.8.1 Definition of transfer

Transfer 95 is defined as the net amount of a nonlinear invariant leaving a particular region of
k space; a seminal reference is by Kraichnan (1959b). Consider a primitive amplitude equation of the

95 The following discussion of invariant transfer is a slight paraphrasing of Sec. II A of Krommes (1997c).
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form ∂tψk + iLkψk = 1
2
Nk[ψ]. For 〈ψ〉 = 0 this leads to the spectral evolution equation

∂tC̃k = 2γkC̃k + Re(Nk[δψ]δψ∗k), (116)

where C̃k
.
= |δψk|2 and γk

.
= ImLk. Let a (nonlinearly conserved) invariant Ĩ be defined by the

appropriately weighted sum over all k’s: Ĩ .
=
∑

k σkC̃k. A generalization is to define a partial sum
over only a particular k-space region ∆k: Ĩ(∆k)

.
=
∑

k∈∆k
σkC̃k, with Ĩ(∆∞) = Ĩ (∆∞ denotes the

whole of the k space). Upon summing Eq. (116) over ∆k, one finds the fundamental transfer equation

1
2
∂tĨ(∆k) = P̃(∆k)− D̃(∆k)− T̃ (∆k), (117)

where the forcing or production is P̃(∆k)
.
=

∑
k∈∆k

H(γk)σkγkC̃k, the dissipation is D̃(∆k)
.
=

−∑k∈∆k
H(−γk)σkγkC̃k, and the nonlinear transfer is T̃ (∆k)

.
= −1

2
Re

∑
k∈∆k

σkNkδψ
∗
k . On the

average, Eq. (117) holds without tildes; in steady state the averaged transfer T (∆k) equals the net
forcing P(∆k) − D(∆k). For quadratic nonlinearity T is a weighted sum of the triplet correlation
function Tkpq

.
= 〈δψkδψpδψq〉:

T (∆k) = −1

2
Re

∑
k∈∆k

∑
∆

σkMkpqT
∗
pqk, (118)

where
∑

∆ is defined in Appendix A (p. 262). T is thus proportional to the skewness of the fluctuations
[Eq. (95)], a non-Gaussian effect. For forced, dissipative steady-state turbulence, the transfer cannot
vanish identically because the forcing and dissipation occur in different regions of k space, so the
fluctuations are necessarily skewed and cannot be Gaussian. The sign and magnitude of the transfer
from various finite regions of k space provide important insights into the nonlinear dynamics, and
verifying that T̃ (∆∞) = 0 for each quadratic nonlinear invariant is a powerful test of a simulation
code.

For homogeneous, isotropic turbulence all statistical quantities depend only on k
.
= |k|, so it

makes sense to define ∆k as a spherical (3D) or circular (2D) region centered on the origin; this
defines the conventional isotropic function T (k). Let us pass to a continuum of wave numbers.
As a consequence of isotropy, both Mkpq and Tkpq depend on just wave-number magnitudes. The
angular integrations in

∑
∆ can then be performed (Appendix A, p. 263), and Eq. (118) becomes

T (k) = −1
2

∫ k
0 dk

∫
∆ dp dq T (k, p, q), where for the important 2D case

T (k, p, q)
.
= 2πk[2/| sin(p, q)|]σkMkpq(δk

−2dT∗kpq) (119)

(δk being the mode spacing). Because T (∞) = 0, one can alternatively write T (k) = 1
2

∫∞
k dk×∫∞

0 dp
∫∞
0 dq T (k, p, q), where T (k, p, q) is assumed to vanish outside of the domain ∆(k, p, q). Simple

manipulations using the detailed conservation property σkT (k, p, q) + c.p. = 0 (c.p. means the cyclic
permutation k→ p→ q) then lead to the form given by Kraichnan (1959b),

T (k) =
1

2

(∫ ∞

k
dk
∫ k

0
dp
∫ k

0
dq −

∫ k

0
dk
∫ ∞

k
dp
∫ ∞

k
dq

)
T (k, p, q). (120)

For a graphical illustration, see Kraichnan’s Fig. 1.
Studying merely the angle-averaged T (k) can be misleading for anisotropic situations such as

those characteristic of drift-wave problems in fusion plasmas, in which various important frequencies
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are proportional to ky. So that one does not overlook unexpected physics, one should also study
appropriately defined functions T (kx) and T (ky) [and T (k‖) in 3D]; unfortunately, this is virtually
never done. Nevertheless, the tendency of E × B advection to isotropize fluctuations means that
T (k) is a useful and simple diagnostic for many situations of 2D plasma turbulence.

It should be pointed out that transfer is a necessary but not sufficient diagnostic. By itself transfer
does not provide information about locality of the interactions (Waleffe, 1992). Furthermore, steady-
state transfer measurements provide no direct information about timescales.

In the next several sections I shall discuss various distinctive qualitative scenarios of k-space
transfer that have been identified. To describe all of the various cases within a common framework, I
will employ the energy spectrum E(k) defined and discussed in Sec. 3.6.1 (p. 65).

3.8.2 Direct cascade

For the 3D NSE [Eq. (7a)] the conventional picture [see, for example, Landau and Lifshitz
(1987) and Frisch (1995)] is as follows. For homogeneous, isotropic, mirror-symmetric 96 turbulence
the nonlinear terms conserve the single quadratic invariant 97 Ẽ .

= 1
2

∑
k |δuk|2. A Gibbsian thermal

equilibrium is thus 〈|δuk|2〉 ∝ α−1 or E(k) ∝ k2α−1, where α is the inverse temperature and is
determined by the initial value of the mean energy E. Because this equipartition solution weights the
large k’s most heavily, it is expected that the tendency of the nonlinear terms is to transfer energy to
the large k’s (on the average). In the presence of viscous dissipation, energy will therefore be absorbed
at the large k’s; thermal equilibrium will not be achieved. Instead, energy will enter the spectrum
at the forcing wave numbers (assumed to be at large scales, or small k’s), flow in a direct cascade
through the spectrum, and be dissipated at large k’s. This strong statistical disequilibrium is the crux
of the difficulty of developing a satisfactory theory of forced, dissipative turbulence.

The famous theory of Kolmogorov (1941), generally referred to as K41, makes a definite prediction
for the shape of the spectrum in the inertial range—the range of wave numbers intermediate between
the energy-containing range of small, directly forced k’s and the dissipation range where viscous
dissipation is important and the energy flow is absorbed. The argument, dimensional in nature, was
presented elegantly by Frisch (1995); see also Landau and Lifshitz (1987). In its simplest heuristic form
it states that in the inertial range E(k) should depend on just k and the rate of energy transfer 98 ε.
Dimensional or similarity analysis [see, for example, Tennekes and Lumley (1972)] then leads uniquely
to the Kolmogorov spectrum

E(k) = CEε
2/3k−5/3 (energy cascade), (121)

where the Kolmogorov constant CE is undetermined. The k−5/3 scaling was first verified experimentally
in the tidal-channel experiments of Grant et al. (1962); one finds CE ≈ 1.5.

A physical interpretation of Kolmogorov’s result (121) is as follows. Divide the k axis into
logarithmically spaced bands. 99 The energy content within a band is then kE(k). The square root

96 In the absence of mirror symmetry, the fluid helicity H [Eq. (18)] is a second nontrivial (in 3D) quadratic
invariant. Equilibrium ensembles for this case were considered by Kraichnan (1973a).
97 In this and similar discussions I set the mass density ρm to one.
98 In steady state ε is also the value of the energy production [P in Eq. (12)] as well as the value of the
energy dissipation [D in Eq. (12)].
99 The arguments can also be couched in terms of length scales `, as advocated by Frisch (1995). That is
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of this expression should be interpreted as a characteristic velocity difference ∆u across an eddy, a
fluctuation of characteristic dimension k−1. [A rigorous definition of an eddy can be found in Lumley
(1970).] The eddy turnover time, the k-dependent time for the eddy to be substantially sheared and
thus to change its wave-number content by transferring its energy to neighboring wave-number bands,
is then

τeddy ∼ (k∆u)−1 = k−3/2E(k)−1/2. (122)

The associated rate of energy transfer, assumed to be constant for each band in the inertial range, is
ε ∼ kE(k)/τeddy = k5/2E(k)3/2. Upon solving this equation for E(k), one recovers Eq. (121). It should
be noted that the argument assumes that only eddies, not waves, are present and that the transfer is
local in k space. One or both of these assumptions are often violated in plasmas.

If an independent, noneddylike process decorrelates the spectral transfer in a time τac, then the
previous transfer rate must be reduced by τac/τeddy. If τac is independent of E(k), as it would
be for a linear mechanism, then from ε ∼ [kE(k)/τeddy](τac/τeddy) and formula (122), one finds
E(k) ∼ [ε/τac(k)]

1/2k−2. If there exists a u for which τ−1
ac (k) ∼ ku, then

E(k) ∼ (εu)1/2k−3/2. (123)

Kraichnan (1965b) predicted this spectrum for isotropic 100 hydromagnetic turbulence, for which u is
an Alfvén velocity; see also Orszag and Kruskal (1968).

According to the arguments in Sec. 3.6.3 (p. 66), the inertial range should terminate at a large k
that scales with the Kolmogorov dissipation wave number kd = λ−1

d = O(R3/4). λd is called the
Kolmogorov microscale. It can be estimated directly from the qualitative arguments sketched above
by equating the eddy turnover frequency τ−1

eddy(kd) with the dissipation rate k2
dµcl. If one estimates the

energy production rate as ε ∼ U3/L [see Eq. (13b)], notes the Kolmogorov result τeddy(k) ∼ k−2/3ε−1/3

[which follows from Eq. (122)], and recalls Eq. (9), one is led immediately to kdL ∼ R3/4. As
discussed in Sec. 3.6.3 (p. 66), one must carefully distinguish the Kolmogorov dissipation microscale
λd = O(R−3/4) from the Taylor microscale λT = O(R−1/2) [see Eqs. (109)].

3.8.3 Dual cascade

Kraichnan (1967) argued that in 2D turbulence the picture of direct energy cascade must be
profoundly modified because, in addition to energy, enstrophy is also conserved 101 by the nonlinear

particularly useful for discussions of intermittency.
100 In the presence of a mean magnetic field (appropriate for applications to astrophysics), the spectrum is
anisotropic and the subject of active research. An incomplete list of recent references is Sridhar and Goldreich
(1994), Goldreich and Sridhar (1995), Ng and Bhattacharjee (1996; this includes a critique of the work by
Sridhar and Goldreich), and Ng and Bhattacharjee (1997).
101 Strict enstrophy conservation is not the whole story behind the inverse energy cascade. Fournier and Frisch
(1978) have considered the predictions of the EDQNM statistical closure (Sec. 7.2.1, p. 183) analytically
continued to noninteger spatial dimensionality d. Enstrophy conservation is broken for d 6= 2 and apparently
does not generalize to another conservation law. A critical dimension of dc ≈ 2.05 is obtained such that
for d < dc the energy cascade is inverse whereas for d > dc the cascade is direct. However, it may be that
enstrophy conservation need only be approximately satisfied over some relevant dynamical time in order to
significantly constrain the dynamics. I am indebted to H. Rose (2000) for emphasizing these points.
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interactions; the same logic applies to the HME (48). Simultaneous direct transfer of those two
invariants, which have differing k weightings, would appear to be inconsistent with steady states of
both invariants. This implies the possibility of a dual cascade, 102 with enstrophy cascading to the right
and energy cascading to the left in an inverse cascade from an intermediate forcing wave number.
The argument is consistent with the existence of the negative-temperature regimes of HM equilibrium
statistics; see Fig. 1 of Kraichnan (1967) for a revealing diagram of triadic energy and enstrophy
transfer. Because the K41 arguments are insensitive to the sign of the transfer, an inverse energy
cascade should still exhibit the k−5/3 scaling. For the direct cascade, however, the arguments must be
repeated using enstrophy rather than energy as the fundamental quantity that is being transferred.
This leads readily to

E(k) = CWη
2/3k−3 (enstrophy cascade), (124)

where η is the rate of enstrophy injection. 103 However, because Eq. (124) predicts that every octave
below a given wave number contributes equally to the mean-square shear [Eq. (106)], which is infrared-
divergent in an infinite inertial range, Kraichnan (1967) argued for the likelihood of logarithmic
corrections to Eq. (124): E(k)→ CWη

2/3k−3[ln(k/k1)]
−1/3, where k1 is characteristic of the low wave

numbers. For detailed discussion and a practical correction to Kraichnan’s form, see Bowman (1996a).
Very high computer resolution is needed to verify a dual cascade. Early numerical work was by Lilly

(1969). Fyfe et al. (1977) considered 2D MHD; Fyfe and Montgomery (1979) studied the HM equation.
For more recent, high-resolution studies, see Brachet et al. (1988).

The predictions of dual cascade strictly hold only when the inertial ranges are taken to be
asymptotically infinite in extent. Terry and Newman (1993) discussed modifications for spectra
of finite width. The long-time fate of the steady-state inverse cascade depends on the nature of
the long-wavelength dissipation. For some discussion, see Hossain et al. (1974). Recent high-quality
numerical calculations by Montgomery et al. (1992) show that decaying 2D NS turbulence approaches

102 It is frequently said [see, for example, Diamond and Biglari (1990)] that it is the number of invariants
rather than the spatial dimensionality that determines the nature of nonequilibrium cascades. Although there
is considerable truth to this, tensorial properties of the invariants also play a role. For example, Kraichnan
(1973a) considered 3D helical turbulence, which (Sec. 2.1.1, p. 23) possesses both energy and fluid helicity
as inviscid invariants. He showed that there are no analogs to either the negative-temperature states of 2D
equilibria or the 2D inverse energy cascade, and that strong helicity should inhibit energy transfer to longer
wavelengths. The distinction between helicity and enstrophy is that whereas enstrophy is fully determined
by the energy spectrum, the helicity and energy spectra are independent.
103 Kraichnan (1967) gave an elegant formal similarity analysis of the dual cascade. If inertial-range similarity
solutions are sought such that E(ak)/E(k) = a−n and consistently T (ak, ap, aq)/T (k, p, q) = a−(1+3n)/2, then
rescaling manipulations of the form (120) lead to(

TE(k)
TW (k)

)
=
(
k(5−3n)/2

k(9−3n)/2

)∫ 1

0

dv
∫ ∞

1

dw
(
WE(v, w; n)
WW (v, w; n)

)
T (1, v, w), (f-4)

expressed as a (v, w) integration over triangle shapes. Kraichnan found explicit forms for the W ’s, which
express the roles of different triangle sizes. Note that the values nE = 5

3 and nW = 3 produce k-independent
spectra. One finds WE(v, w; 3) = 0 (no enstrophy transfer in an energy cascade), WW (v, w; 5

3) = 0 (no energy
transfer in an enstrophy cascade), WE(v, w; 5

3 ) > 0, and WW (v, w; 3) < 0. Kraichnan argued in detail that
T (1, v, w) should be negative, implying inverse energy cascade and direct enstrophy cascade.
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a particular maximum-entropy state; however, a complete theoretical justification is lacking.

3.8.4 Saturated spectra in plasma physics

The previous discussions implicitly assume that (i) forcing is concentrated in a very narrow band
of wave numbers, (ii) the Reynolds number is very large (so a well-defined inertial range exists), and
(iii) the statistics are isotropic. Unfortunately, none of these is true for a wide class of problems
of interest to contemporary plasma applications. Because of the highly dispersive nature of the
plasma medium, linear growth rates are typically broadly distributed in wave number. In addition
to collisional dissipation, strong kinetic (Landau) damping processes also arise at even moderate
scales (in magnetized plasmas, for k⊥ρs & 1) and greatly limit the width of the excited spectrum.
These observations imply that well-formed inertial ranges will be relatively rare in laboratory plasma
problems. Finally, because instabilities are driven typically by profile gradients, which introduce some
sort of diamagnetic frequency ω∗ ∝ ky, spectra are naturally anisotropic even in the k⊥ plane.
Krommes (1997c) discussed a possible generalization of T (k) that may aid in quantifying the
anisotropy. Furthermore, the presence of a background magnetic field introduces a strong anisotropy
between the parallel and perpendicular directions. Albert et al. (1990) showed that HM fluctuations
excited with a single k‖ are unstable to the development of a broad k‖ spectrum. If each k‖ labels a
wave-number plane, one must now consider interplane as well as intraplane transfers. The steady-state
dynamics can be complex (Biskamp and Zeiler, 1995).

Although the general plasma problem is complicated, specific circumstances yield to useful
modeling. For example, Diamond and Biglari (1990) used Eq. (59) as a description of trapped-ion
modes. They noted that because it conserves the single quadratic invariant 〈δn2〉, it should display a
direct cascade. Thus it is not fundamentally the spatial dimensionality that controls the direction of
cascade but rather the number of invariants [but see footnote 102 (p. 75) for a caveat].

This concludes the discussion of key qualitative and exact properties of equilibrium and
nonequilibrium turbulent systems. A successful statistical approximation should be compatible with
those properties if at all possible. In the next section I begin the discussion of such approximate
analytical techniques.

3.9 Introduction to formal closure techniques

A variety of statistical closure techniques have been developed over many years of research. I give
an introductory survey of some of them here; much more detailed development of selected ones will
be given later. Good introductions to some of these techniques (as applied mostly to passive problems
with coefficients depending solely on time) were given by Brissaud and Frisch (1974) and van Kampen
(1976); see also van Kampen (1981). An important fluid-oriented review is by Orszag (1977).
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3.9.1 Formal integral equation

Consider quadratically nonlinear equations of the form 104

∂tψ + iL̂ψ = M̂
(
χ
1
2
ψ

)
ψ, (125a)

where L̂ is a linear operator and M̂ is a bilinear operator; both L̂ and M̂ are assumed to be local
in time. The upper and lower choices in the column vector refer, respectively, to a passive problem
(χ being a specified random variable) or a self-consistent problem. M̂ may implicitly integrate over
other variables such as velocity. It should really carry a passive or self-consistent label as well; only
in the latter case may M̂ be taken to be symmetric. 105 After Fourier transformation in x, Eq. (125a)
can be written

∂tψk + iLkψk =
∑
∆

Mkpq

(
χp
1
2
ψp

)∗
ψ∗q . (125b)

Notice that (i) the exact random infinitesimal response function R̃ obeys

(∂t + iL̂)R̃(t; t′)− M̂
(
χ
ψ

)
R̃ = δ(t− t′); (126)

and (ii) for passive problems, the formal solution of Eq. (125a) is

ψ(t) = R̃(t; 0)ψ(0). (127)

[Recall the discussion of the stochastic oscillator in Sec. 3.3.1 (p. 54).]
Let the goal be to find a closed equation for 〈ψ〉; this is a restricted case of the general closure

problem (of determining all cumulants of ψ) that is particularly appropriate for a pedagogical
introduction. The exact equation for 〈ψ〉 is

(∂t + iL̂)〈ψ〉 − M̂
( 〈χ〉

1
2
〈ψ〉

)
〈ψ〉 = M̂

( 〈δχ δψ〉
1
2
〈δψ δψ〉

)
. (128)

Setting the left-hand side to zero defines a mean-field theory, closed in terms of 〈ψ〉; an example is
the Vlasov equation, for which 〈ψ〉 = 〈Ñ 〉 = f , Ñ being the Klimontovich microdensity (22). The
right-hand side specifies the effects of fluctuations. The exact equation for the fluctuations is obtained
by subtracting Eq. (128) from Eq. (125a) and is

(∂t + iL̂)δψ − M̂
(
〈χ〉 δψ + δχ 〈ψ〉
〈ψ〉 δψ

)
= M̂

(
δχ δψ − 〈δχ δψ〉

1
2
(δψ δψ − 〈δψ δψ〉)

)
. (129)

104 In Eq. (125a) the factor of 1
2 is introduced so that the linearization of the self-consistent problem does

not contain a factor of 2; cf. Eq. (130).
105 For example, consider the HM polarization-drift nonlinearity (1 − ∇2)−1VE · ∇(−∇2ϕ) with ψ = ϕ.
If VE is passively determined from an external potential ϕext, then one chooses χ = ϕext and readily
finds that Mpas

kpq = (1 + k2)−1b̂ · p × q q2. In a self-consistent problem (conventional HM), ϕext → ϕ and

M self
kpq = Mpas

kpq +Mpas
kqp = (1 + k2)−1b̂ · p× q(q2 − p2).
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A formal integral equation for δψ can be formed by introducing the zeroth-order infinitesimal
response function R0, which obeys the linearization of the left-hand side of Eq. (128):

(∂t + iL̂)R0(t; t
′)− M̂

(
〈χ〉
〈ψ〉

)
R0 = δ(t− t′). (130)

(For the self-consistent case the symmetry of M̂ was used.) Then the formal solution of Eq. (129) is

δψ(t) = R0(t; 0)δψ(0)+
∫ t

0
dt R0(t; t)M̂

(
δχ 〈ψ〉

0

)

+
∫ t

0
dt R0(t; t)M̂

(
δχ δψ− 〈δχ δψ〉

1
2
(δψ δψ − 〈δψ δψ〉)

)
(t). (131)

Notice that for self-consistent problems the symmetry of M̂ means that the term in M̂ in Eq. (130)
contains two physically distinct pieces. For example, for the self-consistent Vlasov equation, for which
M̂(1, 2, 3) = Ê(1, 2) · ∂1δ(1− 3) + (2↔ 3), Eq. (130) would explicitly read

(∂t + v ·∇︸ ︷︷ ︸
iL̂

)R0 + 〈E〉 · ∂R0 + ∂f · ÊR0︸ ︷︷ ︸
−M̂ 〈ψ〉

= δ(x− x′)δ(v − v′)δs,s′δ(t− t′). (132)

The presence of the underlined term, which is responsible for nontrivial dielectric and collective effects
(Sec. 6.5, p. 170), distinguishes R0 from the single-particle propagator g0, which obeys Eq. (132) in
the absence of the underlined term [cf. Eq. (2b)]. For passive problems g0 and R0 are identical, since
for such cases the analog of the underlined term in Eq. (132) appears as the second term on the
right-hand side of Eq. (131).

3.9.2 The Bourret approximation and quasilinear theory

In general, Eq. (131) may appear to be rather useless since the nonlinear terms on the right-hand
side may be large. However, note that the nonlinear terms always enter in conjunction with a time
integral, so their size must be interpreted as an appropriately nondimensionalized autocorrelation time
such as the Kubo number discussed in Secs. 3.3.1 (p. 54) and 3.4 (p. 56). If the nonlinear terms are
small, the integral equations provide viable starting points for further approximations. In particular,
to lowest order one may neglect the nonlinear terms altogether. Upon doing so, then substituting the
result into Eq. (128), one obtains a closed equation (nonlocal in time) for 〈ψ〉. Such equations are
frequently called master equations.

The least confusing expression of this procedure occurs for passive problems. It is conventional
to neglect the initial-condition transient [the first term on the right-hand side of Eq. (131)]. Upon
retaining only the second term on the right-hand side, one finds the Bourret approximation (Bourret,
1962)

(∂t + iL̂)〈ψ〉 − M̂ 〈χ〉〈ψ〉 =
∫ t

0
dτ M̂R0(τ)〈δχ(t)δχ(t− τ)〉M̂〈ψ〉(t− τ ) (133)

(written here for the special case in which the second M̂ does not act on δχ, as in a solely time-
dependent problem). It involves the two-time correlation function Υ(t, t′) .

= 〈δχ(t)δχ(t′)〉 of the
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random coefficient; that is generally taken to be stationary: Υ(t, t′) = Υ(t − t′). Furthermore, since
one has already assumed a short autocorrelation time by neglecting the nonlinear terms, the Markovian
approximation 〈ψ〉(t− τ ) ≈ 〈ψ〉(t) is appropriate; one then obtains

(∂t + iL̂)〈ψ〉 − M̂ 〈χ〉〈ψ〉+ η̂nl 〈ψ〉 = 0, η̂nl .= −
∫ ∞

0
dτ M̂R0(τ )Υ(τ )M̂. (134a,b)

This is, in somewhat abstract notation, the so-called quasilinear 106 approximation; η̂nl represents an
unrenormalized (constructed from R0) fluctuation-induced damping (nl stands for nonlinear) and is a
nontrivial prediction of the statistical closure. In problems with variables additional to the time, the
presence of R0 in Eq. (134b) has the effect of converting the Eulerian correlation function Υ(τ ) to a
Lagrangian one taken along the zeroth-order orbits. As an illustration, consider the passive Vlasov
model (the so-called stochastic acceleration problem) in which the underlined term in Eq. (132) is
ignored. Equations (134) become

(∂t + v ·∇︸ ︷︷ ︸
iL̂

+ 〈E〉 · ∂︸ ︷︷ ︸
−M̂〈χ〉

)f + [−∂ · D(v) · ∂]︸ ︷︷ ︸
η̂nl

f = 0, D(v)
.
=
∫ ∞

0
dτ 〈δE(x, t)δE(x− vτ )〉.(135a,b)

For further and more explicit discussion of plasma quasilinear theory, see Sec. 4.1 (p. 90); compare
Eqs. (135) with the Markovian version of Eq. (171).

It is useful to illustrate these general considerations with the stochastic oscillator model introduced
in Sec. 3.3 (p. 52). Because of the random initial condition that was assumed, the mean field itself
vanishes identically. Nevertheless, the mean response function does not vanish, so one may take
Eq. (76) as the primitive equation analogous to Eq. (125a); alternatively, one may study the mean
field conditional on ψ(0). One identifies L̂ ≡ 0, M̂ = −i, χ = ω̃, and R0(τ ) = H(τ ). Then the
quasilinear approximation for R is

(∂τ + ηnl)R(τ ) = δ(τ ), ηnl =
∫ ∞

0
dτ Υ(τ ) = β2τ lin

ac . (136a,b)

(I shall drop the caret on η̂nl when it is merely an ordinary number, not an operator.) The solution
R(τ ) = H(τ ) exp(−β2τ lin

ac τ ) precisely reproduces the long-time (τ > τ lin
ac ) behavior of the exact

solution (81) in the limit K � 1.
The analogous procedure applied to self-consistent problems contains some subtleties. Because of

the 0 in the second term of Eq. (131) (linear self-consistent response is included in R0), if one wishes
to work with R0 one cannot simultaneously neglect both the initial-condition and nonlinear terms.
Iteration on the nonlinear terms is one route to the self-consistent DIA (Sec. 5, p. 126). A quasilinear
approximation for self-consistent problems, similar in form to the passive theory, can be obtained by
iterating on g0 rather than R0; that is how Vlasov QLT is conventionally developed (Sec. 4.1, p. 90).
For the Klimontovich equation, lowest-order classical discreteness effects arise by retaining only the
initial-condition term of Eq. (131). In that case the initial conditions are singular, and their effects
do not entirely phase-mix away even at infinite times.

106 “Linear” because the fluctuations are treated linearly; “quasi” because a nonlinear correction is retained
in the equation for the mean field.
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3.9.3 Exact solutions of model problems

Although it is clearly not hard to obtain approximations suitable for weakly nonlinear cases with
short autocorrelation times, in general one must deal with strongly nonlinear cases with K ≥ 1. There
are two general ways of proceeding:
(1) Find approximate statistics of the exact equation;
(2) Find the exact statistics of approximate model equations.
Although the bulk of this article will focus on procedure 1, there are important instances of
procedure 2. For example, Brissaud and Frisch (1974) have for passive problems discussed a class
of statistical models, involving stepwise-constant random variables, that can be solved exactly. Given
an exact equation with arbitrary χ, one may, for example, match the covariance of the model χ with
that of the exact χ, then proceed with the exact solution of the solvable model.

Kraichnan has considered an alternate version of procedure 2 in which instead of modeling the
statistics of χ one randomizes the mode-coupling coefficient M̂ in a particular way. The addition of
extra randomness to the exact equation of motion leads to dramatic simplifications in the statistical
analysis. This random-coupling model will be described in some detail in Sec. 5.2 (p. 131).

3.9.4 Cumulant discard

I now turn to a discussion of techniques that implement procedure 1, which has historically
been the main focus of statistical closure theory. One procedure alternative to direct truncation of
the integral equation (131) proposes to generate a sequence of ever-better closures by successively
enlarging the space of variables to retain more and more cumulants. That is, exact equations for the
ith cumulant are written for i = 1, 2, . . . , n, and cumulant n + 1 is set to zero. In classical kinetic
theory this corresponds to truncating the BBGKY hierarchy at successively higher and higher order.
Orszag and Kruskal (1968) discussed the analogous hierarchy for the NSE.

Following Kraichnan (1961), I illustrate cumulant-discard approximations for the K =∞ limit of
the stochastic oscillator, for which the exact solution is Eq. (81). One may take β = 1. Let us begin
again with Eq. (76). Define the (mixed) nth-order cumulants

Cn
.
= 〈〈δω̃n−1 R̃〉〉 =


0 (n = 1)
〈δω̃ R̃〉 (n = 2)
〈δω̃2 R̃〉 − 〈δω̃2〉R (n = 3)
〈δω̃3 R̃〉 − 3〈δω̃2〉〈δω̃R̃〉 (n = 4)

(137a,b)

(〈δω̃2〉 = β2 = 1). One has rigorously

Ṙ+ iC2 = δ(t− t′), Ċ2 + iR + iC3 = 0, Ċ3 + 2iC2 + iC4 = 0. (138b,c)

Upon successively ignoring Cn+1 for n = 1, 2, . . . , one obtains

R(τ ) ≈ H(τ )


1 (n = 1)
cos(τ ) (n = 2)
2
3

+ 1
3
cos(
√

3τ ) (n = 3).
(139)

These approximations are purely oscillatory, 107 so none captures the long-time decay of the exact

107 The oscillatory behavior of such cumulant-discard approximations for K = ∞ was rediscovered by
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solution. This is not surprising: For K � 1 the statistics are intrinsically non-Gaussian. More
specifically, the dynamics are non-Markovian, so no coarse-graining in units of a small autocorrelation
time is possible and thus no argument based on the central limit theorem can be invoked.

Mathematically, this sequence of cumulant discards produces better and better approximations
to the short-time behavior of the true solution (80): R(τ ) = H(τ )(1 − 1

2
τ 2 + 1

8
τ 4 + · · ·). Thus

approximation n in Eq. (139) matches through O(τ 2(n−1)). The procedure is unsuitable for describing
the long-time dynamics, which evidently involve cumulants of all orders. What is needed is a way of
introducing the long timescale in a nonsecular way. Various of the techniques to be described in later
sections accomplish this.

Such cumulant-discard approximations have a long history of applications to the Navier–
Stokes and similar equations. Millionshtchikov (1941a,b) advanced 108 the hypothesis that the four-
point velocity correlation function might factor in the Gaussian way (the so-called quasinormal
approximation). However, theoretical and numerical study of that approximation (Kraichnan 1957,
1962a,b; Tatsumi, 1957; Ogura, 1963, and references therein; Orszag, 1970a) for homogeneous,
isotropic NS turbulence showed that the quasinormal approximation is ill founded; indeed, for large
Reynolds numbers it allows the energy spectrum to develop catastrophically negative regions in a
time characteristic of an eddy turnover time of an excited mode. Physically, the zero-fourth-cumulant
approximation does not capture the irreversible decay of the correlation function due to nonlinear
advective scrambling, just as the above cumulant-discard example fails to capture the exponential
decay of the true solution (80). 109 A good discussion was given by Orszag (1970a).

It must be emphasized that the regime K = ∞ is a particularly difficult one, being intrinsically
nonlinear (the linear autocorrelation time is infinite). The presence of mean fields can modify the
situation considerably by introducing a finite τ lin

ac . Some general discussion was given by Herring
(1969). For example, in drift-wave problems a background gradient introduces a linear, dispersive 110

mode frequency proportional to the diamagnetic frequency ω∗. Nevertheless, in practice it frequently
happens that the system saturates such that the effective K = O(1); i.e., it sits at the boundary
between weak and strong turbulence. For such situations it is best that the closure is capable of
properly dealing with strong turbulence; it can then be specialized to weaker fluctuations on a mode-
by-mode basis as warranted. Accordingly, I concentrate in the next sections on methods capable of
handling fully developed turbulence.

3.9.5 Regular perturbation theory

Given the previous example, one will not be surprised that a regular perturbation procedure
based on formal expansion in a parameter λ (assumed to multiply the nonlinear term) that is really
large will not succeed in the strong-turbulence limit if truncated at finite order. Nevertheless, this
approach is particularly instructive as it suggests a necessary generalization. [For definiteness, I now

Hammett et al. (1992) in their considerations of the Landau-fluid closure problem (Appendix C.2.2, p. 278).
108 For a historical note, see Yaglom (1994).
109 In their study of the statistical dynamics of the guiding-center model (31), Taylor and Thompson (1973)
were led to an oscillatory correlation function Ck(τ) ∝ cos(Ωkτ) on the basis of what they called the
random-phase approximation. They recognized that the approximation was valid only for short times and
that Ck(τ) should be damped for long times. See also the discussions by Vahala et al. (1974) and Taylor and
Thompson (1974).
110 It is important that the linear frequency is dispersive; otherwise, it can be transformed away.
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focus exclusively on passive problems; a fully self-consistent formalism will be developed in Sec. 6
(p. 146).] A formal iteration of Eq. (131) can be performed by treating the last, nonlinear term as a
small perturbation; one finds 111

δψ = R0δψ(0) +R0 ? M̂δχ〈ψ〉+R0 ? M̂δχR0 ? M̂δχ〈ψ〉+ · · · = R̃ δψ(0), (140)

where ? denotes time convolution and the term 〈δχ δψ〉 in Eq. (131) has not been written for simplicity
as it does not contribute to the ultimate equation for 〈ψ〉. It is useful to represent this expansion
diagrammatically, analogous to Feynman’s diagrams for quantum electrodynamics. [Further remarks,
historical background, and references on Feynman’s approach are given in Sec. 6 (p. 146).] Associate
a small dot with the bare vertex M̂ , a light solid line with the zeroth-order Green’s function R0, and
a light dashed line with the Gaussian random coefficient δχ. The expansion (140) is then pictured in
Fig. 5.

+ + + . . .

Fig. 5. Diagrammatic expansion of the passive random response function R̃. Light solid line, R0;
light dashed line, δχ; small dot, M̂ .

When Eq. (140) is inserted into Eq. (128), the Gaussian averages produce a variety of terms, as
shown in Fig. 6. 112

+ + . . .+

++=

Fig. 6. Diagrammatic expansion of the passive mean response function R (heavy solid line) in terms of
the zeroth-order response function R0 (light solid line) and correlation function Υ of the Gaussian random
coefficient (dashed line).

3.9.6 Failure of regular perturbation theory

Now consider truncating such series at any finite order. Whether this is a good idea depends once
again on the size of the Kubo number. For K � 1 the multiple time convolutions introduce higher
and higher powers of τac, hence K, suggesting that the higher-order terms are small. However, for
K > 1 one expects that terms from all orders contribute.

To gain an intuitive understanding of the difficulties, consider the formal expansion (1− x)−1 =
1 + x + x2 + · · · . For |x| � 1 the left-hand side is small whereas the right-hand side is large at any
order of truncation. In this particular case regular perturbation expansion around the origin generates
an infinite series that converges for |x| < 1. If one were given the infinite series, one could sum it for

111 It is assumed that 〈ψ(0)〉 = 0. Then the last equality in Eq. (140) follows from Eq. (127) because
〈ψ〉 = R〈ψ(0)〉= 0 [assuming χ and ψ(0) are statistically independent] and thus ψ = δψ.
112 For some discussion of this expansion, especially as it relates to Dupree’s resonance-broadening theory
(Sec. 4.3, p. 108), see Thomson and Benford (1973b).
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|x| < 1, then use analytic continuation to deduce that the solution in the entire complex x plane is
(1 − x)−1. In this context the resummation procedure is called renormalization. An introduction to
renormalization procedures is given in the next two sections; a deeper discussion is given in Sec. 6
(p. 146).

To slightly elaborate the previous example and to place it in a more physical context, consider
the function R(τ )

.
= H(τ )〈e−ikvτ 〉 = H(τ ) exp(−1

2
k2v2

t τ
2), where the average is taken over a

Maxwellian PDF in v. R(τ ) is nothing but the response function for the stochastic oscillator
(Sec. 3.3, p. 52) at infinite Kubo number with ω̃ = kv. Note that 0 ≤ R(τ ) ≤ 1. Now many
practical renormalization procedures are conducted in the frequency domain. Therefore consider
R(ω) = 〈[−i(ω − kv + iε)]−1〉. Upon formally expanding in small kv/ω, one gets

R(ω) = (−iω)−1〈1 + (kv/ω) + (kv/ω)
2
+ · · ·〉 = (−iω)−1[1 + (kvt/ω)

2
+ · · ·]. (141a,b)

Clearly, finite truncations of this series badly misrepresent the low-frequency response. 113

There are deep and troubling issues connected with formal perturbation expansions in statistical
problems. Kraichnan (1966a) has argued that the perturbative expansions of statistical quantities such
as the correlation function or mean response function of the NSE with Gaussian initial conditions in
powers of the Reynolds numberR have zero radius of convergence even though an amplitude expansion
of each realization is convergent; he illustrated the point with an exactly solvable model. The logic is
that (i) the radius of convergence is limited by the distance to the nearest singularity in the complex
R plane; (ii) that distance scales inversely with the initial amplitude; (iii) in a Gaussian distribution
(or any similar one without a high-amplitude cutoff), indefinitely high amplitudes are represented
with nonzero weight. That leads to terms of the form exp(−1/ε) in the statistical quantities, where
ε ∝ R−1. Such functions, having an essential singularity at ε = 0, are well known (Bender and Orszag,
1978) to have an asymptotic expansion whose coefficients all vanish. 114

3.9.7 Propagator renormalization

I now return to the general problem posed by Eq. (140). It should be clear that in the strong-
turbulence limit K > 1 it is necessary to sum the entire perturbation series. In view of the remarks in
the last paragraph, it is not entirely clear what this means, since the series may not completely
represent the exact solution. For now, let us ignore this difficulty, anticipating more powerful
techniques (Sec. 6, p. 146) that bypass the order-by-order expansion. Then the formal summation
can be done in two steps. First, if one temporarily ignores the crossed lines in Fig. 6 (p. 82), it can
easily be recognized that the resulting diagrams can be summed to the result shown in Fig. 7 (p. 84).
This can be seen to define an integral equation for R, namely, 115 R = R0 − R0Σ

nlR, or

R−1 = R−1
0 + Σnl, Σnl(τ ) ≈ −M̂R(τ )Υ(τ )M̂. (142a,b)

113 In terms of the plasma dispersion function (Fried and Conte, 1966) Z(z) .= π−1/2
∫∞
−∞dt (t − z)−1e−t2

(Im z > 0), which satisfies Z(0) = i
√
π, one has R(ω) = (

√
2ikvt)−1Z(ω/

√
2kvt) and R(0) =

√
π/2(kvt)−1.

114 The convergence properties of renormalized turbulence theory have confused many people; see, for
example, Thomson and Benford (1973a) and the subsequent comments by Orszag (1975).
115 I now drop the ?’s and use the standard notation that operator products imply convolutions in time and
the other independent variables.
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At this stage, one has accomplished propagator renormalization (sometimes called line or mass
renormalization). The resulting approximation is called the direct-interaction approximation (DIA)
for reasons that will be explained in the next section.

+=
Fig. 7. The direct-interaction approximation for passive advection, obtained by ignoring vertex corrections
[the crossed lines in Fig. 6 (p. 82)].

The renormalized form (142b), which contains the true response function R, should be compared
with the quasilinear form (134b), which contains R0. Even in the absence of the vertex corrections,
the renormalized operator introduces a qualitatively important improvement to the description: it
not only contains the linear autocorrelation time (through Υ), it also contains the nonlinear time
scale τn, since R must be computed self-consistently. The multiplicative way in which R(τ ) and Υ(τ )
enter shows that the time-convolution integrals will properly see 116 the true autocorrelation time
τac = min(τ lin

ac , τn).
For the response function of the stochastic oscillator, the DIA is (Kraichnan, 1961)

∂τR +
∫ τ

0
dτ Σnl(τ )R(τ − τ ) = δ(τ ), Σnl(τ )

.
= R(τ )Υ(τ ). (143a,b)

It is clear that as K → 0, Σnl falls to zero very rapidly and Eq. (143b) reduces to the correct quasilinear
description; compare Eqs. (143) with Eqs. (134). For the other extreme K = ∞, where Υ(τ ) = β2,
the solution of Eqs. (143) can readily be found 117 by Fourier transformation (Kraichnan, 1961):

R(τ ) = H(τ )J1(2βτ )/(βτ ). (144)

This is compared with the exact solution (and with some other approximations to be discussed later)
in Fig. 8 (p. 85). The most important qualitative feature is that the DIA solution decays to zero on
the proper, nonlinear timescale (although the decay is algebraic, not exponential).

Various authors have drawn opposite conclusions from the comparison in Fig. 8. Frisch and Bourret
(1970) and Brissaud and Frisch (1974) labeled it a failure; the present author, following Kraichnan,
considers it to be a success. Of course, the assessment depends on one’s criterion. A zeroth-order
measure is the area under R(τ ) [i.e., R(ω = 0)]; this R-based autocorrelation time τac is relevant for

the calculation of transport coefficients. For the K = ∞ stochastic oscillator, the true τac =
√
π/2 is

approximated to within 20% by the DIA, which predicts τac = 1.

116 If R were exponential with decay constant τn, one would find

τ−1
ac = τ−1

n + (τ lin
ac )−1. (f-5)

In general, the solution of the nonlinear closure equation for R is not an exponential although Eq. (f-5) still
captures in a qualitatively reasonable way the competition between the linear and nonlinear decorrelation
mechanisms.
117 For the more general finite-K form Υ(τ) = β2e−|τ |/τac, Frisch and Bourret (1970) succeeded in finding an
analytical solution of Eq. (143a). Nevertheless, in practice it is easier to directly solve Eq. (143a) by numerical
integration than to numerically evaluate the complicated analytical formula.
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Fig. 8. Comparisons of approximations to the stochastic-oscillator response function with the exact solution.
Solid line, exact solution [Eq. (81)]; short dashed line, DIA [Eq. (144)]; dotted line, n = 2 cumulant discard
[Eq. (139)]; chain-dotted line, n = 3 cumulant discard [Eq. (139)]; triple chain-dotted line, Markovian
approximation exp(−τ/τac) for exact τac =

√
π/2; long dashed line, exp(−τ/τac) for τac = 1/

√
2 [see Sec. 7.2.1

(p. 183)].

3.9.8 Vertex renormalization

Now consider the crossed lines in Fig. 6 (p. 82) in more detail. Those are called vertex corrections,
as can be seen by redrawing the last term of Fig. 6 as Fig. 9; the boxed terms play the same role as does
the right-hand bare vertex in the first diagram of Fig. 6. Brief reflection then shows that all possible
terms contributing to Fig. 6 can be summed to the general Dyson equation shown in Fig. 10 (p. 86),
where the large dot contains all possible vertex corrections and is called the renormalized vertex Γ.
That equation can be rearranged into Eq. (142a), with Σnl ∼ −M̂RΥΓ (in general, Γ depends on at
least two time arguments, which are not shown explicitly). Unfortunately, the equation for Γ closes
only in a functional, not algebraic sense [for more details, see Sec. 6.2 (p. 153)]. It is left as an exercise
to show that a partial summation of the vertex corrections leads to the first vertex renormalization
shown in Fig. 11 (p. 86). That result will be systematically rederived in Sec. 6.2.3 (p. 159).

=

Fig. 9. An equivalent topology for the term with crossed lines. The subdiagram within the dotted box is a
contribution to the renormalized vertex Γ.

One can now understand the nomenclature direct-interaction approximation. That closure, which
involves complete neglect of vertex renormalization, is derived by considering only the most direct
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+=
Fig. 10. The complete Dyson equation for R includes both propagator and vertex renormalization.
R−1 = R−1

0 + Σnl, with Σnl = −M̂RΥΓ.

+ . . .+=

Fig. 11. Renormalized perturbation expansion for the vertex function: Γ = M̂ + ΓRΓΥRΓ + · · · .

path (solid lines) through the diagrams contributing to Σnl, i.e., the one that involves the least number
of bare vertices. Further interpretation will be given in Sec. 5 (p. 126).

The first vertex renormalization can be completely worked out for the stochastic oscillator. As an
example, I follow Kraichnan (1961) and consider the K =∞ limit. With time normalized to β−1, one
is led to the pair of equations 118

−iωRω + ΣωRω = 1, Γω = −i +R2
ωΓ

3
ω, (145a,b)

with Σω = iRωΓω. It can be seen that Eq. (145b) involves only the quantities Γω
.
= RωΓω and

γω
.
= −iRω; this is a special case of a general, essentially dimensional principle (Martin et al., 1973).

Upon rewriting Eq. (145b) as γω = Γω−Γ
3

ω, one sees that the vertex renormalization can be interpreted
as an expansion of the bare vertex in powers of the renormalized one (Martin et al., 1973). It is a matter
of straightforward algebra to eliminate Γω, thereby obtaining the equation, first found by Kraichnan
(1961) with the aid of tedious graphical analysis, R4

ω−iω(1−ω2)R3
ω+(3ω2−1)R2

ω−3iωRω−1 = 0. This
fourth-degree polynomial can be analyzed completely. Its solution is compared with the exact solution
and the DIA in Fig. 13 of Kraichnan (1961); the agreement is excellent. 119 As a special case, one can
easily verify that Rω=0 = [ 1

2
(1 +

√
5)]1/2 ≈ 1.27, to be compared with the exact value (1

2
π)1/2 ≈ 1.25

and the DIA value 1. One also finds that |Γω=0| = [ 1
2
(
√

5 − 1)]1/2 ≈ 0.786, to be compared with the
exact value (2/π)1/2 ≈ 0.798 and the DIA value 1. Although Γ is not very small, it is at least less
than one, suggesting that the vertex expansion (145b) may converge at least asymptotically.

Unfortunately, it is not true that mere polynomial extensions of the vertex renormalization, say

to O(Γ
5
), are well behaved; for further discussion, see Sec. 6.2.3 (p. 159) and especially footnote 201

(p. 160). Nevertheless, the present example shows the power and importance of vertex renormalization.
Remarkably, although the renormalizations diagrammed above were derived for passive problems, it
is shown in Sec. 6.2.2 (p. 155) that fully self-consistent renormalizations obey a formally identical
matrix generalization (involving three independent vertex functions).

118 For stationary problems Γ(t, t′, t′′) depends in general on two time differences; however, at K = ∞ one
time dependence goes away.
119 For further discussion of the first vertex renormalization, see Kraichnan (1964e).
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3.9.9 Markovian approximation

It is important to stress that for K = ∞ the nonlinear time scale β−1 can be entirely removed
from the problem by introducing the dimensionless time τ

.
= βτ . Since causality is never violated,

one always has R(τ ) = H(τ )G(τ ) for some function G(τ ). The entire output of a closure calculation
for R is the determination of an approximate form for G. I shall later discuss a variety of reasons why
the DIA is in some sense a preferred approximation. Nevertheless, depending on one’s goals, simpler
approximations may be useful. For example, a Markovian approximation may be found by postulating
the form of Eq. (136a), then demanding that 1/ηnl agree with the true (nonlinear) autocorrelation
time determined from the exact solution (assuming that is somehow known, which it is generally
not). That is, 1/ηnl =

∫∞
0 dτ Rexact(τ ). This procedure is guaranteed to give the exact τac although

it does not ensure that the shape of the response function will be correct. For example, for K = ∞
Rexact(τ ) is given by Eq. (80) whereas the Markovian approximation gives R(τ ) = H(τ ) exp(−ηnlτ )
for all K, badly misrepresenting the shape (Fig. 8, p. 85). The reason is clear: Upon recalling the exact
solution and discussion of the SO in Sec. 3.3.1 (p. 54), one notes that the Markovian approximation is
justifiable only for small K. Nevertheless, such an approximation may be able to capture the proper
timescale even for large K.

In general, it is not fair to obtain ηnl from the exact solution because for realistic models that
solution is not available. Markovian closures (Sec. 7.2, p. 182) predict ηnl. For example, the eddy-
damped quasinormal Markovian approximation discussed in Sec. 7.2.1 (p. 183) predicts ηnl = 1/

√
2

for the SO at K =∞, which differs from the exact ηnl by about 11%. Although this prediction appears
to be not unreasonable even for strong turbulence, quantitative inaccuracies in a simple model such
as the SO can hint of qualitative failings in more realistic nonlinear dynamical models. One expects
that if the system is only weakly turbulent (here K < 1), the approximations may be better justified.
One practical example is furnished by the Landau-fluid closures of plasma physics. Those closures
determine the analog of ηnl (or, in more complicated cases, an array of coefficients) by demanding
that the linear dispersion relation, which can be calculated in detail from kinetic theory, be well fitted
by the fluid closure. It seems clear that this method should become progressively more inadequate as
the turbulence becomes stronger, but this has not been quantified. See Appendix C.2.2 (p. 278) for
further discussion.

3.9.10 Padé approximants

We have seen that it is not difficult to form formal perturbation expansions for various statistical
quantities such as the mean response function. As an alternative to the formal renormalization
procedures described in Sec. 3.9.7 (p. 83), Kraichnan (1968a) considered the use of Padé approximants
(Baker, 1965) to approximately resum the perturbation expansion. For any function f expandable in
a Taylor series in a parameter λ as f =

∑∞
n=0 anλ

n, the Padé approximant of order (r, s) is defined
to be fr,s = (

∑s
m=0 bmλ

m)/(
∑r
n=0 cnλ

n) with c0 = 1, where a definite procedure exists for determining
the coefficients bm and cn from the Taylor coefficients an. There is an intimate relationship between
Padé approximants and continued fractions.

By using the stochastic oscillator as an example, Kraichnan showed that the most straightforward
expansion of the solution in powers of λ did not lead to approximants useful in the limit of large Kubo
number (strong turbulence). The cure was to temporarily treat the mean response function R (itself
a function of λ) as given while forming the perturbation expansion. That procedure is a kind of
renormalization; the coefficients of the resulting Padé approximants then contain R.
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Kraichnan’s results were encouraging, and he argued for further research [cf. Kraichnan (1970a)].
But he also stressed that the convergence properties of sequences of approximants are largely unknown,
and there remains the fundamental issue that the perturbation series may not adequately represent
the true solution.

In plasma physics, simple examples of Padé approximants have been used by Hammett and
co-workers in implementing Landau-fluid closures of the gyrokinetic equations. See Appendix C.2.2
(p. 278) for further discussion.

3.9.11 Projection operators

Ensemble averaging can be thought of as a projection operation. A projection operator P is one
that is linear and obeys P2 = P. The ensemble-averaging operation 〈. . .〉 qualifies on both grounds.
Because linear operator algebra is often formally quite concise, various authors [notably Weinstock in
plasma physics; see Sec. 4.3 (p. 108)] have tried to exploit projection-operator-based manipulations
to derive closed equations for statistical quantities. The technique (Zwanzig, 1961; Mori, 1965b) is
useful for certain kinds of transport problems in many-particle kinetic theory (Bixon and Zwanzig,
1971; Haken, 1975). Nevertheless, it is fraught with difficulties for the general turbulence problem, as
I attempt to explain in the following brief discussion. 120

Define the projection operator P such that Pψ ≡ 〈ψ〉, and define the orthogonal projector
Q

.
= I − P. Thus Q applied to ψ generates the fluctuating component: Qψ = δψ. It is convenient

to adopt a Dirac notation. Introduce a general time-independent probability measure P ($) such that
〈ψ〉 =

∫
d$ψ[$]P ($). For example, P ($) could be a Gaussian distribution of initial conditions.

Now define |ψ 〉 .= ψP and 〈ψ | .= ψ so that for an arbitrary linear operator L one has 〈a | L | b〉 =∫
d$a[$]L b[$]P ($). P is then formally realized by P = | 1 〉〈 1 |.

Assume that ψ obeys the dynamically linear equation ∂t|ψ 〉 + iL̃|ψ 〉 = 0, where L̃ may be
random and time-dependent. Problems of passive advection have this linear form, as do the equations
for infinitesimal perturbations of a steady state. One may now project onto the mean and fluctuating
subspaces. By inserting the identity operator I = P + Q after the L̃, one finds

∂tP|ψ 〉 + PiL̃P|ψ 〉+ PiL̃Q|ψ 〉 = 0. (146a)

Similarly, by interchanging P and Q, one finds

∂tQ|ψ 〉 + QiL̃Q|ψ 〉 = −QL̃P|ψ 〉. (146b)

One now proceeds to formally eliminate Q|ψ 〉. Because all operators on the left-hand side of Eq. (146b)
are linear, the elimination can be accomplished by introducing the Green’s function

G̃(t; t′) .
= H(t− t′) exp+

(
−i
∫ t

t′
dtQL̃(t)Q

)
, (147)

where the + subscript denotes time ordering. 121 Upon ignoring the initial contribution from Q|ψ 〉,
120 Additional remarks about the projection-operator technique are given in Chap. XIV of van Kampen
(1981).
121 Time ordering of products or a function of a time-dependent operator A(t), noncommutative at
different times, is denoted by a + subscript and is defined by arranging the operator from left to right
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which can usually be argued to phase-mix away, one finds

0 = ∂tP|ψ 〉+ [PL̃(t)P]P|ψ 〉 +
∫ t

0
dt′ [PL(t)QG̃(t; t′)QL(t′)P]P|ψ 〉(t′). (148)

This equation can be slightly simplified by splitting L̃ into its mean and fluctuating parts, L̃ = L̂+δL,
and noting that PQ = QP = 0. Thus

[∂t + iL̂(t)]P|ψ 〉+
∫ t

0
dt′Σnl(t; t′)P|ψ 〉(t′) = 0, Σnl(t; t′) .

= PδL(t)QG̃(t; t′)QδL(t′)P. (149a,b)

The structure of Eq. (149a) is formally identical to that of Eq. (133). Nevertheless, whereas the
kernel Σnl of the Bourret approximation is known explicitly, being derived from perturbation theory,
the general representation (149b) is highly formal and intractable because of the presence of the
Q operator in Eq. (147). Nonperturbative approximations to formula (149b) are very difficult to obtain,
and little has been done. In the resonance-broadening theory to be described in Sec. 4.3 (p. 108), the G̃
in Eq. (149b) is approximated (Weinstock, 1969) by the mean response function G, which is Green’s
function for the left-hand side of Eq. (149a). That procedure recovers the structure (142b) of a passive
problem (recall that we assumed linear dynamics), but leaves little hint about how to properly treat
self-consistency or successively improve the approximation in a convergent way. 122

3.9.12 Approximants based on orthogonal polynomials

The cumulant description forms the basis for the most systematic formal approach to the
closure problem that has yet been invented; see Sec. 6 (p. 146). Nevertheless, that truncated
cumulant expansions may correspond to ill-behaved PDF’s is very troubling and led Kraichnan
(1985) to discuss alternate representations based on the orthonormal polynomials pn(x) that obey∫
dxw(x)pn(x)pn′(x) = δn,n′ , where w(x) is a positive definite weight (e.g., a Gaussian) with∫
dxw(x) = 1. Then the PDF ρ(x) has the approximants ρN(x) = w(x)

∑N
n=0 bnpn(x), where

bn = 〈pn(x)〉 and is constructed from the moments of order less than or equal to n. Under appropriate
conditions discussed in detail by Kraichnan, the ρN converge in mean square as N →∞. They always
exist and yield uniformly convergent approximants to the characteristic function. The theory of such
approximants is central to Kraichnan’s program of statistical decimation (Sec. 7.5, p. 197).

3.9.13 Summary of formal closure techniques

We have now been introduced to a variety of formal closure and statistical approximation
techniques, including the Bourret approximation and quasilinear theory (Sec. 3.9.2, p. 78); exact
solution of model problems, including random-coupling models (Sec. 3.9.3, p. 80); cumulant discard
(Sec. 3.9.4, p. 80); propagator and vertex renormalizations [Secs. 3.9.7 (p. 83) and 3.9.8 (p. 85)]
via summation of perturbation theory (Sec. 3.9.5, p. 81); Markovian approximations (Sec. 3.9.9,
p. 87); Padé approximants (Sec. 3.9.10, p. 87); projection operator methods (Sec. 3.9.11, p. 88); and
approximants based on orthogonal polynomials (Sec. 3.9.12, p. 89). Some of those can be unified with

in order of descending time. Thus [A(t)A(t′)]+ = H(t − t′)A(t)A(t′) + H(t′ − t)A(t′)A(t)]. The solution of
ẋ(t) + A(t) · x(t) = 0 is exp+(−

∫ t
0dtA(t)) · x(0) for t ≥ 0.

122 For situations involving short autocorrelation times, continued-fraction representations may be useful
(Mori, 1965a).
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the aid of the direct-interaction approximation, which is treated in depth in Sec. 5 (p. 126). In Sec. 6
(p. 146) I show how techniques of quantum field theory can be used to elegantly derive propagator and
vertex renormalizations appropriately generalized for self-consistent problems and including the DIA
as a special case. First, however, I describe in the next section some of the historical development of
statistical closures in plasma physics. That is interesting in its own right, and it also provides useful
motivations for the more formal derivations to follow in subsequent sections.

4 HISTORICAL DEVELOPMENT OF STATISTICAL THEORIES

FOR PLASMA PHYSICS

Modern work on statistical theories of plasma turbulence has focused on the direct-interaction
approximation (Sec. 5, p. 126) and its Markovian relatives (Sec. 7.2, p. 182). Historically, however,
the field evolved quite differently. Although the DIA for Vlasov plasma was proposed by Orszag
and Kraichnan (1967) shortly after the pioneering paper by Dupree (1966) on resonance-broadening
theory, it and many other developments in neutral-fluid turbulence theory were ignored for about a
decade in favor of more physically based, less mathematically systematic descriptions. It is instructive
to trace the development of various early statistical approximations in plasma physics. Some of those,
such as quasilinear theory (QLT) and weak-turbulence theory (WTT), are well grounded in regular
perturbation theory and are essentially proper subsets of the DIA valid in certain limited regimes
of validity; others, such as resonance-broadening theory (RBT) and the clump algorithm, are more
physically motivated and difficult to classify. After discussions of those four approaches in the present
section, I shall then devote in Sec. 5 considerable space to the DIA, a central theme of this article.

4.1 Quasilinear theory

“It will be shown that the development in the non-linear regime for certain types of unstable
modes can be followed in considerable detail for long times. This is illustrated for unstable
electron-plasma oscillations. The result is that these waves, which are initially unstable, grow
in a short time to an equilibrium spectrum . . . . The limiting of these waves . . . is a result of
a diffusion in the velocity distribution due to non-linear effects . . . .” — Drummond and Pines

(1962).

The basic quasilinear approximation for passive advection has already been described in Sec. 3.9.2
(p. 78). However, that brief and formal discussion does not adequately capture the rich physical
processes underlying the quasilinear approximation for plasmas, nor does it convey the enormous
influence that quasilinear arguments had on the historical development of the field of plasma
turbulence.

4.1.1 The basic equations of “strict” Vlasov quasilinear theory

As described in Sec. 2.2.2 (p. 27), the starting point for a theory of Vlasov turbulence is the
Klimontovich equation (23) in the limit εp → 0. The average of that equation leads to Eq. (25), which
is always retained exactly in formal statistical theories. The fluctuations obey exactly

DδN/Dt + δE · ∂f = −∂ · (δE δN − 〈δE δN〉); (150)
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statistical closures are defined by the treatment of the nonlinear terms on the right-hand side. By
definition, in “strict” QLT the right-hand side of Eq. (150) is neglected altogether. Orszag and
Kraichnan (1967) noted that because the left-hand side of Eq. (150) is a linear operator on δN ,
an amplitude equation for the random variable δN is solved in each realization, so the fluctuation
power spectrum must be realizable. They also emphasized that this argument does not guarantee the
positive-semidefiniteness of f ; see the last paragraph of Sec. 3.5.3 (p. 64). Even more importantly,
they noted that strict QLT is time reversible, which they found to be unacceptable. Irreversibility can
be restored by retaining and appropriately approximating the right-hand side of Eq. (150), as will be
described in great detail in Sec. 5 (p. 126) in the context of the DIA. In the next several sections,
however, I shall approach the problem more heuristically. In Sec. 4.1.2 I review the content of the
theory in the passive limit in which the electric fields are specified with frozen intensities. It will be
seen that the implicit presence of the nonlinear fluctuation terms is crucial for a sensible theory. Then
in Sec. 4.1.3 (p. 95) I describe the additional complications that emerge in the fully self-consistent
problem.

4.1.2 Passive quasilinear theory

Consider first the passive stochastic acceleration problem of a test particle moving (in 1D, for
simplicity) with velocity v in a specified, random electric field Ẽ(x, t), which produces a random
acceleration ã

.
= qẼ/m. If this field is assumed to be rapidly varying in time on a Lagrangian

timescale τac, then the characteristic acceleration over a time τac will be 〈δa2〉1/2. One then knows
from elementary short-time Langevin dynamics and the arguments of Sec. 3.2 (p. 48) that for times
greater than τac v-space diffusion will ensue with diffusion coefficient

Dv = 〈δa2〉τac. (151)

The quasilinear theory applies when a linearly derived autocorrelation time τ lin
ac can be used.

The appropriate estimate or formal calculation of τ lin
ac depends on the ultimate origin of Ẽ. If it is

merely specified as a random Gaussian time series, Ẽ = Ẽ(t), then τ lin
ac is just the given autocorrelation

time as in Sec. 3.3 (p. 52). Of more interest to subsequent discussions of self-consistency is the case
in which Ẽ is generated by a plasma, which is a dielectric medium with linear dielectric function
Dlin(k, ω). Then Ẽ can be assumed to consist of a sum of randomly phased propagating waves with
linear dispersion relation ω = Ωk, phase velocity vph

.
= Ωk/k, and group velocity vgr

.
= ∂Ωk/∂k. A

physical argument (to be supported by formal mathematics below) that leads to τ lin
ac is then as follows.

The wave field can be considered to be a wave packet moving at speed vgr. A test particle initially
comoving with the wave packet will feel its effects only for a time (|v − vgr|∆k)−1, where ∆k is the
width of the wave packet. Furthermore, in order that the test particle feel a secular kick 123 it must
be in resonance with the waves of the wave packet: v = vph(k) for, say, the central wave number k of
the packet. Thus for a wave field one has

τ lin
ac ∼ [|vph(k)− vgr(k)|∆k]−1. (152)

123 A useful discussion of the roles of resonant and nonresonant particles in quasilinear and resonance-
broadening theory was given by Tetreault (1976).
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To be more quantitative, one may begin with the formula

Dv =
∫ ∞

0
dτ 〈δa(x(t), t)δa(x(t− τ ), t− τ)〉. (153)

Because such Taylor-like formulas arise repeatedly and are surprisingly subtle, I shall attempt to be
relatively systematic in reducing Eq. (153) to the usual quasilinear formula. Consider a homogeneous
ensemble of particles moving in a large box of length L. It is natural to introduce the discrete Fourier
transform (Appendix A, p. 262) with wave numbers k = n δk, δk

.
= 2π/L being the mode spacing

and fundamental wave number. Thus

Dv =
∫ ∞

0
dτ
∑
p,q

〈ei(p+q)x−iq∆x(−τ )δap(0)δaq(−τ )〉, (154)

where x ≡ x(t) and ∆x(−τ | x, t) .
= x− x(t − τ ). 124 In general, evaluation of the ensemble average

in Eq. (154) is extremely difficult because of hidden statistical dependences. Namely, ∆x depends
on (i) the Fourier amplitudes δEk, which are random variables in a general turbulence problem;
and (ii) the final condition x(t), which is also random. That is, one does not know the joint PDF
f [δE,∆x, x]. However, under the assumption of statistical homogeneity the joint PDF conditional
on x is independent of x: f [δE,∆x, x] = f [δE,∆x | x]L−1. The average over x may now be performed,
yielding a factor of Lδp+q. Thus

Dv =
∫ ∞

0
dτ
∑
q

〈e−iq∆x(−τ )δa∗q (0)δaq(−τ )〉, (155)

where the average is now interpreted in the sense of the conditional distribution.
As I have remarked, in a general turbulence problem calculation of the average required in

Eq. (155) is exceedingly difficult because ∆x depends on the δaq’s. It is tempting, although not
justifiable for strong turbulence, to factor the average according to

〈e−iq∆x(−τ )δa∗q (0)δaq(−τ )〉 ≈ 〈e−iq∆x(−τ )〉〈δa∗q (0)δaq(−τ )〉. (156)

This independence hypothesis was discussed by Weinstock (1976) in the fluid context. However, for the
special case of test-particle motion in a wave field whose Fourier amplitudes are completely specified,
the independence hypothesis is exact since the δaq’s can be taken to be statistically sharp in both
amplitude and phase. The resulting stochastic acceleration problem is still interesting and makes sense
from the point of nonlinear dynamics, since test-particle diffusion can ensue if certain stochasticity
criteria are satisfied [see Appendix D (p. 279)]. In this case one has

Dv =
∫ ∞

0
dτ
∑
q

〈e−iq∆x(−τ )〉δa∗q (0)δaq(−τ ). (157)

124 Although a priori it might appear more natural to express the random orbit x(t) in terms of the initial
condition x(0), I have chosen instead to express it in terms of the final condition x(t) in order to achieve a
closer correspondence with more formal developments to be given later (Appendix E, p. 281).
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In the passive quasilinear theory of test-particle diffusion, two further assumptions are made:
(i) The particle position is assumed to be a Gaussian random variable 125 whose dispersion obeys
the short-time (ν = 0) limit of the Langevin equations (3.2). (ii) The Fourier amplitudes describe
oscillatory waves: δEq(t) = δEq exp(−iΩqt). Because of assumption (i), cumulant expansion truncates
exactly at second order [cf. Eq. (93b)], leading to 126

〈e−iq∆x(−τ )〉 = exp[−iq〈∆x〉(−τ )− 1
2
q2〈(δ∆x)2(−τ )〉] = exp(−iqvτ − 1

3
q2Dvτ

3). (158a,b)

This result manifests the effects of orbit diffusion by introducing the diffusion time 127

τd,q
.
= (q2Dv)

−1/3. (159)

Thus

Dv =
∫ ∞

0
dτ
∑
q

|δaq|2e−i(qv−Ωq)τe−
1
3
(τ/τd,q)

3

. (160)

The most naive evaluation of formula (160) now proceeds as follows. First, the orbit-diffusion
effect [contained in the nonlinear terms on the right-hand side of Eq. (150)] is ignored. (In strict QLT
the particles are assumed to move on linear trajectories.) The time integral is then performed, leading
to

Dv(v) = π
∑
q

|δaq|2δ(qv − Ωq). (161)

One often sees the quasilinear diffusion coefficient written in this form. However, formula (161) is ill
defined, as it mixes a Dirac delta function (which expects a continuously varying argument) with a
quantized wave-number spectrum. Thus as a function of velocityDv(v) is predicted to be either 0 or∞.
Usually this difficulty is “cured” without discussion by letting L → ∞ and introducing continuous
Fourier transforms:

Dv = π
∫ ∞

−∞
dq

2π
Aqδ(qv− Ωq) = 2

π(Aq/2π)

|v − ∂Ωq/∂q|q=q0
, (162a,b)

where the multiplier 2 accounts for the two positive and negative solutions for the resonant wave
number q0(v) satisfying v = Ωq0/q0. One can see here the comforting appearance of the relative
velocity between wave packet and particle discussed previously. Upon multiplying Eq. (162b) by the
total width ∆k of the spectrum, defined such that ∆kAq0 = A, one recovers precisely Eq. (151).

Thus several dubious manipulations (neglect of orbit diffusion, and passage to the continuum limit)
have in combination led to a reasonable result. In fact, a much more satisfying picture is achieved

125 This is the assumption that underlies Dupree’s resonance-broadening theory; see Sec. 4.3 (p. 108) and
Benford and Thomson (1972). Subtleties involving the Gaussian assumption were discussed by Pesme (1994).
126 Several authors have suggested that this calculation of the nonlinear orbit correction is in error, and
that the left-hand side of Eq. (158b) should be replaced by a form depending on t as well as τ ; see, for
example, Salat (1988) and Ishihara et al. (1992). In fact, Eq. (158b) is correct; see vanden Eijnden (1997)
and Appendix E.1.2 (p. 284) for further discussion.
127 A wave-number-independent diffusion time τd can be defined by replacing q by a characteristic wave
number k: τd

.= (k2
Dv)−1/3.
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by retaining the orbit diffusion. It can be demonstrated that the size of the orbit diffusion is always
sufficient to smooth the integrand of Eq. (160) such that wave-number summation may be replaced
by integration, even for a quantized spectrum, 128 whenever the Chirikov criterion for stochasticity
is satisfied. That criterion is derived in Appendix D (p. 279), where the detailed justification of the
continuum limit is also given. The situation is illustrated in Fig. 12. At short times the Lagrangian
acceleration correlation function decays on the time scale τ lin

ac . In a discrete spectrum the linearly
computed C(τ ) would exhibit a quasirecurrence on the timescale τr ∼ Nτ lin

ac . However, stochasticity
induces a nonlinear envelope with timescale τd that is always sufficient to eliminate the recurrence,
and also smooths the wave-number summations enough to justify the continuum approximation.
The quasilinear regime is defined by τ lin

ac < τd, so τd does not enter the final result for the diffusion
coefficient.

ac
linτ

τd

Fig. 12. Linear response (solid and dotted lines) and nonlinear envelope (dashed line, with width τd) in the
quasilinear regime. The solid curve is the actual response, with width τ lin

ac .

In the previous discussion the introduction of τd was done somewhat heuristically. A more detailed
and systematic treatment is afforded by the DIA, discussed in Sec. 5 (p. 126). One of the principle
virtues of that approximation is that it permits a smooth transition between the quasilinear and
strong-turbulence regimes. One should also note the work of Dewar and Kentwell (1985), who
attempted to provide a precise definition and theory of the nonlinear envelope of the correlation
function.

For cross-field diffusion in a strong magnetic field, particles move with the E ×B velocity and
should undergo a spatial random walk 〈δx2〉 = 2D⊥t. The expression analogous to Eq. (161) is then

D⊥ =
∫ ∞

0
dτ
∑
q

〈δV 2
E〉qe−i(q‖v‖−Ωq )τe−τ/τd⊥,q , (163)

where the perpendicular diffusion time is τd⊥,q
.
= (q2

⊥D⊥)−1. One can estimate

D⊥ ∼ 〈δV 2
E〉τac, (164)

where τac is the shorter of a characteristic parallel time like Eq. (152) and the characteristic
perpendicular diffusion time τd⊥

.
= τd⊥,k⊥. Such diffusion coefficients arose in research on the 3D

guiding-center plasma; a good discussion with earlier references was given by Vahala (1974).
In systems with complicated geometries, the appropriate space in which diffusion occurs is best

addressed by inquiring about the adiabatic invariants that are destroyed by resonant interactions.

128 A brief qualitative remark that nonlinearity is necessary for smoothing was made by Kaufman (1972a).
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Kaufman (1972a) formulated the appropriate quasilinear theory for the important practical case of
an axisymmetric torus. A generalization of Kaufman’s formalism was used by Mynick (1988) in his
discussion of a Balescu–Lenard-like operator for turbulence.

4.1.3 Self-consistent quasilinear theory

Now consider the self-consistent Vlasov equation

∂tf + v ·∇f + E · ∂f = 0. (165)

The electric field is obtained from Poisson’s equation. Particles are no longer test particles; they
influence the field. The physical picture is that the waves (weakly damped collective oscillations)
are supported by the nonresonant particles. The wave–particle resonance then transfers momentum
and energy between the waves and the resonant particles. That momentum and energy are not
only electromagnetic; they also comprise the mechanical momentum and energy of the nonresonant
particles that participate in the wave motions. Because all of those motions are described by the same
distribution function f , one must ensure that any approximate kinetic equation for f preserves the
proper momentum and energy balances. This problem does not arise in the test-particle case, in which
the test particles can absorb an unlimited amount of momentum and energy from the fixed bath of
turbulence (provided, of course, that the particles do not diffuse from the resonant region).

Various procedures have been used to describe the self-consistent problem. Considerable confusion
and controversy arose in the early days [the literature was nicely reviewed by Burns and Knorr (1972)]
because of difficulties with the proper treatment of growing or damped waves. Mathematically, the
problem boils down to the proper way of treating and interpreting the familiar resonance function
δ(ω − k · v), which has already appeared in the theory of steady-state fluctuations. Note that the
steady-state quasilinear diffusion coefficient Dv satisfies

Dv ∝ πδ(Ωk− k · v) = Re[−i(Ωk− k · v + iε)]−1, (166)

where Ωk is real and ε > 0.
Now suppose one asserts that for weakly stable or unstable waves it is valid to replace ε by

the linear growth rate γlin
k . Since γlin

k is finite, not infinitesimal, one would then obtain Dv ∝
Re([−i(Ωk − k · v + iγlin

k )]−1) = γlin
k /[(Ωk − k · v)2 + (γlin

k )2]. Unfortunately, this is negative for
damped waves. Since it is difficult to interpret a negative diffusion coefficient, people were somewhat
confounded; it was not uncommon to assert that quasilinear theory did not apply to damped waves
(Vahala and Montgomery, 1970). The paradox is that the estimates of Appendix D (p. 279) for the
stochasticity criterion make no reference to the sign of the growth rate; they merely assume that the
wave field is quasistationary.

In retrospect the resolution of this paradox is easy. It is simply not correct to replace ε by γlin
k . The

presence of iε in Eq. (166) reflects causality of the particle response, so any generalization of ε must
always be positive. However, formula (166) is valid only in steady state. Otherwise, in computing the
particle dispersion one cannot reduce the two time integrals over t and t′ to a single one over τ by
using the assumption of statistical stationarity. The calculation is mathematically more involved.

For QLT the clearest exposition of the proper procedure was first given by Kaufman (1972b), who
performed a multiple-timescale analysis of Eq. (165). See also Fukai and Harris (1972) for a related
discussion based partly on a quantum-mechanical derivation. For the generalization of the procedure
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to include nonlinear effects in weak-turbulence theory, see Appendix G (p. 288).
In Kaufman’s derivation one allows for a slow time dependence in the Fourier amplitudes due to

linear growth or damping: d ln |δEk|/dt .
= γlin

k , with |γlin
k /Ωk| � 1. Here γlin

k may be either positive
or negative. One assumes and is generally able to justify that the mean distribution f evolves on
a timescale slower than both γlin

k and Ωk. As usual, Eq. (165) is split into its mean and fluctuating
parts. Upon assuming homogeneous statistics, one obtains

∂t〈f〉 = (q/m)〈δE · ∂vδf〉, (∂t + v ·∇)δf = −(q/m)δE · ∂v〈f〉 +O(δE δf). (167a,b)

In strict QLT the nonlinear terms on the right-hand side of Eq. (167b) are neglected. 129 One can
solve for δf by a Green’s-function technique. The transient term is neglected by a phase-mixing
argument. 130 The solution involves the electric field at a retarded time τ , where τ will turn out to
be . τ lin

ac , the timescale for the Lagrangian quasilinear correlation function. The key to the method is
to be careful about that time dependence: δEk(t−τ) ≈ δEk(t)− τ ∂tδEk = (1− γlin

k τ )δEk(t). When
the solution for δf is integrated over velocity and inserted into Poisson’s equation, one is led to the
self-consistency condition

Dlin(k,Ωk) = −iγlin
k ∂Dlin(k,Ωk)/∂Ωk, (168)

where the linear Vlasov dielectric function is

Dlin(k, ω)
.
= 1−

∑
s

(
ω2
ps

k2

)∫ ∞

0
dτ
∫

dv exp[−i(k · v − ω − iε)τ ]ik · ∂f
∂v
. (169)

[Formula (169) reduces to Eq. (33).] Under the quasilinear assumption |γ/Ω| � 1, Eq. (168) reduces
to the results

0 = ReDlin(k,Ωk), γlin
k ≈ −

ImDlin(k,Ωk)

∂ ReDlin/∂Ωk
, (170a,b)

which are familiar from linear wave theory. Equation (170a) determines the real frequency, and
Eq. (170b) determines the growth rate of the kth mode. Because (ω + iε)−1 = P(ω−1) − iπδ(ω),
reference to Eq. (33) shows the well-known result that the waves (mode frequency) are supported by
the nonresonant particles whereas the growth is driven by the resonant particles.

Upon inserting the solution for δf into Eq. (167a), one obtains

∂f

∂t
=

∂

∂v
·
(∫ t−t0

0
dτ C(x, t; x−vτ, t−τ)

)
· ∂
∂v
f(v, t−τ), (171)

where C(x, t; x′, t′) .
= 〈δa(x, t)δa(x′, t′)〉. The correlation function appearing in Eq. (171) is thus the

Lagrangian function taken along the linear trajectory, in agreement with the calculations presented in

129 Those terms include the diffusive effects that lead to resonance broadening. From the discussion in
Appendix D.2 (p. 280), the orbit diffusion is important to justify smoothing the wave-number integrations.
Here we shall pass directly to the continuum limit.
130 The contribution to the transient potential, which arises from a velocity integration, can easily be shown
to phase mix on the timescale (kvt)−1. Ballistic contributions to δf itself are more problematical and are
considered in some more involved theories (Kadomtsev and Pogutse, 1971).
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Sec. 4.1.2 (p. 91); Eq. (171) is the Bourret approximation (133) for this problem. By the arguments of
that section, C(τ ) will decay on the τ lin

ac timescale. An appropriate statistical evolution equation for f
should therefore be coarse-grained in units of time greater than τac. Therefore one can replace f(t−τ)
by f(t) to lowest order in τ/t; this is the Markovian assumption. Now introduce a Fourier analysis
in space. From the Eulerian amplitudes arises the contribution 〈δak(t)δa−k(t−τ)〉 ≈ Ck(t)− 1

2
τ ∂tCk.

The first term contributes to Eq. (171) ∂v · D(v) · ∂vf , where D(v)
.
= π

∑
k Ck(t)δ(Ωk − k · v) is the

same quasilinear diffusion coefficient that was computed in Sec. 4.1.2 (p. 91) on the basis of heuristic
random-walk arguments, except here one is allowing for a slow temporal change in the field intensity.
The ∂tCk term contributes

∂

∂v
·
[
− 1

2

∑
k

dCk

dt

∂

∂Ωk
P
(

1

Ωk − k · v

)
· ∂f
∂v

]
. (172)

Notice that this term involves nonresonant particles and changes sign under time reversal whereas
D involves resonant particles and is invariant under time reversal. One is thus motivated to write f as
a zeroth-order part F , which includes both the equilibrium and the changes in the resonant particles,
plus a nonresonant correction fnr: f = F + fnr, where

∂F

∂t
=

∂

∂v
· D(v) · ∂F

∂v
,

∂fnr

∂t
=

∂

∂v
·
[
. . .

dCk

dt
. . .

]
· ∂F
∂v

. (173a,b)

If one considers F to be O(1), one can deduce that fnr is O(δE2). Thus it is irrelevant whether one
uses f or F on the right-hand side of Eq. (173b). The correction fnr describes nonresonant distortion
of Kolmogorov–Arnold–Moser (KAM) surfaces. If one chooses that distortion to vanish at t = t0, one
can integrate Eq. (173b) explicitly:

fnr(v, t) = −1

2

∂

∂v
·
[∑

k

k̂ Ek(t) k̂
∂

∂Ωk

P
(

1

Ωk − k · v

)
· ∂F
∂v

]
, (174)

where Ek .
= TrCk.

One can show that the nonresonant correction just computed contains the mechanical “sloshing”
momentum and energy of the particles in the waves. I demonstrate with the momentum:

Pnr =
∑
s

∫
dvmnvfnr =

1

2

∑
s

ω2
p

∑
k

(
k

k2

)
Ek

∂

∂Ωk
P
∫

dv
(

1

Ωk − k · v

)
k · ∂f

∂v
(175a,b)

(after integrating by parts in velocity space). Upon noting the form of the linear dielectric function,
one can write this as

Pnr =
1

8π

∑
k

Ekk
∂

∂Ωk
(Reχlin) =

∑
k

kNk, (176a,b)

where Nk
.
= (∂ ReDlin/∂Ωk)(Ek/8π) is the wave action. Expression (176b) is the total wave

momentum; recall that the electrostatic field itself carries no momentum. In a similar way, one can
show that∑

s

∫
dv

1

2
mnv2fnr =

∑
k

ΩkNk −
1

8π
Ek (177a)
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=total wave energy− electric field energy (177b)

=mechanical or sloshing part of wave energy. (177c)

It is now easy to show that the quasilinear theory conserves momentum and energy. One wants
to prove that

∑
s

∫
dv

(
mnv

1
2
mnv2

)
(F + fnr) +

∑
k

Ek
8π

(
0

1

)
(178)

is constant. That is, one must show that, for example,

d

dt

∑
s

∫
dv (mn)svFs = −2

∑
k

γlin
k kNk. (179)

This follows, after a straightforward integration in velocity space, from the evolution equation for F
upon using the definitions of D and γlin.

Dewar (1973) provided a compelling interpretation of the decomposition f = F + fnr by
introducing the concept of the oscillation center. Heuristically, the oscillation center represents
the average trajectory of the real particles, the nonresonant sloshing being subtracted out. More
formally, one defines “a canonical transformation such that only the resonant part of the wave–
particle interaction is left in the new interaction Hamiltonian.” Some discussion of such averaging
transformations is given in Appendix C.1.5 (p. 273). The quasilinear diffusion equation emerges in
the new coordinates whereas the sloshing momentum and energy are contained in the transformation
between the oscillation-center and particle coordinates. 131 Elegant generalizations and applications
of this technique were made by Johnston (1976), Cary and Kaufman (1977, 1981), and others.

A compelling and elegant experimental verification of the quasilinear theory was performed by
Roberson et al. (1971) [for more details, see Roberson and Gentle (1971)]. However, carefully designed
computer experiments by Adam et al. (1979) predicted discrete wave-number spectra that were not
the smoothly varying functions of k that simple QLT would suggest. Those observations launched
a difficult literature questioning the foundations of self-consistent QLT; for further discussion, see
Sec. 6.5.6 (p. 180).

4.2 Weak-turbulence theory

“[W]e assert that in the simple situation of weakly interacting dispersive waves a sequence
of closures can be obtained in a systematic and consistent manner.” — Benney and Newell

(1969).

The weak-turbulence theory goes one step beyond quasilinear theory in that it (perturbatively)
incorporates nonlinear effects on the fluctuations. The result is usually written as the wave kinetic

131 The procedure is precisely defined only for the unrenormalized quasilinear limit in which resonant and
nonresonant effects can be cleanly separated. Dewar (1976) made an ambitious attempt to extend the
techniques to turbulence theory. Later Dewar and Kentwell (1985) used the oscillation-center apparatus
to discuss the determination of the nonlinear envelope τd introduced in Sec. 4.1.2 (p. 93).
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equation (WKE) that advances the wave action density. Fundamental references in the context
of neutral fluids include the works of Hasselmann (1966) and Benney and Newell (1969). A very
incomplete list of early references on weak plasma turbulence theory includes Rogister and Oberman
(1968, 1969), Sagdeev and Galeev (1969), Davidson (1972), Tsytovich (1977), and Galeev and Sagdeev
(1979). The review by Porkolab and Chang (1978) of nonlinear plasma wave effects covers WTT,
including experimental verifications. A recent treatise on the general weak-turbulence problem is by
Zakharov et al. (1992). The derivation of the WKE (and more general spectral balance equations) in
the presence of weak variations in space and/or time is discussed in Appendix F (p. 286).

Many applications of WTT have been studied, but those are largely beyond the scope of this
article, which is focused on fundamental principles. Nevertheless, the general structure of the WKE
is very instructive, as it demonstrates important symmetries and suggests interpretations that are
preserved in more complete renormalizations. Algorithmically, the lowest-order WKE can be simply
derived from a Gaussian Ansatz applied to the four-point correlations of the wave amplitudes. When
and why such an Ansatz is justified is a more difficult issue. Therefore before introducing the general
weak-turbulence apparatus, I digress in the next subsection to discuss the onset of stochasticity for
an ensemble of interacting waves.

4.2.1 Preamble: Random three-wave interactions

As I discussed in Sec. 1.2 (p. 10), a principal difference between neutral fluids and plasmas is
the plethora of linear waves supported by the latter. In weakly turbulent plasmas the fundamental
entities are waves rather than the eddies of strongly turbulent fluids.

Relatively systematic formulations can be given of the weak interaction of a collection of waves.
A Hamiltonian action–angle formalism is convenient. For three weakly interacting waves with phases
{θ0, θ1, θ1} ≡ θ and actions J obeying the resonance Ω0 ≈ Ω1 + Ω2, one can construct a canonical
transformation (J , θ)→ (J ,Θ), where Θ0 = θ0 − θ1 − θ2, Θ1,2 = θ1,2, J0 = J0, and J1,2 = J1,2 + J0.
One is led to the HamiltonianK(J ,Θ)

.
= ∆ΩJ +L(J ) cos Θ, where Θ is the phase difference between

the three waves, ∆Ω
.
= Ω0 − Ω1 − Ω2 is the associated frequency mismatch, J = J0, and L(J ) is a

known coupling coefficient. Being time independent, K is conserved; it describes an integrable system
with one degree of freedom. This integrability of the resonant three-wave interaction strongly contrasts
with the generic result for three coupled fields in the presence of dissipation; see, for example, the
Lorenz system of equations (Lorenz, 1963), which supports chaos.

Because K does not depend on θ1 or θ2, the new actions J1,2 are conserved. This is the cleanest
statement of the Manley–Rowe relations J̇1 = −J̇0 and J̇2 = −J̇0, which state that during a three-
wave interaction in which wave 0 decays into two others, for each quantum of action lost by wave 0
one quantum of action appears in each of the other two waves.

Given the three conserved quantities {K,J1,J2}, the Hamiltonian equations that follow from
K(J ,Θ) can be integrated explicitly in terms of elliptic functions; a detailed discussion was given by
Sagdeev and Galeev (1969) [see also Davidson (1972)] (those authors did not use the Hamiltonian
formalism). For present purposes the most important qualitative result is that when wave 0 has the
highest initial excitation, a strong transfer of energy occurs between the waves on a characteristic
time τθ that can be calculated.

When more than three waves are present, integrability is generically destroyed according to
standard results of nonlinear dynamics [although see Meiss (1979)]. It is possible to develop a Chirikov-
like criterion for the onset of wave stochasticity (Zaslavskǐı and Sagdeev, 1967; Zakharov, 1984), but
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the details are somewhat tedious and are not of principal concern in this general discussion. Instead, I
shall simply use the result that an ensemble of weakly interacting waves can be stochastic 132 in order
to justify a statistical description, namely, the WKE that will be derived in the next section.

4.2.2 The random-phase approximation

I now revert to a dynamical equation of the standard form (125b). One assumes the existence of a
spectrum of waves for which the stochasticity threshold has been exceeded. The goal is to develop an
evolution equation for the energylike quantity C(t)

.
= 〈δψ2(t)〉. To accomplish that, one must discuss

the properties of the random variable ψ. (A k index is temporarily suppressed.)
Once the wave stochasticity criterion is (moderately) exceeded, one may think of the dynamical

amplitudes as complex numbers, δψ ≡ ψr + iψi = aeiθ, where the amplitudes are slowly varying
(a ∼

√
J ) but the phases are rapidly varying and, in particular, distributed uniformly over the interval

[0, 2π). This assumption is called the random-phase approximation (RPA). It is approximately true
over a microscopic time interval τθ, the phase stochasticization time introduced above.

The RPA is similar to a Gaussian approximation. It is not identical, however, since realizations
of ψr, say, take on values between [−a, a] whereas realizations of Gaussian variables take on values
on the entire range (−∞,∞). 133 In the formal derivation of the WKE, to be discussed in the next
section, one uses the true Gaussian assumption rather than the RPA, so such difficulties disappear.
The justification for this is the same as the one given in Sec. 3.2.1 (p. 49) for Gaussian statistics of
the Langevin acceleration. Namely, one coarse-grains the time axis in units ∆t, where ∆t � τθ but
scales with τθ. Then the central limit theorem can be used to argue for the Gaussian assumption.

4.2.3 The generic wave kinetic equation

One may now proceed to derive the evolution equation for C(t). At any moment t one may assume
that the complex amplitude of each wave is a Gaussian random variable. The procedure is to integrate
forward for a time increment ∆t that obeys ∆t� τθ. (A crude estimate is τθ ∼ ∆Ω−1, where ∆Ω is a

132 Numerical illustrations of the stochasticity of three interacting drift waves were given by Terry and Horton
(1982).
133 A more formal way of showing the inequivalence is to consider the joint PDF for the real and imaginary
components of ψ. It is easy to prove that the characteristic function of ψr and ψi is J0(ka), where k2 .= k2

r+k
2
i .

On the other hand, if ψr and ψi were independent Gaussian variables with the same variance, the characteristic
function would be exp(−1

4k
2a2).

In the RPA and with 1 ≡ k1, one has the important property C1
.= 〈ψ1ψ

∗
2 〉 = a2〈ei(θ1−θ2)〉 = a2δ1,2 =

|ψ|2δ1,2. More generally, odd-order correlations of randomly phased variables vanish whereas even-order
correlations factor in the Gaussian way if the labels are at most “equal” (actually, the negatives of each
other) in pairs. Thus for example,

〈ψ1ψ2ψ3ψ4〉 = (C1δ1,−2)(C3δ3,−4) + (C1δ1,−3)(C2δ2,−4) + (C1δ1,−4)(C2δ2,−3) (f-6)

if no more than two of the indices are simultaneously equal. This factorization is the same as the Fourier
transform of the fourth-order correlation of Gaussian variables. However, suppose that 1 = 2 = −3 = −4.
Then the left-hand side of Eq. (f-6) would be (assuming a = 1 for simplicity) 〈|ψ|4〉 = 1 whereas the right-hand
side of Eq. (f-6) would be 2C2

1 = 2. Thus one must use the RPA with some care.
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characteristic frequency mismatch 134: ∆Ω
.
= Ωk +Ωp +Ωq, where k+p+q = 0.) If one assumes that

the wave amplitudes are not too large, one may use perturbation theory to compute the averaged
intensity at time t+∆t, which is taken to be slowly varying. Upon subtracting off the initial intensity
and dividing by ∆t, one then obtains a coarse-grained approximation to the time derivative:

lim
∆t→“0”

〈|δψk|2〉(t+ ∆t)− 〈|δψk|2〉(t)
∆t

≈ dCk

dt
. (180)

Here “0” means greater than τθ.
Because second-order contributions to C(t) stem merely from the first-order (linear) dynamics

of ψ, it is clear that one must calculate C(t) beyond second order in the fluctuations in order to
find interesting nonlinear behavior. Third-order contributions to C vanish because of the centered-
Gaussian assumption. Contributions to the fourth-order spectrum arise from both second- and third-
order contributions to ψ:

C
(4)
k (t) = 〈δψ(1)

k (t)δψ
(1)
k (t)∗〉+ 〈δψ(2)

k (t)δψ
(2)
k (t)∗〉 + 〈δψ(3)

k (t)δψ
(1)
k (t)∗〉 + 〈δψ(1)

k (t)δψ
(3)
k (t)∗〉.(181)

The necessary calculations are straightforward, if a bit tedious. The final result is the wave kinetic
equation

∂tCk − 2γlin
k Ck + 2Re ηnl

kCk = 2F nl
k , (182)

where 135

ηnl
k (t) ≈ −

∑
∆

MkpqM
∗
pqkθ
∗
pqk(t)Cq(t), F nl

k (t) ≈ 1

2

∑
∆

|Mkpq|2 Re[θkpq(t)]Cp(t)Cq(t), (183a,b)

θkpq = πδ(∆Ω) (WTT). (183c)

134 Note that if ∆Ω ≡ 0 (nondispersive waves), the linear frequency can entirely be transformed away, so the
turbulence is intrinsically strong and WTT fails.
135 In Eqs. (183) the delta functions of the frequency mismatch arise from integrals over products of the
unperturbed Green’s functionG0,k(t; t′) = H(τ) exp(−iΩkτ). For example, from the (2)–(2) term of Eq. (181)
arises the integral

Re
∫ ∆t

0
dt′
∫ ∆t

0
dt′′ exp[i∆Ω(t′− t′′)] = [sin(1

2∆Ω∆t)/1
2∆Ω]2. (f-7)

Now the function sin(a∆t)/a does not have a classical limit as ∆t→∞. To understand its significance, recall
that lim∆t→∞[sin(a∆t)/a] = πδ(a). The square of this function is even worse:

[sin( 1
2∆Ω∆t)/1

2∆Ω]2 → πδ( 1
2∆Ω)[sin(1

2∆Ω∆t)/1
2∆Ω] = 2π∆t δ(∆Ω). (f-8)

The result depends on the integration time. That is fortunate, because the result must be divided by ∆t in
order to properly define the coarse-grained time derivative (180). The result is mathematically equivalent to
the golden rule for quantum-mechanical scattering.
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Equation (182) is called a Markovian closure because all quantities are local in time. θkpq is called
the triad interaction time. 136 The right-hand side of Eq. (182) describes the forward three-wave decay
Ωp + Ωq → Ω−k; the ηnl

k term describes the inverse process Ω−k → Ωp + Ωq.
The constraint ∆Ωkpq = 0, enforced by the delta function in Eq. (183c), restricts three-wave

interactions to modes with particular qualitative dispersion characteristics (Sagdeev and Galeev,
1969). For example, dispersion relations that as functions of wave-number magnitude pass through
the origin and are concave up permit three-wave (“decay”) interactions. If those are not allowed,
one must turn to n-wave interactions with n > 3. Those emerge by continuing the iteration through
higher order, thereby obtaining corrections to Eqs. (183). I shall not pursue the details here.

Just as in the analogous discussion in Sec. 4.1.2 (p. 91) of the δ(ω − k · v) quasilinear diffusion
coefficient in formulas such as (161), the δ(∆Ω) in Eq. (183c) makes sense only in the limit of a
continuous Fourier spectrum. That need not be the case. For example, Terry and Horton (1982) derived
the equations for the interaction of just three drift waves; for this case the delta function is nonsensical.
Terry and Horton replaced πδ(∆Ω) by the broadened resonance function ν/[(∆Ω)2 +ν2], where ν was
a nonlinear decorrelation rate. However, ν is not determined within the framework of WTT; a theory
of strong turbulence is required. Krommes (1982) reconsidered the three-wave problem in the direct-
interaction approximation (Sec. 5, p. 126), which effectively makes a self-consistent prediction for ν,
and found good agreement with numerical solutions. See Sec. 5.10.3 (p. 144) for further discussion.

4.2.4 Interpretation of the wave kinetic equation: Coherent and incoherent response

One of the most important conclusions of the renormalized theory to be described in later sections
is that the general form (182) transcends its derivation from perturbation theory. The term in γlin

k , of
course, describes the intrinsic stirring and/or dissipation due to the linear instabilities and damping
mechanisms. The right-hand side of Eq. (182), which describes the coupling of spectral intensities
at two wave vectors p and q different from k, is called (the variance of) incoherent noise. [The
justification of this nomenclature will not be fully apparent until the later discussions in Secs. 5.3
(p. 132) and 8.2.2 (p. 201) of Langevin representations of turbulence. 137] That term is manifestly
positive definite [provided that Re θkpq > 0, as is required if it is to represent an interaction time; see
more discussion in Secs. 8.2.1 (p. 201) and 8.2.2 (p. 201)]. If the nonlinear terms are to conserve energy
or other positive definite invariants, the ηnl

k term must therefore be typically (for most k’s) positive
as well. The effects embodied in ηnl

k are called coherent response 138; they provide a k-dependent
generalization of the nonlinear damping we have already seen in the stochastic-oscillator model.

To explicitly demonstrate conservation of a nonlinear invariant I defined by I .
=
∑

k σkCk, where
σk is a specified weighting factor, multiply Eq. (182) by σk and sum over k. After symmetrizing the
ηnl

k term in p and q, one finds that the nonlinear terms vanish provided that

σkMkpq + σpMpqk + σqMqkp = 0. (184)

136 Because of the weak-turbulence form (183c), the complex conjugate, order of the indices, and time
argument of θ are unnecessary in Eqs. (183). The forms as shown permit later generalizations; see, for
example, Eqs. (401).
137 For some discussion of a Langevin equation for weak turbulence, see Elsässer and Gräff (1971).
138 The phrase coherent response is originally due to Dupree (1972b). For more discussion, see Sec. 6.5.3
(p. 173).
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[For someM ’s there may be more than one σk that satisfies Eq. (184).] Then ∂tI = 2
∑

k σkγ
lin
k Ck. This

is the same balance between forcing and dissipation displayed by the exact equation; see Eq. (117).
Conservation of the nonlinear invariant by the closure is seen to be a consequence of symmetry between
the coherent and incoherent response; both must be included on equal footing.

As we will see, these results can be generalized to a more complete strong-turbulence theory. For
Markovian closures the principal change will be that the delta function of Eq. (183c) is broadened, so
precise frequency matching is not necessary. According to the arguments in the last paragraph, such
broadening preserves the conservation properties because the symmetries are maintained. A further
non-Markovian generalization is provided by the DIA (Sec. 5, p. 126).

4.2.5 Validity of weak-turbulence theory

For WTT to be valid, one must first satisfy a stochasticity condition for the waves. Additionally,
however, the neglected nonlinear terms must not be too large. In order to develop a quantitative
criterion, one may anticipate the renormalized expression for θkpq discussed in Sec. 7.2.1 (p. 184). A
simple generalization of Eq. (183c) is

θkpq = (−i∆Ω + ∆ηr)−1, (185)

where ηr
.
= ηnl − γlin, for simplicity of presentation I am assuming that ηnl is real (so there is no

nonlinear frequency shift), and ∆ηr
.
= ηrk + ηrp + ηrq. Equation (185) plausibly states that the delta

function of the frequency mismatch is broadened by the nonlinear damping. Therefore one condition
for WTT is

|∆ηr/∆Ω| � 1. (186)

Because one has already assumed |γk/Ωk| � 1 in order that the waves be well developed, Eq. (186)
is essentially equivalent to |∆ηnl/∆Ω| � 1; i.e., the linear timescale must be short relative to the
nonlinear one.

Frequently a validity criterion of the form |γ/∆Ω| � 1 is quoted, where γ is a typical growth rate.
That would be correct if the incoherent noise could be ignored on the right-hand side of Eq. (182) so
that the steady-state balance would be Re ηnl

k = γlin
k . However, it cannot be correct in spectral regions

for which γlin
k ≈ 0, such as an inertial range. There the steady-state balance is between ηnl

k and Fk,
and only the nonlinear criterion (186) makes sense. For some related discussion, see Ottaviani and
Krommes (1992).

A detailed analysis of validity criteria for WTT in the context of Langmuir turbulence was given
by Payne et al. (1989). The possibility of weak-turbulence Kolmogorov spectra was discussed at length
by Zakharov (1984) and Zakharov et al. (1992), where more references can be found.

4.2.6 Vlasov weak-turbulence theory

A weak-turbulence analysis can also be carried out for Vlasov or other kinetic equations. The
principal new qualitative feature not present in the implicitly fluid description just given is the
possibility of wave–wave–particle resonances in addition to the wave–wave–wave resonance of fluid
theory. That is, resonant denominators of the form (ωp − p · v + iε)−1 occur, where p

.
= −(k + q)

and modes k and q are assumed to label nonresonant normal modes. The reactive contributions from
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such resonances are called induced scattering; the dissipative contributions are usually called nonlinear
Landau damping, although this phrase is sometimes taken to subsume induced scattering as well.

To deduce the general form of the two-time Vlasov spectral balance equation to lowest nontrivial
order (quadratic in the intensity) in the weak-turbulence expansion, define k

.
= {k, ωk} and expand

the fluctuating potential deduced from the fluctuating Vlasov equation as

Dlin(k)δϕk +
1

2

∑
p,q

δk+p+qε
(2)(k | p, q)(δϕ∗p δϕ∗q − 〈. . .〉)

+
1

2

∑
p,q

δk+p+q
∑
p′,q′

δp,p′+q′ε
(3)(k | q, p′, q′)[δϕ∗q (δϕ∗p′δϕ∗q′ − 〈. . .〉)− 〈. . .〉] + · · · , (187)

where the coupling coefficients ε(2) and ε(3) are symmetrical in their last two arguments. It is readily
shown that 139

ε(2)(k | p, q) .=−Φ̂kg0,k[p · ∂ g∗0,qq · ∂f0 + (p↔ q)], (188a)

ε(3)(k | q, p′, q′) .=−iΦ̂kg0,kq · ∂ g∗0,p[p′ · ∂ g∗0,q′q′ · ∂f0 + (p′ ↔ q′)]. (188b)

Expand Eq. (187) through third order and form the equation for Ik ≈ 〈|δϕ(1)
k |2〉 + 〈δϕ(3)

k δϕ
(1)
k
∗〉 +

〈δϕ(1)
k δϕ

(3)
k
∗〉 + 〈|δϕ(2)

k |2〉, assuming Gaussian statistics for δϕ(1) and steady state. One obtains

D(k)Ik = 〈δϕ̃2〉k/(D
lin)∗(k), (189)

where D = Dlin +Dnl and (Sagdeev and Galeev, 1969)

Dnl
k
.
=
∑
p,q

δk+p+q[ε
(3)(k | q,−q,−k)− ε(2)(k | p, q)(D∗p )−1ε(2)∗(p | q, k)]Iq, (190a)

〈δϕ̃2〉k
.
=

1

2

∑
p,q

δk+p+q |ε(2)(k | p, q)|2IpIq. (190b)

Note that Eq. (189) is asymmetrical, involvingD (containing second-order corrections) on the left but
merely Dlin on the right. That is an artifact of the second-order perturbation theory; the renormalized
theory described in Sec. 6.5 (p. 170) and Appendix G (p. 288) shows that in a more complete
description Dlin should be replaced by D, as one would expect. 140

Reduction of the frequency- or two-time-dependent balance equation (189) to a wave kinetic
equation is somewhat tedious because resonant and nonresonant effects are mixed together; it requires
patience and foresight to properly reduce the results to sensible fluid equations. Important insights
and guidance follow by developing analogies to discrete, quantum-mechanical balance equations; see,
for example, Tsytovich (1970, 1972, 1977) and Motz (1973). Modern analyses exploit the concept of

139 These definitions differ by a factor of 2 from those of Sagdeev and Galeev (1969) because of the different
convention adopted in Eq. (187).
140 If that is not done, certain ambiguities of sign arise because Dlin may have zeros in the upper half of the
ω plane, but D must be stable in steady state. The same confusion surrounds the validity of QLT for damped
modes. See Appendix G (p. 288) for further discussion.
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oscillation centers (Johnston, 1976) and Lie transforms (Johnston and Kaufman, 1978). In any event,
further reduction of Eq. (190a) leads (Appendix G, p. 288) to the WKE of WTT in the form

∂TNk(T )− 2γlin
k Nk − 2(γind

k + γmc
k )Nk = Ṅmc

k , (191)

where the action density Nk and the other terms are defined in Appendix G (p. 288). The nonlinear
terms have been divided into contributions from induced scattering (involving the driven beat
resonance ωp− p · v = 0) and fluid mode-coupling contributions involving the three-wave interaction
Ωk + Ωp + Ωq = 0. The ε(3) term in Eq. (190a) describes scattering from bare particles [Compton
scattering; Fig. 13(a)]; scattering from the shielding clouds [sometimes called nonlinear scattering;
Fig. 13(b)] arises as a nonresonant contribution from the ε(2)ε(2)∗ term of Eq. (190a). The effect
involves a three-wave interaction, but with the fluctuation at p being virtual (driven nonresonantly),
not a normal mode. The forward three-wave decay process Ωp +Ωq → Ω−k arises from the incoherent
noise Ṅmc

k ; the inverse process is described by γmc
k , which arises as a resonant contribution from the

ε(2)ε(2)∗ term.

(a) (b)

p

p p

q k

qq

k k-p

Fig. 13. Induced scattering processes in WTT. Straight line: particle propagation; wiggly line: normal mode
(wave); dashed line: virtual mode. (a) Compton scattering (from bare particles); (b) nonlinear scattering
(from shielding clouds).

For strong turbulence the perturbative expansion (187) fails. In order to properly calculate the
nonlinear contribution to the growth rate, one needs a precise, nonperturbative definition of the
dielectric function. That is derived in Sec. 6.5 (p. 170), where I shall demonstrate the reduction of
general renormalized Vlasov theory to both kinetic WTT as well as the RBT discussed in Sec. 4.3
(p. 108).

4.2.7 Application: Ion acoustic turbulence and anomalous resistivity

A detailed application of Vlasov weak-turbulence theory was given by Horton and Choi (1979) in
the context of ion acoustic turbulence, one of the few situations for which the weak-turbulence ordering
can apparently be cleanly justified. Because this topic illustrates a number of key plasma-turbulence
concepts (the appearance of an anomalous transport coefficient, the differing roles of electrons and
ions, resonant and nonresonant response, direction of energy flow, etc.), I shall briefly review the
essential physical points, closely following the discussion of Sagdeev (1979); see also Sagdeev (1974).

Ion acoustic turbulence is easy to excite through a current-driven instability. One then expects
that the resulting fluctuations will act in such a way as to hinder the driving current. In other words,
one guesses that an anomalous resistivity 141 will appear. Because usually the current is primarily

141 A general formulation of the theory of anomalous resistivity in terms of correlation functions was given
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carried by the electrons, one develops a picture in which the electrons emit fluctuations (just like
Cerenkov emission in a near-equilibrium plasma). In order to achieve a nonlinear steady state, either
those fluctuations must completely turn off the driving current (by quasilinear relaxation) or the ions
must absorb the emitted fluctuations. Usually, since the system is being driven externally (e.g., by
Ohmic heating), the current cannot be completely destroyed and the ion damping mechanism wins.

The anomalous resistivity is defined by considering the momentum equation for electrons:
(mn)edue/dt = −(e/me)E− (mn)eνeffue. The last term describes the loss of electron momentum due
to the emission of unstable ion acoustic waves. Sagdeev found the result νeff ∼ 10−2ωpi(Te/Ti)(u/cs),
the interpretation of which will now be described.

The dielectric function for ion acoustic waves is easily obtained. One searches for waves in the
frequency range kvti < ω < kvte. This means that to lowest order the ions are hydrodynamic,
contributing a susceptibility −ω2

pi/ω
2, and the electrons are adiabatic, contributing a susceptibility

1/(kλDe)
2. Thus Dlin(k, ω) ≈ 1− ω2

pi/ω
2 + 1/(kλDe)

2 + iDlin
i (k, ω). It is useful to recall that λDe can

be written in the alternate ways λDe = vte/ωpe = cs/ωpi. Assume that the electron PDF is a shifted
Maxwellian with mean velocity ue. It is then easy to show that the dispersion relation for the ion
acoustic waves is Ω2

k = k2c2s/[1 + (kcs/ωpi)
2] and the growth rate is

γlin
k

Ωk

=
(

Ωk

kcs

)2 [(π
8

)(
m

M

)]1/2( k̂ · u
cs
− Ωk

kcs

)
∼
(
m

M

)1/2 k̂ · u
cs

(Ωk � kcs, k̂ · u > cs).(192a,b)

In the long-wavelength limit, there is an instability when the fluid velocity in the direction of the
wave vector is greater than the sound speed. Also note that the dispersion relation is of the nondecay
type, so three-wave interactions can be neglected if the criterion (186) is satisfied.

In order to find a general expression for νeff , recall the quasilinear momentum conservation law:
d(P res + Pnr)/dt = 0. For acoustic waves the electron interaction is primarily resonant; most of the
nonresonant energy and momentum is in the ions. Thus one is entitled to write −(mn)eνeffue =
dP res/dt = −dPnr/dt. This states that the electrons emit the acoustic waves and the (nonresonant
motions of the) ions absorb them. Since Pnr =

∑
k kNk, one has dPnr/dt =

∑
k k(2γlin

k )Nk =
2
∑

k γ
lin
k (k/Ωk)Ek, where one changed from the action to the total wave energy Ek = ΩkNk as the

fundamental unknown. Thus one arrives at the formula

νeff = 2(mnu)−1
e

∑
k

γlin
k (k · û/Ωk)Ek. (193)

From now on, let us drop numerical factors. Then upon using the previous expression for γlin to
estimate Eq. (193), one obtains

νeff

ωpi
∼
(
M

m

)1/2∑
k

(kλDe)
( Ek
nTe

)
. (194)

In order to proceed, one must find the saturated level of the wave energy Ek.
Because the ion-acoustic dispersion relation is of the nondecay type, the lowest-order nonlinear

process is induced scattering. [There is also a quasilinear distortion of the electron distribution
function; see Rudakov and Korablev (1966) and Kovrizhnykh (1966).] The general form of the WKE

by Tange and Ichimaru (1974).

106



is schematically ∂tEk = 2γlin
k Ek −MkE2

k. The last term here is written in a highly schematic form; it
should really involve a convolution over wave numbers. Nevertheless, very crudely one can estimate
the steady-state saturation level due to induced scattering to be Ek ∼ γlin

k /Mk.
One must ask which species dominates in the induced scattering process. Because ω � kvte, one

has Ωk1 + Ωk2 � (k1 + k2) · ve. Therefore this beat resonance falls on the flat part of the electron
distribution function, where there is very little net Landau interaction. However, the beat resonance
Ωk1 − Ωk2 = (k1 − k2) · vi can interact with the heart of the ion distribution. Therefore the ions
dominate the induced scattering. [The detailed proof of this remark is actually rather complicated;
see Horton and Choi (1979).]

One can now estimate the size of the induced-scattering mode-coupling coefficient. On dimensional
grounds one argues thatMk ∼ (nTe)

−1Ωk(Ti/Te). The first factor, involving the inverse of the electron
thermal energy density, is the natural normalization for Ek. (The waves exist even for cold ions, so
it would not be appropriate to use Ti here.) The frequency factor arises because one is describing
rates. One uses a frequency rather than a growth rate because the primary waves are assumed to
be nonresonant. The temperature ratio appears because the beat-wave interaction is resonant with
the ions, so an ion thermal spread is required in order to give an effect. Thus one estimates that
Ek/nTe ∼ (γlin

k /Ωk)(Te/Ti), or upon summing over all excited wave numbers to get the total fluctuation

level, (W/nTe) ∼ (m/M)1/2(Te/Ti)(u/cs). If one puts this expression into expression (194) and ignore
the dimensionless factor kλDe, one estimates νeff/ωpi ∼ (Te/Ti)(u/cs), which is just Sagdeev’s result.
Of course, one cannot obtain the numerical coefficient 10−2 without performing a detailed study of
the mode coupling buried insideMk.

Because the induced scattering is nonresonant, action is conserved by the waves. 142 This differs
from the resonant three-wave interaction, in which the Manley–Rowe relations show that action is
not conserved for that process.

The natural flow of energy in this problem is from high frequencies to low frequencies. This
can be remembered very heuristically as follows. The electron current is driving the fluctuations.
Assume that one initially populates the wave spectrum with waves of characteristic frequency ω and
energy E. As other fluctuations at other frequencies are driven up, one expects E to decrease as
energy is transferred to those other frequencies. However, because the induced-scattering process is
nonresonant, action is conserved, as has already been remarked. Since most of the wave energy is
in the ions (in the form of nonresonant sloshing), the wave action derives from the derivative of the
ion susceptibility: N ∼ (ω2

pi/ω
3)E. Consider a process ω → ω + δω and E → E + δE (during which

δN = 0). Then δN = 0 ∼ δ (E/ω3), which leads to δE/E = 3δω/ω. Since it was argued that δE < 0,
one finds that δω < 0; i.e., the energy flows to lower frequencies.

Since energy is always being pumped into the nonresonant ion waves by the nonlinear induced
scattering, a further mechanism is needed in order to saturate the spectrum (assuming that the
electron current and the shapes of the distribution functions are maintained). Conventionally,
collisional dissipation is assumed to absorb the energy. Another possibility is that the fluctuations
grow so large that they begin to interact resonantly with the ion distribution. This mechanism is
related to Dupree’s resonance-broadening theory, to be discussed in Sec. 4.3 (p. 108).

This concludes the discussion of the ion-acoustic application. Since the equations of WTT follow

142 In some sense this is a tautology, since wave action can be defined as the number of plasmons. What is
needed is a proper statistical definition of action in terms of fluctuation intensity. That the appropriately
defined Nk is conserved follows from the detailed algebra (Sagdeev and Galeev, 1969).
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from a straightforward algorithm, it is not surprising that such theories have been derived and studied
for a variety of physical problems (including ones for which the fundamental assumptions are at best
only marginally satisfied); a representative work is by Hahm and Tang (1991). Ultimately the fidelity
of such calculations will only become clear when the results are compared with more comprehensive
strong-turbulence theories. I turn now to the development of such theories.

4.3 Resonance-broadening theory

“The nonlinear mechanism . . . is the broadening of the Landau resonance due to particle
‘trapping’ which results from the perturbation of the particle orbits in a turbulent plasma.”
— Dupree (1966).

Both QLT and WTT are examples of systematic approaches to the problem of turbulence. They
have well-defined if limited regimes of validity. Modern systematic approaches appropriate for strong
turbulence, such as the DIA, are (in some sense) natural generalizations of those theories.

Dupree pioneered several approaches to strong turbulence: the resonance-broadening theory (RBT;
Dupree, 1966, 1967), discussed in the present section; and what I shall call the clump algorithm (CA;
Dupree, 1972b), discussed in Sec. 4.4 (p. 119). These approximations are ultimately more intuitive
in nature although the original paper on RBT (Dupree, 1966) and related works of other authors
(Weinstock, 1969, 1970) invoked considerable mathematical apparatus. Orszag and Kraichnan (1967)
made a seminal critique of the RBT, but their excellent work was unfortunately largely ignored.
Historically, it therefore took considerable time to elucidate the deficiencies in the formal trappings
and the relations of Dupree’s work to the DIA and associated approximations.

4.3.1 Perturbed orbits and resonance broadening

A heuristic introduction to some of the basic phenomenology of plasma and fluid turbulence was
given by Dupree (1969); that is a good place to start if one wants to appreciate Dupree’s motivations.
The fundamental intuition behind RBT stems from the classical Langevin equations described in
Sec. 3.2 (p. 48). As did Dupree (1966), I consider first the unmagnetized, collisionless plasma. If the
microturbulence is idealized to be Gaussian white noise, it leads (Sec. 3.2.2, p. 49) to v-space diffusion
(〈δv2〉 = 2Dvt) of a test particle and an associated x-space dispersion (〈δx2〉 = 2

3
Dvt

3) around the
free-streaming motion; the secular development of this latter probability cone is sometimes called
orbit diffusion. 143

One has already seen the appearance of orbit diffusion in Eq. (158b). An alternate interpretation of
that effect follows by noting that the uncertainty in position broadens the Landau resonance between
the test particle and the waves. To see this quantitatively, consider the time integral in Eq. (160),
which is an approximation to a renormalized single-particle propagator gkω. It is rigorously an Airy
function, but the principal effect can be seen by defining 144 νd

.
= τ−1

d and considering the simple

143 In the unmagnetized case it should more properly be called orbit dispersion. In strongly magnetized
situations a truly diffusive effect does appear in x space; see Sec. 4.3.3 (p. 110).
144 Recall that the actual diffusion time depends on k, but a k-independent diffusion time τd can be defined
in terms of a reference wave number k: τd

.= τd,k.
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exponential approximation gkω ≈
∫∞
0 dτ ei(ω−kv+iνd)τ , namely,

gkω = [−i(ω− kv + iνd)]
−1. (195)

It is the real part of g that contributes to Dv:

Re gkω =
νd

(ω − kv)2 + ν2
d

νd→0→ πδ(ω − kv). (196a,b)

The origin of the term resonance-broadening theory is clear from the Lorentzian form of Eq. (196a).
The effect can be viewed as arising from random Doppler shifts (Dum and Dupree, 1970); it is the
same phase-mixing mechanism that is responsible for the decay of the mean response function of the
stochastic oscillator (Sec. 3.3, p. 52). Some explicit discussion about the relationship between RBT and
the Brownian-motion problem was also given by Dum and Dupree (1970) and Benford and Thomson
(1972).

4.3.2 The strong-turbulence diffusion coefficient

The role of resonance broadening in justifying the continuum wave-number representation has
already been discussed in Sec. 4.1 (p. 90) and Appendix D (p. 279). There the point was made that
in the quasilinear regime τ lin

ac < τd the size of the resonance broadening does not appear in the final
expression for Dv [recall Fig. 12 (p. 94)]. However, one can admit the possibility of a strong-turbulence
regime τd < τ lin

ac . In general, the true autocorrelation time to be used in the random-walk formula (151)
should be the smaller of τd and τ lin

ac :

τac =

{
τ lin
ac (quasilinear regime)
τd (strong-turbulence regime).

(197)

Since τd depends on Dv, the strong-turbulence expression (151) for Dv is actually a self-consistent

formula to be solved for Dv: D
4/3
v = (q/m)2Ek−2/3

. This result can be interpreted by introducing,
by analogy to the expression (D4b) for the trapping frequency in a single harmonic, a macroscopic
trapping frequency Ωtr

.
= [(qk/m)2E]1/4. This formula is built from the effective intensity that would

result from strongly overlapping but randomly phased islands, a concept already discussed by Chirikov

(1969). The diffusion time is simply the inverse of this frequency: τd ∼ (k
2
Dv)

−1/3 = Ω−1
tr . If one also

defines a macroscopic trapping velocity according to Vtr
.
= Ωtr/k, then

Dv = V 2
trΩtr, (198)

which is the proper formula for a random-walk process 145 with characteristic velocity step Vtr and
autocorrelation time Ω−1

tr = τd. These results were known to Dupree (1966).

145 There is a troubling aspect of the interpretation of Eq. (198) that to the author’s knowledge has never
been satisfactorily discussed. Given that there are a finite number of unstable waves, the width of the resonant
region in velocity has a finite extent. In the strongly overlapped limit, Vtr represents the entire width of the
resonant region. It does not make sense to talk of a random-walk process with step size ∆v ∼ Vtr if a single
step would scatter the particle from that region.
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To show that Eq. (198) is smoothly connected to the quasilinear result, one can use Eq. (197) to
write Eq. (151) in the form

Dv ∼
{
V 2

trΩtr(τ
lin
ac Ωtr) (τ lin

ac < τd)
V 2

trΩtr (τd < τ lin
ac ).

(199)

At the point where τ lin
ac = τd one has τd ∼ Ω−1

tr , so the formula smoothly interpolates between the
quasilinear and strong-turbulence regimes. (If it had not done so, there would have been an extra
parameter regime yet to be discovered.)

4.3.3 Saturation due to resonance broadening

Since linearly unstable waves grow due to inverse Landau damping, resonance broadening can
lead to a reduction in the growth as the resonant particles (substantially perturbed from their free-
streaming trajectories) sample a nonvanishing region of the background PDF around the phase
velocity of the waves. More dramatically, resonance broadening can bring nonresonant particles
into resonance, possibly causing onset of strong Landau damping and immediate saturation of the
turbulence. Such effects related to the wave–particle resonance should be describable by nonlinear
modifications to the linear dielectric function. Let us postulate, without deep understanding or
justification at this point, that the generalization (ω − kv + iε)−1 → (ω − kv + iνd)

−1 that appeared
in the discussions of the diffusion coefficient should hold also for the dielectric function. Because in
this Ansatz iνd always appears in conjunction with ω, one is led to a simple recipe for the nonlinear
dielectric:

D(k, ω) = Dlin(k, ω + iνd). (200)

If a nonlinear dispersion relation ωk = Ωk+iγk is constructed from D(k, ω) = 0, the known properties
of Dlin can be taken over immediately; one is led to

Ωk = Ωlin
k , γk = γlin

k − νd. (201a,b)

If one defines the saturation criterion by γ = 0, where γ
.
= max γk, one finds that saturation occurs

when

νd ∼ γlin. (202)

There are several noteworthy things about formula (202). First, since νd depends algebraically
on Dv, Eq. (202) directly determines the value of the diffusion coefficient! Unlike the usual predictive
approach in which one first obtains the fluctuation level, then uses the appropriate formula [such
as Eq. (46b)] to find Dv, here Dv is given immediately in terms of the linear growth rate. If this
algorithm is to be believed, it is extraordinarily convenient, since often the diffusion coefficient is the
most important thing one wants to know. Later, if one desires, one can use the relation between Dv

and the fluctuation level to determine the latter. (In that calculation one must ascertain whether the
system saturated in the quasilinear or strong-turbulence regimes.)

Second, consider the estimate (202) from the point of view of the limits of validity of quasilinear
theory. The most fundamental criterion was τ lin

ac < τd. With Eq. (202) this can be written as γlinτ lin
ac < 1,

which was another of the validity criteria. This demonstrates a nice consistency.
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In practice the saturation algorithm (202) is usually applied to strongly magnetized situations
(Dupree, 1967). Recall the discussion of Eq. (163). If the perpendicular diffusion time τd⊥,k

.
=

(k2
⊥D⊥)−1 dominates, then according to Eq. (202) (and temporarily ignoring the distinction between γ

and γk) the waves should saturate when k2
⊥D⊥ ∼ γlin

k , or

D⊥ ∼ γlin
k /k2

⊥. (203)

Formula (203) is one of the most frequently quoted formulas in applications-oriented plasma
turbulence theory although in the literature there is relatively little demonstrated understanding of
its limits of validity. Certainly one should not assume that anything that has been said up to this
point can be systematically derived or justified. One obvious difficulty with formula (203) is that
although D⊥ is independent of k (being summed over all k’s), the right-hand side of Eq. (203) will
depend on k for typical growth rates. The only resolution can be that the k’s on the right-hand side
of Eq. (203) must be interpreted as typical k’s; the wave-number dependence of Eq. (203) must not
be taken seriously. This point will be further discussed below.

One must be strongly warned that the RBT recipe (200) for the nonlinear dielectric
function is simply incorrect in detail, particularly in the strong-turbulence limit. The proper
theory is subtle, as discussed in Sec. 6.5 (p. 170). Fortunately, dimensional consequences of
Eq. (203) are more robust than is this initial “derivation” based on the kinetic resonance-broadening
approximation to D. In the subsequent discussions I shall frequently return to Eq. (203) in attempts
to understand it in detail.

In order for random-walk phenomenology to be a valid description, there must be stochasticity.
Some aspects of the stochasticity criterion for E ×B motion are described in Appendix D (p. 279).
Those considerations lead to the estimate that x-space stochasticity ensues when the rms E × B
velocity exceeds the perpendicular phase velocity. [Dupree (1967) called this a “trapping condition,”
but that phrase is misleading since coherent islands are destroyed in a spectrum of waves.] Now
consider the physically important scenario in which the normal modes are drift waves (with frequencies
ω ∼ ω∗). The stochasticity criterion then reduces to the condition that VE & V∗, where V∗ is the
diamagnetic velocity. This same criterion was found in the crude estimates of Sec. 1.3.3 (p. 16); the
stochasticity criterion offers a partial justification.

Consider the consequences of stochasticity onset for a drift-wave problem with ω ∼ ω∗ = kyV∗
and k‖vti � ω � k‖vte. Random E × B motions cause Doppler broadening δω = k⊥δVE = O(ω),
the ordering following since VE = O(V∗). Because ω � k‖vte, such broadening has little effect on the
electron resonance; the waves are driven unstable by the linear electron growth rate. However, δω ∼ ω
broadens the ion resonance into the heart of the ion distribution. In Dupree’s scenario this gives rise
to strongly stabilizing ion Landau damping. Temporarily ignore the possibility of a τ lin

ac induced by

parallel motion, and define V
.
= 〈δV 2

E〉
1/2

. Then a saturation scenario is that (i) fluctuations grow
according to γlin

e ; (ii) when V /V∗ grows to be O(1), stochasticity ensues and perpendicular diffusion
turns on abruptly; finally (iii) the fluctuations are stabilized due to ion dissipation. The amount of
that dissipation adjusts such that D⊥ ∼ γlin

e /k
2
⊥; the details of the ion distribution do not enter into

this formula. Thus any form of ion dissipation, including collisions (Krommes and Hu, 1994), can
provide the stabilizing sink. Indeed, ion Landau damping vanishes as Ti → 0, so cannot be effective
in that limit.
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A crude model 146 for the onset of such diffusion is

D⊥ ∼ H(V
2 − V 2∗ )(V

2 − V 2∗ )(k
2

⊥D⊥)−1. (204)

[This form incorporates the postulate that D⊥ vanishes for V < V∗, and it reduces to formula (163) for

V � V∗ when τd⊥ dominates.] From the solution D ∝ (V
2 − V∗)1/2, one finds that D(V ) has infinite

slope at the transition. This behavior is an example of a supercritical bifurcation of the turbulence
intensity; for more discussion of such bifurcations, see Sec. 9.3 (p. 212). If the E ×B velocity were
passive, the solution of Eq. (204) would be the solid curve of Fig. 14, with D⊥ asymptoting to
the strong-turbulence limit D → V /k⊥ for V � V∗. For self-consistent fluctuations, however, the

turbulence is argued to saturate with k
2

⊥D⊥ ∼ γe.
In the presence of parallel motion, diffusion need not turn on so abruptly since v‖ should induce

a τ lin
ac that has the quasilinear form (152); once again, the true τac to be used in Eq. (164) should be

min(τ lin
ac , τd). The actual D⊥ is then shown as the dashed line in Fig. 14.

e

2k  D  / ω

linγ    /ω

1

V/V
*

1

Fig. 14. Onset and saturation of cross-field diffusion due to E ×B motions. V .= 〈δV 2
E〉1/2; V ∼ V∗ is the

onset of spatial stochasticity in Dupree’s resonance-broadening scenario. The solid curve is the supercritical
bifurcation that results when only the nonlinear correlation time τd is admitted; the dashed curve incorporates
the possibility of a τ lin

ac . For self-consistent problems fluctuations are expected to saturate at k
2
⊥D⊥ ∼ γ lin

e .

146 If formula (163) is evaluated for k‖ = 0 and Ωq ≈ ω∗(q), one obtains

D⊥ = Re
∑

q

〈δV 2
E〉q

−i[ω∗(q) + iq2⊥D⊥]
≈
(

k
2
⊥D⊥

ω2∗ + (k2
⊥D⊥)2

)
V

2
, (f-9a,b)

where V
2 .=

∑
q 〈δV 2

E〉q and k⊥ is a typical perpendicular wave number. The real solution for D⊥ of

1 = k
2
⊥V

2
/[ω2∗ + (k

2
⊥D⊥)2] exists only when V

2
> V 2∗ ; then D⊥ = (V 2 − V 2∗ )1/2/k⊥, which is equivalent to

Eq. (204).
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The saturation mechanism just described is reminiscent of the weak-turbulence ion-acoustic
saturation described in Sec. 4.2.7 (p. 105); in both cases nonlinearities couple energy from the
destabilizing electrons to the stabilizing ions. Clearly the RBT is intended to be some sort of strong-
turbulence limit of WTT, but the details of the mode coupling underlying RBT are unclear at this
point in the discussion.

4.3.4 Propagator renormalization and resonance-broadening theory

The best way of understanding the mathematical systematology, or lack thereof, underlying
the RBT is to first develop a more general theory such as the DIA (Sec. 5, p. 126) or the MSR formalism
(Sec. 6, p. 146), then to demonstrate the approximations necessary to recover RBT. That is done
in detail from a kinetic renormalization in Sec. 6.5.5 (p. 178). Nevertheless, some introductory
observations and references are appropriate here.

Fundamentally, Dupree renormalized the zeroth-order particle propagator by adding a turbulent
diffusion term. A good interpretation of the resulting equations in terms of Langevin-related concepts
(Sec. 3.2, p. 48) was given by Benford and Thomson (1972), 147 whose work is an important early
reference on the basic formalism; some details are given in Appendix E (p. 281). Although Dupree
did not clearly spell it out, the calculation is passive; backreaction of the particles on the fields was
not considered. 148

In more detail, consider the passive advection problem g−1
0 f + V ·∇f = 0, where V = b̂×∇ϕ.

In Fourier space with k ≡ (k, ω), this can be written as

g−1
0,kfk =

∑
∆

MU
kpqϕ
∗
p f
∗
q , (205)

where the unsymmetrized mode-coupling coefficient is MU
kpq = b̂ · p × q ≡ mk. A standard second-

order iterative renormalization following the procedures of Sec. 3.9.7 (p. 83) 149 leads to a renormalized

passive propagator g that obeys g−1
k = g−1

0,k + Σ
(d)
k , where

Σ
(d)
k

.
= −

∑
k+p+q=0

MU
kqpM

U
pkqg
∗
p Iq =

∑
∆

∫
dωp dωq

2π
δ(ω + ωp + ωq)m

2
kg
∗
p q

2Iq (206a,b)

147 An analogous discussion for magnetized plasma was given by Thomson and Benford (1978).
148 The extra term in Eq. (102) is missing. Dupree (1966), in describing his formal theory of test waves,
stated, “The method we employ for solving the Vlasov–Maxwell equation consists of two distinct pieces.
First, we assume knowledge of the electric field E . . . . As a second step, we must . . . require that the f
so determined does . . . produce the assumed E [via Poisson’s equation].” Later he asserted, “The fact that
the initial phases of the background waves in the subsidiary [test wave] problem are uncorrelated . . . does
not prevent the [Fourier coefficients] so calculated from being used to describe an actual system in which all
the initial phases have some precise relation to each other and to f .” However, freezing E in step 1 is the
definition of a passive problem. Statistical correlations are lost at that point and cannot be recovered with
the basic test-wave theory.
149 An alternate technique sometimes employed in early research is to add an unknown term Σ(d) to both
the left- and right-hand sides of the kinetic equation, then to choose Σ(d) to cancel undesired terms in a
perturbative treatment (Rudakov and Tsytovich, 1971). That procedure works satisfactorily for second-order
passive problems, but is difficult to generalize.
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[note the conventions of Appendix A (p. 262)]. For definiteness, let us make the normal-mode

approximation Iq ≈ 2πδ(ωq −Ωq)Iq. Then Σ
(d)
k,ω ≈ k2

⊥Dk,ω (I write D instead of D⊥ to avoid clutter),
where

Dk,ω
.
= k−2

∑
∆

sin2(p, q)g∗pq2Iq =
∑
q

sin2(k, q)gk+q,ω+Ωq q
2Iq. (207a,b)

For isotropic spectra the first form is more convenient for manipulations at general k, but for
considerations of the Markovian limit k, ω → 0 the second form is easier. Thus RBT asserts that
an adequate approximation is Dk,ω ≈ D

.
= limk,ω→0Dk,ω, or

D =
∑
q

sin2(k, q)gq,Ωq (q
2Iq) (208)

[see Eq. (48) of Dupree (1968)]. Formula (208) is a natural generalization of the quasilinear
expression (163).

That straightforward renormalization leads to a non-Markovian, k- and ω-dependent Σ
(d)
k,ω can be

the cause of significant confusion, as resonant and nonresonant effects are mixed together. This was
discussed at length by Tetreault (1976).

The recipe (200) relating the linear and nonlinear dielectrics is a significant Ansatz. Dupree (1968)
noticed that it is not correct in the presence of classical collisions, and he proposed modified formulas.
That work was the first hint of considerable difficulties in the ultimate systematic justification of the
resonance-broadening theory for self-consistent problems. [A systematic, formally exact theory of the
nonlinear dielectric function is given in Sec. 6.5 (p. 170).] In related research Catto (1978) argued
that the resonance-broadening approximation should be used for only the nonadiabatic part of the
response. Some further discussion of that work was given by Krommes (1981).

Considerable literature on Dupree’s techniques was written in the early days [see, for example,
Gratzl (1970), Cook and Sanderson (1974), Peyraud and Coste (1974), Rolland (1974), and Vaclavik
(1975)]. Some of their more formal features, which rely on manipulations involving a random
particle propagator, are discussed in Appendix E (p. 281). The principle result, Eq. (E.7), formalizes
Eq. (160) as, somewhat symbolically, D =

∫∞
0 dτ 〈δa(t)U(τ )δa(t− τ )〉, in terms of an averaged

particle propagator U . A series of papers by Weinstock (1969, 1970), who used the projection-
operator formalism (Sec. 3.9.11, p. 88), found this same result and clarified some of its foundations,
including (Weinstock, 1968) the role of cumulant expansions (Sec. 3.5.2, p. 59). Significant attacks
by Misguich (1974, 1975) and Misguich and Balescu (1975) should be noted. Additional physical
and mathematical insights were given by Tetreault (1976). As will become clear from the general
renormalization approaches of Secs. 5 (p. 126) and 6 (p. 146), the principle difficulty with Dupree-
style renormalizations is that for self-consistent problems U differs from the response function R in a
way that is difficult and unnatural to calculate; for more discussion, see Appendix E.2 (p. 285).

4.3.5 The relation of resonance-broadening theory to coherent response, incoherent response, and
transfer

The interpretation of Dupree’s saturation criterion γlin = νd is best given by reference to the
general form of the wave kinetic or spectral balance equation (182) that has already emerged in WTT
but also holds more generally. The wave-number-dependent damping coefficient ηnl

k generalizes the
resonance-broadening frequency νd. In RBT two central approximations are made: (i) The incoherent
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noise on the right-hand side of the WKE is neglected. (ii) ηnl
k is approximated (for the E × B

nonlinearity) by k2
⊥D⊥, where D⊥ is a constant. Both of these are problematical.

If the right-hand side of Eq. (182) were negligible, saturation would occur when γlin
k = Re ηnl

k , the
generalization of Eq. (202). Such steady states are possible in principle because ηnl

k is a functional of
the fluctuation spectrum, which may be able to adjust in order to satisfy the balance. Nevertheless,
this coherent approximation (Krommes and Kleva, 1979) seems difficult to justify in general because
it neglects nonlinear effects of the same order as those that are retained. Such omission leads, for
example, to gross violation of the quadratic conservation properties of the nonlinear terms. That
error is compounded in the usual further approximation in which ηnl

k is estimated by the diffusive
operator k2

⊥D⊥, which is at best appropriate for very small k. It seems clear (see also further discussion
in the remainder of this section) that detailed wave-number dependences deduced from any such
approximation should not be taken seriously. Nevertheless, if all k’s are merely replaced by some
typical k, the essentially dimensional balance between linear and nonlinear terms that is at the core
of the coherent approximation may provide a crude estimate of the saturation level of the turbulence
(note that both the coherent and incoherent effects stem from the same primitive nonlinearity, so
cannot be distinguished on dimensional grounds). Yoshizawa et al. (2001) have reviewed some of the
practical applications of (a matrix generalization 150 of) the coherent and diffusive approximation; for
more details, see Itoh et al. (1999).

Neglect of the incoherent noise may be permissible when n-wave coupling effects are negligible and
the kinetic wave–wave–particle interactions dominate; see the discussion of ion acoustic turbulence
in Sec. 4.2.7 (p. 105). To see where those effects are buried in the resonance-broadening formalism,
I follow the outlines of the seminal discussion by Rudakov and Tsytovich (1971). Consider a drift-
wave problem, for which g0,k = [−i(ω − k‖v‖ + iε)]−1, and assume that the renormalized g will be
used to estimate the nonlinear dielectric. Now ω ∼ Ωk, so the Markovian approximation (ω → 0) is

150 First consider a single field ψ. Suppose that the dynamics are represented in the Langevin form
(∂t + iLk)δψk(t) = δf̃k(t), where Lk includes any coherent renormalizations and δf̃k(t) represents the
incoherent noise. The steady-state spectrum obeys 〈|δψk,ω|2〉 = Fnl

k,ω/|ω − Lk|2, where Fnl is the covariance
of the noise. The steady-state intensity is then

〈|δψk|2〉 =
∫ ∞

−∞

dω
2π

Fnl
k,ω

(ω − Ωk + iηk)(ω − Ωk − iηk)
, (f-10)

where Ωk
.= ReLk and ηk

.= − ImLk. If the integral in Eq. (f-10) is to remain nonzero as Fnl → 0, the
imaginary parts of the poles stemming from the denominator must vanish: ηk → 0. This is the coherent
approximation. The generalization to multiple coupled fields, represented by a coherent matrix L, is to
first diagonalize L. Then the criterion for nonvanishing intensity is that the imaginary part of at least one
eigenvalue vanishes. Let L be written as the sum of a Hermitian (symmetric) part Ls and an anti-Hermitian
part La. If L is purely anti-Hermitian (dissipative), then the condition is equivalent to det La = 0. This
equation is sometimes called a nonlinear dispersion relation, but the nomenclature is misleading. Consider
again the scalar case. Then La vanishes identically, and in the frequency domain the coherent approximation
is (ω−Ωk)ψk,ω = 0 or ψk,ω = 2πψkδ(ω−Ωk). The true nonlinear dispersion relation, ω = Ωk, does not involve
the dissipative part. This analysis also demonstrates another inconsistency of the coherent approximation:
it predicts a linelike frequency spectrum (Dupree and Tetreault, 1978) whereas truly turbulent states are
well known to have broad spectra. That broadening is due to the incoherent noise, which clearly cannot be
neglected.
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inappropriate. Furthermore, if the fluctuations are sufficiently small, the waves live in the nonresonant
region k‖vti � ω � k‖vte. Therefore ω is large with respect to the ions (the fluid limit). For them
one may thus expand according to g ≈ g0 − g0Σ

(d)g0, thereby transferring the nonlinearity to the
numerator. It will be shown in Sec. 6.5.4 (p. 176) that the result provides half (an unsymmetrized
piece) of the induced scattering from the bare particles. The plausibility of this result can be seen from
the presence of the propagator gp in Eq. (207a). The long-wavelength limit describes ion diffusion,
but the asymmetry means that the action conservation laws are violated.

For the electrons the resonance broadening is a small correction even for VE ∼ V∗; the
approximation (200) then predicts a diffusive contribution, in accord with the simple random-walk
theories.

It is important to note that for Ti → 0 the induced-scattering contributions vanish since
they require ion thermal motion. Therefore the Dupree-style passive renormalization of the kinetic
response fails to recover any nonlinear effects related to the ion polarization-drift fluid nonlinearity
VE ·∇(−∇2

⊥ϕ) introduced in Sec. 2.4.3 (p. 34). This important conclusion is verified in more detail
in Sec. 6.5.4 (p. 176).

Fluid rather than kinetic theory is of considerable practical importance in view of the model
equations of Sec. 2.4 (p. 33). If one is given a robust fluid equation, it should not be necessary to engage
in kinetic renormalizations at all; renormalization of the fluid nonlinearity should be adequate. Such
renormalizations were considered by Weinstock and Williams (1971). If one renormalizes a VE ·∇n
nonlinearity, passive diffusive renormalization straightforwardly leads to the estimate ηnl

k ∼ k2
⊥Dk.

The polarization-drift nonlinearity can be similarly renormalized, leading to the result (209) discussed
below.

Since simple kinetic RBT does not lead to polarization-drift effects but simple fluid RBT does, the
distinction between kinetic and fluid renormalizations is evidently quite subtle. The reader is advised
to return to these remarks after studying Sec. 6.5.5 (p. 178).

Usually VE is self-consistently related to the vorticity∇2ϕ; then passive renormalization a la RBT
is not appropriate. The DIA (Sec. 5, p. 126) properly includes the effects of self-consistency and makes
a prediction for ηnl

k different from the passive one. The principle effects are already evident in the
Markovian form (183a), which for the polarization-drift nonlinearity reads

ηnl
k = −

∑
∆

m2
k

(
q2 − p2

1 + k2

)(
k2 − q2

1 + p2

)
θ∗pqkIq. (209)

One can verify that the passive approximation leads to only the p2k2 term in the numerator, which is
clearly positive definite for positive definite θ. The fully self-consistent form, however, is not positive

definite. Let Ik be concentrated near a characteristic wave number k—for example, Ik ≈ 2πk
−1
δ(k−k).

Perform the summation over p to replace p by −(k + q), and integrate over q as k → 0 for fixed k

and isotropic statistics. One finds limk→0 η
nl
k ∼ −k4k

2
D < 0. (The passive contribution has this form

with a plus sign.) Crossover between negative and positive ηnl
k occurs for k ∼ k. The minus sign is

related to the possibility of an inverse energy cascade in 2D (Sec. 3.8.3, p. 74). I shall revisit this
point in the discussion of eddy viscosity in Sec. 7.3 (p. 189).

For the self-consistent problem it is inconsistent to precisely localize Ik at k because the damping
ηnl

k Ik ∼ (k2 − q2)IqIk then vanishes for k = k. (Passive renormalization does not encounter
this difficulty.) Therefore the spectrum must actually be spread over a range of k’s. The transfer
equation (117) provides the natural averaging. From the WKE (182), T (∆k) =

∑
k∈∆k

(ηnl
k Ik − F nl

k ),
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or

T (∆k) = −1

2

∑
k∈∆k

∑
∆

σkMkpqθkpq(MpqkIqIk +MqkpIkIp︸ ︷︷ ︸
−ηnl

k
Ik

+MkpqIpIq︸ ︷︷ ︸
Fnl

k

). (210)

Resonance-broadening theory neglects the incoherent response (the F nl
k term), but that term is clearly

required in order to provide the symmetry that guarantees conservation of the quadratic invariants.
Because T (∞) = 0 (there is no net transfer due to the nonlinearities), F nl

k is of the same order as
the ηnl

k terms. In the presence of F nl
k , the RBT balance γlin

k = ηnl
k clearly requires further discussion;

it cannot be literally true.
Assume homogeneous turbulence for simplicity and let the spectrum extend over a broad range

of k’s centered at k and of width ∆k. In order to ensure a steady state, let there be a positive linear
growth rate γin and a positive linear damping rate γout that are concentrated over regions ∆kin,out

near kin,out—for example, γin ∼ 2π∆kinδ(k − kin)γin. Temporarily, assume that the latter widths are
smaller than ∆k. The situation kout < k < kin is sketched in Fig. 15. The steady-state balance for
transfer of an invariant from the modes between 0 and k is then

−[γoutIout] + [γinIin] = T (k), (211)

where a bracketed term contributes only if k is to the right of the appropriate source or sink region.
Note that according to Eq. (210) incoherent noise always contributes negative transfer whereas
ηnl

k contributes positive or negative transfer depending on its sign. For example, consider kout < k < k.
Then the balance equation is −γoutIout = T (k) and the transfer is necessarily negative. For the
polarization-drift nonlinearity ηnl

k is negative in that region, so both coherent and incoherent response
contribute to transfer with the same (negative) sign. Because the ηnl

k and F nl
k terms both arise from

the same basic nonlinearity, the nonlinear scaling of T (k) can be estimated from either one. The
k integration [

∑
k∈∆k

in Eq. (210)] basically averages ηnl
k Ik over the excited spectrum to the left of k,

giving rise to the balance γoutIout ∼ |ηnl|I , where ηnl and I are typical values in the left-hand region. If
kout is in the middle of the excited region, then simply γout ∼ |ηnl

out|, which provides an estimate for Iout

given γout. Iin can be estimated from the balance γinIin− γoutIout = 0, which follows by integrating to
k > kin.

Note that the spectral averaging is crucial. If k is taken to lie in a region where γk = 0, then
the steady-state balance is ηnl

k Ik = F nl
k , quite different from RBT. For related discussion of situations

with γk = 0, see Ottaviani and Krommes (1992).
If the roles of gin and γout are reversed in the above scenario, steady state would require transfer

to the right. To the extent that ηnl
k is negative, such transfer is impossible. Even if ηnl

k were positive,
its effect would be reduced by the negative definite incoherent transfer. The situation is obviously
tricky because of the possibility of dual cascade.

For forcing and dissipation distributed over a spectral range with just one characteristic wave
number k, the above estimates simplify with Iin ∼ Iout ∼ I ∼ I and kout ∼ k ∼ kin. Then γout = γin

and the balance γout ∼ |ηnl|out reduces to γ ∼ |ηnl
k
|. The basic size of |ηnl

k
| might adequately be

estimated from its (positive) passive contribution. For the polarization drift, that is in dimensional

units ηnl
k
∼ (kρs)

4k
2
D. This result obviously differs from the estimate k

2
D obtained by evaluating the

diffusive resonance-broadening prediction k2D at a typical wave number k.
It should now be clear that the RBT cannot be quantitatively correct; it is pointless to begin with
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Fig. 15. Hypothetical scenario that illustrates steady-state spectral transfer.

its various approximations, then proceed to deduce values for transport coefficients correct to several
decimal places, as has been done all too frequently in the literature. The importance of symmetries and
conservation properties was discussed for drift-wave problems by Dupree and Tetreault (1978), whose
work was a seminal contribution to the line of research that grew out of RBT. A more definitive and
general discussion was given by Boutros-Ghali and Dupree (1981); see also Similon (1981). Essentially,
those authors were rediscovering the symmetries of both systematically calculated WTT and robust
renormalizations like the DIA. [The latter had already been emphasized in the work of Orszag and
Kraichnan (1967); further illuminating discussion was given in the beautiful paper of Kraichnan
(1976b) on eddy viscosity, to be discussed in Sec. 7.3 (p. 189)]. I shall defer further discussion of these
topics until I develop the general apparatus of renormalized turbulence theory; see Sec. 6.5 (p. 170).

It must be emphasized that the characteristic growth rate γ that enters into the simplest integrated
spectral balance is merely a particular integral property characteristic of the entire energy-containing
range, as is k⊥. The rough balances given above are simply incapable of capturing details of wave-
number dependence, spectral shape, etc. For such information one must turn to more elaborate
closures such as the DIA (Sec. 5, p. 126) or its Markovian relatives (Sec. 7.2, p. 182). In Sec. 8
(p. 199) it is shown that such closures can make quantitatively accurate predictions for transport.

Finally, the estimate D⊥ ∼ γ/k
2

⊥ is simply incorrect in general if D⊥ is taken to be the fluid
diffusion coefficient. For example, in HM dynamics the natural transport involves diffusion of vorticity,
which, as we have seen, introduces various powers of k2

⊥ρ
2
s into the calculation. Although those areO(1)

in the gyrokinetic ordering, they may be quantitatively significant. Indeed, since there are intimate
relations between transport and dissipation (thus between transport and spectral transfer), proper
estimates of spectral quantities are relevant to experimentally observable fluxes. For more discussion,
see Sec. 12.2 (p. 238).

4.3.6 Summary: Approximations underlying resonance-broadening theory

In summary, a variety of conceptual approximations underly the RBT. (i) Most fundamentally,
the incoherent response is neglected. That leads to violation of energy conservation and precludes
turbulent steady states of the kind envisaged in most fluid-turbulence theories. (ii) The RBT is at
best appropriate for passive, not self-consistent, advection. The passive assumption leads to the neglect
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of a variety of terms that reflect backreaction of the particles on the waves. (iii) The formalism is
in essence a crude theory of the nonlinear dielectric function. However, the form of that function
is not derived systematically, and indeed the recipe (200) will be shown below to be incorrect—
importantly so for strong turbulence. (iv) Unjustifiable Markovian approximations (in both space and
time) are made. Such approximations are appropriate when a separation of scales exists. Although
there may be a scale disparity between microscopic fluctuations and macroscopic transport, the details
of microscopic events are intrinsically non-Markovian. Analysis of spectral mode coupling and transfer
requires that one study the interaction of energy-containing fluctuations that are all of the same order
in k and ω.

Because of the previous points, the RBT cannot provide a quantitatively accurate description
of steady-state turbulence. Nevertheless, in a very coarse-grained and dimensional sense, it can in
some circumstances be used to motivate formulas such as Eq. (203) for a perpendicular transport
coefficient. Furthermore, simple RBT can make qualitatively and sometimes even quantitatively
successful predictions for situations in which the passive approximation is appropriate. One example
is the experiment of Hershcovitch and Politzer (1979), in which an instability was suppressed by the
introduction of external turbulence.

Although various approximations are made, the RBT represents a serious early attempt on a very
difficult problem. Its major contributions were to focus attention on important physical processes of
strong plasma turbulence (including kinetic physics) and to provide simple ways of estimating their
significance. As we consider more elaborate closures [e.g., the DIA in Sec. 5 (p. 126)], it is important to
keep the intuition behind the RBT firmly in mind. The prescience of the insights of Dupree, Weinstock,
and the other early workers into the physics of strongly turbulent plasma processes, coming as they did
before the results of nonlinear dynamics and stochasticity theory were widely known, is remarkable.

4.4 Clumps

“The physics picture [behind the fluid clump algorithm] is, in its emphasis on the small scales,
in disagreement with well-established facts about the small-scale behavior of turbulent fluids.”
— Krommes (1986a).

As described in the last section, RBT ignores incoherent response. Dupree (1970) recognized this
difficulty relatively early. Motivated by the structure of classical Langevin equations (Sec. 3.2, p. 48)
and plasma kinetic theory, in which the fluctuation effects are described by both a velocity-space-
diffusion term and a polarization-drag term [cf. the Balescu–Lenard operator (32)], he proposed that a
description of kinetic plasma turbulence more complete than RBT should involve a turbulent Fokker–
Planck equation. This insight was a definite advance; the topic will be revisited in Sec. 6.5.6 (p. 180).
A related paper that also introduced a turbulent Balescu–Lenard type of operator was by Kadomtsev
and Pogutse (1970a); see also the more detailed calculations by Kadomtsev and Pogutse (1971).

4.4.1 Dupree’s original arguments

Dupree (1972a,b) clarified his motivations by pointing out the physical importance of phase-space
granulations, i.e., extreme distortions of phase-space fluid elements arising from nonlinear processes.
His thinking was guided by the existence of BGK modes (Bernstein et al., 1957), which are exact
nonlinear solutions of the Vlasov equation that are obviously not well described by simple diffusion
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theories, and by insights gained from studies of coherent trapping (O’Neil, 1965), which show how
initial phase-space perturbations are distorted by nonlinearity. Of course, phase-space fluid elements
are sheared at an exponentially rapid rate even in stochastic regimes, in which no trapping occurs. It
is interesting to note that the early work of Dupree preceded general awareness within the plasma-
physics community of the modern advances in stochasticity, chaos, and nonlinear dynamics, which
occurred in the middle 1970s [see, for example, Smith and Kaufman (1975)].

Dupree’s attempts at an analytical description that incorporated phase-space granulation,
however, introduced a fundamental confusion that has persisted, in one form or another, to the present
day. He recognized (correctly) that phase-space granulation in its various guises was not described
by RBT (which contains no hint of the stochastic instability of two adjacent orbits, for example), and
argued (correctly) that incoherent noise was essential. He also noted (at least implicitly) the structure
of the WTT, in which the form and role of the coherent and incoherent parts of the nonlinearity are
well defined; in particular, he recognized that parts of n-wave mode coupling are contained in the
incoherent noise. He thus wrote

δf = δf coh + δf inc, where δf inc = δfmc + δf clumps. (212a,b)

The notation mc stands for mode coupling. The clump contribution was intended to take account
of small-scale granulations in phase space, which Dupree [echoing the remarks of Kadomtsev and
Pogutse (1970a, 1971) 151] suggested could behave as sources of fluctuations in the same sense as do
the discrete particles of classical kinetic theory. Dupree stated, “δfmc denotes all other effects[,] which
we shall ignore.”

One should note here a subtle change in the description of the fluctuations. Whereas in Sec. 4.2.4
(p. 102) coherent and incoherent terms were defined in the (ensemble-averaged) wave kinetic equation,
Eq. (212a) purports to divide the random variable δf into coherent and incoherent parts. It is not
immediately clear that such a decomposition is permissible. Dupree defined the coherent response as
that part that is “phase-coherent” with the electric field. Fortunately, that concept can be generalized
to statistical theory (Krommes, 1978) with the aid of the theory of Langevin representations to be
described in Secs. 5.3 (p. 132) and 8.2.2 (p. 201), which shows that Eq. (212a) does indeed make sense.
That coherent and incoherent response can be defined precisely in renormalized statistical dynamics
is one of the major triumphs of the modern formalism (Sec. 6.5.3, p. 173).

Dupree did not attempt any systematic classification of the two pieces δfmc and δf clumps of the
incoherent kinetic noise. Intuitively, he seems to have intended that δfmc was the fluctuation calculable
from WTT, while δf clumps was everything else. For the kinetic problem, 152 which includes both fine-
scaled v-space dynamics as well as velocity-integrated potentials, that is not unreasonable.

151 In the context of beam–plasma interactions, Kadomtsev and Pogutse explicitly calculated the clump
correlation function as a ballistic remnant of initial conditions. However, they incisively remarked (Kadomtsev
and Pogutse, 1971), “But of course [macroparticles] can be generated by the turbulent plasma itself so that
the problem arises of considering the generation and destruction of [clumps] in the turbulent plasma and of
clarifying their role in turbulent processes.”
152 Space limitations preclude a thorough treatment of the explicitly kinetic theory of clumps; for more
discussion, see Hui and Dupree (1975) and Dupree (1978).
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4.4.2 The clump lifetime

To describe the dynamics of the clumps, Dupree argued in part as follows. [These arguments, not
all of which are correct, will be critiqued below. A concise but clear summary of Dupree’s ideas was
given by Liang and Diamond (1993b); see also Terry and Diamond (1984).] (i) Clumps essentially
behave like point particles with a finite lifetime τcl. (ii) τcl can be determined, by a consideration of
the relative diffusion of two adjacent trajectories in phase space, 153 to be the time for two trajectories
separated by a small distance δ to separate a distance of the order of the correlation length Lc of the
turbulence, i.e., a scale characteristic of the energy-containing range. One finds

τcl ∼ τd ln(Lc/δ)� τd, (213)

where τc is a characteristic energy-containing time. (iii) The steady-state spectral level S is determined
by a balance between the production term P [cf. the Navier–Stokes paradigm of Sec. 2.1.1 (p. 23)]
and the decay S/τcl due to the finite clump lifetime:

S ∼ τclP . (214)

153 Linearize Newton’s laws to find

∆ẋ = ∆v, ∆v̇ = (q/m)E ′(x(t), t)∆x, (f-11a,b)

where E ′(x, t) .= ∂xE(x, t). The second moments of Eqs. (f-11) exactly obey

〈∆x2〉. = 2〈∆x∆v〉, 〈∆x∆v〉. = 〈∆v2〉+ (q/m)〈E ′∆x2〉, 〈∆v2〉. = 2(q/m)〈E ′∆x∆v〉. (f-12a,b,c)

Eliminate ∆v in Eq. (f-12c) by integrating Eq. (f-11b) and making a quasinormal Markovian approximation,
appropriate for short autocorrelation time τac. [These arguments were presented in the context of stochastic
magnetic field lines by Krommes et al. (1983).] Finally, drop the last term of Eq. (f-12b), which can be shown
to be small in τac. One then finds

〈∆x2〉. = 2〈∆x∆v〉, 〈∆x∆v〉. = 〈∆v2〉, 〈∆v2〉. = 2k2
D′′〈∆x2〉, (f-13a,b,c)

where D′′ .= k
−2(q/m)2

∫∞
0 dτ 〈E ′(τ)E ′(0)〉 and k is a characteristic wave number. Equations (f-13) can

be combined to yield 〈∆x2〉... − (2/τK)3〈∆x2〉 = 0 with τK = (kD′′/2)−1/3, an equation first given by
Dupree (1972b). Exact solution is straightforward but uninteresting in detail. The long-time solution is
〈∆x2〉 ∼ 1

3∆y2(0)e2t/τK, where ∆y2 .= ∆x2 + 2∆x∆v τK + 2∆v2τ2
K . Dupree (1972b) defined τcl to be the

time to separate one wavelength, k2〈∆x2〉 ∼ 1; thus

τcl ≈ 1
2τK ln{[3k2

∆y2(0)]−1} (τcl > τK); (f-14)

τcl is taken to vanish for τcl < τK . This estimate is clearly very rough because the original linearization is
valid only for k

2〈∆x2〉 � 1.
Further discussion of relative diffusion was given by Misguich and Balescu (1982). For a more refined

calculation of the Liapunov time τK , see Rechester et al. (1979). In order of magnitude, τK is of the order of
the diffusion time τd; see Eq. (159).
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(Warning: I show in the next section that this result is generally incorrect.) (iv) Because τcl � τd,
the formalism predicts an enhancement of the steady-state fluctuation level over the level one would
obtain from a resonance-broadening type of theory based solely on the coherent fluctuations (which
Dupree and others identified with conventional mode coupling).

4.4.3 Critiques of the clump formalism

It is clear from the early papers of Dupree (1970, 1972b) that he was initially concerned with
and motivated by properties of the kinetic PDF. It is not difficult to argue that fine-scaled phase-
space granulations are mistreated in the usual perturbative approaches, and to argue for the general
importance of incoherent noise. 154 It is shown in Sec. 6.5.3 (p. 173) how a particular approximation
to the kinetic incoherent noise is related to the relative diffusion calculation sketched in footnote 153
(p. 121).

Although one can give a formula for the kinetic τcl [Eq. (f-14), p. 121], the general arguments of
Sec. 4.4.2 (p. 121) use no specific properties of kinetic theory; they appear to apply to fluid problems as
well. Indeed, although the formalism was first presented for the x–v phase space of a Vlasov plasma,
Dupree (1974) soon developed a version for 2D turbulence in x space. Because of the importance
of the 2D E × B motion for turbulence in strongly magnetized plasmas, it is the x-space form of
the theory that has been mostly used by subsequent authors [see, for example, Terry and Diamond
(1985) or Lee and Diamond (1986)], who have treated the x-space version of the “clump algorithm”
as synonymous with a theory of incoherent noise. However, one must be very cautious. The particular
properties of phase-space granulations cannot be relevant to such a formalism. If one replaces δf by
a fluid fluctuation δψ, the procedure of dividing one well-defined nonlinear effect (δψinc) into two
ill-defined pieces (δψmc and δψclumps) invites confusion. The difficulty is that “mode” coupling, in its
most general manifestation, is not synonymous with n-wave processes; although those are well defined
and classifiable in regular perturbation theory, they lose their identity in regimes of strong turbulence,
in which well-formed linear eigenmodes do not dominate and terms of all orders in perturbation theory
affect the evolution of even second-order quantities. Clean distinctions between wave–wave and other
k-space mode-coupling processes need not exist. Indeed, there are no waves at all in the NSE.

With reference to the x-space algorithm, arguments that the philosophy of the clump formalism is
flawed have been presented by Krommes (1986a), Krommes and Kim (1988), and Krommes (1997a).

154 As a matter of nomenclature, theories of the incoherent noise are often referred to in the plasma-physics
literature as two-point theories because the clump lifetime depends on the motion of two adjacent trajectories;
resonance-broadening calculations are called one-point theories because they fundamentally calculate the
turbulent diffusion of a single trajectory. I do not use the terms “n-point theory” (n = 1 or 2) in this
article since their use is precisely backwards (Krommes, 1986b) from the point of view of a general formalism
based on correlation and response functions [Secs. 3.5.4 (p. 64) and 6 (p. 146)]. Namely, turbulent diffusion
coefficients follow from the behavior of the response function R(x, t; x′, t′), which clearly depends on two
points in both space and time. On the other hand, the spectral level (which contains both coherent and
incoherent contributions) is S = C(x, t; x′, t′)|x′=x,t′=t, which depends on just one point in both space and
time (and furthermore is entirely independent of x for homogeneous turbulence). Unfortunately, a student
of the plasma-physics literature needs to know that a “two-point” calculation has usually involved some sort
of relative diffusion calculation whose signature is the logarithmic term ln(Lc/δ) seen in formulas such as
Eq. (213), even though that procedure is now understood to be incorrect (Krommes, 1997a).

122



As originally discussed by Krommes (1986a), 155 the fundamental feature that is difficult to grasp
philosophically is the notion, formally expressed by Eq. (214), that the total spectral level should be
determined by properties of the very small scales (at least when those scales contain negligible energy,
which is almost always true). That violates well-established experimental properties of turbulence
(Frisch, 1995, Chap. 5), standard Kolmogorov-like ideas about cascade (Sec. 3.8.2, p. 73), and common
sense. 156 Krommes pointed out that some of the central mathematical manipulations of the CA
were identical to the much earlier calculations of Batchelor (1953) for the dynamics and spectra
of the very small (far-inertial-range) scales; it was clear that Batchelor did not believe that his
methods or results applied to energy-containing scales. A more mathematically precise discussion
was presented by Krommes and Kim (1988), who addressed the decompositions (212). They argued
that (i) calculation of the incoherent noise is not equivalent to a theory of the small scales, and
(ii) conventional wave–wave coupling is not synonymous with coherent response. As one has already
seen from the structure of the WTT, physical processes (renormalized mode–mode coupling) whose
balances determine the spectral levels in the energy-containing range (and therefore the total spectral
level) appear symmetrically in both the coherent and the incoherent parts of the fluctuations as well.
They used this observation to argue both qualitatively and quantitatively against the results of Terry
et al. (1986), who had used a clump analysis to conclude that magnetic fluctuations cannot contribute
to self-consistent transport to any order. 157

4.4.4 Two-point structure function and the clump approximation

The cleanest way of understanding the mathematical mistake in the x-space clump formalism is
to consider an exactly solvable model. In several important works Kraichnan (1968b, 1994) developed
the theory of a randomly advected passive scalar for which the velocity field u changes very rapidly
in time. One considers a scalar field T (x, t) that obeys

∂tT + u ·∇T − κ∇2T = f ext(x, t), (215)

where ∇ · u = 0 and a Gaussian white-noise forcing f ext (uncorrelated with u) is used to model the
(long-wavelength) production of turbulent fluctuations. I assume isotropic statistics, so one can write

〈f ext(x + ρ, t+ τ )f ext(x, t)〉 = 2F ext(ρ)δ(τ/τ (f)
ac ), (216)

where τ (f)
ac plays the role of a microscopic autocorrelation time. (τ (f)

ac is inserted for dimensional
purposes in order that [F ] = [f2]; its actual value turns out to be irrelevant.) The strength of the
forcing is given by F

.
= F ext(0) = 1

2
σ/τ (f)

ac , where σ is the production rate of scalar variance; the
Fourier transform of F ext(ρ) is assumed to be concentrated at small (energy-containing) k’s. The
significant simplifying features of this model are (i) in the rapid-change limit for u(x, t), the effects
of the nonlinearity can be evaluated exactly (Kraichnan, 1994); and (ii) the use of random forcing
precludes the need for an elaborate calculation of the actual production (which would otherwise
be described by two-point cross correlations). Even so, the study of the statistical properties of

155 A formal Reply to Krommes (1986a) was made by Terry and Diamond (1986). A reply to that Reply was
given by Krommes (1986b).
156 That is, one is concerned that the (spectral) tail wags the dog (total fluctuation level).
157 Additional, somewhat orthogonal discussion of the work of Terry et al. (1986) was given by Thoul et al.
(1987).

123



Eq. (215) for moments of order higher than two is difficult and the focus of much current interest 158

(HydrotConf, 2000). Fortunately, Kraichnan (1994) showed that the equation for two-space-point,
equal-time correlations rigorously closes. He presented his result in terms of the second-order structure
function S2(ρ, t) ≡ S(ρ, t) defined by Eq. (103), and that approach was followed by Krommes (1997a).
Nevertheless, one can just as well write the equation for C(ρ, t)

.
= 〈δT (x + ρ, t)δT (x, t)〉. For isotropic

statistics one finds 159

∂tC(ρ, t)− 2ρ−(d−1)∂ρ[ρ
d−1η−(ρ)∂ρC ] = 2F ext(ρ)τ (f)

ac , (217)

where η−(ρ)
.
= ηnl

−(ρ) + κ and

ηnl
− (ρ)

.
=

1

2

∫ ∞

0
dτ 〈∆u‖(ρ, t)∆u‖(ρ, t− τ )〉, (218)

with ∆u‖
.
= [u(x+ρ, t)−u(x, t)] · ρ̂, is the two-particle eddy diffusivity. The ηnl

− (ρ) term describes the
statistical effect of the advective nonlinearity in Eq. (215) exactly in the rapid-change limit. Therefore
with reference to the general formalism developed in Sec. 6 (p. 146), especially Sec. 6.5.3 (p. 173), it
can be seen that ηnl

−(ρ) includes contributions from both coherent and incoherent response (because
ηnl
− is the sole vestige of the nonlinearity), in agreement with the earlier approximate calculations of

Dupree (1974).
The limits

ηnl
− (0) = 0, lim

ρ→∞ η
nl
−(ρ) = D, (219a,b)

where D is the single-particle turbulent diffusivity, have long been recognized in neutral-fluid
turbulence. In plasma physics they were emphasized by Dupree (1972b) and others (Misguich and
Balescu, 1982), and figure prominently in the clump algorithm. Equation (219a) states that two fluid
elements coincident at t = 0 remain so forever; Eq. (219b) states that such elements separated by
more than a correlation length Lc diffuse independently. For ρ → 0 it can be shown [see Krommes
(1997a) for all details of the following arguments] that

ηnl
−(ρ) ≈ [ρ/λ

(u)
T ]2D, (220)

158 Considerable progress in the analytical description of the 2D problem was made by Chertkov et al. (1996).
159 The proof relies on the result that for infinitely rapid variations of u and f , first-order perturbation
theory is exact [see Appendix H (p. 293)]. One has exactly

∂tC(ρ, t) + ∇ · 〈δu(x, t)δT (x, t)δT (x′, t)〉+ (x↔ x′) = 〈δf(x, t)δT (x′, t)〉+ (x↔ x′). (f-15)

Expand 〈δu δT δT ′〉 = [〈δu δT (0)δT ′(1)〉 + 〈δu δT (1)δT ′(0)〉], where, for example, δT (1)(x′, t) =∫ t
−∞dt [δf(x′, t)− (δu ·∇δT (0))(x′, t)]. One ultimately finds

〈δu δT δT ′〉 =
∫ t

−∞
dt [U(0, t)− U(ρ, t)] ·∇C(ρ, t), (f-16)

where U(ρ, τ) is the covariance of u. The final form of Eq. (217) follows by a straightforward symmetrization
and simplification of the operator ∇ · (. . .)∇ for homogeneous, isotropic statistics.
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where λ
(u)
T is the Taylor microscale (Sec. 3.6.3, p. 66) of the velocity field. This ρ2 dependence underlies

the appearance of τcl in the clump calculations. By calculations analogous to those in footnote 153
(p. 121) (or more rigorously), one can show that such dependence leads in the present case to a mean-
squared divergence of adjacent trajectories (initially separated by ρ′) that obeys 〈ρ2〉(t | ρ′ ) = e2t/τKρ′2,
where τK

.
= [2(d+ 2)k2

TD]−1. This result leads to a “clump lifetime” τcl(ρ
′) = τK ln(Lc/ρ

′).
Nevertheless, the predictions of the CA—specifically, the estimate (214), which includes the

logarithmic enhancement due to trajectory divergence—do not follow in general. Equation (217)
is simple enough that its steady state can be calculated unambiguously and the result compared with
the approximation that would be made by the CA. This was done by Krommes (1997a), who discussed
the detailed Green’s-function solution of Eq. (217). In accord with the more general earlier arguments
of Krommes (1986a), the steady-state Green’s function contains no hint of a clump lifetime. The
exponentially rapid stretching processes described by τcl do contribute to the time-dependent Green’s
function that describes transient relaxation toward the steady state, but by definition the steady state
is achieved at times much longer than the times for transients to relax. In almost all cases of interest,
the steady-state fluctuation level, which from Eq. (217) is rigorously

S =
∫ ∞

0

dρ̄

ρ̄d−1η−(ρ̄)

∫ ρ̄

0
dρ̄′ ρ̄′d−1F ext(ρ̄′)τ (f)

ac , (221)

can be estimated to be

S ∼ τDP = τDσ, (222)

where τD
.
= L2

c/D is the macroscopic diffusion time and σ is again the production (forcing) rate. Thus
Eq. (222) does not contain the logarithmic enhancement. The key to this estimate is the observation
that formula (221) is convergent at ρ̄ = 0 [since η−(0) = κ], but would diverge at ρ̄ = ∞ were it
not that the support of F ext(ρ) is essentially localized to ρ . Lc. For an explicit example of the
integral (221), see Eq. (120) of Krommes (1997a).

That the correct result is Eq. (222) rather than the clump prediction (214) can be traced to the
facts that (i) the Taylor microscale λT , which according to Eq. (220) enters into the behavior of ηnl

−(ρ)
at very small scales, is in general quite distinct from the macroscopic autocorrelation length; and
(ii) the ρ2 behavior in Eq. (220) holds only for scales smaller than a dissipation scale (which is smaller
than λT ). If a well-developed inertial range exists, scale similarity predicts that ηnl

− (ρ) ∝ (ρ/Lc)
ζ for

some ζ, but it is not necessary that ζ = 2. It can be shown that for ζ < 2 the inertial-range scalar
variance is finite and does not sensibly contribute to the total fluctuation level. For ζ > 2 the total
variance diverges algebraically and there is no clean separation between an energy-containing range
and an inertial range.

Only for the marginal case ζ = 2 does the prediction (214) make sense (and then only for passive
advection). This case corresponds to logarithmically divergent inertial-range variance and to purely
ρ2 scaling for ηnl

−(ρ). The logarithmic factor introduced by τcl (evaluated for initial separations of
the order of a dissipation scale rd) then describes the energy content of a Batchelor k−1 spectrum
extending from rd to Lc. See further discussion by Krommes (1997a).

With regard to x-space formalisms, the final conclusion of such analysis is that incoherent noise,
although essential for proper spectral balance as well as small-scale behavior, does not in general
predict spectral enhancements of the kind envisioned by Dupree. When treated properly, calculations
in either x space or k space lead to the same answers for the spectra of the small scales [cf. Batchelor
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(1953)]. Energetics are dominated by the production scales; the spectral tail does not wag the
spectral dog. If a spectrum is purely energy containing, so there is no clean separation between
energy-containing scales and dissipative scales (often the case in plasma-physics applications), the
concept of infinitesimal trajectory divergence is irrelevant. To calculate the wave-number spectrum
and fluctuation level, one must consider the mode coupling of scales of comparable size. Sensible
and robust formalisms for doing so include the DIA, to be discussed in the next section, and the
Markovian closures discussed in Sec. 7.2 (p. 182). A particular example that can be worked out in detail
is the random coupling of three modes in the eddy-damped quasinormal Markovian approximation
(Appendix J, p. 297).

This leaves open the role of kinetic granulations in the overall spectral balance. Velocity-space
clumps were observed in the simulations of Dupree et al. (1975). For drift-wave problems and to
the extent that the velocity-space nonlinearity can be neglected (as conventional wisdom suggests),
nonlinearly driven kinetic granulations must be absent; however, see Dupree (1978). In any event, the
existence of such driven small-scale fluctuations is not in dispute; the issue is whether they materially
affect the total fluctuation level. It remains a challenge to rigorously explore the nonlinear properties
of physical systems with strong kinetic effects.

5 THE DIRECT-INTERACTION APPROXIMATION (DIA)

“The weak dependence principle leads to a perturbation treatment of the dynamical couplings
among sets of individual Fourier amplitudes which differs importantly from conventional
perturbation theory based on expansion in powers of the Reynolds number. . . . [The lowest-
order] procedure, which we term the direct-interaction approximation, has a simple dynamical
significance and can be shown to lead to equations which are self-consistent in the sense that
they yield rigorously realizable second-order moments. [It] includes terms of all orders in an
expansion in powers of the Reynolds number.” — Kraichnan (1959b).

I now turn to a detailed discussion of Kraichnan’s direct-interaction approximation (DIA). From
several points of view, this closure is unique. Most importantly, it can be shown to describe the exact
second-order statistics of several varieties of stochastic amplitude equations, so those statistics are
realizable in the sense of Sec. 3.5.3 (p. 63). It is also the “natural” second-order renormalization
[in a sense to be clarified in Sec. 6.2.2 (p. 155)], taking full account of self-consistency effects and
propagator renormalization. Therefore it is a robust starting point for discussing the status of less
systematic approximations such as RBT.

The discussion in this section covers mostly the period from the inception of the DIA (in the late
1950s) to about 1984, the latter date being chosen as an approximate breakpoint between early and
modern DIA-related plasma research. A time line of key articles during this period can be found in
Fig. 35 (p. 261).

I shall mostly consider the DIA only for quadratically nonlinear equations [although I shall mention
a cubic DIA in Sec. 6.2 (p. 153)]. For much of the discussion it is adequate to consider the self-consistent
dynamics

∂tψk + iLkψk =
1

2

∑
∆

Mkpqψ
∗
pψ
∗
q + η̂k(t), (223)
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where Mkpq is symmetrical in its last two indices and η̂k(t) is a statistically sharp source. For the time
being, one may think of ψk as the Fourier transform of a scalar fluid variable such as the electrostatic
potential ϕk; cf. the Hasegawa–Mima equation (Sec. 2.4.3, p. 34). Ultimately, however, the index k
may include field labels 160 s or velocity variables v as well, and one can formulate a kinetic DIA for
the PDF fs(x,v, t); the most general development will be given in Sec. 6 (p. 146). I shall first state
the DIA, then discuss various derivations. Useful discussions and many details about Kraichnan’s
earlier works on the DIA were given by Leslie (1973b); a more recent and accessible account is by
McComb (1990).

The DIA closure consists of the exact equation for the mean field 〈ψ〉 plus two coupled
equations for the two-point correlation function Ck(t, t

′) .
= 〈δψk(t)δψ∗k(t′)〉 and mean response

function Rk(t; t′) .
= 〈δψk(t)/δη̂k(t

′)〉|η̂=0, written here in the absence of mean fields 161 and external
forcing:

(∂t + iLk)Rk(t; t′) +
∫ t

t′
dtΣnl

k (t; t)Rk(t; t′) = δ(t− t′), (224a)

(∂t + iLk)Ck(t, t′) +
∫ t

0
dtΣnl

k (t; t)Ck(t, t′) =
∫ t′

0
dt F nl

k (t, t)R∗k(t′; t). (224b)

Here Σnl
k is a nonlocal “turbulent collision operator” (causal in time). It describes the tendency of

the turbulence to scramble (damp out) a perturbation, and is the turbulent generalization of the
time-local ν term of classical Langevin theory (Sec. 3.2, p. 48). The F nl

k term on the right-hand side
of Eq. (224b) is the mean square of an internally produced incoherent noise. (If external forcing is
present, its covariance F ext

k should be added to F nl
k .) All of these assertions will be discussed further,

ultimately with the aid of an underlying Langevin representation of the DIA statistics (Sec. 5.3,
p. 132).

Equations (224) are called the Dyson equations of turbulence. Under certain reasonable
assumptions [see Sec. 6 (p. 146)], they are formally exact. A closure provides specific forms for the
nonlinear terms Σnl

k and F nl
k . In the DIA those are

Σnl
k (t; t′) ≈ −

∑
∆

MkpqM
∗
pqkR

∗
p(t; t′)C∗q (t, t′), F nl

k (t, t′) ≈ 1

2

∑
∆

|Mkpq|2C∗p (t, t′)C∗q (t, t′). (225a,b)

The Dyson equations are obviously two-time, nonlocal generalizations of the wave kinetic
equation (182) of weak-turbulence theory. A spectral balance equation for the fluctuation

160 A Cartesian component index for vector fields (e.g., ψ → u ≡ ui) is a special instance of the general case
of arbitrarily coupled fields ψ(s) such as n, ϕ, or T .
161 The effect of mean fields is to add extra contributions to the zeroth-order operator R−1

0
.= ∂t+iLk on the

left-hand side of Eqs. (224). If the nonlinearity is schematically 1
2M̂ψψ, then with ∆ψ standing for R or C

one must add the the first-order variation −M̂ 〈ψ〉∆ψ. [For a formal proof of this statement, see Sec. 6.2.2
(p. 155), especially Eq. (283a).] Since M̂ is a symmetrized operator, this leads to two extra terms. For
example, if a self-consistent velocity V is linearly related to ψ via V [ψ] = V̂ ψ, then a V [ψ] ·∇ψ term leads
to 〈V 〉 ·∇∆ψ+ (V̂ ∆ψ) ·∇〈ψ〉. The last term describes the interaction of the fluctuations with background
profile gradients. If it is assumed that those gradients are constant (for example, ∇〈n〉 = −L−1

n 〈n〉x̂), then
a statistically homogeneous theory results in which the effects of the gradients can be incorporated into Lk

and the equations can be reinterpreted as describing the fluctuations δψ.
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intensity Ck(t) ≡ Ck(t, t) follows from Eq. (224b) by noting that ∂tCk(t, t) = 2Re ∂tCk(t, t′)|t′=t.
Then

∂tCk(t) = 2γlin
k Ck(t) + 2Re

∫ t

0
dt [F nl

k (t, t)R∗k(t; t)− Σnl
k (t; t)C∗k (t, t)]. (226)

The forms (225) guarantee that quadratic conservation properties of the primitive equation (223) are
preserved; specifically, the nonlinear terms are readily shown to conserve I(t) .

=
∑

k σkCk(t) provided
that Eq. (184) is satisfied.

Equations (224) are causal. From a specified initial condition Ck(0), they can be integrated in
time by using Eq. (226) to advance from Ck(t) to Ck(t + ∆t), then using Eqs. (224) to construct
the time-lagged functions for τ

.
= t− t′ = ∆t, 2∆t, . . . , t. 162 Brief remarks on a practical numerical

implementation used by the author and his colleagues are given in Appendix I (p. 295).
The DIA properly reduces to lowest-order 163 WTT. Explicit reduction to Eqs. (182) and (183)

is carried out in Sec. 7.2.1 (p. 183) for fluid problems. Reduction of the Vlasov DIA is described in
Sec. 6.5.4 (p. 176).

5.1 Kraichnan’s original derivation of the DIA

Although a variety of algorithms that lead to the DIA are now known, the original derivation
of Kraichnan (1959b) remains one of the most heuristically compelling. The difficulty of a theory of
strong turbulence is that no small parameter is apparent. The regular perturbation theory of WTT,
which retains only a few primitive terms, is clearly inappropriate. Instead, Kraichnan argued that one
should assess the importance of any particular elementary interaction by removing it from the sea of
all fully developed interactions. At least for a continuum of wave numbers, the effect of a single such
interaction should be infinitesimally small, suggesting a perturbation treatment. Kraichnan argued
that the direct interactions of wave vectors k, p, and q (where k + p + q = 0) should dominate.
Since the properties of the fully turbulent system are unknown a priori, the method leads to coupled
integral equations for the two-point correlation and response functions.

As plausible as this argument may appear to be, there is an important subtlety. Although in a
wave-number continuum a single indirect interaction may be subdominant to a direct one, there are
infinitely many more indirect interactions than direct ones. The possibility therefore remains that the
net effect of all indirect interactions may be comparable to that of the direct ones. That is, in fact,
the case. For strong turbulence the DIA is at best an order-unity approximation for at least some
frequencies or wave numbers [the precise meaning of this statement will be clarified below and in
Sec. 6 (p. 146)]; as a consequence, it possesses at least one qualitative deficiency, its lack of random
Galilean invariance (Sec. 5.6.3, p. 138). Nevertheless, the DIA is remarkably robust and effective in
practice, and reasons for this will be explained.

In addition to Kraichnan’s own work, the mathematics of the original derivation was given by
Montgomery (1977) and Krommes (1984a). Here I shall give a version appropriate for systems of

162 The Hermitian symmetry Ck(t, t′) = C∗k (t′, t) permits one to consider just t ≥ 0 and τ ≥ 0.
163 Here “lowest-order” means at the level of three-wave interactions quadratic in the intensity of the
turbulence. Perturbation expansion of the DIA contains higher-order interactions as well, through all orders,
but their description is not complete; vertex corrections (Sec. 6.2, p. 153) absent in the DIA contribute
to WTT at orders higher than quadratic (Thompson and Krommes, 1977).
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multiple coupled fields, for which the correlation functions need not be diagonal with respect to the
field indices. Accordingly, let us consider the dynamical equation

R−1
0 uα(t) ≡ ∂tuα(t) +

∑
β

iLαβuβ =
1

2

∑
β,γ

Mαβγu
∗
β (t)u

∗
γ (t) + f ext

α (t) + η̂α(t), (227a,b)

where u is taken to have zero mean for simplicity. The covariance matrix is defined by Cαα′(t, t
′) .

=
〈δuα(t) δu∗α′(t′)〉, and the random response function is defined by R̃αα′(t; t

′) .
= δuα(t)/δη̂α′(t

′)|η̂=0.
These functions rigorously obey

R−1
0 Cαα′(t, t

′) =
1

2

∑
β,γ

Mαβγ〈δu∗β (t)δu∗γ (t)δu∗α′(t′)〉+ 〈δf ext
α (t)δuα′(t

′)〉, (228a)

R−1
0 R̃αα′(t; t

′)−
∑
β,γ

Mαβγu
∗
β (t)R̃γα′(t; t

′) = δα,α′δ(t− t′). (228b)

Consider the specific triad of modes {α, β, γ} as well as its primed counterpart. 164 Diagrammatic
perturbation theory such as described in Secs. 3.9.5 (p. 81) and 3.9.7 (p. 83) may be used to classify
the various possible interactions into direct ones (propagator renormalizations) and indirect ones
(vertex corrections). The direct interactions correspond to the shortest route through the bare-vertex
space. To assess the effect of a particular direct interaction, define ∆uα|βγ ≡ ∆uα to be the difference
between the exact solution uα and the value uα that the solution would take if the specific triads
under consideration were deleted from the right-hand side of Eq. (227b); i.e.,

R−1
0 uα =

1

2

∑
ρ,σ

Mαρσu
∗
ρ u
∗
σ −

1

2

∑
β,γ

Mαβγu
∗
βu
∗
γ , (229)

where the last sum is only over the specific (unprimed and primed) deleted triads. It is asserted—
the so-called weak-dependence principle; see extensive discussion by Kraichnan (1958b, 1959b)—that
∆uα should be small (but see the further remarks at the end of this section). Thus to lowest order it
obeys

R−1
0 ∆uα −

∑
ρ,σ

Mαρσu
∗
ρ∆u
∗
σ =

1

2

∑
β,γ

Mαβγ(u
∗
βu
∗
γ − 〈. . .〉) + f ext

α . (230)

[To this order it is immaterial whether one writes u or u on the right-hand side of Eq. (230).] Upon
comparing Eq. (230) to Eq. (228b), one can see that Green’s function for ∆uα is the exact (random)
infinitesimal response function R̃; thus the solution of Eq. (230) is

∆uα(t) =
1

2

∫ t

−∞
dt

∑
α,β,γ

R̃αα(t; t){Mαβγ[u
∗
β
(t)u∗γ (t) − 〈. . .〉] + f ext

α (t)}. (231)

This result may be used to evaluate the correlation functions needed on the right-hand side of
Eq. (228a). For example, one has without approximation

〈δuβ δuγ δuα′〉 = 〈δuβ δuγ δuα′〉 + (〈∆uβ δuγ δuα′〉 + 2 terms) +O(∆u2). (232)

164 The primed triad must be included because one is considering general, inhomogeneous statistics.
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Because uα is missing the effects of the direct interaction, it is argued that the first term on the
right-hand side of Eq. (232) is small, and that the dominant contribution comes from the second
term. Upon inserting the result (231), one is left with the evaluation of terms like

1
2
〈R̃∗

ββ
(t; t)M∗

βγα
δu∗γ (t)δu∗α′(t)[δuγ(t)δuα(t′)− 〈. . .〉]〉 ≈ R∗ββ(t; t)C

∗
γγ(t, t)Cαα′(t, t

′), (233)

where the symmetry of M was used and higher-order correlations were neglected according to the
weak-dependence principle. The final result is

R−1
0 Cαα′(t, t

′) +
∫ t

−∞
dt
∑
α

Σnl
αα(t; t)Cαα′(t, t

′) =
∫ t′

−∞
dt
∑
α

(F nl + F ext)αα(t, t)R
∗
α′α(t

′; t), (234)

Σnl
αα(t; t)

.
=−

∑
β,γ,β,γ

MαβγM
∗
βγα

R∗
ββ

(t; t)C∗γγ(t, t), (235a)

F nl
αα(t, t)

.
=

1

2

∑
β,γ,β,γ

MαβγM
∗
αβγ

C∗
ββ

(t, t)C∗γγ(t, t), (235b)

and F ext
αα (t, t)

.
= 〈δf ext

α (t)δf ext
α
∗(t)〉.

Equations (234) and (235) contain the as yet unknown mean response function R. A similar
technique can be used to find its equation in the DIA. The result is that R obeys

R−1
0 Rαα′(t; t

′) +
∫ t

t′
dt
∑
α

Σnl
αα(t; t)Rαα′(t, t

′) = δα,α′δ(t− t′). (236)

Since the lower limit t′ can be replaced by −∞ because R(t; t′) is causal, the operator acting on R is
the same as the one on the left-hand side of Eq. (234).

Equations (234) and (236) are the multifield DIA. For the special case of a single-field model
(α → k) with spatially homogeneous statistics, so that Cαα′(t, t

′)→ Ck(t, t
′)δk,k′, they reduce to the

results (224) and (225) quoted at the beginning of this section. A straightforward generalization 165

is to multiple coupled fields, giving rise to a theory nondiagonal in the field indices but diagonal
in wave number (homogeneous in space). If α is further permitted to contain a velocity variable, a

165 Another kind of generalization is to the theory of predictability initiated by Kraichnan (1970b). He posited
two statistically identical ensembles with velocity fluctuations u(1) and u(2) correlated only through either
(i) the initial value ∆ (x, t; x′, t′) .= 1

2〈[u(1)(x, t)− u(2)(x, t)][u(1)(x′, t′)− u(2)(x′, t′)]〉 = C(x, t; x′, t′) −
W(x, t; x′, t′), where W(x, t; x′, t′) .= 〈u(1)(x, t)u(2)(x′, t′)〉; or (ii) correlated forcing F ext

12 (x, t; x′, t′) .=
〈f (1)ext(x, t)f (2)ext(x′, t′)〉. The evolution of ∆ is taken as a measure of uncertainties of measurement or
of instability in the flow. By taking α = 1 and α′ = 2 in Eq. (234), employing the statistical symmetries, and
noting that Rαβ = 0 for β 6= α, one is readily led to

(R−1
0 + Σnl

k ) ? Wk(t, t′) = (Fnl
12 + F ext

12 )k ? R
∗
k(t′; t), (f-17)

where Fnl
12(t, t)

.= 1
2

∑
∆ |Mkpq|2W∗p (t, t)W∗q (t, t) and Σnl

k is the conventional one-field result (225a). These
results reproduce Kraichnan’s Eqs. (3.9)–(3.13) (Dubin, 1984a). The predictability equations were compared
with DNS by Herring et al. (1973), who also gave additional references.

130



kinetic DIA results [see, for example, DuBois and Espedal (1978)]. Discussion of the kinetic DIA is
given in Sec. 6.5 (p. 170).

However plausible the weak-dependence principle may be, it has not been demonstrated that its
lowest-order application, the DIA, is dominant in any sense. I have already suggested that the net
effects of all of the indirect interactions omitted from the DIA may, depending on the question asked,
be comparable to those of the direct ones; see Sec. 5.6 (p. 137) below. Kraichnan (1958a) suggested
that the procedure can be extended to higher order by systematically deriving a set of more and more
complicated closures of which the DIA is the simplest. With the techniques of the present section,
the algebra of even the next approximation (first vertex correction) becomes decidedly tedious; it is
remarkable that Kraichnan was able to formulate that theory (Kraichnan, 1961) and deduce nontrivial
consequences (Kraichnan, 1964e). In Sec. 6 (p. 146) I shall describe a more elegant and compact
procedure that leads to such closures with a minimum of tedium. Nevertheless, Kraichnan’s original
calculations are unsurpassed for their physical insights.

5.2 Random-coupling models

The original justification offered for the DIA, the weak-dependence principle, made explicit
reference to a continuum of wave numbers. The resulting DIA equations, however, can be applied
to systems with a finite (possibly small) number of coupled amplitudes. This observation makes it
clear that in general one must look elsewhere for a justification of the perturbation procedures that
define the DIA algorithm.

In seminal work Kraichnan (1961) showed that the DIA provides the exact description of second-
order statistics for a certain random-coupling model (RCM). Several varieties of such models are
now known (Herring and Kraichnan, 1972; Kraichnan, 1991); their mere existence answers several
important questions.

Equation (223) together with a PDF of random initial conditions defines an ensemble of
realizations. Consider now a superensemble (ensemble of ensembles) consisting of N identical and
independent copies of the original ensemble; let Roman letters identify the particular copy. In an RCM
a new dynamics is constructed by inducing statistical dependence among the copies. In one version
of the procedure (Kraichnan, 1991), this is done by modifying the original dynamics

R−1
0 u(n)

α (t) =
1

2

∑
β,γ

Mαβγu
(n)
β
∗u(n)

γ
∗ (237)

(I omit f ext for simplicity), in which each system evolves independently of any other, to the form

R−1
0 u(n)

α (t) =
1

2
N−1

∑
r,s,β,γ

φnrsMαβγu
(r)
β
∗u(s)

γ
∗, (238)

in which the systems are coupled. The dimensionless coupling coefficient φλ, where λ ≡ {n, r, s},
is randomly assigned the value ±1 as a function of λ (while preserving symmetry under arbitrary
permutations of the elements of λ). The factor of N−1 preserves the variances of the nonlinear terms
at t = 0. It can then be shown (Kraichnan, 1958c, 1961) that as N → ∞ the DIA for u(n)

α becomes
exact. That is, as N → ∞ the vertex corrections vanish because of the randomly phased couplings
induced by the random φλ’s. A related derivation of the DIA as an infinite-N limit was given by Mou
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and Weichman (1993).
Thus the DIA has been demonstrated to have a primitive amplitude representation. The

consequences are profound. The very existence of such a representation means that statistical moments
formed from the solution of Eq. (238) are realizable in the sense of Sec. 3.5.3 (p. 63). In particular,
the DIA covariance matrix is guaranteed to remain positive definite as time evolves. This property is
extremely difficult to prove directly from the DIA equations themselves, and is not shared by many
other superficially plausible closures (Kraichnan, 1961).

An alternate derivation of the RCM of Kraichnan (1961) was given by Frisch and Bourret (1970),
who were able to prove a variety of theorems and asymptotic results.

Use of the RCM is not restricted to deriving the standard DIA equations for second-order statistics;
because a primitive amplitude equation is written explicitly, higher-order statistics can be predicted
as well. For further discussion, see Sec. 10.2 (p. 221).

The random-coupling representation of the DIA highlights a principal deficiency of the
approximation, namely, its failure to properly represent coherent structures. By definition, a
coherent structure is represented by well-specified, statistically sharp phase relations between Fourier
amplitudes. When mode-coupling coefficients are randomized, as in the RCM, those phase relations
are destroyed; the retained statistical information is insufficient to reconstruct the coherent structure.
[Nevertheless, a sea of interacting coherent structures may adequately be described by the DIA. For
more discussion, see Sec. 10.5 (p. 228).]

5.3 Langevin representation of the DIA

Although the RCM is very important, it is rather abstract; it is perhaps difficult to intuitively
relate the meaning of random couplings in a superensemble to the approximate statistical behavior
of the original equation. It is therefore useful to know that the DIA has a Langevin representation
(Leith, 1971; Kraichnan, 1970a). Consider the primitive amplitude equation

∂tψk + iLkψk + Σnl
k ? ψk = f̃nl

k (t), (239)

where Σnl
k has the DIA form (225a) and

f̃nl
k (t) =

1√
2

∑
∆

Mkpqξ̃
∗
p (t)ξ̃∗q (t), (240)

ξ̃k being a random variable whose covariance is constrained to be that of ψk itself. Green’s function for
the left-hand side of Eq. (239) clearly obeys Eq. (224a) for the response function Rk of the DIA. 166 To
verify that Eq. (224b) is obeyed, it is necessary to show that 〈f̃nl

k (t)ψ∗k(t′)〉 is equal to the right-hand
side of Eq. (224b). This follows upon solving Eq. (239) for ψk using the Green’s function Rk, then
performing the required average over the assumed statistics of ξ.

This Langevin representation provides a route, alternative to that of the random-coupling model,
to the proof that the second-order statistics described by the DIA equations are realizable. It also has
a pleasing physical interpretation that parallels that of the original Langevin equations discussed in

166 Perhaps it is not so clear, since Σnl
k depends functionally on ψ through the covariance. However, in a

continuously distributed ensemble of realizations, the contribution of a particular ψk to that covariance is
infinitesimal.
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Sec. 3.2 (p. 48). The statistical effects of the original nonlinearity [Eq. (223)] are seen to be broken into
two pieces: incoherent noise (internally created random stirring) f̃nl

k ; and mean turbulent damping Σnl
k

(typically positive). The specific form of f̃nl
k is just such that energy is conserved by the nonlinear

terms; the relation between Σnl
k and the covariance of f̃nl

k is a generalization of Einstein’s relation
relating the ν and Dv of Langevin’s original theory (Sec. 3.2, p. 48).

It is a Langevin representation like that for the DIA that is missing from the more heuristic
plasma closures such as RBT. Thus while Dupree sometimes speaks of incoherent noise, he cannot 167

refer to a realizable representation such as Eq. (240) that unambiguously captures the second-order
statistics of that noise. 168 From this point of view, the elegance of the DIA is compelling.

It should be emphasized that the Langevin equation (239) is appropriate for deriving only second-
order statistics. At higher order, statistics predicted from Eq. (239) do not agree with those predicted
from the RCM (Krommes, 1996). Further discussion of this point is given in Sec. 10.2 (p. 221).

5.4 The spectral balance equation

The balance between incoherent noise and coherent damping can be demonstrated directly at the
covariance level. Upon noting that Green’s function for the left-hand side of Eq. (224b) is preciselyRk,
one can write the formal solution of Eq. (224b) (now allowing for external forcing) as

Ck(t, t
′) =

∫ t

0
dt
∫ t′

0
dt

′
Rk(t; t)Fk(t, t

′
)R∗k(t′; t′), (241a)

where F
.
= F nl + F ext. It is conventional to introduce τ

.
= t − t′ and T

.
= 1

2
(t + t′), then write 169

Ck(t, t′) ≡ Ck(τ | T ). Clearly both the intensity Ck(0 | T ) ≡ Ck(0) and the two-time shape must be
found. Although those are coupled, it is useful to think of the former as determined by the T dynamics,
the latter by the τ dynamics. [Some related discussion was given by Boutros-Ghali and Dupree (1981).]
Because two-time correlations are expected to decay, it is natural to Fourier-transform with respect
to τ : Ck,ω(T )

.
=
∫∞
−∞dτ eiωτCk(τ | T ). T dependence disappears in steady state (T → ∞), for which

Eq. (241a) transforms to the spectral balance equation

Ck,ω = |Rk,ω|2Fk,ω. (241b)

Both the τ and the ω versions of the spectral balance determine the ultimate steady-state fluctuation
level as a balance between nonlinear forcing and damping. They generalize a familiar result of classical
Langevin theory; see the discussion of Eqs. (70) and (72) in Sec. 3.2.2 (p. 49). For the DIA Kraichnan
(1964d) has given a thorough discussion of the interpretation of Eqs. (241) in terms of impedance and

167 It is not a matter of ignorance. The practical equations of RBT involve asymmetric approximations to
the effects of the mode coupling (e.g., long-wavelength, low-frequency limits) that preclude a demonstration
of realizability. That is to be contrasted with the Markovian closures discussed in Sec. 7.2 (p. 182), which in
appropriate cases possess Langevin equations similar to that of the DIA and can be shown to be realizable.
168 Nevertheless, Dupree understood that the coherent response (the Σnl

k term) was the portion of the
nonlinear effects phase-coherent with the turbulent field (i.e., ψ is evaluated at k in Σnl

k ? ψk), and the
incoherent response was the remaining portion involving coupling between modes p and q not equal to k.
169 For a systematic treatment of the dependence on the slow variable T , as well as the generalization to
weak spatial inhomogeneity, see Appendix F (p. 286).
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related concepts. He also related them to earlier work by Edwards (1964), who employed a Fokker–
Planck description. For some discussion of Edwards’s approach, see McComb (1990, Chap. 6.2).

As shown in Sec. 6.2.2 (p. 155), the forms (241) transcend the DIA; they are a general
statement of the balance between forcing and dissipation that determines the overall fluctuation
level. In conjunction with specific expressions for Σnl and F nl, they also determine the details of the
“microscopic” turbulent noise. As I discussed in Sec. 3.2.2 (p. 49), that possibility does not exist in the
classical Langevin model, which compresses those details into unspecified dynamics with vanishing
autocorrelation time. General turbulence theory “opens up” those details.

A number of subtleties surround the balance equations (241). First consider the question of
ordering. Let ε� 1 denote an appropriately normalized fluctuation intensity C(0) such as 〈(δn/n)2〉.
According to Eq. (225b), F = O(ε2) whereas the left-hand sides of Eqs. (241) are O(ε). Thus it is not
always correct to take R to be of order unity, as is sometimes asserted. 170

One can use Eq. (241b) to demonstrate that the DIA is compatible with the Gibbsian equilibrium
spectra found in Sec. 3.7.2 (p. 68); the single-field version of the argument 171 is given here for
simplicity. One begins with the FDT (110). One can decompose C(τ ) into one-sided pieces according
to C(τ ) = C+(τ ) + C−(τ ); it is a consequence of time stationarity that (for scalar fields) C−(k, ω) =
C∗+(k, ω). Thus Ck,ω = (Rk,ω +R∗k,ω)Ck(0), or

Ck,ω = 2ReRk,ωCk(0). (242)

One has Rk,ω = [−i(ω−Lk +iΣnl
k,ω)]

−1, with ImL ≡ γlin = 0 as a consequence of thermal equilibrium;
F ext must also be taken to vanish. Then ReR = Re Σnl/|ω−ReL+iΣnl|2 = |R|2 Re Σnl, so Eq. (241b)
reduces to

2Re Σnl
k,ωCk(0) = F nl

k,ω. (243)

Insert the forms (225) into Eq. (243) and again use Eq. (242). After appropriate symmetrization, one
finds that Eq. (243) is satisfied provided that

Mkpq/Ck(0) + c.p. = 0. (244)

With Mk ≡ Mkpq, the triple M
.
= (Mk,Mp,Mq) can be interpreted as proportional to the set of

direction cosines that determine a line perpendicular to a “constraint plane”; Eq. (244) is thus an
orthogonality condition that requires the vector (1/Ck(0), 1/Cp(0), 1/Cq(0)) to lie in that plane. It

is assumed that the M ’s obey σ
(i)
k Mk + c.p. = 0 for one or more multipliers σ

(i)
k . Thus the vectors

σ(i) .= (σk, σp, σq)
(i) also lie in the plane. (There can be at most two linearly independent such σ’s.)

Clearly the linear superposition 1/Ck(0) =
∑
i αiσ

(i)
k also lies in the plane, so Eq. (244) is satisfied;

see Fig. 16 (p. 135). This result is just the Gibbsian spectrum.
Equation (241b) is quite reminiscent of the Test Particle Superposition Principle discussed in

Sec. 2.3.2 (p. 30). There are subtleties, however. As will become clearer in Sec. 6.3 (p. 165), the
derivation of the DIA in the form presented so far holds only for Gaussian initial conditions.
Unfortunately, as Rose (1979) has stressed, the statistical dynamics of discrete particles are

170 The other possibility, that the solution of Eqs. (241) is C = O(1), can be dismissed on physical grounds,
in general; observable drift-wave fluctuations are, in fact, small.
171 See related discussion by Ottaviani (1990).
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σ(2)

σ(1)

M

1/C

Fig. 16. Geometrical interpretation (Johnston, 1989) of the result that the DIA is compatible with the
Gibbsian thermal-equilibrium solutions.

intrinsically non-Gaussian. (This can easily be seen in thermal equilibrium, in which the Gibbs
ensemble holds; potential-energy contributions to that ensemble are non-Gaussian.) The construction
of a proper renormalized theory that handles particle discreteness on equal footing with continuum
dynamics is quite difficult, but was done elegantly by Rose (1979), who developed a general formalism
and proposed a Particle Direct-Interaction Approximation (PDIA).

Further discussion of the spectral balance (241) is given in Sec. 6.5 (p. 170).

5.5 The DIA for passive advection

To this point the derivations of the DIA that I have presented have been for self-consistent
problems, in which both of the ψ terms on the right-hand side of Eq. (223) are treated on equal
footing and therefore the mode-coupling coefficient Mkpq can be taken to be symmetrical in its last
two indices. However, problems of passive advection are also of interest. To accomodate those, consider
instead of Eq. (223) the passive dynamics

∂tψk + iLkψk =
∑
∆

MU
kpqψ

∗
pχ
∗
q + f ext

k (t), (245)

where χ is a specified random variable and MU has no particular symmetries. I allow the possibility
that χ is correlated with the external forcing f ext. In addition to the response function R defined in the
usual way, the independent two-point correlation functions for this problem are the six independent
entries of the matrix 〈〈Φ(t)ΦT (t′)〉〉, where Φ

.
= (ψ, χ, f ext)T , namely,

Ck(t, t′) .= 〈δψk(t)δψ
∗
k(t′)〉, Vk(t, t′) .

= 〈δψk(t)δχ
∗
k(t′)〉, Wk(t, t′) .

= 〈δψk(t)δf
∗
k (t′)〉, (246a,b,c)

Xk(t, t′) .= 〈δχk(t)δf
∗
k (t′)〉, Sk(t, t′) .

= 〈δχk(t)δχ
∗
k(t′)〉, F ext

k (t, t′) .
= 〈δfk(t)δf

∗
k (t′)〉 (246d,e,f)

(δf ≡ δf ext); of these, C , V , and W must be solved for whereas X, S, and F ext are specified functions.
The usual perturbative algorithm leads to the passive DIA in the form

R−1
0,kRk(t; t′)+

∫ t

t′
dtΣk(t; t)Rk(t; t′) = δ(t− t′), (247a)
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R−1
0,kCk(t, t′)+

∫ t

0
dt [Σk(t; t)Ck(t, t′) + Σ′

k(t; t)V ∗k (t′, t]

=
∫ t′

0
dt F nl

k (t, t)R∗k(t′; t) +W∗k (t′, t), (247b)

R−1
0,kVk(t, t′)+

∫ t

0
dt [Σk(t; t)Vk(t, t′) + Σ′

k(t; t)S∗k (t′, t)] = X∗k (t′, t), (247c)

R−1
0,kWk(t, t′)+

∫ t

0
dt [Σk(t; t)Wk(t, t′) + Σ′

k(t; t)X∗k (t′, t)] = F ext
k
∗(t′, t). (247d)

Here

Σk(t; t)
.
=−

∑
∆

MU
kpqM

U∗
pkqR

∗
p(t; t)S∗q (t, t), Σ′

k(t, t)
.
= −

∑
∆

MU
kpqM

U∗
pqkR

∗
p(t; t)Vq(t, t), (248a,b)

F nl
k (t, t)

.
=
∑
∆

|MU
kpq|2C∗p (t, t)S∗q (t, t) +

∑
∆

MU
kpqM

U∗
kqpV

∗
p (t, t)Vq(t, t). (248c)

Note that V is driven by the externally specified cross correlation X. If X and V are set to zero,
then Σ′ vanishes, one finds Wk(t, t′) =

∫ t
0dt Rk(t; t)F ext

k
∗(t′, t), and the right-hand side of Eq. (247b)

becomes
∫ t′
0 dt [F nl

k (t, t) + F ext
k (t, t)]R∗k(t′; t), showing that F ext adds to the internal noise F nl as

expected. Equation (247a) with formula (248a) reproduces the passive propagator renormalization
derived in Sec. 3.9.7 (p. 83). Some features of these equations in the presence of nonzero cross
correlation X were discussed by Krommes (2000b); for further discussion, see Sec. 12.7 (p. 248).

Although the structure of Eqs. (247) may appear to be more complicated than that of the
self-consistent DIA, the passive equations can actually be derived from the self-consistent ones if
one is careful. Thus imagine reworking the self-consistent calculation for a multispecies nonlinear
coupling

∑
MU,αβγ

kpq ψβp
∗ψγq∗, with ψβ = ψ and ψγ = χ. That is, the first and second indices of MU

always refer to ψ (an active variable that responds under perturbations), while the third always
refers to χ (a passive function). The statistics are determined by the symmetrized mode-coupling
coefficient Mkpq = MU

kpq + MU
kqp. The strategy is to first retain all terms of the self-consistent

calculation, then to discard ones that do not enter in a passive problem. For example, with Ĉ ≡ Ĉαβ

the internal noise term for the self-consistent DIA is, from Eq. (225b),

F nl
k (t, t) =

1

2

∑
∆

|Mkpq|2Ĉ∗p (t, t)Ĉ∗q (t, t) (249a)

=
∑
∆

(|MU
kpq|2 +MU

kpqM
U∗
kqp)Ĉ

∗
p (t, t)Ĉ∗q (t, t) (249b)

=
∑
∆

[|MU
kpq|2C∗p (t, t)S∗q (t, t) +MU

kpqM
U∗
kqpV

∗
p (t, t)Vq(t, t)]. (249c)

This result is identical to Eq. (248c). Similarly, the self-consistent mass operator operating on some
unspecified function Zk is, from Eq. (225a),

Σnl
k (t; t)Zk(t, t′)=−

∑
∆

MkpqM
∗
pqkR

∗
p(t; t)Ĉ∗q (t, t)Zk(t, t′) (250a)

=−
∑
∆

(MU
kpqM

U∗
pqk +MU

kpqM
U∗
pkq +MU

kqpM
U∗
pqk +MU

kqpM
U∗
pkq)

× R∗p(t; t)Ĉ∗q (t, t)Zk(t, t′) (250b)
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=−
∑
∆

MU
kpqM

U∗
pqkR

∗
p(t; t)Vq(t, t)Zk(t, t′)

−
∑
∆

MU
kpqM

U∗
pkqR

∗
p(t; t)S∗q (t; t)Zk(t, t′) + 0 + 0. (250c)

The third and fourth contributions vanish because the p index of Rp is the third one of MU
kqp; however,

that index refers to χ, which does not respond under perturbations in a passive problem. The first
term is absent from the Rk equation (Zk = Rk) because the third index of MU

pqk is passive; however,
it remains for Zk = Ck because ψk responds under perturbations. It is readily seen that this result
reproduces the Σk contribution to Eq. (247a) and the Σk and Σ′

k contributions to Eq. (247b).
Finally, a Langevin representation for the passive DIA can be given by simply modifying

formula (240) such that ξ̃q is replaced by the externally specified χq. A random-coupling model
can also be given. Thus the passive DIA is realizable.

5.6 Early successes and failures of the DIA

The DIA is one of the most extensively tested and thoroughly researched approximations in
modern nonlinear physics. It has enjoyed considerable success, but possesses some (well-understood)
flaws as well.

5.6.1 Application to stochastic-oscillator models

The application of the DIA to the pedagogically useful stochastic oscillator model (74) has
already been briefly described in Sec. 3.9.7 (p. 83). In the difficult limit of strong turbulence (Kubo
number K → ∞), the DIA succeeds in predicting irreversible decay of the response function (on the
proper time scale), unlike naive approximations such as cumulant-discard approximations or regular
perturbation theory. Various measures of success may be formulated; for example, the area under the
response function (an autocorrelation time) is approximated by the DIA to within about 20%.

This general irreversibility of the DIA is an inherent property of the approximation, as can readily
be appreciated from its derivation from the random-coupling model. Unfortunately, it is not always
appropriate. Consider, for example, the modified oscillator model described by Eq. (84), whose most
important property is that its response function does not decay as τ →∞. (This imitates the behavior
of various integrable systems.) The solution of the DIA for this model is compared with the exact
solution in Fig. 17 (p. 138). Although the DIA succeeds in capturing the general period of the nonlinear
oscillations, it superimposes an irreversible envelope such that the mean response asymptotes to 0 as
τ →∞.

The lesson to be learned from this simple example is that in a certain sense the DIA is
“too irreversible.” The randomly phased coupling coefficients of the RCM wipe out delicate phase
correlations between cumulants of high orders. Such correlations are crucial for properly representing
various kinds of interesting physics such as coherent (possibly integrable) structures embedded in the
flow or intermittent statistics. One important consequence of the neglect of such correlations is that
the DIA does not properly describe the interactions of scales of very disparate sizes; see the discussion
of random Galilean invariance in Sec. 5.6.3 (p. 138).

Another deficiency of the DIA shows up in the context of passive advection with nonzero mean
fields. It is a rigorous consequence of Eq. (74) that the mean field conditional on unit amplitude
at t = t′ should be identical to the mean response function R(t; t′). However, that is not true in
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Fig. 17. The response function for the variant of the stochastic oscillator model described by Eq. (84)
with a = 0.9. Solid line, exact solution; dashed line, DIA; chain-dotted line, exact solution for a Gaussian
distribution of a with unit variance [R(τ) = exp[−f(τ)]I0(f(τ)), with f(τ) .= sin2( 1

2τ)].

the DIA (Orszag and Kraichnan, 1967), which predicts spurious long-time oscillations in the mean
field (Rose, 1985).

Finally, generalized stochastic-oscillator models have been used by Kraichnan (1976a) to illustrate
a deep failing of the DIA when applied to the kinematic-dynamo problem; see Secs. 5.8 (p. 141)
and 10.3 (p. 223).

5.6.2 Turbulence at moderate Reynolds numbers

In spite of those difficulties, the RCM preserves the basic dimensional and scaling properties
of the original dynamics as well as the essence of the quadratic nonlinearity as a convolution in the
mode or wave-number labels, and the second-order DIA statistics are realizable. One can infer that the
energetics of turbulence may be well represented by the DIA. This hypothesis was tested by Kraichnan
(1964b), who compared detailed numerical solutions of the DIA for homogeneous, isotropic turbulence
at moderate Reynolds numbers with experimental measurements of grid turbulence. Satisfactory
quantitative agreement was found. In later work Herring (1969) concluded that the DIA may also
provide a satisfactory description for certain problems of thermal convection.

5.6.3 Random Galilean invariance

In his original work Kraichnan (1959b) considered the predictions of the DIA for the inertial-
range spectrum of fully developed Navier–Stokes turbulence. He found E(k) ∼ k−3/2 rather than
Kolmogorov’s K41 prediction k−5/3. At the time experimental data were insufficiently precise to
distinguish the exponents 1.50 and 1.67, and Kraichnan briefly admitted the possibility that the
k−3/2 result was correct; however, as measurements have been refined over the years and computing

138



power has improved dramatically, the k−3/2 prediction appears to have been definitively ruled out.
A lucid and quantitative explanation was given by Kraichnan (1964e), although he was clearly

already aware of the issue in his original papers on the DIA a half-decade earlier. He traced the
incorrect k−3/2 spectrum to a spurious interaction between the long-wavelength, energy-containing
scales and the short-wavelength inertial scales. Kraichnan argued that although the primitive
dynamics were invariant under a Galilean transformation and the equal-time correlation functions
(energy spectra) should be similarly invariant in an ensemble of random such transformations, the DIA
was not so invariant. Whereas a small-scale eddy advected by a very-long-wavelength flow should
in reality be affected only by the shear in that flow, in the DIA the small eddy is distorted at a
rate proportional to the energy in the long wavelengths. Thus transfer through the inertial range is
represented incorrectly, resulting in an incorrect spectrum.

To understand the origins of the −3
2

exponent, recall that we have already encountered this
exponent in Eq. (123), the form of E(k) in the presence of a particular independent autocorrelation
time. Now the DIA predicts an Eulerian τac that is the characteristic time to advect a small-scale
eddy of size k−1 through a distance of the order of its own size by a macroscopic flow of rms
velocity u

.
= 〈δu2〉:

τac = (ku)−1; (251)

This is the same assumption used in the derivation of Eq. (123), which reproduces Kraichnan’s
original result. 172 In the hydrodynamic DIA, that contains a spurious dependence on the size of the
long-wavelength fluctuations. If u is replaced by the local velocity difference ∆u across an eddy—
u→ [kE(k)]1/2, so that τac = τeddy—one recovers the Kolmogorov result.

To illustrate the technical difficulty with eliminating such spurious nonlocal effects, Kraichnan
considered the random advection problem ∂tψ+ Ṽ ·∇ψ = 0, where Ṽ is a spatially uniform random
Gaussian vector. The Fourier transform of this equation is thus ∂tψk + ik · Ṽ ψk = 0 [just the
K = ∞ SO model (74)]. Now moment-based closures typically work with three-point correlation

functions. For the present problem, consider T (k, t; p, t′; q, t′′) .
= 〈eik·Ṽ teip·Ṽ t′eiq·Ṽ t′′〉. For calculations

of the equal-time energy spectrum, the triplet correlation is needed only for equal times. Then the
argument of the exponential vanishes because of the triangle constraint k + p + q = 0, and one finds
T (k, t; p, t; q, t) ≡ 1 for the exact solution. Closures, however, typically approximate the many-time
correlations. For example, the DIA for this problem approximates

T (k, t; p, t′; q, t′′) ≈ 〈eik·Ṽ t〉〈eip·Ṽ t′〉〈eiq·Ṽ t′′〉. (252)

Each of the averages separately decays because of phase mixing; cf. the discussion of the stochastic
oscillator in Sec. 3.3 (p. 52). Therefore even when all of the times are taken to be equal, T decays.

The characteristic time (251) is actually correct for the mean two-time response to a small
perturbation. The DIA, fundamentally a two-time theory, represents that effect qualitatively correctly
in the decay of the response function. Unfortunately, the Eulerian nature of the closure mixes the one-
and two-time information together in a way that is difficult to untangle. 173 Kraichnan noted that this

172 The essence of Kraichnan’s arguments was also sketched by Tennekes (1977).
173 Technically, the difficulty is manifested as a long-wavelength divergence when inertial-range forms are
substituted into the equation for the response function. The details can be found in Chap. 7.1 of McComb
(1990).
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kind of spurious coupling of the one- and two-time statistics would plague Eulerian-based closures
through all orders. He actually calculated in detail the first vertex correction (Sec. 3.9.8, p. 85) for
the random advection model; although the spurious effect was reduced, it was not eliminated.

At approximately the same time as the work of Kraichnan (1964e), Kadomtsev (1965) published
his monograph on plasma turbulence. He discussed what he called the weak-coupling approximation,
which is essentially the DIA couched in the frequency domain rather than the time domain. [DuBois
and Pesme (1985) discussed errors in Kadomtsev’s work, and showed that when his algorithm is
implemented consistently one recovers precisely the DIA.] In qualitative terms, he also pointed to
the difficulty that one now understands to be the lack of RGI; he referred to the need for a proper
treatment of the “adiabatic” interaction between the long and the short scales. It is clear that the
works of Kadomtsev and of Kraichnan were independent, and that although Kadomtsev’s work was
influential in plasma physics, Kraichnan should be credited with the more incisive, mathematically
and physically precise analysis of the issue.

The problem of random Galilean invariance can be ameliorated or cured by alternate approaches to
the closure problem. The physical idea that τeddy should be the appropriate time seen in a Lagrangian
frame can be made precise by the Lagrangian schemes mentioned briefly in Sec. 7.1 (p. 181); a general
“decimation” approach is described in Sec. 7.5 (p. 197). More prosaically, Kraichnan (1964e) suggested
several ways of cutting off the wave-number integrations to ensure RGI. For instance, in the equations
for the two-time functions one can restrict the p–q integration domain of Fig. A.1 (p. 263) to q > α−1k
and p > α−1k, where α & 2. Examples of calculations in which this approach has been used include
the works of Sudan and Keskinen (1977) and Sudan and Pfirsch (1985).

The difficulty with random Galilean invariance has been frequently invoked as sufficient reason
to dismiss the DIA (and, in some extreme cases, any approach based on statistical closures). The
latter reaction is obviously logically flawed; the k−5/3 law, possibly corrected for intermittency effects
(Frisch et al., 1978), is certainly an observable statistical property of a particular nonlinear system, so
must yield in principle to rigorous mathematical justification. Furthermore, even dismissal of just the
specific Eulerian DIA is indefensible in important situations, especially many of interest to plasma
physics. In particular, for situations with low or moderate Reynolds numbers (so that inertial ranges
are not well developed) failure to preserve random Galilean invariance does not seem to be crucial.
Furthermore, even a well-developed inertial range possesses little energy relative to that of the energy-
containing range (by definition); it is the latter that determines macroscopic transport coefficients. One
therefore expects that the DIA and similar closures should make reasonable predictions for transport.
One plasma-physics example that has been studied in some detail, the Hasegawa–Wakatani system,
bears out this claim, as is discussed in Sec. 8.5 (p. 208).

5.7 Eddy diffusivity

For homogeneous, isotropic fluid turbulence, the DIA is most simply couched in a Fourier
wave-number representation; the mean velocity field (k = 0 component) may usually be taken
to vanish. However, for inhomogeneous, anisotropic turbulence (the usual case in practice), an
x-space representation is more convenient and the mean field is nontrivial. Taylor (1915) showed that
“turbulent motion is capable of diffusing heat and other diffusible properties through the interior of a
fluid in much the same way that molecular agitation gives rise to molecular diffusion” (Taylor, 1921).
According to the discussion in Sec. 1.3.1 (p. 13), a turbulent diffusion coefficient scales as D ∼ v`,
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where v is a characteristic rms velocity fluctuation 174 and ` is a characteristic Lagrangian correlation
length, frequently called a mixing length after Prandtl (1925). 175 Thus for passive advection the
rigorous equation for the mean field, ∂t〈T 〉 = −∂x〈δVx δT 〉, is assumed to reduce to ∂t〈T 〉 = ∂xD ∂x〈T 〉.
[D may itself depend on ∂x〈T 〉, as would be typical in problems of drift-wave turbulence. The solution
for the analogous equation for fluid velocity in a turbulent jet was reviewed by Kadomtsev (1965).]

Kraichnan (1964c) gave a systematic and detailed analysis of the DIA for arbitrary turbulent
flows. He showed that the DIA provides a natural generalization of mixing-length concepts to the
practical situation in which the scale lengths of the fluctuations and the mean fields are not cleanly
separated. That paper also contains some valuable discussion of the fidelity and interpretation of
the DIA. More such discussion can be found in the work of Kraichnan (1976b), where difficulties with
the naive concept of eddy viscosity were analyzed in detail. That work will be discussed in Sec. 7.3
(p. 189).

5.8 Diffusion of magnetic fields by helical turbulence

A natural generalization of the concept of eddy viscosity is to the problem of the kinematic
dynamo, defined in Sec. 2.4.8 (p. 43). If one assumes helical, isotropic turbulence (for which 〈u〉 = 0)
and that 〈B〉 has weak gradients, then general considerations of tensor symmetry lead to the form

∂t〈B〉 = µm∇2〈B〉 −∇× (α〈B〉), (253)

involving the two undetermined coefficients µm and α. The latter term is conventionally called the
α effect. For small Rm straightforward quasilinear analysis of Eq. (62a) leads (Steenbeck and Krause,
1969) to Eq. (253) with µm = µm,cl [µm,cl is defined after Eqs. (62)] and α being a particular moment of
the helicity spectrum that is also proportional to µm,cl. Kraichnan (1976a) instead consideredRm =∞
and discussed the problem from the point of view of the DIA. He showed that when the velocity field
was rapidly decorrelated on a timescale τ (u)

ac , the form of Eq. (253) still held provided that µm = u2τac

and α = 1
3
τacH, where u is the rms velocity,H is the helicity density, and τac is the shorter of τ (u)

ac and
the eddy turnover time. The turbulent α effect is usually said to exist only in helical flows, but see
Gilbert et al. (1988) for a counterexample. Linear analysis of Eq. (253) shows that sufficiently large α
can cause 〈B〉 to grow. Such an instability is due to the vector character; there is no corresponding
instability of a passive scalar.

174 Velocity fluctuations are δu ∼ `|∂U/∂y|. See Kadomtsev (1965), Chap. III, Sec. 2(a).
175 It is worthwhile to recall the warning of Tennekes and Lumley (1972): “Let us recall that mixing-
length expressions can be understood as the combination of a statement about the stress (−〈uxuy〉 ∼ u2)
and a statement about the mean-velocity gradient (∂Uy/∂x ∼ u/`). These statements do not give rise to
inconsistencies if there is only one characteristic velocity, but they cannot be used to obtain solutions to
the equations of motion if there are two or more characteristic velocities that contribute to u in unknown
ways. In other words, mixing-length theory is useless because it cannot predict anything substantial ; it is
often confusing because no two versions of it can be made to agree with each other. Mixing-length and
eddy-viscosity models should be used only to generate analytical expressions for the Reynolds stress and
the mean-velocity profile if those are desired for curve-fitting purposes in turbulent flows characterized by
a single length scale and a single velocity scale. The use of mixing-length theory in turbulent flows whose
scaling laws are not known before-hand should be avoided.” This admonition has frequently been ignored in
the plasma-physics literature.
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As discussed by Kraichnan (1976a), the appearance of τac (possibly computed self-consistently) in
the previous formulas is the principal qualitative contribution of the DIA; it appears to be successful
for nonvanishing H. But Kraichnan also emphasized that helicity fluctuations in mirror-symmetric
turbulence lead to what he called an α2 effect that is not captured by the DIA. The reason is that
the α2 effect first enters at fourth order in perturbation theory whereas the structure of the DIA
is determined algorithmically from statistical approximations made at second order. For further
discussion of this difficulty and of possible resolutions, see Sec. 10.3 (p. 223).

5.9 Vlasov DIA

It was at least half a decade after Kraichnan’s proposal of the DIA for strong Navier–Stokes
turbulence before plasma physicists began to develop theories of strong plasma turbulence that
attempted to go beyond WTT. In the U.S. the resonance-broadening theory (Sec. 4.3, p. 108) of
Dupree (1966) was very influential, but see also Galeev (1967). Shortly after Dupree’s original paper,
Orszag and Kraichnan (1967) published a critique of the RBT (and other related approximations) in
which they proposed the DIA for Vlasov turbulence. At the time, that work was largely ignored by
the plasma-physics community. 176 That was very unfortunate, as the paper contained a large number
of important insights. An incomplete list includes the following:
(1) Orszag and Kraichnan clearly distinguished between the passive (stochastic-acceleration)

problem and the self-consistent Vlasov problem.
(2) They used the random-coupling approach to write down realizable models, including the DIA,

for both passive and self-consistent dynamics.
(3) They gave an elegant and pedagogical discussion of the properties of the models, emphasizing

both their strong points and their weak points.
(4) They pointed out that Dupree had not provided a complete prescription for closing the statistics

of the electric field, and they offered a consistent one.
(5) They observed that Dupree’s theory did not conserve energy and momentum, and they traced

that to the passive approximation that was implicitly used. 177

(6) They took issue with an assertion of Dupree that his test-wave expansion of the exact particle
propagator in powers of the mean one was convergent.

The work of Martin et al. (1973) on the general field theory of classical statistical dynamics led
to a revival of interest in the formal and systematic description of plasma turbulence. Krommes,
independently DuBois, and co-workers of those authors showed how to reduce the formal theory to
simpler approximations such as RBT. Their work will be described after the general MSR formalism
is developed in Sec. 6 (p. 146).

5.10 Early plasma applications of the DIA

In this section I survey various early research on the DIA as applied to plasma physics. This
discussion covers work done through about 1984 except that detailed applications to the Vlasov

176 It was discussed a decade later by Montgomery (1977), and influenced DuBois and Espedal (1978) and
Krommes (1978).
177 Analogous observations in the plasma literature were not made until much later with the work of Dupree
and Tetreault (1978).
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equation (including considerable important work by DuBois and co-workers) are reserved for Sec. 6.5
(p. 170). For an earlier, much more cursory review, see Krommes (1984a). Subsequent, more
quantitative research is described in Sec. 8 (p. 199).

5.10.1 Renormalized plasma collision operator and convective cells in magnetized plasma

Classical Coulomb collisions in weak magnetic fields lead to cross-field transport coefficients that
scale as B−2 (Braginskii, 1965). E×B motion, however, leads to B−1 scaling in the absence of parallel
dynamics (Taylor and McNamara, 1971). It is of interest to consider a unified formalism that embraces
both of those regimes. The cleanest situation arises for the thermal-equilibrium statistical dynamics
of a 2D system of charged rods. Pioneering numerical simulations of that model were performed
by Dawson et al. (1971) and Okuda and Dawson (1973). They actually observed three regimes for
the magnetic-field scaling of the test-particle diffusion coefficient: (i) the classical B−2 regime; (ii) a
plateau regime in which the transport was independent of B; and (iii) a B−1 regime. In order to
explain those results, they carefully considered the normal modes of a 2D magnetized plasma in
thermal equilibrium. In addition to the well-known hybrid oscillations and Bernstein modes, they
identified a new “zero-frequency” mode (damped by ion shear viscosity) that they called a convective
cell. They employed the fluctuation–dissipation theorem to show that the convective cell carried the
bulk of the energy as B →∞, and used simple strong-turbulence estimates (not necessarily identified
as such) to argue that the convective cells were responsible for the B−1 scaling.

Although Dawson and Okuda did not recognize it, their work was closely related to the then-recent
discovery of long-time tails in certain correlation functions arising in neutral-fluid kinetic theory. The
observation, first made by Alder and Wainwright (1970) on the basis of their computer simulations,
was that the Green–Kubo integrands, time integrals of which define transport coefficients, exhibited
an algebraic decay ∼ τ−d/2 (d being the dimension of space) on hydrodynamic timescales. The result
was subsequently reproduced by a variety of theoretical calculations [pedagogically reviewed by Reichl
(1980, Chap. 16)] and interpreted as the effect of the hydrodynamic modes (those whose frequency
vanishes as k2). Whereas in 3D the τ−3/2 tail is integrable, in 2D the integral of the τ−1 tail is
logarithmically divergent, signaling a breakdown of the usual local description of transport.

Krommes (1975) and Krommes and Oberman (1976b) discussed the connection between the
work of Dawson and Okuda and the theory of long-time tails. They developed a general formalism
(Krommes and Oberman, 1976a), based on a two-time BBGKY hierarchy developed in earlier work
by Williams (1973), that could be used to predict hydrodynamic contributions to plasma transport
but also embraced the usual classical regimes. 178 They showed that a consistent treatment of the self-
interactions of the hydrodynamic modes required that terms of all orders in the BBGKY hierarchy
be retained. They argued for a particularly natural subset; the resulting renormalized approximation
was identical in form to the self-consistent field approximation 179 of Herring (1965).

In fact, since Krommes and Oberman were working in thermal equilibrium, in which the FDT
holds, the approximation turned out to be identical to the DIA for their problem. It led to a
renormalized Balescu–Lenard-like collision operator for plasmas in strong magnetic fields that indeed

178 The two-time hierarchy also provides the most natural way of deriving the Test-Particle Superposition
Principle of Rostoker (1964b); see Krommes (1976).
179 The self-consistent field approximation (Herring, 1973) retains the DIA equations for C(t, t) and R(t; t′),
but drops the equation for C(t, t′) in favor of the fluctuation–dissipation Ansatz C(t, t′) = R(t; t′)C(t′, t′).
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embraced all of the scaling regimes previously found by Dawson and Okuda.
The methods used by Krommes and Oberman were relatively primitive. Direct renormalization of

the BBGKY hierarchy is clumsy and not to be recommended; the generating-functional methods of
Martin et al. (1973), to be discussed in Sec. 6 (p. 146), are far superior. Nevertheless, a variety of useful
physical and technical insights followed from the work, which was one of the first practical applications
of the DIA in plasma physics (albeit not to a true turbulence problem involving fluctuations that are
far from equilibrium).

5.10.2 Turbulence in the equatorial electrojet

Sudan and Keskinen (1977, 1979) formulated the DIA for a model of weakly ionized plasma
turbulence driven by the equatorial electrojet. Following Kadomtsev (1965), they wrote the equations
in the frequency representation. They did not faithfully solve the coupled equations for correlation and
response functions, but postulated a plausible form for the spectrum, then estimated the turbulent
linewidth. Reasonable agreement was found with the experimental data. Their calculations [see also
Sudan et al. (1997)] provided an early plasma-physics example of how to estimate for complicated
practical situations the self-consistency effects inherent in the DIA. Some of that work was reviewed
by Sudan (1988) and Similon and Sudan (1990).

5.10.3 Forced and dissipative three-wave dynamics

One of the important early tests of the DIA was given by Kraichnan (1963), who compared its
predictions for a system of three coupled “shear waves” with direct numerical simulations. The model
equations studied had the form

∂tψK = MKψPψQ (254)

plus the cyclic permutations K → P → Q; i.e., linear effects were absent. An appropriately defined
energy is conserved. In fact, the system (254) is integrable (Meiss, 1979; Terry and Horton, 1982),
so random behavior enters only extrinsically (from random initial conditions). Although general
arguments suggest that the performance of closures such as the DIA should not depend on whether
the turbulence is extrinsic or intrinsic in origin, it is useful to verify that explicitly. Therefore as a
paradigm Krommes (1982) considered the generalization of Eq. (254) to include a complex linear
frequency ωk = Ωk + iγk:

∂tψK + iωKψK = MKψ
∗
Pψ
∗
Q. (255)

Such models can possess strange attractors and exhibit chaos in certain regimes (Wersinger et al.,
1980). The particular form of the Mk’s was derived from the three-mode version of the Terry–Horton
equation (43). Direct simulations of the new system exhibited linear growth, then nonlinear saturation.
Numerical solution of the DIA showed that it was able to adequately reproduce the steady-state
fluctuation level. This calculation was technically trivial, but it made the important conceptual point
that the DIA provided a reasonable description of renormalized drift-wave mode coupling.
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When all of the γk’s are taken to vanish, it is not hard to show that Eq. (255) is derivable from
the Hamiltonian

H̃
.
= 2 Im(ψKψPψQ) +

(
ΩK

MK
|ψK |2 + c.p.

)
(256)

written in the canonical coordinates qk = ψk/
√
Mk and pk = iψ∗k /

√
Mk. H̃ is a third constant of the

motion; this underlies the integrability mentioned above and uniquely determines the final covariances
in terms of their initial values. The random-coupling model (Sec. 5.2, p. 131) or direct calculation can
be used to prove that the DIA also conserves H̃, so it predicts the final covariances exactly in this
case (Bowman, 1992; Bowman et al., 1993).

5.10.4 A Markovian approximation to the DIA

Waltz (1983) used a parametrization of the two-time correlation functions to derive a Markovian
approximation; he compared its predictions with direct numerical simulations of the forced HM and
TH equations. The agreement was quite reasonable given the relatively low resolution. It must be
stressed that, as he recognized, Waltz was not solving the DIA itself, which is a very specific set of
nonlinear integro-differential equations with memory. Nevertheless, his work added further evidence
to the belief that appropriately symmetric second-order closures could be successful in plasma-physics
applications. The modern theory of Markovian closures is described in Sec. 7.2 (p. 182).

5.10.5 Self-consistency and polarization effects

In Sec. 3.5.4 (p. 64) I referred in general terms to the difference between self-consistent and passive
problems; see Eq. (102). When the self-consistent DIA is written out for the Vlasov equation, the extra
term in Eq. (102) leads to a plethora of terms in the closure equations. To gain physical insight into
their meaning, Krommes and Kotschenreuther (1982) considered an analogy to the Balescu–Lenard
operator of classical transport theory. As was described in Sec. 2.3.2 (p. 30), the two terms of Eq. (32)
are well known to correspond to (i) (passive) velocity-space diffusion of test particles by the random
fields, and (ii) a self-consistent polarization effect that describes the formation of a shielding cloud
around the test particle. Krommes and Kotschenreuther showed how the terms from the Vlasov DIA
could be put into more or less one-to-one correspondence with terms from the linearized Balescu–
Lenard operator; the extra terms arising from self-consistency were identified with and henceforth
called the polarization effects (Krommes and Kleva, 1979). I defer further discussion of this point
until Sec. 6.5 (p. 170), where the theory of the nonlinear dielectric function is described.

By considering the derivation of the BL operator from Fokker–Planck theory (Ichimaru, 1973),
Krommes and Kotschenreuther were also able to see how the extra terms were related to linearization
of Fokker–Planck coefficients, an observation that was independently made by Boutros-Ghali and
Dupree (1981).

5.10.6 The DIA and stochastic particle acceleration

Maasjost and Elsässer (1982) criticized the use of the DIA for the stochastic-acceleration problem
on the grounds that it either agreed with much simpler Fokker–Planck theory or did not agree with
simulation data. Their arguments were analyzed in detail by Dimits and Krommes (1986). The latter
authors noted that Maasjost and Elsässer had used a highly non-Gaussian acceleration for which none
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of the standard closures, including the DIA, would be expected to be correct (Sec. 6.3, p. 165). Dimits
and Krommes argued that for nearly Gaussian acceleration the DIA was qualitatively superior to the
Fokker–Planck and Bourret approximations.

5.10.7 Miscellaneous references

Among a variety of additional papers on the DIA that could be cited, I shall mention just three
representative ones selected for their diversity of applications.

DuBois and Rose (1981) gave an authoritative and detailed discussion of the DIA in the context
of Langmuir turbulence.

Krommes et al. (1983) discussed the DIA in the context of particle transport in stochastic
magnetic fields by treating the magnetic field in the drift-kinetic streaming term v‖b̂·∇F [see Sec. 2.3.1
(p. 28)] as a passive random variable. Although the DIA was deemed to be qualitatively successful in
some regimes, in others it failed to capture some detailed consequences of the stochastic instability of
magnetic field lines. Krommes et al. argued that such problems would be cured by appropriate vertex
renormalizations (Sec. 6.2.2, p. 155), and made some initial steps in that direction.

Finally, Dubin (1984b) considered the application of the DIA to the logistic map (May, 1976)
defined by Eq. (98). For the important case of λ = 4 (whose invariant measure is known analytically
and covers the entire interval 0 ≤ x ≤ 1), he showed that the basic DIA failed because it did
not constrain x to lie in the unit interval. Instead, a periodic extension of the DIA appeared to
be promising. Dubin also discussed a variety of deep issues and techniques relating to realizability
constraints (Sec. 3.5.3, p. 63) that might be used to formulate superior closures. The lines of research
initiated by Dubin have not been pursued to the extent that they deserve.

6 MARTIN–SIGGIA–ROSE FORMALISM

“[We] present what we believe to be the elusive generalization which is necessary for deriving
a renormalized set of equations and thus to deduce the renormalized statistical theory of a
classical field satisfying a nonlinear dynamical equation.” — Martin et al. (1973).

We have by now encountered a variety of approaches to the derivation of closed equations for low-
order statistical moments. Some are semiheuristic [resonance-broadening theory (Sec. 4.3, p. 108) and
the clump algorithm (Sec. 4.4, p. 119)]; some are more systematically based, especially the methods
based on regular perturbation theory [quasilinear theory (Sec. 4.1, p. 90) and weak-turbulence theory
(Sec. 4.2, p. 98)] and diagrammatic summation of perturbation theory through all orders (Sec. 3.9.7,
p. 83). However, none of them is easily extendable to justifiable, quantitatively accurate descriptions
of strong turbulence.

Of the methods mentioned, diagrammatic summation has the most generality. However,
diagrammatic representations are tedious to work with, especially for self-consistent problems; one
can be plagued by both combinatoric and topological questions. An example of the plethora of terms
that can result is provided by the work of Wyld (1961) on the diagrammatic renormalization of
the NSE; see also the work of Kraichnan (1961) on the simpler stochastic oscillator model, Eq. (74).
At the level of the DIA, Kraichnan called the diagrammatic resummations line renormalization, to
be distinguished from a further vertex renormalization [called higher-order interactions by Kraichnan
(1958a)]. Indeed, he derived (Kraichnan, 1961) a vertex renormalization for the K = ∞ stochastic
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oscillator (Sec. 3.3, p. 52) that was very successful, and referred in several publications (Kraichnan,
1958a, 1964e) to the corresponding approximation for Navier–Stokes turbulence although he did not
publish the details. A simpler example of the diagrammatic method is the work of Horton and Choi
(1979) on renormalized ion acoustic turbulence.

In fact, renormalization procedures had been highly developed in quantum field theory (QFT) long
before the classical attempts outlined in the last several paragraphs; a brief history is given in Sec. 6.1
(p. 147). However, the nonlinear equations of concern in the present article are classical, and taking
the direct classical limit of quantum mechanics is difficult and subtle; moreover, one needs to handle
dissipation, not incorporated in either standard quantum-level descriptions or the thermal-equilibrium
classical descriptions frequently used in condensed-matter physics. It was therefore a major triumph
when, in one of the most elegant papers of modern classical statistical physics, Martin et al. (1973)
showed how to treat the nonequilibrium statistical dynamics of classical field theories directly by
replacing the infinity of primitive diagrams by a few (functionally) closed equations: (i) the exact
equation for the mean field; (ii) a 2 × 2 matrix Dyson equation linking the two-point correlation
function C and the mean infinitesimal response function R; and (iii) a functional equation for a
vertex matrix Γ (containing three distinct entries) related to three-point correlation and response
functions. The method has come to be known as the MSR formalism ; based on generating functionals
and path-integral representations, it is the classical generalization of Schwinger’s nonperturbative
approach to quantum field theory (Schwinger, 1951a). It accomplishes renormalization in one fell
stroke, banishing tedious combinatoric difficulties. The DIA emerges as the natural lowest-order
approximation, and Kraichnan’s higher-order approximation follows as a logical generalization (first
vertex renormalization). The method also suggests a variety of nonperturbative techniques that are
still incompletely explored.

Various considerations to be discussed below show that the MSR formalism is “not a panacea”
(Martin, 1976). Nevertheless, it provides a compelling unification of various earlier cumbersome
techniques, highlights strong and beautiful links between a variety of fields, and permits an economy
of description that can be extremely useful in practice (Krommes and Kim, 2000). I therefore give a
relatively thorough discussion. In Sec. 6.1 (p. 147) I provide a highly condensed historical background
on the general problem of renormalization. The actual equations of MSR (correct for Gaussian initial
conditions) are derived in Sec. 6.2 (p. 153). The treatment of non-Gaussian initial conditions is
discussed in Sec. 6.3 (p. 165). The path-integral representation of the formalism is described in Sec. 6.4
(p. 166). In Sec. 6.5 (p. 170) the MSR techniques are used to derive a formally exact representation of
the nonlinear dielectric function. The theory of the nonlinear plasma dielectric permits a unification
of various superficially disparate lines of research in plasma physics, including derivations of the
wave kinetic equation (Sec. 6.5.4, p. 176), resonance-broadening formalism (Sec. 6.5.5, p. 178), and
self-consistent quasilinear theory (Sec. 6.5.6, p. 180).

6.1 Historical background on field-theoretic renormalization

Although the MSR formalism of classical renormalization is self-contained, it did not spring
from a (field-theoretic) vacuum. In presenting the following abbreviated history, I draw heavily
on the excellent works of Pais (1986; a “history and memoir” of elementary-particle physics) and
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Mehra (1994; a scientific biography of Richard Feynman). 180 A historical account of Feynman’s early
contributions to quantum electrodynamics was given by Schweber (1986). Further historical and
philosophical remarks can be found in the collection of articles on renormalization edited by Brown
(1993). The reader is urged to consult those works for a much more complete perspective and many
references impossible to list here. A very clear and pedagogical introduction to renormalization in the
context of critical phenomena was given by Binney et al. (1992). A modern and detailed account of
renormalized QFT is by Zinn-Justin (1996).

6.1.1 Mass and charge renormalization

“The elementary phenomena in which divergences occur, in consequence of virtual transitions
involving particles with unlimited energy, are the polarization of the vacuum and the self-
energy of the electron . . . . The basic result of these fluctuation interactions is to alter the
constants characterizing the properties of the individual fields.” — Schwinger (1948).

By the end of the 1930s it had become clear that the nascent analytical theory of quantum
electrodynamics (QED), initiated by Dirac (1927), was in serious trouble due to various infinities.
Certain primitive infinities such as infinite energy due to zero-point oscillations of the electromagnetic
sea or infinite charge due to a Dirac sea filled by an infinite number of negative-energy electrons
were easily eliminated by redefinitions of the zero points (technically, by “normal ordering” of the
creation operator ψ̂ and annihilation operator ψ). 181 Nevertheless, although a small parameter (the
fine-structure constant) α

.
= e2/~c ≈ 1

137
had been identified so that perturbation theory seemed

appropriate, effects thus calculated still exhibited high-energy (ultraviolet) divergences. Although such
infinities became visible only at extremely short distances, where modifications to the theory could be
expected, the divergences could not simply be ignored; for example, Oppenheimer (1930) predicted
an infinite shift of the spectral lines of the hydrogen atom due to interaction of the electron with
the radiation field. Of course, the measurable experimental value of that shift (Lamb and Retherford,
1947) is finite and very small.

It became appreciated that the remaining divergences were related to two distinct physical effects:
the self-energy of the electron; and the polarization of the vacuum. A short and readable discussion
can be found in the Introduction to the paper by Schwinger (1948). A very clear technical explanation
of the self-energy correction was given by Feynman (1949). 182 Briefly, at first order 183 in α an electron
can interact with itself by emitting a photon and later reabsorbing it, as shown in Fig. 18 (p. 149).

Unfortunately, the process diagrammed in Fig. 18 is divergent at large energies. A partial solution
to this difficulty of apparently infinite electron self-energy was found by noting that standard field
theories of QED begin with a Lagrangian containing an electron mass parameter m0. The crucial

180 The definitive biography of Julian Schwinger by Mehra and Milton (2000) was not available to me at the
time of writing, but provides a wealth of useful information and insights.
181 A nice account of the role of creation and annihilation operators in the second-quantization route to
many-particle quantum field theory, and of the relation of that formalism to solution of the many-particle
Schrödinger equation, can be found in Fetter and Walecka (1971).
182 These papers are cited for their clarity, not historical precedence.
183 It would be more consistent with the discussion in the rest of the article to introduce α̂ .=

√
α. Then

one would speak of processes of second order in α̂, emphasizing that the effects are related to quadratic
nonlinearity.
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Fig. 18. First-order self-energy contribution of an electron interacting with itself by emitting, then absorbing
a photon; after Figs. 2 (real space) and 3 (momentum space) of Feynman (1949) (momentum labels have
been changed to conform to present notation). Straight lines represent the electron; wiggly lines represent
the photon. s is the invariant space-time distance t2 − r2. Compare these figures with Fig. 7 (p. 84). In
general renormalization theory (Sec. 6.2, p. 153), the electron propagator becomes the infinitesimal response
function R, and the photon term becomes the two-point correlation function C.

insight was to recognize that m0 is not the experimentally measurable mass m of the electron. Instead,
the “bare” parameter m0 should be renormalized 184 by a correction δm due to the electron–radiation
interaction: m = m0 + δm. Perturbation theory predicts an infinite value for δm. Presumably a more
complete theory would provide ultra-high-energy corrections that would render δm finite (and small,
proportional to α). Therefore physical phenomena observable at modest energies should be insensitive
to the precise form of the high-energy cutoff. Feynman (1948a) regularized the integrals by replacing in
a relativistically covariant way a Dirac delta function by a regular function. Alternatively, the theory
can be reworked by using m rather than m0 as the fundamental mass by adding to the Lagrangian
appropriate counterterms that are chosen to cancel the infinities; a detailed discussion is given by Zinn-
Justin (1996). Gratifyingly, with the theory expressed solely in terms of the experimental mass m, a
finite value can indeed be obtained for the Lamb shift; the nonrelativistic calculation of Bethe (1947)
was followed by the exceedingly tedious but successful relativistic calculation of Kroll and Lamb
(1949). 185

Mass renormalization is a specific example of the propagator renormalization introduced in
Sec. 3.9.7 (p. 83). An analogous discussion can be given of charge renormalization, which is the proper
solution to the problem of polarization of the vacuum (by virtual pairs of electrons and positrons).
Charge renormalization is an example of the vertex renormalization introduced in Sec. 3.9.7 (p. 83).
We will encounter both kinds of renormalization again in the general MSR formalism (Sec. 6.2, p. 153).

184 Pais (1986) attributes the first use of the word renormalization to a paper by Serber (1936). Ideas of
Kramers were also significant; see Mehra (1994, Chap. 11) for references.
185 This single reference does not do justice to the intense activity of the time. For more discussion, see
Mehra (1994, Chap. 13) and Feynman (1949, footnote 13). Coincidentally, this particular section of the
present article was written on Friday the 13th (really).
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6.1.2 Renormalization and intermediate asymptotics

“The concepts of self-similarity are widely used by physicists in quantum field theory and in
the theory of phase transitions (where self-similarity is called ‘scaling’). . . . In fact, scaling is
precisely what we understand today by self-similarity of the second kind. It would seem to
me useful for those interested in scaling to look at how this concept works in other situations,
where . . . the origins of the self-similar asymptotics can be traced directly.” — Barenblatt

(1979).

Infinite bare masses, regularization of divergent integrals, and the addition of infinite counterterms
may be unpalatable, confusing, or both. Although these concepts will not be used in the formal
MSR procedure to be described in Sec. 6.2 (p. 153), they are discussed frequently enough in the
literature that it is useful to have a simple model in mind. To illustrate some of the issues, I shall
return to the stochastic oscillator (Sec. 3.3, p. 52) at infinite Kubo number (τac =∞). Thus consider

∂tψ = −iω̃ψ, (257)

where ω̃ is a Gaussian random number with standard deviation β. Let the goal be to find the damping
rate η of the mean response function R, eschewing details of the actual time dependence. I shall
distinguish the total rate η from the nonlinear contribution ηnl, the difference being a possible linear
damping rate ν to be added later. I shall consider the Markovian approximation (Sec. 3.9.2, p. 78)
ηnl =

∫∞
0 dτ Σnl(τ ), where Σnl is the mass operator discussed in Sec. 3.9.7 (p. 83). Both dimensional

analysis and the exact solution lead to ηnl(β) ∝ β. However, let us examine the problem from the
point of view of perturbation theory.

When β = 0 the oscillator does not decay, so ηnl = 0. For β 6= 0, however, one has in lowest-order
perturbation theory Σnl = β2R0(τ ) [cf. Eqs. (134b) or (247)], so one finds ηnl =

∫∞
0 dτ β2 = ∞. The

discontinuous lowest-order result

ηnl
0 =

{
0 (β = 0)
∞ (β 6= 0)

(258)

is a characteristic signature of unusual asymptotics and is reminiscent of the infinities encountered
in QFT.

To regularize the infinity, let us add a linear damping term to the left-hand side of Eq. (257):

∂tψ + νψ = −iω̃ψ, (259)

where ν is arbitrary but should be thought of as small. This extra term causes the zeroth-order
response function to decay exponentially with rate ν, so has the effect of terminating the τ integral
that defines ηnl at a long-time cutoff Λ

.
= ν−1. Now one has Σnl

0 = β2/ν, a continuous function of β.
Notice that β enters to the power 2 [quasilinear scaling; see Sec. 3.3.2 (p. 55)]. This classical exponent
is analogous to the prediction of mean-field theory for a scaling exponent in the Ginzburg–Landau
model of phase transitions (Binney et al., 1992).

With perturbation theory regularized, one can resum according to the propagator renormalization
procedure of Sec. 3.9.7 (p. 83). The result is the direct-interaction approximation Σnl(τ ) = β2R(τ ).
Since in the Markovian approximation one has R(τ ) = H(τ )e−ητ , with η = ν + ηnl, one finds
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ηnl = β2/(ν + ηnl), a self-consistent nonlinear equation 186 to be solved for ηnl(β; ν). But now there is
no difficulty with taking the limit ν → 0 (Λ → ∞). The solution of ηnl(β) = β2/ηnl is the expected
result ηnl(β) = β. Here β is raised to the power 1, a value differing by an amount of order unity from
the classical power 2. This appearance of an anomalous exponent is analogous to the way in which
critical exponents in the theory of critical phemonena differ from the predictions of mean-field theory.
The self-consistently calculated ηnl is analogous to the renormalized mass of QFT; the infinity in
Eq. (258) is analogous to the infinity in the perturbation theory for the bare mass in the Lagrangian
of QFT.

Deep insights into the appearance of anomalous exponents may be had by considering the theory
of scaling, self-similarity, and intermediate asymptotics as described by Barenblatt (1996) and very
briefly reviewed in Appendix B (p. 264). Barenblatt (1979) had noted the essential identity between
(i) the renormalization (scaling) theories employed in QFT and critical phenomena, and (ii) self-
similarity of the second kind (defined in Appendix B). The analogy was developed in detail by
Goldenfeld and co-workers and was reviewed by Goldenfeld (1992); see also Barenblatt (1996). For
the K =∞ stochastic oscillator, and upon using the notation introduced in Appendix B, one has

ηnl

β
= Φ

(
β

ν
; ε

)
, (260)

where ε is assumed to multiply the right-hand side of Eq. (257). Whereas first-order perturbation
theory would give Φ = ε2(β/ν), the correct result in the limit β/ν →∞ is

ηnl

β
=

(
β

ν

)0

Φ1(ε), (261)

with Φ1(ε) = ε.
In the present calculation the cutoff time Λ

.
= ν−1 was not present in the original model

equation (257) (and, of course, is not present in the final result). That is analogous to the situation
in QFT, in which no large-energy cutoff is apparent (at least in the absence of gravity). 187 The
situation is typically different in classical applications. In the application to critical phenomena
(Binney et al., 1992; Goldenfeld, 1992), where time integrals are replaced by d-dimensional momentum
integrals, a natural large-k cutoff is provided by the inverse of the lattice spacing a: kmax = 2π/a.
For dissipative systems such as the NSE, linear dissipation k2µcl provides a physical analog to ν. To
the extent that there are no finite-time singularities, one can calculate the response for all times,
both below and above the natural cutoff, and for all spatial scales, both larger and smaller than the
Kolmogorov dissipation scale. Thus the MSR procedure makes no reference to a cutoff. Nevertheless,
various long-wavelength limits can sometimes be profitably treated by renormalization-group ideas;
for more discussion, see Sec. 7.4 (p. 196).

186 Compare the closely related Eq. (f-9b), p. 112, for the perpendicular diffusion coefficient of
magnetized RBT.
187 Although I shall not discuss the details here, one method of calculating the anomalous exponents by
exploiting the independence of the solution on Λ is the renormalization group; see Zinn-Justin (1996).
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6.1.3 Path-integral formulation of quantum mechanics

“The formulation to be presented contains as its essential idea the concept of a probability
amplitude associated with a completely specified motion as a function of time.” — Feynman

(1948b).

So far I have concentrated on the necessity and intuitive content of field-theoretic renormalization.
I now turn to the technical advances that are the natural antecedents of the MSR formalism, which
is rooted in the two main threads of development of post-war QED, namely, the works of Schwinger
(and closely related work of Tomonaga) and of Feynman. An important unification was achieved by
Dyson (1949), who demonstrated the ultimate equivalence of the “radiation theories of Tomonaga,
Schwinger, and Feynman”; for a short account, see Dyson (1965).

Actually, the specific work of Schwinger that underlies the MSR formalism came later and is
described in Sec. 6.1.4 (p. 152). Here I concentrate on Feynman’s contribution [see, for example,
Schweber (1986)]. In his Ph.D. dissertation (Feynman, 1942), key parts of which were published by
Feynman (1948b), he stressed the importance of action principles [thoroughly reviewed by Mehra
(1994); see also Lanczos (1949)]. He then showed that the Schrödinger equation −(~2/2m)ψ′′ +
V ψ = i~ ∂tψ follows from the propagation law ψ(X, t + ε) = A−1

∫
dx eiε~−1L(X,t+ε;x,t)ψ(x, t), where

L
.
= 1

2
mẋ2 − V is the Lagrangian and A

.
= (2π~ε/m)1/2. By compounding that law, he was then

led to a path-integral representation of the propagator K(x, t; x′, t′), defined such that ψ(x, t) =∫
dx′K(x, t; x′, t′)ψ(x′, t′). Namely,

K(x, t; x′, t′) = lim
ε→0

∫
. . .

dxi
A

dxi+1

A
. . . exp

(
i~−1

∑
j

S(xj, xj+1)

)
, (262)

where S
.
=

∫ t
t′dt L(t) is the classical action and the velocity dependence of the Lagrangian is

appropriately differenced in time.
The beauty of the path-integral formulation is that it deals at once with the entire solution of the

problem through all of space-time. It is therefore intrinsically nonperturbative. In some cases, that
feature can be usefully exploited by integrating away the dependence of S on certain variables (such
as the field coordinates in a theory of coupled particles and radiation). However, it also lends itself
naturally to perturbative calculations and thus facilitates physical interpretation; the famous Feynman
diagrams are nothing but graphical representations of various terms in perturbation theory, in which
L is written as a zeroth-order part L0 plus a perturbed part δL and Eq. (262) is expanded in δL.
Feynman’s methods were written up most formally by Feynman (1950). A path-integral representation
of the classical MSR formalism will be discussed in Sec. 6.4 (p. 166).

6.1.4 The role of external sources

“The temporal development of quantized fields, in its particle aspects, is described by
propagation functions, or Green’s functions. The construction of these functions for coupled
fields is usually considered from the point of view of perturbation theory. Although the latter
may be resorted to for definite calculations, it is desirable to avoid founding the formal theory
of the Green’s functions on the restricted basis provided by the assumption of expandability
in powers of coupling constants.” — Schwinger (1951a).

Although I have pointed out that path-integral representations are intrinsically nonperturbative,
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all of the practical work on QED was initially implemented perturbatively. An alternate approach
to a nonperturbative formalism was initiated in deceptively short papers by Schwinger (1951a,b)
[elaborated by Schwinger (1951c)]. He considered a Lagrangian for interacting matter and radiation
that included coupling to external sources of particles and currents. He then showed that appropriate
functional variations with respect to those sources leads to an exact functional differential equation
that relates various propagators. It is this approach that most immediately underlies the work of MSR;
the technical details are described in the next section. For a retrospective on Schwinger’s work, see
Martin (1979).

6.2 Generating functionals and the equations of Martin, Siggia, and Rose

“The formal quantity which will play a central role in our discussion is an operator which
serves to infinitesimally change the classical random variable at a given point in space and
time. With the aid of this quantity we will be able to ask questions about the response of the
system in a representation-free fashion and thus, to determine the response in a state, the
details of which are only determined at the end of an exact (or approximate) self-consistent
calculation.” — Martin et al. (1973).

In the present section I review the MSR formalism as presented in the original paper of Martin
et al. (1973). In Sec. 6.3 (p. 165) I discuss the generalization needed to treat non-Gaussian initial
conditions. The path-integral version of the formalism is described in Sec. 6.4 (p. 166).

6.2.1 Classical generating functionals and cumulants

The MSR formalism is based on a sophisticated use of generating functionals. The concepts of
moment and cumulant generating functions have already been introduced in Sec. 3.5.2 (p. 59), the
moment generating function being simply the characteristic function (Fourier transform) of the PDF.
For the random field ψ(1), where 1 denotes the complete set of independent variables, a moment
generating functional is Z[η] = 〈exp[η(1)ψ(1)]〉. Here and subsequently the Einstein summation–
integration convention is adopted for repeated indices. The statistically sharp field η(1) plays the
role of the −ik in Eq. (89). 188 For example, the mean field is the first functional derivative of Z:
〈ψ(1)〉 = δZ/δη(1)|η=0; compare this and similar equations with Eq. (90b).

The corresponding cumulant generating functional is W [η]
.
= lnZ[η]; cf. Eq. (91a). The n-point,

η-dependent cumulants are defined by

〈〈ψ(1) . . . ψ(n)〉〉η ≡ Cn(1, . . . , n) =
δnW [η]

δη(1) . . . δη(n)
=
δ〈〈ψ(1) . . . ψ(n− 1)〉〉

δη(n)
; (263a,b,c)

cf. Eq. (91b). The usual Eulerian correlation functions are obtained by setting η = 0. For example,
the two-point correlation function can be generated from the second functional derivative of W :
C(1, 1′) = δ2W [η]/δη(1)δη(1′)|η=0. Usually it is unnecessary to indicate the η dependence explicitly.

188 One need not worry here about possible convergence difficulties in various regions of the complex η plane.
The formal manipulations are independent of the value of η, and analytic continuations can be performed if
necessary.
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For example, one often writes C(1, 1′) = δ〈〈ψ(1)〉〉/δη(1′). η can always be set to zero at the end of
the calculation. 189

A multitime BBGKY-like cumulant hierarchy readily follows by taking successive functional
derivatives 190 of the equation resulting from the time derivative of 〈〈ψ(1)〉〉; see analogous calculations
in Sec. 6.2.2 (p. 155). However, mere generation of such a hierarchy does not in itself effect statistical
closure. The difficulty is that the cumulant hierarchy as described so far contains only correlation
functions. However, it seems intuitively reasonable that an efficient description of turbulence should
involve not only correlation functions but also response functions. Speaking very loosely, one may say
that correlation functions describe the intensity of fluctuations that have arisen in the turbulent state
whereas response functions describe the time-dependent fate of fluctuations once they have appeared.
The steady turbulent state represents a balance between correlations and response. The fluctuation–
dissipation theorem (Martin, 1968) of thermal equilibrium is an important special case, and the DIA
spectral balance equation (241) provides a key approximate realization of the general nonequilibrium
balance.

In the very pedagogical introduction to the paper of Martin et al. (1973), MSR discussed at length
the difficulties of statistical closure of a classical theory. They pointed out that whereas in quantum
theory the existence of nontrivial commutation relations for the field operators lead naturally to both
correlation functions (anticommutators) and response functions (commutators), in classical theory
the commutation properties of ψ are trivial. Thus although n-point correlation functions can readily
be derived from W , no means is immediately apparent for the derivation of response functions. The
solution of MSR was to extend the system to include not only the original field ψ but also the operator

ψ̂
.
= −δ/δψ. (264)

The need for such a (functional) differential operator arises from the fact that the state of a classical
field can change by an infinitesimal amount, as stressed by MSR.

In fact, Martin et al. never wrote Eq. (264) explicitly; they preferred a more abstract discussion
based on the commutation properties of ψ and ψ̂ [see Eq. (265a)]. Many details underlying the
MSR paper were given by Rose (1974) and Phythian (1975, 1976). An explicit construction that leads
to Eq. (264) is afforded by the path-integral representation to be described in Sec. 6.4 (p. 166). For
additional discussion of the relationships between the MSR formalism and quantum field theory, see
Eyink (1996).

At equal times ψ and ψ̂ exhibit canonical (boson) commutation relations analogous to those
of the position and momentum variables q and p = −i~ ∂q of quantum mechanics, which obey
[p, q] = −i~. That is, upon using an underline to represent all variables except the time and with
the conventional notation [A,B]

.
= AB−BA, one has [ψ(1, t), ψ̂(1′, t)] = δ(1, 1′). If an extended field

vector Φ(1)
.
= (ψ(1), ψ̂(1))T is introduced, then

[Φ(1, t),Φ(1′, t)] = iσδ(1, 1′), iσ
.
=
(

0 1
−1 0

)
. (265a,b)

189 η must not be set to zero prematurely because derivatives with respect to η may be taken.
190 Compare the two-time hierarchy discussed by Krommes and Oberman (1976a); (less sophisticated)
generating-function techniques were used in its derivation as well. See also Dawson and Nakayama (1967).
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Now consider the extended, time-ordered generating functional 191

Z[η1] = 〈eψ(1)η(1)+ψ̂(1)η̂(1)〉+ = 〈eΦ(1)η1(1)〉+, (266)

where 192 η1
.
= (η, η̂)T . It is not difficult to show that

δ2Z/δη(1)δη̂(1′) = 〈[ψ(1), ψ̂(1′)]eΦ(1)η1(1)〉+; (267)

the commutator is introduced by the time ordering. A key result is that the right-hand side of Eq. (267)
evaluated at η1 = 0 is precisely the mean infinitesimal response function R(1; 1′):

R(1; 1′) = 〈[ψ(1), ψ̂(1′)]〉+ = δ2Z/δη(1)δη̂(1′)|η1=0 . (268)

For the detailed arguments, see Rose (1974), Phythian (1975), and the discussion of path integrals in
Sec. 6.4 (p. 166). One can adopt the convention that the expectation of any function of ψ and ψ̂ that
begins with ψ̂ on the far left vanishes; thus one finds the alternate represention

R(1; 1′) = 〈ψ(1)ψ̂(1′)〉 (t > t′). (269)

Extended cumulants with spinor indices can now be defined by generalizing Eqs. (263):

G(1) =
δW [η1]

δη1(1)
≡ 〈〈Φ(1)〉〉, G(1, . . . , n) =

δG(1, . . . ,n− 1)

δη1(n)
. (270a,b)

In particular, upon noting Eq. (269) one finds that the two-point, time-ordered correlation matrix of
the extended field contains both of the usual correlation and response functions:

Gη1(1, 1
′) .

=
δ2W

δη1(1)δη1(1′)
= 〈〈Φ(1)Φ(1′)〉〉+, G(1, 1′)|η1=0 =

(
C(1, 1′) R(1; 1′)
R(1′; 1) 0

)
. (271a,b,c)

Diagrammatically, G2 ≡ G will be represented by a heavy solid line [Fig. 20(a), p. 161].

6.2.2 The Dyson equations

“The elimination of graphs with self-energy parts is a most important simplification of the
theory.” — Dyson (1949).

In the usual approach to renormalized field theory, one does not attempt to calculate the
correlation and response functions directly from their definitions; instead, one deduces evolution
equations for them. For the formal work in this section, let us take the primitive dynamical equation

191 The + subscript denotes time ordering [discussed in footnote 121 (p. 88)]. A shorthand notation is used
in which, for arbitrary functional A[Φ], 〈A〉+ ≡ 〈(A)+〉; i.e., the time ordering must be performed before the
statistical averaging.
192 The 1 subscript indicates that η1(1) depends on a single argument, and also distinguishes the vector η1

from the scalar η and, later, from a two-body source η2(1, 2).
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to have the form 193

∂tψ(1) = U1(1) + U2(1, 2)ψ(2) + 1
2
U3(1, 2, 3)ψ(2)ψ(3), (272)

where ∂t ≡ ∂t1 and the Un coefficients are given. In general, the Un’s may be random. Random U1

describes external forcing; cf. Eq. (7a). Random U2 describes the usual passive advection problem
(linear in dynamical variables but quadratically nonlinear in random variables); cf. the stochastic
oscillator model (74) or the kinematic dynamo problem (62). The corresponding equation for ψ̂ can
be shown to be

−∂tψ̂(1) = U2(2, 1)ψ̂(2) + U3(2, 3, 1)ψ̂(2)ψ(3). (273)

Equations (272) and (273) can be combined (Martin et al., 1973) into the symmetrical equation

−iσΦ̇(1) = γ1(1) + γ2(1, 2)Φ(2) + 1
2
γ3(1, 2, 3)Φ(2)Φ(3), (274)

where the arguments now include the spinor indices in the 2×2 extended state space. The nonvanishing
elements of the fully symmetric matrices γi (called bare vertices) have precisely one − index and are
defined by γ1−(1) = U1(1), γ2−+(1, 2) = U2(1, 2), and γ3−++(1, 2, 3) = U3(1, 2, 3). For the remainder
of this section I shall assume that the γ’s are not random (i.e., are statistically sharp), so the
present formalism deals with self-consistent nonlinearity. A generalization of the formalism that uses
statistically sharp γ’s but handles passive advection and other kinds of random coefficients can be
accomplished by extending the Φ vector to include the random coefficient as its third component and
using 2×3 spinors instead of 2×2 ones; see Deker and Haake (1975). A superior technique is to allow
random γ’s and employ a path-integral formalism, as described in Sec. 6.4 (p. 166).

Successive functional differentiations with respect to η1 generate higher-order correlation matrices
and multipoint generalizations of R(t; t′) such as the “two in, one out” response function R(t; t′, t′′).
One has

δW/δη1(1) = 〈Φ(1)〉η1/Zη1 ≡ 〈〈Φ(1)〉〉 ≡ G(1) (275)

(I now drop the η1 subscripts); the time derivative of this expression introduces both the right-hand
side of Eq. (274) and, because of the time ordering, an extra forcing term η1:

−iσ∂tG(1) − γ2(1, 2)G(2) − 1
2
γ3(1, 2, 3)[G(2)G(3) +G(2, 3)] = γ1(1) + η1(1). (276)

The appearance of η1 on the right-hand side of this equation makes its significance as an external
probe of the system apparent; the present methods stem from the seminal work of Schwinger (1951a)
mentioned in Sec. 6.1 (p. 147). Note that because of the −iσ it is η̂ that perturbs ψ: ∂tψ + · · · = η̂,
∂tψ̂ + · · · = −η. Equation (276) at η1 = 0 reproduces the exact equation for the mean field, which
is retained without approximation in the MSR formalism. [The − component of Eq. (276) is the
statistical average of Eq. (272).] Fluctuation-induced contributions to the mean fields arise, of course,
from G(2, 3); those are generalized Reynolds stresses. 194

193 In the original development of MSR, the U ’s were taken to be local in time. That restriction is unnecessary,
however; see Sec. 6.4 (p. 166).
194 Note that a possible solution for any closure that includes Eq. (276) is one for which fluctuations vanish
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The functional derivative of Eq. (276) with respect to η1(1
′) gives an equation for G(1, 1′):

−iσ∂tG(1, 1′)− γ2(1, 2)G(2, 1′)− γ3(1, 2, 3)G(2)G(3, 1′)− 1
2
γ3(1, 2, 3)G(2, 3, 1′) = δ(1, 1′). (277)

Additional functional derivatives could be taken, but that procedure would merely generate more
members of an unclosed multipoint statistical hierarchy. Instead, the key to effecting at least a formal
statistical closure of that hierarchy is to perform a Legendre transformation (de Dominicis, 1963;
de Dominicis and Martin, 1964a,b; Krommes, 1978, 1984a) from η1(1) to the mean field G(1), i.e., to
consider 195

L[G1]
.
= W [η1]− η1(1)G1(1). (278)

Functional derivatives of L with respect to G1 are called the vertex functions Γn:

Γn(1, . . . , n)
.
=

δnL[G1]

δG1(1) . . . δG1(n)
; (279)

cf. Eq. (263b). The vertices are clearly completely symmetrical in their arguments. The first few of
them are

Γ(1) =−η1(1), (280a)

Γ(1, 2) =−G−1(1, 2), (280b)

Γ(1, 2, 3) =G−1(1, 1)G−1(2, 2)G−1(3, 3)G(1, 2, 3), (280c)

Γ(1, 2, 3, 4) =G−1(1, 1)G−1(2, 2)G−1(3, 3)G−1(4, 4)G(1, 2, 3, 4)

− Γ(1, 5, 2)G(5, 5)Γ(3, 5, 4)− [Γ(1, 5, 3)G(5, 5)Γ(2, 5, 4) + (3↔ 4)]. (280d)

Equation (280b) follows by writing δη1(1)/δG(2) = [δG(2)/δη1(1)]
−1 and using the result (280a).

Equations (280c) and (280d) additionally use the result that follows by varying the operator identity
G−1G = 1, namely, δ(G−1) = −G−1(δG)G−1. Note that Eqs. (279) and (280b) imply that

Γ(1, 2, 3) = −δG−1(1,2)/δG(3). (281)

A quick graphical way of deriving the relations between Gn and Γn is to represent G2 by a heavy solid
line and Γ3 by a filled circle, then to note that δG2/δη1 = G3 = GG(Γ3G); i.e., differentiation
of a line with respect to η1 inserts a (third-order, renormalized) vertex. Additionally, the result
δΓn/δη1 = (δΓn/δG1) (δG1/δη1) = Γn+1G2 shows that differentiation of a vertex raises its order
by one. The results for G2, G3, and G4 are diagrammed in Fig. 19.

Note that Γ3 ≡ Γ is a matrix in the spinor indices. The symmetry of that matrix, Eq. (280c),
and the vanishing of G−−− can be used to show that there are exactly three nontrivial elements of Γ,
namely, Γ−++, Γ−−+, and Γ−−−; Γ+++ vanishes identically.

identically; i.e., the exact dynamics (with singular initial condition) satisfy the closure. Presumably, however,
in turbulent regimes such solutions are unstable.
195 Frequently an overall minus sign is included on the right-hand side of Eq. (278). A graphical explanation
of the Legendre transform can be found in Box 1.2 of Binney et al. (1992).
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G   =2 3G   = + + +4G   =

Fig. 19. Relationships between the first few cumulants and renormalized vertices. Successive diagrams follow
by differentiation with respect to η1, using the rules that (i) the derivative of a line inserts a vertex, and
(ii) the derivative of a vertex raises its order by one. The first term of G4 is the DIA; the last three terms
represent all of the doubly connected contributions omitted in the DIA.

Because the three-point vertex (matrix) function is intimately related to the three-point
correlation function, it is a good target for statistical closure. Indeed, Eq. (277) can be formally
closed by introducing the result (280c):

[G−1
0 (1, 1)− Σ(1, 1)]G(1, 1′) = δ(1, 1′), (282)

where [Fig. 20(d), p. 161]

G−1
0 (1, 1)

.
=−iσ∂tδ(1, 1)− γ2(1, 1)− γ3(1, 2, 1)G(2), (283a)

Σ(1, 1)
.
= 1

2
γ3(1, 2, 3)G(2, 2)G(3, 3)Γ3(1, 2, 3). (283b)

Equation (282) is called the Dyson equation in view of the work of Dyson (1949). In the form
G = G0 + G0ΣG it is diagrammed in Fig. 20(c) (p. 161), which should be compared with Fig. 10
(p. 86). Σ is analogous to the renormalized mass of QFT. In this classical formalism it is a 2 × 2
matrix equation whose (−−) and (−+) components are

R−1(1, 1)R(1; 1′) = δ(1, 1′), R−1(1, 1)C(1, 1′) = F nl(1, 1)R(1′; 1), (284a,b)

where

R−1(1, 1)=R−1
0 (1, 1) + Σnl(1, 1), (285a)

R−1
0 (1, 1)

.
= ∂tδ(1, 1)− U2(1, 1)− U3(1, 2, 1)G(2), (285b)

F nl ≡ Σ−−, and 196 Σnl ≡ −Σ−+. One has already seen this general structure in the form of the DIA;
see Eqs. (224). However, under certain technical restrictions Eqs. (284) are exact. 197 Σnl plays the
role of a generalized resonance broadening of the linear response; F nl describes a generalized internal
stirring that can be called incoherent noise. 198 An appealing alternate form of Eq. (284b) is [Fig. 20(g),
p. 161]

C(1, 1′) = R(1; 1)F nl(1, 1
′
)R(1′; 1′). (286)

We have already encountered this balance form in classical Langevin theory [Eq. (72)] and in the
discussion of the DIA [Eq. (241)]; it is now seen to be a general property of renormalized theory.

196 The minus sign that defines Σnl [so that it appears with a plus sign in Eq. (285a)] emphasizes its role as a
dissipative (generalized) resonance broadening. Krommes (1984a) incorporated that sign into the definition
of the Σ matrix, but that convention leads to confusion with the general field-theory literature.
197 Specifically, the initial conditions must be Gaussian. The generalization to non-Gaussian initial conditions
is given in Sec. 6.4 (p. 166).
198 More precisely, Fnl is a positive definite form that can be viewed as the variance of an internally produced
random noise.
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Early discussion of the physical interpretation of this form was given by Kraichnan (1964d) in the
context of the DIA (Sec. 5.4, p. 133). Additional interpretation is given in Sec. 6.5 (p. 170).

Since the Dyson equation is formally exact, the focus of statistical closure shifts to the
determination of the unknown renormalized vertex matrix Γ, which is analogous to the renormalized
charge of QFT. To derive an equation for Γ, write Eq. (282) in the form

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2), (287)

recall Eqs. (281) and (283a), and functionally differentiate Eq. (287) with respect to G(3):

Γ(1, 2, 3) = γ(1, 2, 3) +
δΣ(1,2)

δG(3)
. (288)

If the last term of Eq. (288) is ignored [see Sec. 6.2.3 (p. 159) below for more discussion], the result
is the (Eulerian) DIA in an elegant and compact matrix form:

ΓDIA = γ (289)

(i.e., the DIA omits vertex renormalization), or [Fig. 20(f), p. 161]

ΣDIA(1, 1) = 1
2
γ(1, 2, 3)G(2, 2)G(3, 3)γ(1, 2, 3). (290)

The scalar components of Eq. (290) are [Fig. 20(g), p. 161]

Σnl
DIA(1; 1) =−U(1, 2, 3)R(2; 2)C(3, 3)U(2, 3, 1), (291a)

F nl
DIA(1, 1) = 1

2
U(1, 2, 3)C(2, 2)C(3, 3)U(1, 2, 3). (291b)

Compare these space- and time-dependent formulas with Eqs. (224), (234), and (236).

6.2.3 Vertex renormalizations

The remaining and most difficult issue in the formal statistical-closure problem is to identify
the conditions under which vertex renormalization may be ignored—in other words, when is the
Eulerian DIA an adequate approximation? The earlier discussion of random Galilean invariance
in Sec. 5.6.3 (p. 138) suggests that the strictly mathematical answer is “never,” because the
MSR formalism is built on a physically inappropriate Eulerian framework. Nevertheless, the structure
of the theory beyond DIA order is intrinsically interesting. To understand the significance of Eq. (288)
more clearly, note the form (283b), which together with Eq. (288) can be used to argue that Σ depends
on G1 only implicitly 199 via its dependence on G2:

δΣ

δG1

∣∣∣∣∣
η1

=
δΣ

δG2

∣∣∣∣∣
G1

δG2

δG1

∣∣∣∣∣
η1

= IGGΓ, (292a,b)

199 The absence of explicit dependence is correct only for Gaussian initial conditions; see Rose (1974) and
Sec. 6.3 (p. 165).
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where

I(1, 2; 1′, 2′) .
=

δΣ(1,2)

δG(1′, 2′)
=

(
γGΓ +GG

δΓ

δG

)
GGΓ. (293a,b)

Thus from Eq. (288) the exact (functional) equation for Γ is

Γ = γ + IGGΓ. (294)

Equation (294) may be used in conjunction with Eq. (293b) to develop approximate equations for Γ.
In regimes of weak turbulence or small Kubo number, it is reasonable to expand in powers of 200 γ.
However, more generally it is better to develop an expansion for Γ in terms of itself 201:

Γ = γ + ΓGΓGΓG + · · · . (295)

Note that if γ is O(1), as can be assumed in a strong-turbulence theory, and if the unwritten higher-
order terms of Eq. (295) are neglected, then solutions of the cubic equation (295) are themselvesO(1).
This result holds more generally; in the absence of a small parameter, the renormalized vertex Γ must
be O(1). It can, however, be numerically smaller than 1.

The present development describes self-consistent turbulence (γ is fully symmetric). The formalism
was extended to passive problems by Deker and Haake (1975) [for a superior approach, see the path-
integral formalism in Sec. 6.4 (p. 166)]. One can thereby deduce (Krommes, 1984a) the analog of the
first vertex renormalization (295) for the SO model of Sec. 3.3 (p. 52). The resulting equation was
first derived and studied by Kraichnan (1961); it is very successful, as discussed in Sec. 3.9.8 (p. 85).

Nevertheless, although the MSR equations are formally exact (at least for Gaussian initial
conditions), they are “not a panacea” (Martin, 1976). One problem is that they provide equations
for Eulerian correlation and response functions whereas in some cases a Lagrangian basis would
be more suitable. Thus none of the nth vertex renormalizations is invariant to random Galilean
transformations. For further discussion, see Kraichnan (1964e) and Sec. 5.6.3 (p. 138). A further
difficulty is that the equations beyond DIA order are largely intractable for physical problems with
nontrivial mode couplings.

Although the general MSR formalism provides coupled Dyson equations for C and R, in special
cases just one of those suffices. In addition to the early work by Kraichnan (1959a), general conditions
under which fluctuation–dissipation relations hold were discussed by Deker and Haake (1975); see
also Forster et al. (1977). Furthermore, even though for general nonequilibrium situations the time
dependences of C(τ ) and R(τ ) are different in detail, it is frequently useful to assert a fluctuation–
dissipation Ansatz. For more discussion, see Sec. 7.2 (p. 182).

The formalism as developed thus far is diagrammed in Fig. 20.
So far we have considered quadratic nonlinearity. However, in a number of instances cubic

nonlinearity is also of importance. It forms the basis of a statistical description of Langmuir turbulence

200 A more cumbersome calculation that led to the γ expansion Γ ≈ γ+G3γ3 was done by Mond and Knorr
(1980).
201 Although the first vertex renormalization (295) appears to be well behaved, higher ones in the polynomial
Γ expansion need not be. As an alternative, Krommes (1984a) suggested a continued-fraction development
that introduced successively more complicated n-body connected functions. That has not been explored since
it is presumably intractable in practice.
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= Σ+(c)

Σ(1,2) = ½

1 20G  (1,2) 

= ½

G(1,2) 1 2

Γ(1,2,3) 1
2

3

1 1’

2 2’
I(1,2;1’,2’) I

DIAΣ ½==

(e)

(d)

(b)

,(a)

DIA

-1 =R

(f)

(g)

+= I ,

1,

γ(1,2,3) 1
2

3
,

,

Fig. 20. Diagrammatic expression of the MSR formalism for quadratic nonlinearity in the vertex
representation. (a) Bare propagator G0 and correlation matrix G; (b) bare three-point vertex γ and
renormalized vertex Γ; (c) the (matrix) Dyson equation G = G0 + G0ΣG (or G−1 = G−1

0 − Σ); (d) mass
operator Σ = γGGΓ; (e) exact equation for Γ (I .= δΣ/δG); (f) DIA for Γ and Σ; (g) DIA equations for
response and correlation functions.

(Sun et al., 1985), arises naturally in quantum field theory (de Dominicis and Martin, 1964a), emerges
in the theory of random U(1, 2) [as shown in Sec. 6.4 (p. 166)], and was used by Rose (1979) in
his elegant treatment of particle discreteness. Without proof (de Dominicis and Martin, 1964a), I
summarize the theory for the field equation

−iσΦ̇(1) = γ1(1) + γ2(1, 2)Φ(2) + 1
2
γ3(1, 2, 3)Φ(2)Φ(3) + 1

3!
γ4(1, 2, 3, 4)Φ(2)Φ(3)Φ(4). (296)

The equation for the mean field,

−iσ∂tG(1) = γ1(1) + γ2(1, 2)Γ(2) + 1
2
γ3(1, 2, 3)[G(2)G(3) +G(2, 3)]

+ 1
3!
γ4(1, 2, 3, 4)[G(2)G(3)G(4) + 3G(2)G(3, 4) +G(2, 3, 4)] (297)

is retained without approximation. Differentiation of Eq. (297) with respect to γ1 leads to the Dyson
equation

G−1 = G−1
0 − Σ, (298)

where G0
.
= −iσ∂t − γ2 (i.e., it is defined without mean-field terms, which are now put into Σ). One

finds [Fig. 21(a), p. 162]

Σ(1, 1′)= γ(1, 2, 1′)G(2) + 1
2
γ(1, 2, 3)G(2, 2)G(3, 3)Γ(2, 3, 1′)

+ 1
3!
γ(1, 2, 3, 4){3δ(2, 1′)[G(3)G(4) +G(3, 4)] + 3G(2)G(3, 3)G(4, 4)Γ(3, 4, 1′)

+G(2, 2)G(3, 3)G(4, 4)[3Γ(2, 3, 5)G(5, 5)Γ(5, 4, 1′) + Γ(2, 3, 4, 1′)]}, (299)

Γ(1, 2, 3) =
δΣ(1,2)

δG(3)
+ I(1, 2; 4, 5)G(4, 4)G(5, 5)Γ(4, 5, 3), (300a)

Γ(1, 2, 3, 4) =D(1, 2; 3, 4) − [Γ(1, 5, 3)G(5, 5)Γ(2, 5, 4) + (3↔ 4)]. (300b)
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The function D represents all of the doubly connected graphs. Specifically, GGDGG represents the
last three terms of Fig. 19 (p. 158), and Eq. (300b) represents just the last diagram in that figure
(shorn of its legs). It will be shown in the next section that D obeys

1
2
D = I + IK0(

1
2
D), I

.
= δΣ/δG2, (301a,b)

where K0
.
= (GG)s and the subscript s denotes symmetrization.

For purely cubic nonlinearity (γ3 ≡ 0), the formulas simplify. In particular, a cubic direct-
interaction approximation (CDIA) can be defined by the approximation Γ4 ≈ γ4. Then (in the absence
of mean fields) one finds [Fig. 21(b)]

ΣCDIA(1, 1′) = 1
2
γ4(1, 1

′, 3, 4)G(3, 4) + 1
6
γ4(1, 2, 3, 4)G(2, 2)G(3, 3)G(4, 4)γ4(2, 3, 4, 1

′). (302)

Appropriate spinor components of this formula readily lead to the equations of Hansen and Nicholson
(1981) and Sun et al. (1985).

(a)

(b) DIA +

++Σ    =

Σ     =

Fig. 21. The mass operator for cubic nonlinearity with vanishing mean field. An alternate representation
of the vertices is used in which open n-gons represent γn and filled n-gons represent Γn. (a) Exact result
[cf. Fig. 2 of Martin (1979)]; (b) DIA.

The cubic formalism can also be used to demonstrate that first-order perturbation theory is exact
for a Gaussian advective nonlinearity white in time. The proof is sketched in Appendix H.3 (p. 294).

6.2.4 The Bethe–Salpeter equation

Although for quadratic nonlinearity we have succeeded in developing approximate closures entirely
in terms of the three-point vertex function Γ, the appearance of I in Eq. (292b) suggests that four-
point functions are central to the theory, a point made in Appendix A of Martin et al. (1973); see
also Schwinger (1951b). To introduce such functions conveniently, I follow Krommes (1978, 1984a)
and introduce the extended generating functional

W [η1, η2] = ln 〈exp[η1(1)Φ(1) + 1
2
η2(1, 2)Φ(2)Φ(2)]〉

+
, (303)

where η2 is symmetric. Derivatives with respect to η2 may be said to define two-body functions, which
are to be compared with the usual one-body functions defined by derivatives with respect to η1. For
example, the natural generalization of the two-point, one-body function G is the four-point, two-body
function

K(1, 2; 1′, 2′) .
=

δG(1,2)

δη2(1′, 2′)

∣∣∣∣∣
G1

, (304)
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sometimes called the two-body scattering matrix. 202 To develop the analogy further, introduce
(Krommes, 1978) the two-body Legendre transformation

L[G1, G2] = W [η1, η2]− η1(1)G(1) − η2(1, 2)G(1, 2) (305)

and define renormalized vertices according to

Γi(1, . . . , n)
.
= δnL/δGi(1) . . . δGi(n), (306)

where G1 ≡ F and G2 ≡ G. For example,

Γ1(1) = −η1(1), Γ2(1, 2) = −η2(1, 2),

Γ1(1, 1
′) = −G−1(1, 1′), Γ2(1, 2; 1

′, 2′) = −K−1(1, 2; 1′, 2′).
(307)

The symmetry between the one- and two-body functions is apparent.
The equation for K follows (Martin et al., 1973; Krommes, 1978, 1984a) by adding η2 to the γ2 of

Eq. (287), then differentiating Eq. (287) with respect to η2 at fixed η1. The result, the Bethe–Salpeter
equation (BSE), can be written in either of the forms

K = K0 +K0IK or K−1 = K−1
0 − I. (308a,b)

Equation (308a) is diagrammed in Fig. 22.

KI+K = ½ +

Fig. 22. The Bethe–Salpeter equation (308a); compare with the Dyson equation [Fig. 20(c), p. 161].

The interaction kernel I , which describes “intrinsic” two-body correlations, plays the same role in
Eqs. (308) as Σ plays in the Dyson equation; compare Eq. (308b) with Eq. (287). Because the formal
solution of Eq. (308a) is K = (1−K0I)

−1K0, Eq. (300a) can be written as K0Γ = KδΣ/δG1 → Kγ,
the latter result holding only for quadratic nonlinearity. For that case, upon inserting this result into
Eq. (283b) one finds the symmetrical representation 203 [Fig. 23(a), p. 164]

Σ(1, 1) = 1
2
γ(1, 2, 3)K(2, 3; 3, 2)γ(3, 2, 1). (309)

The DIA follows by neglecting the intrinsic two-body correlations altogether:

IDIA = 0, KDIA = K0 = (GG)s. (310)

There is a rather precise analogy to the distinction between the Balescu–Lenard and Boltzmann
collision operators. The DIA is analogous to the BL operator, which is derived by neglecting the

202 A textbook that provides quantum-field-theoretical background in the spirit of the present section is by
Nishijima (1969).
203 The representation (309) can be used to show that the fully renormalized theory preserves the same
nonlinear invariants as the DIA, by virtue of the detailed conservation property (309) and the symmetries
of K.

163



Coulomb interaction between two bare particles [thereby permitting the factorization of a two-particle
Green’s function, as noted in Sec. 2.3.2 (p. 32)]. The interaction kernel I describes correlational effects
analogous to the large-angle scattering described by the Boltzmann operator. Indeed, K figures
prominently in the theory of Rose (1979), who showed how to incorporate into a renormalized
description discrete (Klimontovich) and continuous particle distributions on equal footing.

The various equations of the Bethe–Salpeter representation for quadratic nonlinearity are
diagrammed in Fig. 23.

(a) Σ(1,2) = ½ K

DIA
0I(b) = ½ +

DIA
K =

~~I(c) K ~~ +   ½ K-

Fig. 23. Four-point representation of the MSR formalism for quadratic nonlinearity. (a) Renormalized mass
operator Σ in terms of the two-body scattering matrix K; (b) DIA for the four-point functions; (c) first
vertex renormalization in terms of four-point functions.

The remaining task is to relate the interaction kernel I to the doubly connected graphs D. It can
be shown 204 (Martin et al., 1973) that

1
2
D = IKK−1

0 . (311)

Upon multiplying Eq. (308a) on the left with I and on the right with K−1
0 , one is led immediately to

Eq. (301a).
The formalism of this section provides an elegant description of the statistical dynamics of

nonlinear systems. It was used, for example, by DeDominicis and Martin (1979) [see also Martin
and de Dominicis (1978)] to discuss the energy spectra of randomly stirred fluids. Connections to the
theory of the renormalization group were discussed by Eyink (1994).

204 To find a simple expression for the doubly connected graphs, write (Martin et al., 1973)

G4 =
δ2G2

δη1δη1
= G2

δ

δG1
G2

δG2

δG1
= G2(ΓGΓ)G2 +GG

δ2G2

δG1δG1
; (f-18)

the last term is the doubly-connected part K0DK0. We will see shortly that the identity

δ2G(1,2)
δG(3)δG(4)

∣∣∣∣
η2

= 2
δΣ(3,4)
δη2(1, 2)

∣∣∣∣
G1

(f-19)

holds. If that is accepted, then 1
2DK0 = δΣ/δη2 = IK, which reproduces the result (311). The steps

in the proof of the identity are as follows: (i) Differentiate Eq. (298) with respect to η2. (ii) Note that
G−1

2 = δη1/δG1|η2. (iii) Interchange the derivatives to get δη1/δη2|G1
= −G−1

2 δG1/δη2|η1. (iv) Calculate
δG1/δη2 by explicitly differentiating Eq. (303).
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In plasma physics, applications of the MSR formalism have been mostly restricted to formal
derivations of the DIA and discussions of the nonlinear dielectric function (Sec. 6.5, p. 170). However,
Krommes (1996) recently employed the formalism in his discussion of higher-order statistics (Sec. 10.2,
p. 221), and Krommes and Kim (2000) found it to be useful in their discussion of the theory of long-
wavelength growth rates nonlinearly driven by short scales (Sec. 7.3.3, p. 194). It is also convenient
for formal discussions of the Landau-fluid closure problem (Appendix C.2.2, p. 278).

6.2.5 Ward identities

Ward identities are relationships between the vertex functions of different orders that are
consequences of particular continuous symmetries. I shall give only a brief introduction. Suppose the
Φ dynamics are invariant under the transformation Φ → Φ = TΦ. Then W [η1] is invariant provided
that η1 → η1 = T−1η1. Let the transformation be parametrized by ε and let T = exp(εL̂) (i.e., L̂ is
the infinitesimal generator of the transformation 205). Then invariance of W under an infinitesimal
transformation leads to

0 =
∫

d1
δW

δη1(1)
L̂η1(1) (312)

(as usual, a sum over spinor components is implied). Upon recalling Eqs. (275) and (280a), one can
rewrite Eq. (312) as the fundamental Ward identity

0 =
∫

d1G(1)L̂Γ(1). (313)

Further differentiations with respect to G lead, upon recalling Eqs. (279), to an infinite number
of further identities that can provide important constraints on the structure of the renormalized
theory. An example involving rotational symmetry can be found in Sec. 7–11 of Amit (1984). Finally,
the invariance of the Burgers equation (19) to the Galilean transformation u(x, t) → u(x, t)

.
=

u(x − V t, t) + V for constant V can be used to prove that vertices in the Burgers turbulence do
not renormalize in the long-wavelength limit; see Appendix B of Forster et al. (1977).

6.3 Non-Gaussian initial conditions and spurious vertices

As presented so far, the MSR formalism is valid only for Gaussian initial conditions and in the
absence of random coefficients. Note that if one considers one-sided functions ψ+(t)

.
= H(t− t0)ψ(t),

initial conditions can explicitly be incorporated into the dynamics as ∂tψ+ + · · · = ψ(t0)δ(t− t0). In
this form they are additive to U1 and can thus be dealt with as a special case of random forcing. For
the latter, Rose (1974) proved that the formalism remains valid provided that the bare vertices γn
are replaced by γn +Γ(0)

n , where the spurious vertices Γ(0)
n are the nth-order cumulants of U1 when all

spinor indices are −, and are zero otherwise. This important result can be recovered most easily from
the path-integral formalism of Sec. 6.4 (p. 166), as can the generalization to random coefficients. For
some related discussion, see Krommes (1996).

205 For example, translations through a distance ε, Tf(x) = f(x + ε), are generated by L̂ = ∂x. For some
further discussion of such transformations, see Appendix C.1.5 (p. 273).
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An important instance of non-Gaussian initial conditions is the many-particle system described
by the Klimontovich microdensity Ñ . The singular nature of Ñ leads (Rose, 1974) to spurious vertices
of all orders, each of O(1). This feature presents significant technical difficulties; a superior procedure
for analyzing such singular systems was given in the elegant work by Rose (1979).

Rose (1985) used the theory of non-Gaussian initial conditions to develop an interesting, efficiently
computable closure alternative to the DIA. The DIA makes a time-dependent prediction for the triplet
correlation function; computational difficulties ensue because of a time-history integral that must in
principle be taken all the way from t = 0. Rose instead proposed dividing the calculation into time
intervals and using the value of the triplet correlation at the end of each interval to determine the
non-Gaussian initial condition for the next interval. The resulting cumulant update DIA (CUDIA)
can provide a substantial computational savings. For recent discussion of the CUDIA, see Frederiksen
et al. (1994).

6.4 Path-integral representation

I have already mentioned in Sec. 6.1.3 (p. 152) the influential role of Feynman’s action-integral
formulation of quantum mechanics. The representation of the probability amplitude of a particular
event as an appropriate sum over all possible histories expedites intuitive visualizations of the
elementary processes that contribute to the total amplitude. The famous Feynman diagrams are
graphical representations of those processes; each diagram corresponds to a specific term in the
perturbative expansion of the total amplitude in powers of a coupling constant g that is assumed
to be small. In quantum electrodynamics g is the fine-structure constant α.

If one recalls that Dyson (1949) was able to demonstrate the mathematical equivalence between
the superficially disparate formalisms of Schwinger and Feynman, one will not be surprised to learn
that a path-integral representation underlies the classical MSR formalism as well. The most general
discussion was given by Jensen (1981), who relied heavily on the work of Jouvet and Phythian
(1979); those authors, in turn, cited a variety of earlier references. Useful introductions to the
formalism were given by Dubin (1984b) and Frisch (1995, Sec. 9.5.2). In the context of QFT, detailed
technical discussion can be found in Zinn-Justin (1996). For some related remarks on dynamic critical
phenomena, see Chang et al. (1992).

The fundamental conceptual idea underlying the path-integral representation is the identity for
the PDF P (x) of a random variable x̃: P (x) = 〈δ(x− x̃)〉. The delta function can be Fourier-
transformed, so averages of an arbitrary function F (x̃), 〈F (x̃)〉 =

∫
dxF (x)P (x), can be represented

as

〈F 〉 =
∫

dx
∫

dk

2π
F (x)eikx〈e−ikx̃〉. (314)

Therefore a generating function for averages of polynomial functions of x is

Z(η) =
∫

dx
∫ dk

2π
eikx〈e−ikx̃〉eηx; (315)

for example, 〈x2〉 = ∂2Z(η)/∂η2|η=0. This is, of course, nothing more than an elaborate way of stating
that the characteristic function of a PDF is a moment generating function (Sec. 3.5.2, p. 59) [for
imaginary η, the x integration can be performed, yielding δ(k− η)], but the present form, integrated
symmetrically in x and k, is useful for later generalization.
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In the application to field theory one must consider all times and space points simultaneously and
incorporate the information that the dynamical variables obey an equation of motion. To illustrate
the construction with the least amount of clutter, I follow Jouvet and Phythian (1979) and consider
the evolution of a function Q(t) that obeys

∂tQ− A[Q] = f ext(t). (316)

The brackets indicate functional dependence of A on the values of Q in some time interval 0 ≤ t ≤ T .
The functional A and the function f ext may be random 206; one’s ultimate goal is to calculate the
ensemble averages of specified functionals F [Q]. For example, the choice F [Q] = Q(t1)Q(t2) leads
upon averaging to the two-point correlation function C(t1, t2). Nevertheless, let us temporarily refrain
from introducing statistics and first attempt to develop a convenient representation of F [Q], where
Q(t) is constrained to obey Eq. (316) with the particular initial condition Q(0) = Q0. One has
formally F [Q] =

∫
D[q]F [q]δ[q−Q], where a functional integral and Dirac delta functional have been

introduced. As in Sec. 3.5 (p. 59), those can be defined by discretizing the time axis into N intervals
of length ∆t = T/N ,

tn = n∆t, Qn = Q(tn) (n = 0, 1, . . . , N
.
= T/∆t), (317)

and passing to the limit ∆t→ 0 (N →∞):

F [Q]= lim
∆t→0

F (Q0, Q1, . . . , QN) (318a)

= lim
∆t→0

N∏
n=0

dqnF (q0, q1, . . . , qN)δ(q0 −Q0)[δ(q1−Q1) . . . δ(qN −QN)]. (318b)

To explicitly exhibit the dynamical constraint (the equation of motion) satisfied by the Qn’s, one may
write

δ[q −Q] = J δ(q0 −Q0)δ[q̇ −A[Q]− f ext], (319)

where J is the Jacobian on the transformation between Q and f ext: J = det(δf ext/δQ). The value
of J depends on the way in which the equation of motion is discretized. The simplest discretization
(used, for example, by Jensen) is

(Qn+1 −Qn)/∆t− A(Qn) = f ext(tn), (320)

written here for the special but practically important case for which A is local in time. 207 For
this convention the transformation of variables is between {Q1, . . . , QN} and {f ext

0 , . . . , f ext
N−1}, so

J = ∆t−N . In the continuum limit J is infinite [J ∼ exp(N lnN)], but that infinity will be canceled
by another; physical observables will be finite.

206 Clearly f ext could be incorporated into A[Q], but it seems more pedagogical to write it explicitly here.
207 For the Klimontovich nonlinearity (Ẽ + c−1v× B̃) · ∂vÑ , where Ẽ and B̃ are related to Ñ via Maxwell’s
equations, temporal locality holds for electrostatic but not electromagnetic interactions. One of Jensen’s
contributions was to show that it is not necessary to assume locality; a general nonlocal dependence A[Q] is
permissible.
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In order to deal conveniently with the delta functional in Eq. (319), one can introduce conjugate
momentum variables p by writing, for arbitrary real function G(t),

δ[G] ≈
∫

dp1

2π
. . .

dpN
2π

eip1G1+···+ipNGN =
(

i∆t

2π

)N ∫
D[q̂] exp

(
−
∫ T

0
dt q̂(t)G(t)

)
, (321a,b)

where I have defined q̂
.
= p/(i∆t) and exploited Riemann’s representation of the time integral. Upon

combining Eqs. (318b), (319), and (321b) and recalling that J is independent of Q, one obtains

F [Q] = N
∫

D[q] D[q̂]F [q]e−S̃, (322)

where N is a normalization coefficient, the random action is S̃ .
=

∫ T
0−dt L̃(t), and the random

Lagrangian is L̃(t)
.
= q̂(t){q̇(t) − A[q]− f ext(t) − δ(t)Q0}. Notice that the initial condition has been

incorporated into the equation of motion. That could have been done at the outset by considering
the equation of motion for the one-sided function Q+(t)

.
= H(t)Q(t); that was, in fact, the procedure

followed by Jensen. That the terms involving A, f ext, and Q0 appear symmetrically in L̃ suggests that
a completely unified treatment of random coefficients, forcing, and initial conditions will stem from
the path-integral formalism.

To understand the significance of q̂, first recall the relationship between the functional derivative
and ordinary partial differentiation (Beran, 1968). From the definition

δ

δψ(tn)

∫
dt A[ψ] =

∂A

∂ψ

∣∣∣∣∣
tn

, (323)

one has in a discretization δ/δψ(tn) = ∆t−1∂/∂ψn. If pn is a Fourier variable conjugate to ψn, then
the functional derivative transforms to ipn/∆t; thus q̂

.
= p/(i∆t) is the Fourier transform of −δ/δψ:

q̂ ⇔ −δ/δψ ≡ ψ̂. Because functional derivatives describe the effects of infinitesimal changes in
functional form, one suspects that q̂ is related to infinitesimal response functions. Indeed,

δnF [Q]

δf ext(t1) . . . δf ext(tn)
= N

∫
D[q] D[q̂]F [q] q̂(t1) . . . q̂(tn)e

−S̃ . (324)

One is now motivated to generalize in several ways: (i) Consider arbitrary functions F [Q,Q̂],
where Q̂ obeys a suitable equation of motion adjoint to Q [see Eq. (328)]. (ii) Perform the

statistical average (statistics reside only in S̃) by writing 〈e−S̃〉 = e−S [see Eq. (93a)], thereby
defining an effective action S. (iii) Introduce statistically sharp source terms η(t) and η̂(t) such
that S → S +

∫
dt [η(t)q(t)+ η̂(t)q̂(t)]. (Those can be introduced either before or after the averaging.

If they are introduced before, note that η̂ is additive to f ext.) (iv) Define the generating functional

Z[η, η̂]
.
= N

∫
D[q] D[q̂] e−Se

∫
dt [η(t)q(t)+η̂(t)q̂(t)]. (325)

Clearly averages of all polynomial functions of Q and Q̂ can be derived from functional differentiation
of Z. For example, with η

.
= (η, η̂)T one has 〈Q(t1)Q(t2)〉 = δ2Z/δη(t1) δη(t2)|η=0 and R(t1; t2)

.
=

〈δQ(t1)/δf
ext(t2)〉|fext=0 = δ2Z/δη(t1) δη̂(t2)|η=0. Cumulants can be generated from W [η]

.
= lnZ[η].
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These results strongly suggest that the Z thus defined is identical to the generating functional
of MSR, which I shall here write as

ZMSR[η, η̂] = 〈e
∫

dt [η(t)Q̃(t)+η̂(t)
˜̂
Q(t)]〉+, (326)

where Q̃ and
˜̂
Q are random variables. It is perhaps not immediately obvious that formulas (325)

and (326) are identical: Equation (326) involves statistical averaging and time ordering whereas
Eq. (325) involves neither of those (explicitly), but instead contains a functional integral weighted
with the exponential of an effective action. But averaging has been performed in the definition of S,
and the functional integration conceals a delta-functional constraint that reflects the evolution of the
causal dynamics; indeed, the information content of Z and ZMSR is the same. Consider, for example,
〈〈q(t)〉〉η .

= δW [η]/δη(t). Its time derivative introduces q̇(t), which can be replaced by −δ/δq̂(t) acting
on the exp[−

∫
dt q̂(t)q̇(t)] that resides in S. After an integration by parts, the q̂ derivative brings down

the right-hand side of the equation of motion augmented by η̂. Thus

∂t〈〈q(t)〉〉η = 〈〈{A[q] + f ext(t) + δ(t)Q0}〉〉η(t) + η̂(t), (327)

which is the appropriate MSR average of the equation of motion [cf. Eq. (272)]. Similarly, upon noting∫
dt q̂(t)q̇(t) = −

∫
dt ˙̂q(t)q(t), one finds

−∂t〈〈q̂(t)〉〉η = 〈〈q̂ δA[q]/δq〉〉η(t) + η(t), (328)

which is the average of the adjoint equation of MSR [cf. Eq. (273)]. The matrix MSR development in
terms of the vector Φ = (q, q̂)T [see Eq. (274)] follows immediately. 208

An alternate way of deriving the cumulant equations is to differentiate the identity

0 =
∫

D[Φ]
δ

δΦ

(
e−Se

∫
dt η1(t)Φ(t)

)
. (329)

This procedure is convenient for dealing with the effects of random forcing and/or coefficients because
the average over those quantities has been taken into account in deriving the explicit form for S. Thus
if the average over the random force is performed explicitly, the resulting cumulant expansion involves
only q̂. For example, for a centered Gaussian

〈e
∫

dt q̂(t)fext(t)〉 = exp
(

1

2

∫
dt dt′ q̂(t)F ext(t, t′)q̂(t′)

)
, (330)

where F ext(t, t′) .
= 〈〈f ext(t)f ext(t′)〉〉; higher-order cumulants just introduce more powers of q̂. This

behavior can readily be seen to lead to the result of Rose (1974) that forcing can be taken into account
by the spurious vertices defined in Sec. 6.3 (p. 165), because δ/δΦ of Eq. (330) is nonvanishing
only for its − component (which couples only to q̂ fields). For example (generalizing now to
the possible presence of independent variables other than the time), Eq. (330) can be written as
exp[ 1

2
γ′2(1, 2)Φ(1)Φ(2)], where γ′2(1, 2)

.
= F ext(1, 2) for all indices −, and vanishes otherwise. The

effect is to add a term γ′2(1, 2)Φ(2) to the right-hand side of the equation of motion: −iσ∂t〈〈Φ(1)〉〉 =

208 Causality is built in naturally. The MSR rule that cumulant averages beginning on the left with q̂ vanish
appears here as a generalization of the result that (2π)−1

∫∞
−∞dx dk k eikxeη̂k involves (at η̂ = 0) k δ(k) = 0.
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γ′2(1, 2)〈〈Φ(2)〉〉 + · · · . This term does not contribute to the averaged equation of motion at η = 0
because 〈〈q̂〉〉|η=0 = 0. However, to the G equation derived by functional differentiation with respect
to η, it contributes γ′2(1, 2)G(2, 1′), so γ′2 is additive to the mass operator Σ; in particular, its −−
component F ext(1, 1) adds to the internal noise F nl(1, 1)

.
= Σ−−, as would be expected.

Multiplicative passive statistics can be dealt with in a similar fashion. An important special case
is random U2 (passive advection). For Gaussian U2,

〈eq̂(1)U2(1,1)q(1)〉 = exp[ 1
2
q̂(1)q̂(2)〈〈U2(1, 1)U2(2, 2)〉〉q(1)q(2)] (331)

can be written as exp[ 1
4!
γ′4(1, 2, 3, 4)Φ(1)Φ(2)Φ(3)Φ(4)], where γ′4 has precisely two − indices and

γ′4−−++(1, 2, 3, 4) = 〈〈U2(1, 3)U2(2, 4)〉〉; thus one finds a cubic contribution to the equation of motion:
−iσ∂t〈〈Φ(1)〉〉 = 1

3!
γ′4(1, 2, 3, 4)Φ(2)Φ(3)Φ(4)+ · · · . The associated functional formalism was described

in Sec. 6.2 (p. 153). When U2 is white in time, further reduction is possible; see Appendix H.3 (p. 294).
As discussed by Jensen (1981), one useful feature of the path-integral formalism is that the final

renormalized equations involve only cumulants of the random coefficients, not mixed correlations
between those coefficients and the dynamical variables. The formalism of Deker and Haake (1975)
produces more unwieldy equations involving mixed correlations. The information content of both
approaches is the same, however (Johnston and Krommes, 1990).

Dubin (1984a) has shown that the path-integral representation can also be generalized to deal
efficiently with the predictability problem (footnote 165, p. 130).

Finally, although I have stressed the application of the path-integral representation to the
derivation of renormalized cumulant equations, the explicit form of the generating functional raises
the possibility that it can be evaluated directly. Most such work has been restricted to discrete
mappings; see, for example, Rechester et al. (1981). In a related development, recently generating-
functional techniques have been used successfully to deduce considerable information about the PDF
for intermittent Burgers turbulence; see Sec. 10.4.3 (p. 227).

6.5 The nonlinear dielectric function

“The MSR techniques allow a more succinct and, we believe, more understandable derivation
of [the Orszag–Kraichnan equations (Vlasov DIA), the Krommes–Oberman . . . equation for
equilibrium fluctuations, and DuBois’ space-time formulation of weak-turbulence theory].” —
Krommes (1978).

One of the most important physical distinctions between plasmas and neutral fluids lies in the
dielectric properties of the two mediums. The differences can be seen most starkly at linear order.
The linear response of the usual incompressible Navier–Stokes model consists merely of weak viscous
decay. However, plasmas have an exceedingly complicated linear response, particularly in a magnetic
field; they support a rich spectrum of linear waves and instabilities driven by gradients in both v space
and x space.

I have already mentioned in Sec. 4.3.3 (p. 110) Dupree’s early work on the resonance-broadening
approximation to the nonlinear plasma dielectric function D. Much confusion has ensued by the failure
of many workers to recognize that the resonance-broadening dielectric was not derived systematically.
It is therefore important to have at hand a formally exact formula for the true, fully nonlinear D(k, ω).
The MSR formalism provides a convenient tool. Conversely, the representation of D provides a central
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interpretation of the mean infinitesimal response function R. Note that Martin et al. did not explicitly
discuss dielectric response; the following material (DuBois and Espedal, 1978; Krommes and Kleva,
1979) represents one of the rare contributions to classical statistical dynamics that is original to
plasma-physics research.

6.5.1 Definition of the dielectric function

As I shall show, a dielectric function can be defined for all random mediums, including ones
having nothing to do with electrodynamics (like the NSE). Nevertheless, elementary electromagnetism
provides the most familiar and compelling motivation. Recall (Jackson, 1962) that the electric
displacement D obeys ∇·D = 4πρfree, where ρfree is the free charge density. In general, D is a nonlinear
functional of the (macroscopic) mean electric field E ≡ 〈E〉: D = D[E]. Here “macroscopic” means
an average over any microscopic fluctuations of the medium. In elementary discussions those are
considered to arise from particle discreteness, but the concept applies to any source of random
fluctuations, including turbulent collective motions. It is very important to distinguish the macroscopic
field E from the random microscopic field Ẽ.

If the dependence D[E] is analytic near E = 0, then D = D · E + O(E2). The matrix D is
called the dielectric tensor ; it describes the first-order polarizability properties of the medium. Most
generally, D is a causal linear operator in the space and time domains; however, for homogeneous and
stationary turbulence one may Fourier transform with respect to space and time differences to obtain
the function D(k, ω).

For definiteness, consider the electrostatic limit, in which magnetic fluctuations are negligible.
Then the electric field is the (negative) gradient of a scalar potential ϕ, the dielectric tensor reduces
to a scalar D, and

D〈ϕ〉tot
= ϕfree ≡ ϕext or 〈ϕ〉tot

= D−1ϕext. (332)

Here k2ϕfree = 4πρfree, tot stands for total, and ext stands for external. The tot superscript indicates
the total potential in the medium, including that due to the free charge. One often refers to the free
charge as external because its functional form is specified; it is not governed by the internal nonlinear
equations of the particles that polarize in response to the free charge. By analogy, in turbulence theory
one assumes that the fundamental nonlinear equation of motion describes the internal or induced
dynamics of the medium. Therefore the first-order response to an external test potential ∆ϕext is
∆〈ϕ〉tot = ∆〈ϕ〉ind + ∆ϕext. In conjunction with Eq. (332), this leads to

∆〈ϕ〉ind
= (D−1 − 1)∆ϕext. (333)

The fundamental algorithm for determining the nonlinear dielectric is therefore as follows: (i) Consider
a pre-existing turbulent state. (ii) Insert an infinitesimal test charge or potential into the turbulence.
(iii) Calculate the mean induced potential ∆〈ϕ〉ind. The (inverse of the) dielectric function is then
defined by Eqs. (332) or (333). When multiple potentials are involved, there is a natural generalization
that defines a dielectric tensor. 209

209 The dielectric tensor need not be 3×3. For calculations that employed a 2×2 dielectric tensor describing
the coupling between ϕ and A‖ (the component of the vector potential parallel to the magnetic field), see
Krommes and Kim (1988) and Krommes (1993c).
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6.5.2 General form of the renormalized dielectric function

For Hamiltonian dynamics the Klimontovich equation of motion is ∂tÑ = [H, Ñ ], so additive
contributions to H enter as multiplicative contributions to the equation of motion. Since one knows
from the discussion of the MSR formalism in Sec. 6 (p. 146) that a general turbulence dynamics can
be derived from a Hamiltonian functional, consider an equation of motion of the form

∂tψ + iL̂ψ + (F̂ψ) · ∂ψ = 0, (334)

where F̂ is a linear operator that determines a generalized force from ψ and ∂ is the derivative with
respect to the associated generalized momentum. For example, in Vlasov electrostatics ψ = fs(x,v, t)
and F̂ = qÊ, where the Fourier transform of Ê is given by Eq. (27) and ∂

.
= m−1∂v. To encompass the

case of multiple generalized potentials (an example would be the set {ϕ,A‖} of weakly electromagnetic

plasma turbulence, where A is the vector potential), write F̂ = M · Φ̂, where M is a specified linear
matrix operator. Note that in general ψ depends on a kinetic momentum variable whereas the dielectric
function is a property of x-space response alone.

Now write ψ = ψ̃ + ∆ψind and consider the response to an infinitesimal perturbation ∆ψext:

(∂t + iL̂)(ψ̃ + ∆ψind) + [F̂(ψ̃ + ∆ψind + ∆ψext)] · ∂(ψ̃ + ∆ψind) = 0. (335)

The zeroth-order equation,
(
∂t + iL̂

)
ψ̃+ (F̂ ψ̃) ·∂ψ̃ = 0, provides the (fully nonlinear) description of

the base turbulent state ψ̃ [step (i)]. The first-order response obeys [step (ii)](
∂t + iL̂

)
∆ψind + (F̂ ψ̃) · ∂∆ψind + (F̂∆ψind) · ∂ψ̃ = −∂ψ̃ · F̂∆ψext. (336)

The Green’s function for the left-hand side of Eq. (336) is just the random infinitesimal response
function R̃. Therefore

∆ψind = −R̃(∂ψ̃ · F̂∆ψext), 〈∆ψ〉ind = −〈R̃∂ψ̃〉 · F̂∆ψext. (337a,b)

Finally, one accomplishes the first part of step (iii) by applying the potential operator Φ̂:

〈∆ϕ〉ind = (−Φ̂〈R̃∂ψ̃〉 ·M) ·∆ϕext. (338)

By comparing this result to Eq. (333), one can see that the parenthesized term of Eq. (338) defines
D−1 − I.

Unfortunately, the average in Eq. (337b) does not immediately close because it involves the
product of two fluctuating quantities, R̃ and ψ̃. Nevertheless, the MSR result

〈R̃(1; 2)ψ̃(3)〉 = 〈ψ̃(1)ψ̂(2)ψ̃(3)〉 = R(1; 2)〈ψ〉(3) +G
(

1
+

2
−

3
−

)
(339a,b)

together with Eq. (280c), which relates 210 G+−+ to the vertex functions Γ−++ and Γ−−+, closes the
equations in terms of quantities already introduced. The result can be written in the form

D−1 = I− Φ̂R∂f ·M, (340)

210 By systematically summing over all possible combinations of spinor indices and recalling that Γ+++

vanishes, one finds
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where f
.
= 〈F 〉+ δf and ∂δf is a symbolic notation defined by

∂δf(1, 2)
.
=
∫

dp2

[
∂2C(2, 2)Γ

(
1
−

2
+

3
+

)
+ ∂2R(2; 2)Γ

(
1
−

2
−

3
+

) ]
R(3; 2). (341)

It is important to note that this procedure naturally provides an expression for the inverse of the
dielectric tensor, a point stressed in a more specific context by Taylor (1974a). Because formula (340)
is built around the full response function R, its structure cannot immediately be compared with that
of the well-known linear dielectric (33). To accomplish that I follow DuBois and Espedal (1978) and
introduce a new particle response function g(1; 2)

.
= δ〈f(1)〉/δη̂(2)|ϕ, a properly renormalized version

of the single-particle propagator g0. One finds that (g−1
0 + Σnl

g )g = I, where Σnl
g is the part of Σnl

that does not involve the Φ̂ operator acting to the right. This can be shown to introduce the same
combination ∂f that appeared in Eq. (340) above, and leads to an intuitively plausible alternative to
the R equation:

g−1R+ ∂f · F̂R = I. (342)

Thus one has obtained a rigorous decomposition, valid through all orders of renormalization, of the
response into particle and self-consistent field contributions. By noting that Eq. (342) has a form
identical to that of Eq. (35), one can see that R is the renormalized generalization of Green’s function
for the linearized Vlasov equation. Straightforward operator manipulations (Krommes, 1984a) then
lead to the formal solution

R = g − g ∂f ·M · D−1 · Φ̂g, (343a)

the alternate representation

D = I + Φ̂g ∂f ·M, (343b)

and the physically pleasing result

Φ̂R = D−1 · Φ̂g. (343c)

When the nonlinear terms are neglected, so that g → g0 and f → 〈f〉, Eq. (343b) reduces to the
linearized Vlasov dielectric (33).

6.5.3 Coherent and incoherent response

Equations (343) generalize the familiar results (36) known to all students of Landau’s solution
of the initial-value problem for the linearized Vlasov equation. They also provide the renormalized

G

(
1
+

2
−

3
+

)
=C(1, 1)R(2; 2)R(3; 3)Γ

(
1
+

2
+

3
−

)
+R(1; 1)R(2; 2)C(3, 3)Γ

(
1
−

2
+

3
+

)
+ R(1; 1)R(2; 2)R(3; 3)Γ

(
1
−

2
+

3
−

)
. (f-20)

In the application to the dielectric function, the first term can be shown to vanish by causality; the common
factor of R(1; 1) of the second and third terms is the R of Eq. (340).
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description of a shielded test particle, which was discussed in perturbation theory by Rostoker (1964b).
Consider a scalar (single-potential) case for simplicity, and construct (Krommes, 1978, 1984a) the
potential correlation function by applying the Φ̂ operator to both arguments of C(1, 1′) written in
the spectral-balance form (286). In a homogeneous steady state, for which Fourier transformation in
both space and time is appropriate, one obtains

〈δϕ2〉(k, ω) =
〈δϕ̃2〉(k,ω)

|D(k, ω)|2 , (344)

where 〈δϕ̃2〉 .= Φ̂gF(Φ̂g)T . The interpretation of the completely rigorous Eq. (344) is that the true
(observable) potential spectrum arises from an incoherent noise spectrum 〈δϕ̃2〉 appropriately shielded
by the dielectric properties of the turbulent medium. Related discussion of such spectral balance
equations in the context of the fluid DIA was given in Sec. 5.4 (p. 133). Dupree employed the general
form (344) in his theory of clumps (Sec. 4.4, p. 119), which makes specific predictions for 〈δϕ̃2〉
(Dupree, 1972b, 1978).

As intuitive as they may appear, Eqs. (343b) and (343c) are not necessarily useful for practical
calculations because the form of g is not known; it is determined only implicitly in terms of R or
g itself. The full response function R is the natural object of renormalized turbulence theory; it obeys
a relatively simple causal evolution equation. Although in principle g can be considered instead, the
expressions of Σnl

g and ∂δf in terms of g are extremely complicated (Krommes and Kleva, 1979;
Krommes, 1984a) and do not appear to be appropriate for numerical evaluation.

Nevertheless, the expressions involving g are useful both formally, in the practical reduction of the
formulas to WTT, and in other considerations relating to self-consistency. Let me first comment on the
formal definitions of coherent and incoherent response. Equation (344) is the turbulent generalization
of a well-known result from classical many-particle kinetic theory, in which the incoherent noise arises
from an uncorrelated collection of discrete test particles. [See the construction εk ε∗k/|Dlin(k,k · v)|2
that appears in the kernel of the Balescu–Lenard operator (32).] An analogous interpretation can be
given to the particle-level spectral balance (286), C = RFRT . Now all of the formal development so
far has been given in terms of statistically averaged functions; however, it is useful heuristically to
consider the random fluctuations δf themselves and to divide them(Dupree, 1972b; Krommes, 1978,
1984a; DuBois and Espedal, 1978) into 211 a coherent part δfc and an incoherent part 212 δf̃ :

δf = δfc + δf̃. (345)

By definition, the coherent fluctuations are the renormalized particle response to an internal
fluctuation δE,

δfc
.
= −g ∂f · δE. (346)

[Dupree (1972b) wrote the form (346) with 〈f〉 instead of f and a resonance-broadening approximation
for the propagator renormalization Σnl

g .] The incoherent fluctuations δf̃
.
= δf − δfc are to be thought

of as “bare” phase-space fluid elements that are propagated by g (the generalization of test-particle

211 DuBois and Pesme (1985) referred to diagonal and nondiagonal parts.
212 Here the tilde denotes incoherent, not random. Both δfc and δf̃ are random.
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streaming in linear Klimontovich kinetic theory) and shielded by the dielectric properties of the
medium. In particular, arising from δf̃ is an incoherent field δẼ such that

δE = D−1δẼ; (347)

the mean square of Eq. (347) reproduces the spectral balance (344) for the potential. With these
definitions and the result (343a), one can easily show that

δf = Rδf̃0, with δf̃0
.
= g−1δf̃ ; (348a,b)

i.e., the plasma response to an incoherent fluctuation develops with the full response function R. 213

In these formulas one is mixing random variables (e.g., δE) together with statistical observables
(e.g., g or R). Thus one is really working with a generalized Langevin interpretation. Now the
quantity F nl(1, 1) that appears in the formal MSR development is positive definite, so it can be written
as the covariance of some (non-Gaussian) 214 random variable δf̃0. Consistent with Eq. (348b), one
may define

δf̃ = g δf̃0. (349)

The mean square of Eq. (349) then gives the covariance of the incoherent fluctuations as (DuBois and
Espedal, 1978; Krommes, 1978)

C̃ = gF nlgT , (350)

and the mean square of Eq. (348a) reproduces the balance C = RF nlRT . The similarity of these two
forms for C̃ and C is appealing. In the DIA one finds from formula (291b) that

F nl(1, 2) = 〈δE(1)δE(2)〉 : ∂1∂2C(1, 2) + 〈δE(1)∂2δf(2)〉 : 〈∂1δf(1)δE(2)〉. (351)

The distinction between g and R is fundamental: g describes the propagation of bare,
incoherent fluctuations; R includes additionally the effects of dielectric polarization [the second
term of Eq. (343a)]. Because the nonlinear terms Σnl

g and δf are defined in terms of R, the
decomposition (343a) leads to a corresponding decomposition of those terms that is useful for later
discussion of the relationship between the general formalism and simpler approximations such as RBT.
I shall restrict the discussion to the DIA, for which (DuBois and Espedal, 1978)

Σnl
g (1, 1) =−∂1 · [R(1; 2)〈δE δE〉(2, 1) + ÊR(1; 2)〈δE(2)δf(1)〉] · ∂2δ(2− 1), (352a)

∂δf(1, 2) =
∫

dv2 [∂2〈δf(2)δE(1)〉 · ∂1R(1; 2) + ∂2∂1C(2, 1) · ÊR(1; 2)]. (352b)

213 The presence of g−1 in formula (348a) can be understood by noting that if δf̃ is propagated by g from
some initial condition δf̃(0), then g−1δf̃ is just that initial condition, which is then propagated by R to give
the full response.
214 δf̃0 must be non-Gaussian in order that a Langevin representation of the dynamics will generate the
proper higher-order statistics. For related discussion, see Sec. 10.2 (p. 221).
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Into Eqs. (352) insert the decomposition (343a) for R. Let us call the contributions from the first
(g) term of Eq. (343a) diffusion terms and the contributions from the second term polarization terms.
Then one can write (Krommes and Kleva, 1979; Krommes, 1984a)

Σnl
g = Σ(d) + Σ(p), δf = δf

(d)
+ δf

(p)
; (353a,b)

for example, Σ(d)(1, 1) = −∂1 · g(1; 2)〈δE δE〉(2, 1) · ∂2δ(2− 1). Explicit formulas for the remaining
quantities in the DIA were given by Krommes (1984a).

The diffusion term Σ(d) and the first term of Eq. (351) are the only ones that survive in a
passive calculation; the remaining terms are due to self-consistency. Some additional insights follow
from comparisons to the various terms of the linearized Balescu–Lenard operator (Krommes and

Kotschenreuther, 1982). In a specific context the existence of δf
(d)

was noted by Dupree and Tetreault
(1978), who called it the β term. Of course, all of these terms were already present in the discussion
by Orszag and Kraichnan (1967) of the Vlasov DIA.

The g representation is convenient for efficient reduction of the renormalized theory to weak-
turbulence theory (Krommes, 1978; DuBois and Espedal, 1978; Krommes and Kleva, 1979), as
summarized in the next section, and for discussion of the relation of RBT to the full DIA (Sec. 6.5.5,
p. 178). It has also been used in discussions of self-consistent QLT (Sec. 6.5.6, p. 180).

6.5.4 The wave kinetic equation of weak-turbulence theory

The weakly nonstationary version of Eq. (344) is the starting point for the derivation of the wave
kinetic equation of WTT. It is assumed that the slowly evolving system is stable against infinitesimal
perturbations, so D(k, ω) must have zeros ωk = Ωk + iγk only in the lower half of the ω plane. That
is, D is the fully nonlinear dielectric; linear instability may exist, but must be overcompensated by
nonlinear damping so that γk < 0. In WTT it is assumed that ωk is located close to the real axis,
with |γk/Ωk| � 1; it is then consistent that Ik(ω) ≈ 2πδ(ω − Ωk)Ik. With these assumptions it is
shown in Appendix G.1 (p. 288) that the action density Nk evolves according to

∂Nk

∂t
− 2γkNk =

〈δϕ̃2〉k(Ωk)

|D′k|
, (354)

where as usual 215 γk ≈ − Im[D(k,Ωk)]/D′k with D′k
.
= ∂ ReD(k,Ωk)/∂Ωk.

Further reduction of Eq. (354) requires that γk and 〈δϕ̃2〉k be evaluated in the weak-turbulence

limit. Now in general it is very difficult to find the relative sizes of δfc and δf̃ ; it is the very essence
of renormalized theory that order is ill defined. Nevertheless, progress can be made in the order-
by-order expansion appropriate for WTT, for which one can argue that F nl = O(I2). If one inserts
C = 〈δfc δfc〉+ 〈δfc δf̃〉+ 〈δf̃ δfc〉 + 〈δf̃ δf̃〉, compatible with both Eqs. (345) and (348a), and ignores
the possibility that the velocity derivatives may change the nominal order of the terms, one can see

215 Note that γ is defined in terms of the renormalized D. Although γ contains nonlinear contributions, it
does not define the full time evolution of Nk. Unfortunately, some authors define γ from ∂tNk = 2γkNk

(Pesme and DuBois, 1985), implicitly including the mode-coupling contribution from the right-hand side of
Eq. (354) in γk.
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that formula (351) is dominated by the coherent parts:

C ≈ 〈δfc δfc〉 = (g∂f) · 〈δE δE〉 · (g∂f)T , 〈δf δE〉 ≈ 〈δfc δE〉 = −(g∂f ) · 〈δE δE〉. (355a,b)

In a strict ordering g can be replaced by its unrenormalized form and δf can be replaced by 〈f〉. The
resulting contribution to 〈δϕ̃2〉 is written in detail in Appendix G.2 (p. 290).

The weak-turbulence expansion of the dielectric function follows from an intensity expansion of
formula (343b) in which it is assumed that the primary waves are nonresonant, Ωk 6= k · v. This
inequality permits the propagator expansion gk ≈ g0,k − g0,kΣ

nl
g,kg0,k, where k ≡ (k, ωk). Through

second order one finds D = Dlin +Dnl, where (Krommes, 1984a)

Dnl
k ≈ Ê · g0,k(∂δfk − Σnl

g,kg0,k∂〈f〉). (356)

After tedious but straightforward calculations, one finds that Eq. (356) reduces precisely to
Eq. (190a); this is an important consistency check. If one keeps track of the various pieces, one finds

that Σ(d) and δf
(d)

contribute symmetrically to ε(3), while Σ(p) and δf
(p)

contribute symmetrically
to ε(2)(p | q, k) [each being proportional to ε(2)(k | p, q )].

Because the induced-scattering contributions proportional to γind
k involve particle motion, they

must vanish in the fluid approximation T = 0. In the absence of γind
k Eq. (191) has the same form as

the fluid WKE (182) deduced in Sec. 4.2 (p. 98), with γmc
k = −ηnl

k ; the kinetic-based procedure just
discussed therefore provides one route to the derivation of the fluid mode-coupling coefficients Mkpq.
This assertion is explicitly demonstrated for HM dynamics in Appendix G.3 (p. 291).

Let us focus on the fluid mode-coupling effects and consider their relation to the diffusion and
polarization parts in more detail. Superficially, the (d)–(p) decomposition does not appear to be
invariant to the route used to derive the final fluid WKE. If one were to begin immediately with a
fluid nonlinearity, e.g., the polarization-drift nonlinearity VE ·∇(−∇2ϕ), a diffusive contribution Σ

(d)
fluid

would arise by treating the E×B velocity as passive. When the potential is treated self-consistently,

leading to symmetrized mode-coupling coefficients, three extra terms Σ
(p)
fluid, δf

(d)

fluid, and δf
(p)

fluid arise.
However, in the kinetic route all of the fluid effects [which involve ε(2); see the discussion of Eq. (191)]

arise from the polarization terms Σ
(p)
kin and δf

(p)

kin.
The resolution of this paradox is that the kinetic decomposition (352) that has been discussed

previously (Krommes and Kleva, 1979; Krommes, 1984a) is not sufficiently detailed. In order to
properly track the passage to the fluid limit, each of the kinetic terms should carry a second d or p
label to define its fluid-related passive or self-consistent structure. Terms explicitly involving the
spectral level are assigned a fluid d label; the other terms, involving the cross correlation 〈δE δf〉,
are assigned a fluid p label. Thus in a two-index notation in which the first index is kinetic, the
second fluid, one writes Σnl

g = Σ(dd) + Σ(pd) + Σ(pp) and similarly for δf . Note that there are no (dp)
contributions. Then the structure of Eq. (190a) can be elaborated as follows:

Dnl
k =

∑
k+p+q=0

[ε(3)(k | q,−q,−k)︸ ︷︷ ︸
Σ(dd)−δf (dd)

− ε(2)(k | p, q )(D∗p )−1ε(2)∗(p | q, k)︸ ︷︷ ︸
[Σ(pd)+Σ(pp) ]−[δf

(pd)
+δf

(pp)
]

]Iq. (357)
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For example, one finds for the ion polarization-drift nonlinearity the dependences

[Σ(pd)︸ ︷︷ ︸
p2k2

+Σ(pp)︸ ︷︷ ︸
−q2k2

]− [δf
(pd)︸ ︷︷ ︸

p2q2

+ δf
(pp)︸ ︷︷ ︸

−q2q2
] ∝ (p2 − q2)(k2 − q2), (358)

in accord with the four terms that arise from the MkpqMpqk of Eq. (183a). The passive contribution
proportional to k2p2 arises from Σ(pd), a kinetic polarization effect.

6.5.5 Resonance-broadening theory redux

This general discussion has consequences for the interpretation of the RBT. It implies that if a
standard passive resonance-broadening approximation is applied directly to a kinetic equation (so

that, by definition, only Σ(dd) ≡ Σ
(d)
kin is retained), the resulting theory does not properly describe any

of the nonlinearities seen at the fluid level. Let us consider this assertion in the two limits of weak
turbulence and strong turbulence.

For definiteness, consider kinetic ions and adiabatic electrons. For the case of E×B nonlinearity,
Σ

(d)
kin was written in Eq. (206b). In WTT the Markovian approximation is inappropriate; instead, Σ(dd)

contributes half of the induced scattering from the bare particles. (The resulting asymmetry of ε(3)

leads to violation of the action conservation laws.) Meanwhile, the contribution of Σ(pd) produces the

passive fluid contribution to γ
(d)
k ≡ −Re η

nl(d)
k :

Re η
nl(d)
k = k2

∑
∆

|b̂ · p× q|2
(1 + k2)(1 + p2)

Re θkpqq
2Iq, (359)

where in WTT θ has the unrenormalized form (183c). Although this result is also proportional to k2,

the predicted fluid diffusion coefficient differs from the form (207) stemming from Σ
(d)
kin.

Now consider the strong-turbulence limit. Perturbation theory is inappropriate, but if one takes
Ti → 0 then v‖ can be ignored, J0 → 1, the GKE can trivially be integrated over v, and the relevant

kinetic equation reduces to the GK ion continuity equation. Importantly, the potential operator Φ̂
becomes purely multiplicative, Φ̂k = (1+k2)−1. Therefore the fundamental shielding relationship (343c)
between g and R, Φ̂R = D−1Φ̂g, reduces to R = D−1g, or

D(k, ω) = g(k, ω)R−1(k, ω). (360)

Thus R−1 and D have identical zeros in the complex ω plane. That is, a proper nonlinear theory of
the fluid dielectric function is essentially equivalent to the theory of the full response function R, not
the renormalized particle propagator g on which RBT focuses. In particular, the nonlinear damping
is ηnl, not Σ(d).

The observations of the previous paragraph were first made by Krommes and Similon (1980) in
the context of the 2D, electrostatic guiding-center model (31), in which charged rods move cross-field
with the E ×B velocity. This problem was originally considered by Taylor (1974a). For the special
case of thermal equilibrium, Taylor used the general theory of linear response (Martin, 1968) to derive
the approximate expression

D(k, ω)≈ 1 + (k2
D/k

2)[1 + iωg(k, ω)], (361a)
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g(k, ω) =
1

−i(ω + iΣnl
g,k)

, Σnl
g,k ≈

(
k2

k2 + k2
D

)
k2D. (361b,c)

This result is to be compared with the prediction of one version of RBT (Lee and Liu, 1973), which
retains the form of Eqs. (361a) and (361b) but asserts that Σnl

g,RBT ≈ k2D. Note that Taylor’s
result, the form of which is correct, predicts a long-wavelength modification to the usual resonance-
broadening term that renormalizes the particle propagator. Also note that the solution of D(k, ω) = 0
is ω = −ik2D. This result is heuristically reasonable; nevertheless, it does not arise as a zero of the
RBT dielectric; the zero of the correct Eq. (361a) is ωk = −i(Σnl

g,k/k
2)(k2 + k2

D) = −ik2D, not
ωk = −iΣnl

g,k. Now (361a) can be written as

D = 1 +

(
k2
D

k2

)(
Σnl
g,k

−i(ω + iΣnl
g,k)

)
, (362)

so that although iΣnl
g is indeed additive to ω in the expression (361b) for the particle propagator, the

original RBT recipe Dnl(k, ω) = Dlin(k, ω + iΣnl
g ) does not hold; indeed, Dlin ≡ 1 for this entirely

nonlinear model. Furthermore, the proper Σnl
g , Eq. (361c), differs from k2D in just such a way that

the expected k2D damping is recovered.
The connection of Taylor’s approach to the general theory of renormalized response was

subsequently discussed by Krommes and Similon (1980), who again emphasized the importance of
Eq. (360). (In the guiding-center model one has Φ̂k = 4π/k2.) Note that since the mean field vanishes
for this model, the zeroth-order dielectric has just the vacuum value 1; the nonlinear correction δf can

in no way be ignored. By writing out the DIA formulas for Σ(d), Σ(p), δf
(d)

, and δf
(p)

, Krommes and
Similon showed that (i) the numerator Σnl

g,k in Eq. (362) (a nonlinear correction that is not additive

to ω) arises from ∂δf ; and (ii) for each of Σnl
g and δf the diffusion and polarization contributions

combine to give results proportional to the factor p2− q2, which vanishes as k → 0. This cancellation,
arising from the self-consistent backreaction described by the polarization terms, reduces Σnl

g by
a factor of k2 relative to its size when only the diffusion terms are retained. [This cancellation is
analogous to the one in weak-turbulence theory between the Compton scattering from a bare test
particle (diffusion effect) and the nonlinear scattering from the shielding cloud of that test particle.]
One is ultimately led to a result having the same structure as Eqs. (361a) and (361c) except that D
is replaced by a wave-number- and frequency-dependent function Dk,ω closely related to the nonlocal
transport coefficient for convective cells analyzed earlier by Krommes and Oberman (1976b). Its form,
involving integrations over all triads, was discussed in detail by Krommes and Similon (1980).

The thermal-equilibrium guiding-center model provides an ideal test bed for illustrating many
of the generally complicated formulas of renormalized turbulence theory. An expanded form of the
present discussion was used by Krommes and Similon (1980) to argue in favor of the general theory
of linear response, the consistency of linear response theory with specific approximations such as
the DIA, the importance of self-consistency in renormalized descriptions, and the superiority of the
full response function R over the particle propagator g. It serves as a nicely unifying example of the
general formalism.

In summary, one can now see more clearly that properly renormalized equations make a smooth
and ultimately straightforward transition from the weak-turbulence limit to the strong-turbulence
limit. Perturbation theory already leads to the proper form (183a) of the nonlinear damping ηnl

k [with
the weak-turbulence form (183c) of the triad interaction time θ]. For strong fluctuations the form
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of the nonlinear dielectric is just such that the modal damping is still described by ηnl
k , now with a

renormalized θ. Qualitatively, the variation of ηnl
k with fluctuation level is as Dupree suggested [see

Fig. 14 (p. 112)], but strict application of the resonance-broadening recipe does not lead in detail to
the proper formula for ηnl

k .

6.5.6 Kinetic self-consistency redux

In lowest-order WTT the approximation 〈δf δE〉 ≈ 〈δfc δE〉 is appropriate for evaluating the
nonlinear terms Σnl

g , δf, and F nl. Consider, however, the equation for the one-particle PDF f of a
Klimontovich or Vlasov description. f evolves according to ∂tf + · · · = −∂ · 〈δE δf〉. One has exactly
〈δE δf〉 = 〈δE δfc〉+ 〈δE δf̃〉, or more explicitly,

〈δE δf〉 = −g〈δE δE〉 · ∂f +D−1ÊgFgT . (363)

The first term generalizes the usual quasilinear solution, and with f → 〈f〉 would be present for passive
advection as well. The last term, however, is a consequence of self-consistency; it is the formal analog
of the polarization-drag term of classical kinetic theory. Dupree (1970) assumed that the incoherent
noise was localized in velocity space, and he reduced an approximate version of Eq. (363) to a Fokker–
Planck equation, in close analogy to derivations of the Balescu–Lenard operator. Those calculations
formed the basis for his work on clumps (Sec. 4.4, p. 119). Mynick (1988) followed a similar procedure
in his derivation of his generalized Balescu–Lenard operator. The incoherent contribution is required
in order to conserve kinetic momentum and energy.

The polarization effects in self-consistent problems are clearly important. Nevertheless, it is crucial
to understand that Eqs. (344) and (363) are formally exact, highly nonlinear balance equations. An
analog to particle discreteness effects must be pursued with care since, as we have seen, even the
spectral balance equation of weak-turbulence theory, which describes a collection of weakly interacting,
spatially extended waves rather than pointlike entities, can be written in the form (344). Lengthy
discussion of this point was given by Krommes and Kim (1988).

Serious attempts to understand the consequences of self-consistent polarization have been made
in the context of 1D Vlasov theory. Adam et al. (1979) argued that even in the limit of very short
autocorrelation time, where QLT would be expected to apply, if the ordering γlin < (k2Dv)

1/3 ≡ τ−1
d

holds, then nonlinear wave–particle resonances through all orders contribute an order-unity correction
to the growth rate; to maintain conservation laws, the diffusion coefficient must be enhanced as well.
The possibility of corrections to the diffusion coefficient can be seen in the extra terms of Eq. (363).

Adam et al. advanced a turbulent trapping model (TTM) that made the definite prediction
γ = 2.2γlin; the formalism was a kind of weak-turbulence limit of the clump formalism of Dupree
(1972b). Pesme and DuBois (1985) made a heroic attempt to exploit the ordering γlin < τd in order to
reduce the Vlasov DIA to a simpler form. They showed what further approximations lead to the TTM.
They brought their reduced approximation to dimensionless form and found that any correction to
the linear growth rate must be necessarily positive. The enhancement was explicitly seen to be due to
the effects of self-consistency; they advanced the heuristic argument that self-consistent response leads
to an intrinsically non-Gaussian electric field. That such a field can contribute order-unity corrections
to the usual Gaussian Fokker–Planck coefficients was shown in a readable paper by Pesme (1994),
whose work serves as a useful review; see also Pesme and DuBois (1982).

Theilhaber et al. (1987) made a serious numerical attempt to measure enhancements to the growth
rate; although such were found, they were modest and smaller than the predictions of the TTM, and
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numerical uncertainties precluded definite conclusions. 216 Their paper contains a useful review of
the physical ideas, which include the effect of partial trapping in barely overlapping wave packets.
An experiment by Tsunoda et al. (1987) specifically designed to test the theoretical ideas did not
find the expected enhancement. Liang and Diamond (1993b) revisited the theory and argued that
calculations using the TTM calculated the production of fluctuations incorrectly by ignoring a
momentum-conservation constraint. Their discussion of the basic ideas is a very clear and useful
reference. Nevertheless, the formalism needs to be reassessed in view of the difficulties with the
x-space version of the theory (Krommes, 1997a) that were discussed in Sec. 4.4 (p. 119). [Note that
the work of Liang and Diamond went beyond the calculations of Krommes (1997a) in that the former
authors attempted to calculate the production of fluctuations self-consistently.]

The most recent review of these topics is by Laval and Pesme (1999), who give additional
references. Ultimately, it is unlikely that the theoretical aspects of this problem will be completely
and convincingly understood until a numerical solution of the 1D Vlasov DIA is undertaken. [One
should study the full DIA in the R representation, not the reduced version of Pesme and DuBois
(1985).] Such work is feasible in principle, but is entirely nontrivial.

7 ALTERNATE THEORETICAL APPROACHES

Although the MSR formalism provides an elegant unification of traditional approaches to
renormalized perturbation theory, its foundations in Eulerian correlation and response functions
makes it intrinsically unsuitable for addressing various important issues such as random Galilean
invariance and nuances of higher-order statistics. The general level of complexity is also extremely
high. In the present section some alternate approaches are briefly described. Those include Lagrangian
schemes (Sec. 7.1, p. 181), Markovian approximations (Sec. 7.2, p. 182), eddy viscosity and large-eddy
simulations (Sec. 7.3, p. 189), use of the renormalization group (Sec. 7.4, p. 196), and statistical
decimation (Sec. 7.5, p. 197). Applications of the Markovian schemes to plasma physics will be
elaborated in Sec. 8 (p. 199).

7.1 Lagrangian schemes

“Closure approximations which involve only low-order Eulerian moments do not retain
sufficient information to represent properly the energy transfer among small scales which are
convected by large scales. . . . [However, a heuristic, Lagrangian-history alteration of the DIA
implies] high-Reynolds-number inertial and dissipation ranges which obey Kolmogorov’s laws.”
— Kraichnan (1965a).

A key conceptual problem with the standard DIA has already been identified in Sec. 5.6.3
(p. 138) to be its lack of invariance to random Galilean transformations. As observed by Kraichnan
(1965a), the fundamental technical difficulty is the use of Eulerian rather than Lagrangian correlation
functions. 217 In an attempt to cure the problem, Kraichnan (1965a) introduced the Lagrangian

216 For more recent related numerical work of very high quality, see Cary et al. (1992) and Stoltz and Cary
(1994).
217 Eulerian and Lagrangian were defined in Sec. 1.3.1 (p. 13). For a more mathematical discussion, see
Lumley (1962).
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History Direct Interaction Approximation (LHDIA). By considering a generalized velocity field
u(x, t | s), defined as the velocity measured at time s of the fluid element that passes through x
at time t, and imposing a variety of constraints (including random Galilean invariance), Kraichnan
was able to formulate closure equations for the mixed Eulerian–Lagrangian correlation functions of u.
The resulting approximation (and an abridged, easier-to-compute version thereof) reproduces the
Kolmogorov −5

3
law (by construction) and has been shown to behave quantitatively reasonably in a

variety of situations (Herring and Kraichnan, 1979); a comprehensive discussion of tests of various
closures is given in Chap. 8 of McComb (1990). Unfortunately, the partially heuristic derivation did
not ascend to a level of systematology the same as enjoyed by the Eulerian schemes so elegantly
unified by MSR, and no realizable primitive amplitude representation is known. Later Kraichnan
(1977) showed how to derive a variety of Lagrangian schemes, including the LHDIA, by a reversion
procedure based on perturbation theory; however, that only emphasized the substantial ambiguity in
the resulting approximations.

Kraichnan’s Lagrangian-history closures were formulated in terms of the labeling time t. Kaneda
(1981) instead proposed a Lagrangian renormalized approximation involving the measuring time s.
Some of its predictions were explored by Kaneda (1986).

If this were primarily a review of statistical closures for neutral-fluid turbulence, a further extensive
discussion of literature on the Lagrangian-history schemes would be warranted. However, Lagrangian
closures have been very little studied in the context of plasma-turbulence theory; a practically unique
exception is the work of Orszag (1969) on stochastic acceleration. The general argument in favor of
Eulerian plasma closures, that inertial ranges are often not well developed, has already been given
in Sec. 5.1 (p. 128). Nevertheless, the lack of Lagrangian calculations represents an unfortunate and
significant gap in one’s understanding of the analytical theory of plasma turbulence.

7.2 Markovian approximations

“It is possible to make a simple, though crude, modification . . . that eliminates many of the
deficiencies of the quasi-normal theory . . . . Our purpose in discussing [the resulting EDQNM
closure] is not to propose it as a basic theory of turbulence but rather to illustrate the sort of
effects that must be included in a satisfactory theory.” — Orszag (1977).

A virtue of closures at the DIA level of sophistication is that they attempt to relatively faithfully
describe the details of the two-time response. That is also their Achilles heel, since they are very
computationally intensive. Because in one way or another they attempt to self-consistently determine
an autocorrelation time, which at core requires time-history information, they exhibit a very adverse
computation-time scaling with the number of time steps. [For more details, see Sec. 8.3.1 (p. 205).]

If one is interested primarily in equal-time behavior [which according to Eq. (3) is sufficient
to determine transport fluxes], one may attempt to develop Markovian approximations, which are
renormalized versions of the wave kinetic equation (Sec. 4.2, p. 98) that evolve solely equal-time
spectra. In practice those are surprisingly successful. A general approach to their derivation, couched in
the unifying language of classical statistical field theory, was given by Carnevale and Martin (1982). 218

218 For discussion of a subtle conceptual difficulty with the work of Carnevale and Martin (1982), see
Appendix F (p. 286).
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7.2.1 The eddy-damped quasinormal Markovian (EDQNM) approximation

The eddy-damped quasinormal Markovian (EDQNM) approximation is a popular and successful
moment-based closure for neutral-fluid turbulence. Its original derivation was reviewed in detail
by Orszag (1977). In brief: The exact equation for the triplet correlation function T (t, t′, t′′) is
written, then the effects of the fourth-order cumulants are approximated as an (as yet unknown)
nonlinear eddy damping ηnl of T . The resulting equation for T (t) ≡ T (t, t, t) is solved with a Green’s
function G; the result is schematically T (t) ∼ ∫ t

0dt
′G(t; t′)C2(t′). At this point one has the original

non-Markovian quasinormal closure, whose properties were discussed by Orszag (1970a). One now
makes the Markovian approximation

∫ t
0dt

′G(t; t′)C2(t′) ≈ [
∫ t
0dt

′G(t; t′)]C2(t), thereby arriving at a
closed equation for C(t). The step C(t′)→ C(t) is the same one made in the passage from the Bourret
approximation to quasilinear theory (Sec. 3.9.2, p. 78) except that in strong-turbulence theory one
cannot take advantage of a short autocorrelation time to justify the approximation. This reduced
description does not attempt to predict the detailed shapes of two-time correlation functions, positing
instead an exponential decay [see Fig. 8 (p. 85) and associated discussion]. Nevertheless, it can still
capture the appropriate, self-consistently determined nonlinear timescale.

There are two approaches to the determination of ηnl. Heuristically (Leith, 1971), one can
estimate ηnl

k as the rms value of an eddy turnover rate estimated from Kolmogorov arguments. In the
absence of wave physics, one has that the contribution from one wave-number band k of width ∆k is

∆〈ν2
eddy〉k ∼ k

2
(∆〈δu2〉k/∆k)∆k, or

ηnl
k = C

(∫ k

0
dk k

2
E(k)

)1/2

, (364)

where C is an undetermined constant. (The upper limit of k follows by arguing that the effects of
fluctuations of wavelength shorter than k−1 should average away.) The expression (364) is just an
estimate for the rms vorticity in the long wavelengths. 219 It does not involve the spurious kurms

advection frequency that contaminates the energetics of the DIA; formula (364) is random-Galilean-
invariant (RGI). 220

An alternate derivation of an EDQNM approximation proceeds directly from the DIA (Carnevale
and Martin, 1982; Bowman et al., 1993). Consider the DIA in the form (224b). The balance equation
for C(t) ≡ C(t, t) follows as Eq. (226). Let the response function obey the Markovian equation

∂tRk(t; t′) + iLkRk + ηnl
k (t)Rk = δ(t− t′). (365)

219 If the k integral in Eq. (364) were extended to ∞ (or, essentially, the Kolmogorov dissipation wave
number kd), formula (364) would be proportional to the total dissipation rate ε; see the discussion in Sec. 3.6.3
(p. 66).
220 Variation of E(k) at k = 0 does not change the value of expression (364).
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Finally, make the Fluctuation–Dissipation Ansatz (FDA) 221

Ck(t; t
′) ≈ Rk(t; t′)Ck(t) (t ≥ t′). (366)

Given these various approximations, the time integrals in the nonlinear terms of Eq. (226) can be
performed. The result has the same form as the spectral evolution equation (182) of WTT, repeated
here for convenience:

∂tCk(t)− 2γlin
k Ck + 2Re ηnl

kCk = 2F nl
k , (367)

where

ηnl
k (t)

.
= −

∑
∆

MkpqM
∗
pqkθ
∗
pqk(t)Cq(t), F nl

k (t)
.
=

1

2

∑
∆

|Mkpq|2 Re(θkpq(t))Cp(t)Cq(t). (368a,b)

Instead of the weak-turbulence form (183c) for the triad interaction time θkpq, however, its
renormalized form is defined as 222

θkpq(t)
.
=
∫ t

0
dt′Rk(t; t′)Rp(t; t

′)Rq(t; t
′). (369)

An evolution equation for θkpq follows by differentiating Eq. (369) with respect to t and using
Eq. (365):

∂tθkpq(t) + [ηk(t) + ηp(t) + ηq(t)]θkpq(t) = 1, θkpq(0) = 0, (370a,b)

221 Pragmatically, some such Ansatz is necessary in order to close the system. Although the relation (366)
is exact only in thermal equilibrium (Kraichnan, 1959a), experience has shown that in general it is not
unreasonable even in strongly nonequilibrium situations (LoDestro et al., 1991; Bowman and Krommes,
1997). The choice of t rather than, say, t′ in Ck(t) defines the EDQNM. Additional discussion of the FDA is
given in Sec. 8.2.3 (p. 203).
222 Compare the appearance of this θ ≡ θ3 (integrated symmetrically over three response functions) in the
R equation with the Σ(d) of RBT and Kraichnan (1964d), which involves θ2

.=
∫

dt′ RpRq. To see how θ2
might emerge, consider the schematic form of a steady-state R equation (mode-coupling sums omitted),
where R(τ) = H(τ)G(τ) and G(0+) = 1:

∂τGk(τ) +
∫ τ

0
dτ G∗p(τ)G∗q(τ)Gk(τ − τ) = 0. (f-21)

A seemingly direct way to derive an equation for the area under the curve 1/ηnl
k =

∫∞
0 dτ Gk(τ) is to integrate

Eq. (f-21) from 0+ to∞ (Leslie, 1973b); upon interchanging the order of integration in the convolution term,
one finds 0 = −1 +

[∫∞
0 dτ Gp(τ)Gq(τ)

] [∫∞
0 dτ Gk(τ)

]
= θ2,pq/η

nl
k , or ηnl

k = θ2,pq. But this procedure is
not unique (one could have multiplied by an arbitrary weight function before integrating), and furthermore
does not work when a term iΩkGk is added to the left-hand side of Eq. (f-21). To eliminate Ωk and deduce
an equation for Re ηnl

k , form the equation for 1
2 |Gk|2 by multiplying Eq. (f-21) by G∗k. Brief manipulations

assuming the form Gk(τ) = exp(−iΩkτ −ηnl
k τ) now lead to Re ηnl

k = Re θ∗3 , compatible with the result of the
Markovian formalism.

The distinction between θ2 and θ3 is not a trivial point. Formulas based on θ2 need not be realizable and
may have spurious, nonphysical solutions (Koniges and Krommes, 1982). However, a Langevin representation
of the formalism with θ3 can be given (Sec. 8.2.2, p. 201), proving realizability.
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where

ηk
.
= iωk + ηnl

k . (371)

Note that this evolves to the steady state

θkpq(∞) = [ηk(∞) + ηp(∞) + ηq(∞)]−1 (372)

(assuming that ∆η
.
= ηk + ηp + ηq > 0 as t→∞).

Because the basic symmetries of both WTT and the DIA are preserved by this Markovian
procedure, the nonlinear terms still conserve the appropriate quadratic invariants. 223 Thus Gibbs
distributions based on those invariants are inviscid solutions of the closure. However, there is no
guarantee that nonquadratic invariants will be conserved. One interesting case is the generalization
of the three-wave model introduced in Sec. 5.10.3 (p. 144) to include real linear frequencies Ωk.
The M ’s can be arranged so that the nonlinear terms conserve both energy and enstrophy. As noted
in Sec. 5.10.3 (p. 144), the Hamiltonian H̃ [Eq. (256)] is also conserved, both exactly and by the DIA.
However, that invariant is destroyed by the EDQNM (as well as the RMC to be derived below). The
final Markovian covariances, obeying two-parameter Gibbs distributions, are therefore quantitatively
in error for nonzero frequencies 224 (Bowman, 1992; Bowman et al., 1993).

The three-wave model can further be generalized to include linear growth rates γk. For
the EDQNM the predicted steady states can be obtained analytically, as was shown by Ottaviani
(1991); the calculation is presented in Appendix J (p. 297). The results illustrate that constraints on
the growth rates are required in order that steady states exist [for example,

∑
k γk < 0, a constraint

that emerges more generally in the theory of entropy evolution (Sec. 7.2.3, p. 188)], and provide a
special case of growth-rate scalings for steady-state intensities I that can be deduced from general
considerations. Specifically,

I ∼
{
γ (weak-turbulence theory)
γ2 (strong-turbulence theory).

(373)

Further discussion of these scalings is given in Appendix J (p. 297).
The EDQNM closure is readily computable at least for small numbers of modes. Orszag (1977)

proved that the EDQNM for NS turbulence is realizable. Unfortunately, that turns out to be false
when linear waves are present. I shall take up this important issue in Sec. 8.2.3 (p. 203).

The forced Burgers equation (19), which arises in various physical contexts, including the theory
of self-organized criticality (Sec. 12.4, p. 241), serves as a useful illustration of calculations with
the EDQNM. I shall consider specifically d = 1. Such models were originally studied by Forster,
Nelson, and Stephen (FNS; Forster et al., 1976, 1977). They considered various forcing scenarios

223 Conservation of quadratic nonlinear invariants is true for a single scalar field. Generalization of the
DIA-based EDQNM to systems of multiple coupled fields is not entirely straightforward (Bowman, 1992).
Bowman (1992) and Bowman et al. (1993) discussed the possibility of a realizable multiple-field EDQNM
[see discussion in Sec. 8.2.3 (p. 203)]; however, the resulting form did not conserve all nonlinear invariants in
general.
224 When all frequencies vanish, H̃ vanishes identically and the two-parameter Gibbs PDF’s are adequate.
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defined by the spectral characteristics of f ext, i.e., by F ext
k,ω , where

F ext(ρ, τ )
.
= 〈f ext(x+ ρ, t+ τ )f ext(x, t)〉 = F ext(ρ)δ(τ ). (374)

In Model A the noise is conservative: F ext
k,ω = 2k2D. In Model B it is nonconservative: F ext

k,ω = F ext
0 =

const. In Model C it is band-limited (and shown to have infrared characteristics identical to those of
Model A). For the NSE, Model A can be considered to be the description of fluctuations in thermal
equilibrium [the forcing being made self-consistent with the aid of the fluctuation–dissipation theorem
(Sec. 3.7.1, p. 67)], and one can make contact with the theory of convective cells and long-time tails
(Sec. 5.10.1, p. 143). Here I shall consider Model B. Forster et al. did not study that model explicitly
for the Burgers equation; however, some of their results can be extrapolated to that case. Medina
et al. (1989) studied the Burgers Model B implicitly through their analysis of the KPZ equation (20)
with long-ranged forcing, where the power spectrum of f ext

h scales at small k as k−2ρ. Since the
KPZ equation for the height fluctuation h of an interface can be transformed to the Burgers equation
for velocity u by u = −∂xh, Model B corresponds to ρ = 1. Hwa and Kardar (HK; 1992) studied the
Burgers Model B explicitly. Diamond and Hahm (DH; 1995) reiterated many of the results of HK in
the context of a discussion of self-organized criticality (Sec. 12.4, p. 241).

The present EDQNM calculation was originally given by Krommes (2000a). Let us focus on
the long-wavelength behavior of Rk,ω, which describes the mean propagation of small pulses. From
Eq. (19), one has Mkpq = −ik. In steady state one has Rk,ω = [−i(ω + iηk)]

−1 and can use the
asymptotic result (372); then Eq. (368a) can be self-consistently solved for the nonlinear damping ηnl

k

once the spectrum Cq is known. The steady-state spectral balance equation is

Re ηkCk = F nl
k + F ext

k ≡ Fk. (375)

Detailed analysis of the k dependence of F nl
k shows (Krommes, 2000a) that in Model B and for d = 1,

the internal noise is not negligible as k → 0; rather, it renormalizes F ext
k to give a total forcing Fk

that approaches a constant as k → 0. Then Eq. (368a) becomes

ηnl
k =

∫
dq

2π
k(k + q)

(
1

ηnl
k + ηnl

k+q + ηnl
q

)(
Fq
ηnl
q

)
, (376)

where one has anticipated that the classical dissipation is negligible. That can be justified by noting
that (i) because of the last factor of 1/ηnl

q , the q integral in Eq. (376) is dominated by the small q’s;
and (ii) ηnl

k will be O(k). Then upon scaling q to k, one readily finds that

ηnl
k = |k|V , V ∼ F

1/3
0 [ln(k/kmin) + 1

2
(kmin/k)]. (377a,b)

For further discussion of this ballistic scaling (ηnl ∝ |k|), see Sec. 12.4 (p. 241).
The scaling ηnl

k ∝ |k| agrees with general results of FNS, Medina et al., and HK. Forster et al.
discussed the form

R−1
k,ω ∼ |k|zgR(ω/|k|z) (378)

for some undetermined scaling function gR and calculated z for the forced NSE. If their result is
extrapolated to d = 1 and applied to the Burgers equation, one finds z = 1. That exponent agrees
with an explicit result of HK as well as the ρ = 1 result that can be extracted from the work of
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Medina et al. (1989). It disagrees with the Ansatz ηnl
k = k2D used by DH. Accordingly, the proper,

benign dependence on kmin [Eq. (377b)] is much weaker than the divergence (
∫
dq/q4)1/3 found by DH.

Although the k2D Ansatz is ubiquitous in resonance-broadening theory (Sec. 4.3, p. 108), it is clearly
not universally applicable.

This example illustrates the use of the spectral balance equation and the expression for the
renormalized nonlinear damping in a simple context; the predictions are sensible and correct 225

for k → 0. Calculations for large, inertial-range k’s are more problematical because the DIA-based
EDQNM is not RGI, inheriting that failing from the DIA itself. As I have previous discussed, this need
not be a serious issue for many problems in plasma physics in which studies of the energy-containing
part of the spectrum are paramount. A Markovian closure that is RGI is the test-field model, discussed
in the next section.

An important paper on the EDQNM was by Fournier and Frisch (1978), who discussed its
properties analytically continued into noninteger spatial dimension d. A key result was the existence
of a critical dimension dc ≈ 2.05 at which the direction of the energy cascade changes sign. See the
related remarks in footnote 101 (p. 74).

7.2.2 Test-field model

Although the DIA-based EDQNM is realizable at least in the absence of waves, it is an Eulerian
description that possesses the same difficulty with RGI as does the DIA itself. Kraichnan (1971a)
proposed the test-field model (TFM) to rectify this difficulty; the method was reviewed by Sulem et al.
(1975). In the TFM the rate of interaction of an eddy with an advecting velocity field u is estimated
from the rate at which advection couples the solenoidal (S) and compressive (C) components of a
test velocity field v (in the absence of pressure); by definition, ∇ · vS = 0 and ∇ × vC = 0. For
2D incompressible flow, for which u is derivable from a potential ϕ according to 226u = ẑ×∇ϕ, those
couplings obey (in the absence of linear waves)

(∂t + νk)vSk = PS(k) ·
∑
∆

MU
kpqϕ
∗
pvCq
∗, (∂t + νk)vCk = PC(k) ·

∑
∆

MU
kpqϕ
∗
pvSq
∗, (379a,b)

where

PS(k)
.
= I− Π(k), PC(k)

.
= Π(k), Π(k)

.
= k̂ k̂. (380a,b,c)

A Markovian renormalization of these equations can be done straightforwardly; the result retains the
form of Eqs. (367) and (368), but involves a modified evolution equation for θkpq. In terms of the
modified mode-coupling coefficients

MG
kpq

.
= [P(k) : Π(q)]1/2MU

kpq, (381)

225 There is an important reason why for the present problem DIA-based statistical closures (i.e., with no
vertex corrections) provide reasonable results for small k’s. As stressed by FNS, the Burgers equation is
invariant under the Galilean transformation x = x + u0t and u = u + u0, where u0 is a constant. This
invariance can be shown to imply that vertex corrections vanish as k→ 0. Formally, it is a consequence of a
Ward identity (Sec. 6.2.5, p. 165).
226 Such a velocity field is always solenoidal. Thus in 2D the method does not attempt to postulate a modified
equation for ϕ, but directly evolves a test velocity field. Such an advected field can develop a compressive
part.
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one finds

∂tθkpq + (ηSk + ηSp + ηSq )θkpq = 1, θkpq(0) = 0, (382a,b)

ηSk
.
= νk + A

∑
∆

MG
kqpM

G∗
pqkθ

G∗
pqkCq, ηCk

.
= νk + λA

∑
∆

MG
kqpM

G∗
pqkθ

G∗
pqkCq, (382c,d)

∂tθ
G
kpq + (ηCk + ηSp + ηSq )θGkpq = 1, θGkpq(0) = 0. (382e,f)

Here A is an undetermined constant often taken to be 1, 227 and λ is the number of solenoidal
components associated with each compressive component (λ = 1 in 2D 228).

Random Galilean invariance of these equations follows from the presence of the coefficient
P(k) : Π(p) in the expressions for ηSk and ηCk ; note that P(k) ·Π(−k− q)→ 0 as q → 0 because P(k)
and Π(k) are orthogonal. As k → 0 that coefficient introduces two extra powers of p ∼ q, hence
the long-wavelength contributions to ηS and ηC are proportional to the mean-square shear in those
wavelengths rather than to the fluctuation energy itself. In 2D P(k) : Π(p) = sin2(k,p).

Kraichnan proved that the TFM is realizable for Hermitian linear damping by demonstrating
a Langevin representation. Holloway and Hendershott (1977) extended the calculation (but not the
proof of realizability!) to include linear waves (complex νk), 229 and made detailed closure calculations
for Rossby waves that are relevant for HM dynamics. However, those authors ignored the contributions
of Im ηS,Ck (nonlinear frequency shifts) to the triad interaction times.

For further discussion of and references to the TFM, see Bowman and Krommes (1997). Those
authors showed that the TFM is not realizable in the presence of linear waves and proposed a realizable
modification; see Sec. 8.2 (p. 201).

7.2.3 Entropy and an H theorem for Markovian closures

Carnevale et al. (1981) showed that the nonlinear terms of a wide class of Markovian closures
possess an H theorem 230 such that in the absence of forcing and dissipation a particular entropy
functional S increases monotonically in time, achieving a maximum value at absolute thermal
equilibrium. Specifically, considerations based on information theory [see also Jaynes (1965)] lead
to S(t)

.
= 1

2
ln detC(t), where C is the correlation matrix. For homogeneous turbulence and a single

field, this becomes S(t) = 1
2

∑
k lnCk(t). In the inviscid limit it is proven that S(t) ≥ S(0).

To demonstrate this result explicitly from a DIA-based Markovian closure, use Eqs. (367)

227 Kraichnan (1971a) suggested that A could be calculated by comparing the TFM with the predictions of
the DIA for the interactions of dynamically identical modes of comparable k. For 3D turbulence he found
A = 1.064, a value that gave reasonable predictions for the Kolmogorov constant.
228 Note that in 3D ηCk 6= ηSk , so θGkpq is symmetrical only in its last two arguments; however, in 2D ηCk = ηSk
and θGkpq is completely symmetrical.
229 Those authors used Re θkpq rather than just θkpq everywhere in their definitions of the various ηnl’s; thus
they did not consider nonlinear frequency shifts.
230 Boltzmann’s original H function was defined by H = N

∫
dzf ln f , where N is a positive normalization

constant, z .= {q, p}, and f(z) is the one-particle PDF. Boltzmann proved that for his collision operator
H decreases until a Maxwellian distribution is obtained; that same property holds for the Balescu–Lenard
operator. A lucid interpretation of Boltzmann’sH was given by Jaynes (1965). Although entropy functionals S
are the negatives of H functionals, one still refers to “H theorems” even when discussing entropies.
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and (368) for symmetrical θkpq to calculate Ṡ. After straightforward manipulations, one finds

dS

dt
=
∑
k

γk +
1

6

∑
k,p,q

δk+p+q Re θkpqCkCpCq

∣∣∣∣Mkpq

Ck
+ c.p.

∣∣∣∣2 , (383)

where Ck ≡ Ck(t). For γk = 0, one has 231 Ṡ ≥ 0. Ṡ vanishes only when Eq. (244) is satisfied; as was
shown in Sec. 5.4 (p. 133), this leads to the Gibbs equilibria.

Define ∆γ
.
=
∑

k γk. For ∆γ > 0 Eq. (383) shows that no steady state is possible; this can be
interpreted as the inexorable expansion of phase-space volume elements. Nonequilibrium steady states
are possible only for ∆γ < 0 (Carnevale and Holloway, 1982; Horton, 1986). An explicit example of
this constraint is given by the solution of the EDQNM for three modes, discussed in Appendix J
(p. 297).

If such manipulations are repeated for the DIA, the last term of Eq. (383) is replaced by

1

6
Re

∑
k,p,q

δk+p+q

∫ t

0
dt Rk(t; t)Rp(t; t)Rq(t; t)Ck(t)Cp(t)Cq(t)

×
(
Mk

Ck(t)
+ c.p.

)(
Mk

Ck(t)
cp(t; t)cq(t; t) + c.p.

)∗
, (384)

where ck(t; t)
.
= Ck(t; t)/[Rk(t; t)Ck(t)]. In thermal equilibrium the FDT guarantees that c(τ ) = 1,

so one recovers a positive-semidefinite form that again vanishes for the Gibbs equilibria. Otherwise,
however, the sign of Eq. (384) is indeterminate. The DIA does not possess a monotonic H theorem, a
consequence of its temporal nonlocality. This same remark holds for the realizable Markovian closure
discussed in Sec. 8.2.3 (p. 203).

A discussion of entropy in the context of predictability theory [defined in footnote 165 (p. 130)]
was given by Carnevale and Holloway (1982). Some applications of maximum-entropy procedures to
plasma-turbulence models were reviewed by Montgomery (1985).

7.3 Eddy viscosity, large-eddy simulations, and the interactions of disparate scales

“Perhaps the principal achievement of DIA-type theories is that they deduce from the
equations of motion a generalized dynamical damping which embodies the idea of eddy viscosity
but takes account of nonlocalness in space and time due to the absence of clean scale separations
in turbulence.” — Kraichnan and Chen (1989).

Statistical renormalization of a multiplicatively nonlinear equation leads to closed equations for
correlation and response functions or PDF’s that in principle apply to all excited scales of the
turbulence. Physically, however, some scales behave very differently from others. For example, large-
scale coherent structures may importantly influence macroscale transport properties but may be
poorly represented by standard moment-based closures.

A more practical difficulty with a totally closure-based approach is that it is very difficult to
deal with realistic geometry, for which boundary conditions and/or shapes may be inhospitable to

231 It is required that Re θkpq > 0. That will be the case provided that the closure is realizable; see further
discussion in Sec. 8.2 (p. 201).
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the usual Fourier decomposition. One can in principle proceed in x space (Kraichnan, 1964c; Martin
et al., 1973), but the resulting equations are generally extremely complicated.

A long-recognized alternate approach is large-eddy simulation (LES), in which a particular class
of modes (usually the large-scale, energy-containing ones) is simulated directly, while the effects of the
unresolved modes are estimated by a statistical approximation. If the unresolved modes are at short
wavelengths, it is not unreasonable to believe that their principle effect is to produce an eddy viscosity
in the equation for the resolved modes. The subject has a long history. Smagorinsky (1963) concluded
on the basis of heuristic arguments that µeddy = Cd2S, where d is the subgrid scale, S

.
=
√

S · S is
the local strain rate, 232 and C is an undetermined numerical constant. This result, although often
successful in practice, clearly does not take into account the details of fluctuations and transfer in
k space. Further discussion of the Smagorinsky and more elaborate sub-grid-scale models can be found
in Yoshizawa et al. (2001).

I have already noted in Sec. 5.7 (p. 140) that an eddy viscosity can be extracted from the DIA,
given an appropriate separation of space and time scales. That does not generally exist, however,
so the concept of eddy viscosity must be reexamined. Important theoretical advances were made by
Kraichnan (1976b). For isotropic turbulence he defined the quantity 233 ν(q | km ), where km is the
cutoff wave number that separates the resolved modes (q < km) from the unresolved ones. If ν(q | km )
is to have the usual behavior of an eddy viscosity, it should become independent of q for q � km,
and that is consistent with the behavior of the closures. However, Kraichnan pointed out that the
usual interpretation breaks down for the description of wavelengths in the vicinity of the boundary
between resolved and unresolved modes, where for q ∼ km ν(q | km ) exhibits a cusp because of the
close competition between coherent damping and incoherent drive, better described as a diffusion in
wave-number space than as an eddy damping. Explicit calculations based on the TFM (Sec. 7.2.2,
p. 187) permitted a rich and detailed description of the transfer processes.

One important qualitative result is that when the analysis is applied to energy transfer for the
2D NSE, the appropriate eddy viscosity is negative for q � km. This is a manifestation of the inverse
cascade (Sec. 3.8.3, p. 74); it signals the breakdown of simple heuristic ideas about eddy viscosity for
2D flow.

7.3.1 Eddy viscosity for Hasegawa–Mima dynamics

To be specific, I sketch the analysis for HM dynamics. Chechkin et al. (1998) attempted to compute
an eddy viscosity for this situation, following earlier work of Montgomery and Hatori (1984) for
2D NS flows. However, those authors considered the unrealistic situation of frozen short-wavelength
statistics and obtained results that did not properly reduce to Kraichnan’s 2D NS formula. Krommes
and Kim (2000) reconsidered the problem allowing for self-consistent interactions between long and
short scales, and I follow that work here (the work of Chechkin et al. is discussed in the appendix of
that paper). For simplicity I shall assume that the spectrum is isotropic although this is not strictly
correct in the presence of a diamagnetic frequency. [The assumption will be relaxed in Sec. 7.3.2

232 The rate-of-strain tensor S is defined by Eq. (10a). The eddy turnover rate νeddy of an eddy of size d due
to a sheared flow can be estimated as d−1(Sd) = S (note that S vanishes for rigid rotation). Smagorinsky’s
result is the only dimensionally correct diffusion coefficient that can be constructed from νeddy and d.
233 I have changed the wave-number notation slightly to conform to current practice in plasma physics.
Namely, following the work of Krommes and Kim (2000) and references therein, I use q for the small or
resolved wave numbers and k for the large or unresolved wave numbers.
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(p. 193).] Then the energy spectrum is E(k) = πkU(k), where U(k)
.
= (1 + k2)〈δϕ2〉(k). Nonlinear

contributions to E(k) give

∂tE(k) = T (k) =
1

2

∫
∆
dpdq T (k, p, q), (385)

where T (k, p, q) is defined by Eq. (119). Now divide T (k) into resolved plus unresolved contributions.
The total transfer into the unresolved modes is

T (km) =
∫ ∞

km

dk T (k) = −
∫ km

0
dq T (q | km ), (386)

where T (q | km )
.
= 1

2

∫ ′
∆dk dpT (q, k, p), the prime indicating that k and/or p lie above km. It is then

consistent to write

∂tE(q) = (resolved statistics) + T (q | km ) (387)

and to rigorously define a generalized eddy viscosity ν(q | km ) by

T (q | km ) = −2ν(q | km )q2E(q). (388)

In a Markovian closure the desired triplet correlation is approximated by the right-hand side of
Eq. (210). That expression can be transformed by eliminating the Mk,p,q in the F nl

k noise term with
the aid of the detailed conservation property (184) (with σk = 1 for energy dynamics). The final result
is

T (q | km ) = 2πq3
∫ ′

∆
dk dp b(q, k, p)[θqkqU(k)− θkpqU(q)]U(k), (389a)

b(q, k, p)
.
=

2| sin(k,p)|k2p2(k2 − p2)(q2 − p2)

q2(1 + k2)(1 + p2)(1 + q2)
. (389b)

[The θkpq here and in subsequent formulas must be evaluated from a renormalization that is random-
Galilean-invariant (Kraichnan, 1976b; Krommes and Kim, 2000), such as the TFM discussed in
Sec. 7.2.2 (p. 187).] This formula can be evaluated numerically (Kraichnan, 1976b) for any given
spectrum U(k) such as the Kolmogorov k−5/3 law. A more explicit analytical result can be obtained
by considering the limit q � km (where the conventional notion of an eddy viscosity would be expected
to apply). Then because of the restrictions that k and/or p be greater than km, one has k � q, p� q,
and |k − p| = O(q). This allows functions of p to be expanded around k, and the p integration to
be performed. The integration domain is shown in Fig. 24 (p. 192); the final result, correct to lowest
order in q2, is 234

ν(q | km ) =
π

4

(
q2

1 + q2

)∫ ∞

km

dk

(
k2

1 + k2

)2

θqkk
dW (k)

dk
, (390)

234 Many details of the algebra leading to this and similar results may be found in the comprehensive paper
by Krommes and Kim (2000). The 2D NS limit studied by Kraichnan (1976b) can be recovered by taking all
wave numbers to be much larger than 1; one then obtains Kraichnan’s Eq. (4.6).
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where W (k)
.
= k2U(k) is the enstrophy density conserved by the polarization-drift nonlinearity [see

Eqs. (50)]. This function is clearly negative ifW (k) decreases for k > km. More generally, it is negative
if θqkk is sensibly independent of k, as can be shown by an integration by parts (Krommes and Kim,
2000). The appearance of W is consistent with the discussion by Lebedev et al. (1995), who showed
that W is conserved when a drift-wave gas is modulated by a long-wavelength convective cell. A more
general discussion of conservation properties was given by Smolyakov and Diamond (1999); see also
the material in Sec. 12.7 (p. 248) and Appendix F (p. 286).
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Fig. 24. Integration domain (shaded) for the contribution of the unresolved modes to T (k | km ).

Analogous calculations can be performed for enstrophy transfer. For that situation Kraichnan
concluded that the concept of eddy viscosity was even less justified.

It should be noted that the eddy viscosity defined above is intended to be used in an equation
for the statistically averaged spectrum. In a single realization, explicit scales are randomly excited by
the subgrid scales (this effect, sometimes called stochastic backscatter, is due to the incoherent noise).
Only on the average is that excitation appropriately represented by the statistical analysis above, as
discussed with the aid of a model problem by Rose (1977). Nevertheless, Kraichnan’s eddy viscosity
has been used successfully in a number of simulations, as reviewed together with a number of other
recent approaches by Lesieur and Métais (1996).

Smith (1997) and Smith and Hammett (1997) considered aspects of eddy viscosity for particular
plasma problems of current relevance. Smith made numerical calculations of µeddy by numerically
computing the transfer across a cutoff wave number km interior to the domain of a very-well-resolved
simulation; he verified the expected cusp in µeddy(q) as q → km. He then discussed parametrizations
of hyperviscosity [damping ∝ (q/km)2p for p > 1] suggested by the numerical simulations. Although
instructive, such parametrizations are difficult because of the nonuniversal, anisotropic, and wavelike
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nature of typical plasma problems.
To conclude the discussion of eddy viscosity as applied to LES, I quote Kraichnan (1976b):

“We feel, therefore, that the theoretical basis for the use of simple eddy viscosities to represent subgrid scales
is substantially insecure. Why then have they worked so well in practice? Apparently this is largely because
the flow has built-in compensatory mechanisms. The effect of a crude and inaccurate term to represent the
passage of energy or enstrophy through the boundary at km has the principal effect of distorting the flow in a
relatively restricted wavenumber range below km. It remains to be seen whether the use of more accurate, and
thereby more complicated, representations of subgrid scales pays off. For it to do so, the increased accuracy
near km, and thereby the implied possibility of lowering km in a given calculation, must overbalance the
added computational load of carrying the more complex subgrid-scale representation. ”

This remark may be particularly relevant to the anisotropic situations characteristic of plasma
turbulence. The complexity of a satisfactory analytical representation may be prohibitive although
further research is required.

7.3.2 Energy conservation and the interaction of disparate scales

Now consider the consequences of eddy viscosity for the spectral balance equation rather than
for LES. Energy input into the small q’s due to large-k interactions must show up as a drain of energy
from the large k’s; it is instructive to verify that directly. Consider the evolution of W>(k) (where >
denotes large argument) due to interactions with small wave numbers of maximum size qmax. The
integration domain, depicted in Fig. 3 of Krommes and Kim (2000), consists of two subdomains:
region A (q small); and region B (p small), which is found to contribute at higher order in q2.
Integration over region A leads at lowest order in k2 to the enstrophy diffusion equation

∂tW
>(k) =

1

k

∂

∂k

(
kDk

∂W>

∂k

)
, where Dk

.
= k6

∫ qmax

0
dq q2W<(q)θk,k,q. (391a,b)

Integration of Eq. (391a) over all k’s with k ≥ km shows that the interaction with the
small k’s conserves the large-k enstrophy W> except for the boundary term: ∂tW

> =
−2πkm(k2

mDkm)∂kW
>(km). That W> is conserved is consistent with the results of Lebedev et al.

(1995) and Smolyakov and Diamond (1999). Energy, however, is not conserved. Upon dividing
Eq. (391a) by k2, one finds

∂tU
>(k) =

1

k3
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∂k

(
kDk

∂W>

∂k

)
=

1

k

∂

∂k

(
Dk

k

∂W>

∂k

)
+

2Dk

k3

∂W>

∂k
, (392a,b)

where the first term has been put into conservative form. Upon integrating this result over the large k’s
and recalling formulas (391b) and (390), one readily finds

∂tE
> = −2πkmDkm∂kW

>(km) + 2
∫ qmax

0
q dq ν(q | km )q2U<(q); (393)

the last term is precisely the required energy drain into the small k’s.
The lowest-order result ∂tE(q) = −2ν(q | km )q2E(q) is missing an incoherent-noise contribution

involving a product such as U>(k)U>(p) ≈ [U>(k)]2, the effect being of higher order in q2. A direct
higher-order calculation is extremely tedious, but the effect can be extracted simply by noting that for
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the contribution of the U(k)U(p) term in Eq. (389a), formula (389b) can be symmetrized (Krommes
and Kim, 2000). Further calculation (see the general anisotropic results below) shows that the energy
input to the small q’s is accounted for by the contribution from region B to the large-k evolution.
Thus one has demonstrated that the interactions between the large and small scales are appropriately
energy-conserving.

It is unnecessary to assume isotropic spectra; anisotropic generalizations can be obtained by
expanding the general nonlinear contribution ∂tWq =

∑
k,p δq+k+pK(q,k,p) (where K is a known

function) in powers of the small wave vectors. One must be cautious, however. If one performs the sum
over p to find the asymmetrical form ∂tWq =

∑
kK(q,−(q+k),k) and if k is considered to be large,

then large-scale contributions arise from not only small q but also large q [i.e., small p = −(k + q)],
and those contributions partially cancel. That cancellation is handled automatically in the isotropic
formulas involving the integration

∑
∆ dpdq over the symmetrical domain ∆. In any event, the final

results (Krommes and Kim, 2000) are

∂tW
>
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∂k
· Dk ·

∂W>
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∂k
− ∂

∂k
· (V kWk), ∂tW

<
q = 2γnl

q Wq + Ẇ noise
q , (394a,b)
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where θ
(E)
k,p,q

.
= 8Re θk,p,q/[(1 + k2)(1 + p2)(1 + q2)]. These formulas reduce correctly to the isotropic

results deduced above and obey the energy conservation theorems
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So far both the large k’s and small q’s have been assumed to obey the same dynamics. The
interesting generalization in which the long-wavelength fluctuations describe convective cells (q‖ = 0)
is discussed in Sec. 12.7 (p. 248).

7.3.3 Functional methods and the use of wave kinetic equations

Although the algebraic reduction of Markovian closure formulas to obtain results such as
Eqs. (394) is ultimately straightforward, and the final forms are suggestive, the intermediate details
are tedious and without immediate physical interpretation. In the context of zonal flows, Diamond
et al. (1998) suggested the use of a wave kinetic equation to describe the large-k evolution and also
proposed a recipe for calculating γnl

q . Because those procedures were not derived from first principles,
Krommes and Kim (2000) reexamined their foundations using the systematic methods of classical
field theory described in Sec. 6 (p. 146). In a broad sense the intuitive basis of the procedures of
Diamond et al. was upheld; however, a variety of detailed differences in both physical interpretation
and mathematical description emerged. Although those cannot all be reviewed here, the analysis
led to interesting connections between (i) the general methods of external sources and generating
functionals that define the MSR procedure, and (ii) WKE’s for slightly inhomogeneous systems. I
shall now briefly discuss each of these topics.
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If one renormalizes a nonlinear equation like that of HM under the assumption of homogeneous
statistics, one is led to Markovian closure formulas like those described in Sec. 7.2.1 (p. 183). The
nonlinear growth rate γnl

q = −Re ηnl
q thus defined contains terms of all orders in ε

.
= q/k. Nevertheless,

according to the MSR procedure this homogeneous growth rate is related to response in an
inhomogeneous ensemble, since if the dynamical equation is written in the form ∂tϕ+iL̂ϕ+N [ϕ] = 0,
one has

Σnl(1, 1) =
δ〈〈N〉〉(1)
δP (1)

∣∣∣∣∣
P=0

, (396)

where P
.
= 〈〈ϕ〉〉. Now if one were to impress a long-wavelength, statistically sharp potential on the

system, thereby creating a weak inhomogeneity, the short scales would respond according to the
inhomogeneous WKE, as discussed in Appendix F (p. 286). The question is, how does one make
those dynamics explicit, since in the actual turbulent system the potential is random and there is no
inhomogeneity on the average? The technique adopted by Krommes and Kim (2000) was to perform
a statistical average conditional on the long-wavelength statistics; this formalizes the intuition of
Diamond et al. (1998). The resulting dynamics are inhomogeneous; the long-wavelength potential ϕ̃
is effectively frozen and plays the role of the mean field in Eq. (396). A result for γnl

q correct to
lowest order in ε then emerges by evaluating (a Markovian version of) Eq. (396) with the aid of
the appropriate WKE for the large k’s. In practice, instead of using Eq. (396) directly it is most
convenient to use an equivalent result that follows from energy conservation between the long and
short scales:

γnl
q ∝ −

δ2∂TE
δPqδP∗q

, (397)

where E is the short-wavelength energy. This follows from what can be described as a nonlinear
statistical Poynting theorem. The derivation of this formula and examples of its use can be found in
Krommes and Kim (2000).

Use of the WKE in this way has created considerable confusion in the literature. In particular,
initial interpretations of γnl

q in terms of wave-packet propagation (Diamond and Kim, 1991; Diamond
et al., 1998) were shown to be incorrect by Krommes and Kim (2000). Instead, a key role is played by

the first-order distension rate γ
(1)
k

.
= k ·∇Ωk, which describes the evolution of wave number under the

long-wavelength modulation according to d ln k2/dT = −2γ
(1)
k . A crucial question is, what Ω should

be used? Krommes and Kim (2000) showed that the linear normal-mode frequency was irrelevant,
and that instead one must use an appropriate nonlinear advection frequency Ω̃. For HM dynamics,

that is the random variable Ω̃k = k · Ṽ k2/(1+k2), where V is the long-wavelength velocity field. The

resulting random rate γ̃
(1)
k figures not only in the determination of γnl

q but also in a Fokker–Planck
evaluation of the D in Eq. (394a). Wave-packet propagation is relevant to the V k term in Eq. (394a),
which is analogous to the polarization drag in classical kinetic theory (Sec. 2.3.2, p. 30). The discussion
by Krommes and Kotschenreuther (1982) on analogies between renormalized and classical theory is
relevant in this context.

195



7.4 Renormalization-group techniques

“What we want to emphasize is that RG is not a ‘magic formula.’ There is nothing inherent
in the idea of successive integration, or looking for ‘fixed points’ in lowest-order recursion
formulas, etc., which guarantees that the results will have some special validity. Always some
analysis of the higher-order terms and sources of error must be made. Otherwise, the method
is just an uncontrolled approximation, no better than naive use of low Reynolds number
expansions or ad hoc closures.” — Eyink (1994).

The theory of eddy viscosity is one example of a reduced description in which unwanted dynamical
scales are eliminated. For example, if one is interested only in a description of long-wavelength
fluctuations, one may attempt to eliminate the detailed dynamics of very short scales (large k’s) in
favor of a renormalized viscosity. The theory of the renormalization group (RG) provides an algorithm
for eliminating such unwanted information that at least at first glance is quite appealing. The use
of the RG in statistical field theories has a long and illustrious history that cannot be adequately
surveyed here; some modern references are Zinn-Justin (1996), Binney et al. (1992), Goldenfeld (1992),
and Chang et al. (1992). Historical and philosophical reflections on renormalization-group ideas in
statistical physics and condensed-matter theory were made by Fisher (1998), who also provided many
references. A review of various uses of the RG in turbulence theory was given by Zhou et al. (1997);
see also the recent monograph by Adzhemyan et al. (1999).

The following discussion is a mild rewording and condensation of a brief review given by the
present author (Krommes, 1997c). For details and many references to the original field-theoretic
RG method, see Brézin et al. (1976). Kadanoff and then Wilson developed related methods originally
motivated by problems of equilibrium critical phenomena (Domb and Green, 1976); for some general
discussions, see Wilson and Kogut (1974) and Wilson (1975, 1983). Martin et al. (1973) noted that
the general MSR formalism was amenable to treatment by RG; an example of such a calculation is
the work of DeDominicis and Martin (1979).

In an important calculation that is an antecedent to many practical applications to turbulence,
Forster et al. (1976, 1977) carried out an RG procedure for a randomly stirred fluid. The work of FNS
is relatively clean because the random forcing is statistically specified. However, that is not true in
common applications to turbulence. Although each scale is subjected to an internally induced forcing
[modeled at the DIA level by the right-hand side of the Langevin equation (239)], the full statistics of
that forcing are unknown and may be very delicate to calculate. Nevertheless, in one way or another,
most popular implementations attempt to develop a recursion relation that describes the iterated
effects of eliminating infinitesimal bands in k space. The work of Rose (1977) on Navier–Stokes eddy
viscosity [see Sec. 7.3 (p. 189)] employed such a method. The approach of Yakhot and Orszag (1986) 235

explicitly involves an additive random forcing described by a controversial (Lam, 1992) correspondence
principle. Other methods that extend the work of Ma and Mazenko (1975) do not explicitly introduce
the random forcing; see Zhou et al. (1994) for further references. Eyink (1994) has clearly discussed
the differences between various technical approaches to RG calculations.

In plasma physics a number of RG calculations have been done. Longcope and Sudan (1991)
considered an RG analysis of reduced MHD equations. Camargo (1992) performed a related analysis

235 For corrections and further discussion of the work of Yakhot and Orszag (1986), see Smith and Reynolds
(1992).
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of a complete MHD system; such works require analytical or symbolic calculations of hundreds of
primitive wave-number integrals. Hamza and Sudan (1995) discussed an application to weakly ionized
collisional plasma of interest to ionospheric research. Diamond and Hahm (1995) used the ideas in
some considerations of self-organized criticality; see Sec. 12.4 (p. 241). Liang and Diamond (1993a)
considered 2D MHD and concluded that RG analysis was not applicable; however, Kim and Yang
(1999) reconsidered those calculations and arrived at the opposite conclusion.

Most RG calculations treat the approach as a well-specified algorithm. Indeed, because
infinitesimal bands of k space are eliminated, there may be a tendency to believe that the resulting
recursion relation is exact. That is not the case. Kraichnan (1982) provided a number of incisive
arguments against the claims that RG analysis either adds rigor to qualitative analysis or is
better justified than standard renormalized perturbation theory. A specific example is afforded by
the EDQNM calculation of the long-wavelength statistics of the Model-B forced Burgers equation
(Sec. 7.2.1, p. 183), which recovers the RG results of Hwa and Kardar (1992).

Later, Kraichnan attempted to interpret the YO version of the theory (Kraichnan, 1987b; see
also Kraichnan, 1987a). He showed that the principle results could be obtained without recourse to
the successive elimination of one infinitesimal shell at a time. Instead, he demonstrated that the
YO RG algorithm was essentially equivalent to what he called the distant-interaction approximation,
in which only wave-number triads with one leg very much smaller than the others are retained. It is
troubling that the approximation is missing quasi-equilateral triads, which one might believe should be
very important in a quasilocal inertial-range cascade. Kraichnan (1987b) suggested that the nonlinear
dynamics may be somewhat forgiving because they possess certain self-regulating properties. In any
event, it is clear that many deep questions relating to the justification of RG algorithms remain
unanswered. An important and readable critique was given by Eyink (1994).

Finally, it must be noted that the conventional RG methods do not apply to common problems
of plasma microturbulence in which there are no well-developed inertial ranges. The RG approach is
not a panacea.

7.5 Statistical decimation

Statistical theories can be viewed as reduced descriptions of the wealth of information in the
true turbulent dynamics. Reductions can be achieved in many different ways. In ambitious work
Kraichnan (1985) attempted to provide a unified description of such procedures that he called
statistical decimation. The method makes contact with the general philosophy of RG, renormalized
perturbation theory, eddy viscosity, variational methods, and simulation techniques. Because virtually
nothing has been done in this area on a specifically plasma-physics calculation, the following survey
will be relatively brief. Nevertheless, the method has considerable appeal and further developments
would be of great interest.

The general idea behind decimation is to treat a certain sample set of modes explicitly (either
analytically or numerically) while representing the effects of the remaining modes in an approximate
statistical way. Here are two examples: (i) The sample set might be the energy-containing modes
simulated in large-eddy simulations (as in the usual RG applications). (ii) The sample modes could
be dispersed throughout the turbulent spectrum (a few per octave, say). In either case the sample
set could be simulated directly, or it could be used just as an intermediary for the development of
evolution equations for statistical quantities, as in the usual closure approaches.
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For definiteness, let us first pursue the latter possibility. In a statistical theory, the justification
for retaining a small explicit sample set is that statistical quantities like covariances are smoothly
varying functions of their wave-number arguments whereas the stochastic primitive amplitudes can
vary wildly with k. Consider a closure such as the DIA, initially written for a continuum of wave
numbers. One way of reducing the continuum to a small set of sample ki’s is to first divide the
k space into appropriately coarse-grained bins centered on ki, then average the continuum evolution
equations over each bin. This method is described in more detail in Sec. 8.3.2 (p. 206). For closures
such as the DIA, it introduces effective coupling terms that are the bin averages of the squares of the
primitive mode-coupling coefficients.

The decimation method proceeds differently. It works directly with primitive amplitudes, not
covariances. Instead of averaging the primitive amplitudes over a bin, 236 it seeks to represent the
effects of the implicit modes by a random force q whose statistical properties are constrained by
various symmetry conditions and realizability criteria. It is possible to envisage a sequence of such
constraints such that in the limit the true statistics of the sample set are recovered.

To be more explicit, let us adopt Eq. (227b) as the fundamental dynamical equation and rewrite
it as

G−1
0 uα(t)−

1

2

∑
β,γ∈S

Mαβγu
∗
β (t)u

∗
γ (t) = qα(t) + f ext

α (t), (398)

where the sample set S is assumed to contain S modes (S being assumed to be much smaller than
the total number of modes) and where qα(t)

.
= 1

2

∑′
β,γMαβγu

∗
β (t)u∗γ (t), the prime on the summation

indicating that at least one of β or γ is not in S. This representation is exact, but not very useful.
In decimation theory one expresses ignorance of the implicit modes not in S and treats only {uα, qα}
explicitly, imposing just a small number of statistical constraints on q. Those constraints may be
of varied form, but are typically deduced from low-order statistical moments evaluated with the
assumption of statistical symmetry.

Kraichnan (1985) illustrated the technique with a model system with few degrees of freedom; he
showed how to numerically enforce constraints with the aid of stochastic Newton–Raphson iteration.
Williams et al. (1987) discussed decimation procedures applied to the Betchov (1966) model of
turbulence, 237 which has many degrees of freedom. Kraichnan and Chen (1989) applied decimation to
a dynamical model of triad interactions that “imitates, in a very primitive way, the treelike structure
of interactions present in the NS equation.” They showed that the method was able to capture some
aspects of intermittency effects with which the DIA could not cope.

One of the most important theoretical results that stems from the decimation procedure is the
demonstration (Kraichnan, 1985) that random-Galilean-invariant statistical closures can be formed
by the imposition of a particular constraint. If those are developed as the next step in a sequence
of decimated approximations beginning with the DIA, their complexity is great (comparable to, but

236 Bowman et al. (1996, 1999) proposed to do precisely that with their spectral reduction scheme, and
demonstrated that certain statistics of the exact dynamics can be recovered with high accuracy. Nevertheless,
fundamental questions remain about the general viability of this procedure, particularly for the calculation
of high-order statistical moments.
237 The Betchov model is ẋi =

∑N
j,k Cijkxjxk (i = 1, . . . , N ), where the C’s are chosen randomly subject

to Cijk +Cjki +Ckij = 0. It is therefore closely related to the original random-coupling model of Kraichnan
(1958c).
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distinct from, the vertex renormalizations of MSR). It is not excluded that simpler RGI closures can
be developed. None of those closures has been extensively studied; that would be an interesting task
for the future.

8 MODERN DEVELOPMENTS IN THE STATISTICAL

DESCRIPTION OF PLASMAS

“The conventional example of a DIA-based Markovian closure, the EDQNM, severely violates
realizability in the presence of linear wave phenomena.” — Bowman et al. (1993).

In Sec. 5 (p. 126) I reviewed the development, justification, and early plasma applications of
Kraichnan’s DIA [considerably extending the earlier review of Krommes (1984a)]. As of the middle
1980s the theoretical foundations of the plasma DIA were relatively well understood.

The present and next several sections are concerned with relatively modern developments of
particular relevance to plasma physics taking place over approximately the period 1985–99 [for a time
line, see Fig. 36 (p. 262)]. In the present section I focus on studies of computable Markovian closures.
A major surprise was that one theoretically popular closure, the EDQNM (Sec. 7.2.1, p. 183), is not
realizable in the presence of waves (which are ubiquitous in plasma physics). I describe one solution to
this problem, Bowman’s Realizable Markovian Closure (RMC), which is a particular modification of
the EDQNM. Technical foundations are provided by the theory of realizability constraints reviewed
in Sec. 3.5.3 (p. 63). A realizable version of the random-Galilean-invariant test-field model is also
mentioned.

I then survey computational approaches to the DIA and RMC as well as the applications of those
closures to paradigms important to nonlinear plasma physics. The most thoroughly studied such
application is the system of two coupled fields known as the Hasegawa–Wakatani equations; that is
discussed in detail. Suggestions for future studies are also given.

Simple models such as that of HW foster the conventional wisdom that turbulence is excited by
linear instability. However, in some situations turbulence can exist even for a completely stable linear
spectrum. An introduction to this topic of “submarginal” turbulence is given in Sec. 9 (p. 210).

Readily identifiable successes of the conventional statistical closures are surprisingly accurate
quantitative predictions of wave-number spectra and advective fluxes, which are quantities of key
experimental concern. However, higher-order statistics and the physics of intermittency are also of
interest. Here the theory is very difficult and far from completely developed. Some related topics are
described in Sec. 10 (p. 220).

8.1 Antecedents to the modern plasma developments

Before turning to the modern developments, one should note several important antecedents.

8.1.1 Miscellaneous practical applications

The 1980s were noteworthy for serious attempts to apply renormalization techniques to practical
problems of tokamak microturbulence. Four representative examples are the effects of turbulent
diffusion on collisionless tearing modes (Meiss et al., 1982) and the theories of turbulence driven by
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resistivity gradients (Garcia et al., 1985), ion temperature gradients (Lee and Diamond, 1986), and
pressure gradients (Carreras et al., 1987). One significant technical difficulty with such calculations is
the treatment of magnetic shear, which introduces nontrivial x-dependent inhomogeneity. Although
many interesting insights into the features of the turbulence were obtained, and in some cases
intriguing agreement between the closure calculations and direct numerical simulations was found
(Carreras et al., 1987), it must be stressed that no fully systematic closure was studied: the nonlocal
effects of inhomogeneity were not described in the integral representation natural to the DIA, for
example (admittedly an extremely difficult calculation that even as of 2000 had not been done),
and many other simplifying approximations were made as well 238 in order that one could proceed
analytically. Therefore it is difficult to assess the fidelity of the resulting predictions. At the very
least, numerical coefficients from such exercises must not be taken seriously. In some cases there were
qualitative difficulties as well [see Sec. 4.4 (p. 119)].

In the spirit of this article on systematic techniques, I shall not pursue such practical calculations
and the similar ones that followed. Instead, I will remark in Secs. 8.1.2 (p. 200) and 8.1.3 (p. 200) on
work that more naturally bridges between the formal statements of the DIA and EDQNM closures
and their detailed numerical solutions for tractable model problems.

8.1.2 Renormalization and mixing-length theory

Sudan and Pfirsch (1985) returned to the relationship between the DIA and mixing-length theory.
[I have already commented in Sec. 5.7 (p. 140) on the seminal work by Kraichnan (1964c) on that
topic.] Whereas Kraichnan was concerned with the theory of inhomogeneous turbulence and the
evolution of mean fields, Sudan and Pfirsch were interested primarily in the cascade processes that
lead to the development of inertial ranges in homogeneous turbulence (Kraichnan, 1966b, 1971b,
1973b, 1974). In addition to reviewing the general concepts, they made explicit calculations for the
interesting problem of turbulence in the equatorial electrojet. In later related work by Rosenbluth
and Sudan (1986), a diffusion equation in wave-number space was developed to describe spreading of
an almost 2D spectrum (Albert et al., 1990) into the parallel direction. Some of that work was briefly
reviewed by Sudan (1988).

8.1.3 Statistical closures for drift waves

Horton (1986) undertook direct numerical simulations of drift waves, using the model equations
of Terry and Horton (1982). He also proposed a Markovian statistical closure and used approximate
analytical methods to deduce from it various features in agreement with the DNS. He did not attempt a
numerical solution of the closure equations, leaving the detailed fidelity of the closure in some doubt.
Nevertheless, he was able to explain broad features of the simulations in terms of the analytical
framework, including the observation that the turbulent line broadening can be much larger than a
typical linear growth rate [see also Sudan and Keskinen (1977)]. Horton’s work was summarized by
Horton and Ichikawa (1996), who also provided additional background discussion of drift waves.

238 For example, Meiss et al. (1982) claimed that they employed the (coherent) DIA (Krommes and Kleva,
1979). However, in reality they did not faithfully solve the specific integral equations of the DIA as described in
Sec. 5 (p. 126). It seems best to reserve the phrase “direct-interaction approximation” to the specific closure,
nonlocal in space and time, first obtained by Kraichnan (1959b) and generalized to arbitrary quadratically
nonlinear systems by Martin et al. (1973).
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8.2 Realizability and Markovian closures

In summary, by approximately the mid-1980s a variety of qualitatively plausible moment-based
closures were available to plasma physicists. It was clear that numerical solutions would be required
to quantitatively treat realistic many-mode spectra, but that had not been done. It was known that
the DIA was realizable, but that approximation was particularly daunting for the anisotropic spectra
characteristic of drift-wave models. Realizability of the plasma Markovian closures was not discussed;
it was assumed that those would be as well behaved as their Navier–Stokes counterparts.

A dramatic demonstration of the breakdown of realizability in a plasma-physics application came
when Bowman and Krommes attempted in 1989 to numerically integrate the EDQNM closure for
model drift-wave equations of the Hasegawa–Mima variety. The development of catastrophically
negative energy spectra in the presence of linear drift waves demonstrated an important difficulty
with that closure that had been previously unappreciated.

8.2.1 Nonrealizability of the EDQNM

The straightforward derivation of the DIA-based EDQNM (henceforth simply called EDQNM )
from the robust DIA, as outlined in Sec. 7.2.1 (p. 183), led to a long-standing belief that the Markovian
approximation should itself be robust (discounting the known, relatively subtle difficulty with RGI).
In fact, however, the theory has a serious deficiency that renders it virtually useless in its original
form: The EDQNM is nonrealizable in the presence of linear waves. As an example, let us follow the
work of Bowman (1992) and apply the EDQNM to a particular example of the three-wave example of
Sec. 5.10.3 (p. 144). I consider the degenerate case (MK ,MP ,MQ) = (1,−1, 0) with ΩQ = γQ = 0, so
mode Q does not evolve; the resulting system is amenable to analytical treatment (Kraichnan, 1963;
Bowman, 1992). Gaussian initial conditions are assumed with covariances (CK , CP , CQ) = (0, 1, 2).
In Fig. 25 I consider the case in which the complex linear frequencies are all set to zero. The
behavior predicted here is reasonable; the modal intensities approach the correct equipartition values
CK = CP = CQ = 1. The approach is nonmonotonic in both the exact solution and the DIA; it
is monotonic in the EDQNM, as could be expected from its Markovian nature. In Fig. 26 (p. 202)
I show the evolution of mode K for the same parameters except that the complex frequencies are
(ωK , ωP , ωQ) = 3(1 + i, 1 + i, 0). In the DIA that mode correctly grows exponentially; for these
parameters (growth rates all positive), no steady state is possible. However, in the EDQNM the
energy of mode K goes negative at a finite time and subsequently explodes catastrophically to −∞.
This is an example of nonrealizable behavior. In more realistic situations in which some growth rates
are negative and time-asymptotic steady states are expected, one infers that in the presence of linear
waves it is not necessarily possible to achieve those steady states by integrating the EDQNM forward
from realizable initial conditions. Note that neither the exact dynamics nor the DIA exhibit this
difficulty; both are guaranteed to be realizable.

8.2.2 Langevin representation of the EDQNM

Insight into the catastrophic failure of the EDQNM in the presence of wave phenomena can be
gained by considering a Langevin representation due to Leith (1971) and Kraichnan (1970a):

∂tψk(t) + iΩkψk + ηnl
k (t)ψk = f̃k(t)

.
= w̃(t)

∑
∆

Mkpq

√
θkpq ξ̃

∗
p (t)ξ̃∗q (t). (399a,b)
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Fig. 25. Equal-time covariance C of the three-mode problem for a case in which all linear frequencies and
growth rates vanish. Solid curves, DIA; dashed curves, EDQNM; chain-dotted curves, RMC (Sec. 8.2.3,
p. 203).

Fig. 26. Evolution of the covariance of mode K of the three-mode problem for a case in which modes K
and P have positive frequencies and growth rates. Solid curve, DIA; dashed curve, EDQNM; chain-dotted
curve, RMC. The EDQNM solution exhibits nonrealizable behavior.

Here w̃(t) is a Gaussian white-noise process of unit amplitude; its presence ensures the Markovian
nature of the resulting approximation. The random auxiliary field ξ̃ is, as in the Langevin
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representation (239) of the DIA, constrained to have variance identical to that of ψk. The term√
θ is necessary on dimensional grounds. 239 A good review of the Langevin representation was given

by Orszag (1977).
It is easy to show that the second-order statistics of Eqs. (399) obey the EDQNM equations (367).

First, it can be seen that the response function derived from Eq. (399a) obeys Eq. (365). Next, the
covariance equation derived from Eq. (399a) reproduces the left-hand side of Eq. (367), with a right-
hand side of 2Re 〈f̃k(t)ψ∗k(t)〉. Finally, upon inserting the solution ψk(t) =

∫∞
0 dt Rk(t; t)f̃k(t) and

noting that 〈f̃k(t)f̃∗k (t′)〉 = 2δ(t− t′)Fk(t), one verifies the correspondence. However, this is in general
a formal result only. In the presence of waves θ is complex, so the

√
θ in Eq. (399b) is ill defined.

More heuristically, it is actually the real part of θkpq that serves as the physical interaction time in
Eq. (368b). For complex θ that real part can easily be negative. Not only is the meaning of a negative
interaction time unclear, the resulting equations are obviously ill behaved, as demonstrated by Fig. 26.

The work of Bowman (1992) was not the first mention of the EDQNM in plasma-physics contexts;
see, for example, Diamond and Biglari (1990) and Gang et al. (1991). Previous work focused on
qualitative properties of steady-state solutions of the EDQNM. However, some qualitative arguments
are insensitive to signs or numerical coefficients; such nuances can be revealed only by detailed
quantitative solutions of the nonlinear closure equations.

In principle one can contemplate numerical solutions of the steady-state EDQNM equations,
which comprise a nonlinear algebraic system in a large number of variables Ck. Typical numerical
procedures would accomplish this by an iterative procedure; frequently, algorithms that iterate to
fixed points can be described as discretized integrations in a fictitious time. For an arbitrary initial
guess, the stability of such iterations is unclear, and such solutions have not been attempted as far as
the author knows. Integration of the causal time-dependent EDQNM equations to a time-asymptotic
steady state seems both physically and mathematically to be more appropriate. But then one requires
a cure for the breakdown of realizability.

8.2.3 Bowman’s Realizable Markovian Closure

Since steady-state solutions are of principal interest, Bowman, Krommes, and Ottaviani, in
a fruitful collaboration during the period 1989–91, adopted the point of view that the transient
dynamics of the EDQNM should be modified to guarantee a realizable evolution to the steady state
described by the time-independent EDQNM. This single criterion permits considerable leeway in the
development of a satisfactory algorithm, which can be viewed as a specific example of the numerical
techniques mentioned in the previous paragraph. One way of proceeding is to seek modifications of the
θkpq dynamics that (i) ensure Re θkpq ≥ 0, and (ii) preserve the EDQNM steady-state solution (370b).
For a single scalar field it is not hard to invent such dynamics (Bowman, 1992). However, when one
attempts to generalize such techniques to systems of multiple coupled fields, major technical difficulties
are encountered. For example, θ becomes a sixth-rank tensor θαβγα′β′γ′ in the field (species) label α (or a
second-rank tensor in the extended index s

.
= {α, β, γ}). Constraints on Re θ generalize to constraints

on positive definite matrices that are difficult to handle. More fundamentally, it proves difficult if
not impossible to simultaneously retain the conservation of multiple nonlinear invariants. Some work
in these directions was summarized by Ottaviani et al. (1991), Bowman (1992), and Bowman et al.
(1993).

239 Because 〈w̃(t)w̃(t′)〉 = δ(t− t′), dimensionally [w̃] = [t]−1/2. θ has the dimension of time.
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The EDQNM emerges from the DIA with the aid of just two approximations: (i) the Markovian
approximation (365); (ii) the fluctuation–dissipation Ansatz [FDA; Eq. (366)]. Ultimately, Bowman
(1992) was led to focus on the FDA as the root of the difficulty. He showed that the form (366)
leads to an incoherent noise function that is not intrinsically positive definite (with time playing the
role of a continuum matrix index) since Ck(t) does not enter Eq. (366) symmetrically in t and t′. 240

Because in the DIA positive definiteness of F guarantees positive definiteness of the covariances for
proper initial conditions, Bowman was led to restate the FDA as an equality between the correlation
coefficient ck(t, t′) .

= Ck(t, t′)/[C1/2
k (t)C

1/2
k (t′)] and the response function; thus 241 he assumed that

ck(t, t′) = Rk(t; t′) (t ≥ t′). (400)

He proved a variety of theorems relating to positive definiteness and was ultimately led to the following
system of equations, which he called the Realizable Markovian Closure (RMC):

∂tCk(t) + 2Re ηk(t)Ck(t) = 2F nl
k (t), (401a)

ηk(t)
.
= iLk −

∑
∆

MkpqM
∗
pqkθ

eff∗
pqk(t)Cq(t), (401b)

F nl
k (t)

.
=

1

2

∑
∆

|Mkpq|2 Re θeff
kpq(t)Cp(t)Cq(t), (401c)

θeff
kpq

.
= ΘkpqC

−1/2
p C−1/2

q , (401d)

∂tΘkpq + [ηk + P(ηp) + P(ηq)]Θkpq = C1/2
p (t)C1/2

q (t), (401e)

together with Θkpq(0) = 0 and a positive definite initial condition on Ck. Here the P operator is
defined by P(η)

.
= Re(η)H(Re η)+ i Im η; i.e., it annihilates any antidissipative effect in the temporal

development of Θ. Note that although the original θkpq was fully symmetric, Θkpq and θeff
kpq are

symmetrical only in their last two indices.
For the three-wave problem the prediction of the RMC is also displayed in Figs. 25 (p. 202)

and 26 (p. 202). Figure 26 shows that the RMC makes sensible, realizable predictions. This result is
extremely encouraging, so one is led to consider the application of the RMC to more complicated and
physically relevant systems with many modes. That is discussed in Sec. 8.3 (p. 205).

The RMC inherits the difficulty with random Galilean invariance that plagues the DIA and
EDQNM. The test-field model (Sec. 7.2.2, p. 187) corrects that problem, but Bowman and Krommes
(1997) showed that in general the complex TFM is also not realizable in the presence of waves. They
proposed a realizable modification that follows along the lines of the RMC. I shall not write it here
for lack of space.

240 One is not referring here to the non-Hermitian nature of the one-sided function C+(t, t′) [see Eq. (366)];
the two-sided function C(t, t′) = C+(t, t′)+C∗+(t′, t) is always Hermitian no matter what form of the FDA is
adopted.
241 A fluctuation–dissipation relation involving ck(t, t′) previously appeared in the literature (Kraichnan,
1971a), but to the author’s knowledge was stated only in the context of thermal equilibrium, for which the
choice of t or t′ for the arguments of the normalizing intensities in the denominator is irrelevant.
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8.3 Numerical solution of the DIA and related closures in plasma physics

Each of the systematic closures presented so far has identical mode-coupling structure: for each
mode k, sums are required over wave numbers p and q such that k + p + q = 0. Although simple
qualitative analysis can be done analytically, reliable quantitative information for systems with many
modes must be obtained numerically. The numerical solution of statistical closures has a long history
in neutral-fluid turbulence [see, for example, Kraichnan (1964b) and Herring and Kraichnan (1972)].
Corresponding attempts in plasma physics are much more recent. In the present section I briefly
describe some of the numerical considerations. In Sec. 8.4 (p. 206) I review recent applications.

8.3.1 Scalings with computation time and number of modes

Let T be the total run time, NT be the total number of discrete times to be evolved, and Nk be
the total number of wave numbers to be retained in a numerical procedure. Let primes (no primes)
denote, respectively, quantities for DNS (closures). Direct pseudospectral integrations of the primitive
equations of motion require O(N ′

TN
′
k logN ′

k) operations. To employ fast Fourier transforms (FFT’s),
the k’s must be uniformly distributed on a Cartesian lattice. Because individual realizations fluctuate
rapidly in time, even in steady state, one must integrate primitive dynamics for many autocorrelation
times past the point of saturation tsat in order to accumulate reliable statistics, particularly for
two-time correlation functions; closures, however, need only be integrated to tsat. Because realizations
fluctuate rapidly in k space whereas statistical quantities vary smoothly, one can work withNk � N ′

k.
For homogeneous, possibly anisotropic turbulence, the basic structure of the DIA is ∂tCk(t, t′) +∫ t

0dtΣ
nl
k (t; t)Ck(t, t′) + · · · , with Σnl

k (t; t) requiring the familiar sum over p and q. For given Σnl
k ,

calculation of Ck(t, t
′) for all t′ ≤ t requires on the order of N3

TNk operations; for a general, nonuniform
k lattice, calculation of Σnl

k (t; t) requires on the order of N2
TN

3
k operations. [Dannevik (1986) has

stressed that one does not need to recompute Σnl
k (t; t) for each t′ at fixed t.] The total DIA operation

count is thus O(N3
TNk) + O(N2

TN
3
k). The highly unfavorable N3

T scaling is frequently cited as an
argument against the practical use of the DIA; however, the O(N2

T ) term can dominate in practice.
If all fluctuations decayed on a characteristic timescale τac, then the time-history integrals could be
truncated and N3

T → N2
TNτac = N3

T (τac/T ). However, in practice τac depends on k, and DIA runs are
constrained by the time to integrate the slowest (generally longest-wavelength) mode through at least
one but preferably several dynamical times.

For the Markovian closures, whose structure is ∂tCk(t)+η
nl
k (t)Ck(t)+· · · and ∂tθkpq+ηnl

k θkpq+· · · ,
O(N2

k) operations are required to compute ηnl
k for given k. Scaling is linear in NT ; however, θkpq must

be evolved for each of the 1
6
N3

k distinct wave-number triads. 242 The final Markovian scaling is thus
O(NTN

5
k).

These considerations suggest that Markovian closures can compete favorably with direct numerical
simulations, and this is born out in practice (Bowman and Krommes, 1997). In order to obtain
DIA solutions, a technique that sometimes works successfully is to perform coarse-grained integrations
with a Markovian closure, then use the resulting k spectrum to initialize a DIA run.

Direct calculations of the wave-number sums required for the nonlinear terms can be avoided by
using FFT-based pseudospectral techniques, 243 at the price, however, of employing a uniform k lattice

242 Sulem et al. (1975) proposed a simplification wherein the number of unknowns is proportional to Nk,
not N 3

k, leading to a very favorable Markovian scaling O(NTN
3
k).

243 The suggestion that pseudospectral techniques might be useful in this context is apparently due to Orszag.
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that is relatively densely populated. This technique was adopted by LoDestro et al. (1991) in their
DIA studies of the HW equations.

8.3.2 Decimating smooth wave-number spectra

In order to implement the observation that statistical quantities vary smoothly in k space, one
may divide the k space into coarse bins and compute representative values of Ck averaged over each
bin. For homogeneous turbulence, for which angular integrations can be performed analytically, that
was first done by Leith (1971) and Leith and Kraichnan (1972). The procedure introduces effective,
bin-averaged mode-coupling coefficients. Leith (1971) called their computation a “complex exercise in
solid geometry and computer logic”; however, Bowman (1992) found a simple and efficient analytical
procedure 244 that also generalized naturally to anisotropic turbulence. In his practical calculations
of 2D anisotropic plasma turbulence, Bowman used a cylindrical-polar k-space geometry with bins
spaced logarithmically in wave-number magnitude and linearly in wave-number angle. Quite coarse
partitions seem to be satisfactory in order to resolve the energy-containing portion of the spectrum.
Note that a logarithmic partition precludes straightforward use of the FFT approach to computing
the closure terms.

A conceptual difficulty with a fully binned description of the k space is that the optimal angular
orientation of the bins is uncertain. An alternate procedure is to use a truncated Fourier description
of the angular dependence (Herring, 1975). That method is certainly appropriate for weak anisotropy.
It should be explored further for plasma-physics problems in which the anisotropy is nominally of
order unity.

8.4 Application: Statistical closures for the Hasegawa–Mima and Terry–Horton
equations

“To sum up, we now have methods of closure which are not ridiculous. We don’t know how
good they are, nor do we know how to apply them to practical problems: these are the questions
which must now be studied.” — Leslie (1973a).

The goal in this and the next subsection is to describe how well second-order statistical closures

Dannevik (1986) cites a preprint by Domaradzki and Orszag (1986).
244 The typical convolution structure of a closure in the continuum representation is ∂tC(k) =
(2π)−d

∫
dp dq δ(k + p + q)f(k, p, q)S(k, p, q), where f is a rapidly varying function determined by the

square of the mode-coupling coefficients and S is slowly varying—for example, for the incoherent-noise
term of the DIA, f = 1

2 |Mkpq|2 and S = C(p)C(q)R∗(k). Define the average over the lth wave-
number bin of volume ∆l by Cl

.= ∆−1
l

∫
∆l

dkC(k). Approximate the p and q integrals by Riemann
sums, average the C(k) equation over the lth bin, and evaluate S at the central wave numbers. Then
∂tCl =

∑
m,nMlmnS(kl, pm, qn), withMlmn

.= (2π)−d∆−1
l

∫
∆l

dk
∫
∆m

dp
∫
∆n

dn δ(k + p + q)f(k, p, q). In
general, the integrations can be carried out partly analytically, partly numerically; they must be computed
just once for each bin resolution. For isotropic statistics, for which the angular bins extend over the entire
interval [0, 2π), the angular integrations can be easily done analytically and one is quickly led to the results of
Leith and Kraichnan (1972). In general, however, although the basic procedure is straightforward, practical
details are nontrivial. A thorough discussion was given by Bowman (1996b); see also Bowman and Krommes
(1997).
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perform when applied to paradigms of interest to the physics of turbulent plasmas in strong magnetic
fields. The Hasegawa–Mima equation (48) and Terry–Horton equation (43) are important examples
of one-field models, so I begin with them. In Sec. 8.5 (p. 208) I consider the much richer two-field
Hasegawa–Wakatani model.

8.4.1 Thermal equilibrium for Hasegawa–Mima dynamics

The primitive HM dynamics are conservative. As described in Sec. 3.7.2 (p. 68), the HME admits
two quadratic invariants [Eqs. (50)]: the energy E; and the enstrophy W. Therefore any initial
condition (truncated to a finite number of discrete wave numbers) will relax to the two-parameter
Gibbs distribution discussed in Sec. 3.8.3 (p. 74). Furthermore, those two invariants are preserved by
the DIA-based second-order closures. An important and nontrivial test (of the nonlinear structure of
a code) is therefore to demonstrate that both the primitive dynamics and the closures relax to the
proper two-parameter Gibbs distribution. Such relaxation experiments are now standard tools of the
simulation repertoire. 245

8.4.2 Transport in the Hasegawa–Mima equation

There is no transport in such thermal-equilibrium states. Indeed, particle transport vanishes
even for nonequilibrium transient states of the HME because the electron response is adiabatic:
Γe

.
= 〈δVE,xδne〉 ∝ −〈(∂yϕ)ϕ〉 = −1

2
〈∂y(ϕ2)〉 = 0, the last result following from periodic boundary

conditions or statistical homogeneity. Since one has already seen that the particle fluxes are ambipolar,
it follows that Γi = 0 as well.

Nevertheless, Connor–Taylor analysis applied to the HME demonstrates an intrinsic scaling of
transport that will emerge when nonadiabatic effects permit nonzero flux, as in the Terry–Horton
equation. The gyro-Bohm units described in Sec. 2.4.3 (p. 34) remove all parameters from the HME,
so one is immediately led to conclude that the diffusion coefficient in physical units must be the
gyro-Bohm coefficient (6). The fundamental physics underlying this result is E ×B advection of ion
polarization charge density. This physics is retained by even substantially more sophisticated models,
which therefore also tend to exhibit gyro-Bohm scaling.

8.4.3 Forced Hasegawa–Mima equation and spectral cascades

In the presence of growth or dissipation, the appropriate physical equation to employ is that
of Terry and Horton. However, as an intermediate step it is instructive to first consider a forced
HM equation in which a linear growth or dissipation rate is included, but dissipation in the nonlinear
term is ignored. Ottaviani and Krommes (1992) used Kolmogorov arguments to deduce criteria under
which spectral domains lie in weak- or strong-turbulence regimes; both can occur simultaneously,
suggesting the need for numerical work. Bowman and Krommes (1997) performed various simulations
of the forced HME using the RMC, RTFM, and DIA. It was found that the predictions of those
realizable closures were in reasonable agreement with each other and with those of DNS.

245 For the closures the expected equilibria are computed for given initial conditions following the procedures
of Sec. 3.7.2 (p. 68). They are then perturbed in a way that preserves the given invariants (Hu et al., 1997).
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8.5 Application: Statistical closures for the Hasegawa–Wakatani equations

As I stressed in Sec. 3.8.4 (p. 76), realistic plasma-physics applications involve growth rates broadly
distributed in k space. For practical work one could insert growth rates derived from kinetic theory
into the THE and proceed with closure calculations. However, continuing in the spirit of the present
article aimed at elucidating fundamentals, I now consider the two-field, 2D HW paradigm defined by
Eqs. (52), for which a linear growth rate is built in. Aspects of the statistical dynamics of that system
were discussed by Gang et al. (1991), who used a simplified form of the EDQNM. 246 It has already
been noted that the system reduces to a forced, dissipative HME in the adiabatic regime α � 1, so
it is most interesting to focus on the hydrodynamic regime α � 1. The interesting questions there
become whether the vortices observed in the DNS influence the transport, and to what extent a low-
order statistical closure can correctly predict the spectra and flux. Some discussion of these issues was
given by Koniges and Craddock (1994).

The HW equations can be studied with either the DIA or the RMC. LoDestro et al. (1991)
implemented the DIA, using FFT’s to compute the wave-number sums. They discussed relaxation
to thermal equilibrium, the approximate validity of the fluctuation–dissipation Ansatz in the energy-
containing range, and the importance of off-diagonal correlations.

Such DIA calculations are numerically challenging. For rapid studies and parameter scans it is
easier to use a Markovian approximation, as was done by Hu et al. (1995) and Hu et al. (1997).
Let us continue to employ the same parameters as those of Koniges et al. (1992). In Fig. 1 (p. 41)
are compared the particle flux Γ(α) from (i) DNS, (ii) Bowman’s RMC, and (iii) QLT. The latter
prediction is defined by inserting the linear phase relation between ϕ and n for the unstable branch
into Eq. (3b), then taking the saturated spectrum 〈ϕ2〉k from the DNS. It can be seen that the
closure reproduces the actual flux very well, and that in the hydrodynamic regime the true flux is
substantially reduced from the quasilinear prediction, indicating the importance of nonlinear effects.

Koniges et al. (1992) suggested that this depression from the quasilinear value was related to
the “coherent [vortex] structures” that can be seen clearly in snapshots of the vorticity field. They
offered no analysis in support of this hypothesis, and the closure calculations described here do not
uphold it. As I have discussed in some detail, second-order closures of the kind used here do not
capture the details of coherent structures, which cannot be reconstructed in real space from merely
two-point statistics. Furthermore, the particle transport being measured depends directly not on the
vorticity ω but rather on the velocity VE,x, an integral of ω. Integration is a smoothing operation,
and a qualitative application of the central limit theorem suggests that VE,x should be more nearly
Gaussian than is ω. This is born out by the DNS, where one finds that while the kurtosis K(ω)
rises to a highly non-Gaussian value in the saturated state, the kurtoses of n, ϕ, and VE,x remain
relatively close to the Gaussian value 0. Snapshots of the saturated density and velocity fields reveal
little evidence of the coherent vortices.

Nevertheless, the true flux is indeed substantially depressed from the quasilinear prediction. An
explanation that does not involve coherent structures was given by Hu et al. (1995). The argument

begins by estimating Γ ∼ V
2

Eτac, so the ratio of true to quasilinear flux is Γtrue/ΓQL = τ true
ac /τQL

ac .
In general, for a wavelike spectrum one has τQL

ac ∼ (γ/ω)ω−1 [see footnote 19 (p. 16)]; in the

246 Gang et al. (1991) parametrized all time correlations by a single nonlinear damping independent of
field index, so the reduced theory involved a scalar θkpq. That is a substantial simplification [independently
suggested by Ottaviani et al. (1991)], at the cost of a less faithful representation of the nonlinear interactions.
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hydrodynamic regime with γ ∼ ω, however, one estimates τQL
ac ∼ ω−1 ∼ γ−1. In the remainder

of this paragraph, I write Reη → η. A measure of the true τac is η−1. From the steady-state spectral
balance, η = ηnl − γ = F nl/C > 0. Calculations show that the inequality is well satisfied, so ηnl � γ
and η ∼ ηnl. Thus τ true

ac /τQL
ac ∼ η−1/γ−1 ∼ γ/ηnl � 1. That ηnl and F nl/C can be separately much

larger than γ was previously noted by Horton (1986).
Thus one concludes that the gross depression of the true hydrodynamic flux from the quasilinear

estimate can be explained and satisfactorily predicted by a second-order closure like the RMC without
explicit reference to coherent structures. This conclusion, however, is not definitive 247; further analysis
would be worthwhile.

It is interesting to verify that qualitative spectral transfer arguments are compatible with the
calculated spectral levels. For a spectrum characterized by a single wave number k, growth rate γ, and

rms velocity V , forcing can be estimated as γV
2
, and transfer can be estimated as V

2
(τac/τeddy)τ

−1
eddy;

balance gives γ ∼ (τac/τeddy)τ
−1
eddy. In the strong-turbulence (hydrodynamic) limit with τac ∼ τeddy,

the conventional expression (122) for τeddy leads to

E(k) ∼ k
−3
γ2 = Eml(k)(γ/ω)2 (γ/ω ≥ 1), (402)

where the result has been normalized to the mixing-length level Eml .= k
−1

(ω/k)2, at which VE ∼ V∗.
In the weak-turbulence (adiabatic) limit, where γ � ω, an argument based on the randomly directed
propagation of wave packets leads (Hu et al., 1997) for moderately dispersive waves to τac ∼ ω−1 and
to

E(k) ∼ Eml(k)(γ/ω) (γ/ω � 1). (403)

Hu et al. (1997) estimated these levels for the parameters of their simulations and found reasonable
agreement with the detailed predictions of both the closure and DNS.

8.6 Conclusion: Systematic statistical closures in plasma physics

This concludes the discussion of modern studies of systematic second-order statistical closures
in plasma physics. In summary, their development can be loosely viewed as consisting of several
stages [Figs. 35 (p. 261) and 36 (p. 262)]: (i) the inception in the late 1950s of the DIA for the NSE;
(ii) intense development during the 1960s of fluid closures, but virtual neglect of those techniques by
plasma physicists; (iii) Dupree’s qualitative ideas of resonance broadening (approximate treatment of
coherent response) and clumps (approximate treatment of incoherent response) in the late 1960s and
early 1970s); (iv) plasma-related development of formal renormalization procedures a la Martin et al.
(1973) by DuBois, Krommes, and co-workers in the mid- to late 1970s; (v) early explorations, mostly

247 Hu et al. (1997) remarked, “This conclusion does not necessarily contradict the conclusions of a recent
analysis of transport in the HW model [using the methods of biorthogonal decomposition (BOD) and
conditional averaging (de Wit et al., 1995)] that in the small-α limit the transport depression was due to the
‘influence of large-scale and long-lived vortex structures’ in the near-Gaussian density and potential field.
We argue that in such a near-Gaussian field the main contributions of these vortex structures (quantified
by the BOD method) to the second-order statistics, like the transport coefficient, have been captured and
represented correctly by the second-order closure calculations.”
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analytical, of primitive Markovian closures by Waltz, Horton, Diamond, and others in the 1980s;
(vi) the recognition by Bowman, Krommes, and Ottaviani (approximately 1990) that the standard
EDQNM was nonrealizable in the presence of linear waves; (vii) the development of the realizable
Markovian closure in the early 1990s; and (viii) numerical investigations of the RMC culminating in
the work by Hu et al. (1997) that demonstrated excellent agreement between statistical closure and
direct numerical simulations. For simple nonlinear paradigms, it seems fair to say that a sensible
framework for using analytical theory to predict turbulent plasma spectra and transport is in place.

Although space precludes a detailed discussion, it is appropriate to close this section by mentioning
the work of Chandran (1996), who in Chap. 5 of his dissertation described analytical and numerical
applications of the DIA and RMC to the nonlinear MHD dynamo, which arises in discussions of the
origin of the galactic magnetic field (Kulsrud, 1999). His discussion provides a useful summary of the
formalism, conceptual ideas, and numerical issues.

9 SUBMARGINAL TURBULENCE

“One of the characteristic features of transport phenomena in confined plasmas is that the
plasma inhomogeneity is the order parameter that governs the transport. The fluctuations
are self-sustained: they can be driven through subcritical excitation, being independent of the
linear stability of the confined plasma. . . . We try . . . to put forward the point of view that
the plasma structure, fluctuations and turbulent transport are regulating each other . . . .” —
Itoh et al. (1999).

The picture of steady-state turbulence as arising from the balance between linear forcing, nonlinear
transfer, and linear dissipation has frequently been referred to in this article. In Sec. 1.2 (p. 10) the
rich linear behavior of the plasma medium was emphasized. It is difficult to overstate the degree to
which plasma-physics research has focused on linear theory, a point previously made by Montgomery
(1977).

The conventional interpretation of linear forcing is that fluctuations arise from linear instability
due to a linear growth rate γlin

k that is positive at one or more wave numbers k, and there is a
widespread belief in the plasma community that linear stability should lead to complete suppression of
turbulence. Two important driving mechanisms for microinstabilities in magnetically confined plasmas
are ion temperature gradients (Sec. 2.4.6, p. 42) and the toroidal precession drift of magnetically
trapped particles. In configurations with reversed magnetic shear, the sign of the precession drift
is reversed, theoretically improving the linear stability of trapped-particle modes. It can also be
argued that such configurations should also reduce the ITG drive. For these and other reasons,
it was predicted (Kessel et al., 1994) that reversed-shear configurations should lead to important
improvements in confinement, and this idea was given dramatic practical support by experiments
on so-called enhanced-reversed-shear operating regimes for tokamaks (Levinton et al., 1995). Direct
measurements of fluctuation spectra showed strong suppression of fluctuations in the core region of
reversed shear, well correlated with enhanced confinement.

Nevertheless, the link between positive linear growth rates and turbulence (and, presumably,
transport) is not entirely well founded. It is theoretically possible that linearly stable systems
can exhibit large-amplitude, steady-state turbulence (called submarginal as opposed to the linearly
unstable supermarginal variety), and this phenomenon has been observed in a variety of neutral-fluid
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experiments and plasma-physics computer simulations. Indeed, Itoh et al. (1999) have suggested, by
analogy with pipe flow, 248 that submarginal turbulence may be the generic state of inhomogeneous
confined plasmas. This view may be too extreme since there is no lack of linearly unstable processes in
the toroidal systems typically used for magnetic confinement. Nevertheless, it presents an interesting
challenge. At the present time, detailed understanding of the mechanisms underlying submarginal
turbulence is quite incomplete; accordingly, the following discussion is introductory in nature and
describes topics substantially more immature than most of the others reviewed in this article. It
therefore identifies an interesting and fertile area for future work.

I shall briefly discuss several general mechanisms for submarginal turbulence: (i) transition to
turbulence via subcritical bifurcations; (ii) a “mostly linear” bootstrap mechanism; and (iii) a more
specific “roll–streak–roll” scenario for shear flows that builds on the insights provided by item (ii).
First, however, it is useful to identify situations for which submarginal turbulence is impossible.

9.1 Energy stability vs linear instability

Consider a nonlinear equation depending on a dimensionless parameter λ (for example, the
Reynolds number R or normalized density gradient κ). Assume that one has derived the balance
equation for an energylike quantity E quadratic in the fluctuations. As discussed in Sec. 2.1.1 (p. 23)
for the Navier–Stokes paradigm, the general form of such an equation is

∂tE(x, t) = P(x, t)− T (x, t)−D(x, t), (404)

where P is a production term (involving a source of free energy), T is a transfer term (involving the
divergence of a triplet correlation function), and D is a dissipation term. If E is chosen appropriately,
it is usually possible to employ global conservation laws and boundary conditions to annihilate the
transfer term by an appropriate spatial average that I shall denote by an overline. Then

∂tE(t) = P(t)−D(t). (405)

An energy stability boundary or threshold λE is defined (Joseph, 1976) by the λE that satisfies

1 = min(DλE
/PλE

), (406)

the variational problem being conducted in the space of all fields that satisfy the boundary conditions
and kinematic constraints such as ∇ ·u = 0. If D/P monotonically increases as λ decreases, 249 then
for λ < λE the energy of perturbations of arbitrary amplitude monotonically decreases with time.
Fluctuations damp to zero, so turbulent steady states are impossible.

Linear stability theory defines another characteristic value λc, the threshold for linear instability,
which must necessarily obey λc ≥ λE . The regime λE < λc, if it exists, may support submarginal
turbulence for λ ≥ λs, for some λs lying in the range λE < λs < λc. Note that P and D are
constructed from the linear dynamics. Therefore if no information is lost in the transition from the

248 It is believed that flow in a circular pipe is linearly stable at all Reynolds numbers; see, for example,
Landau and Lifshitz (1987).
249 In the Navier–Stokes case treated by Joseph (1976), D is multiplied by R−1; in characteristic plasma
problems, P is multiplied by a profile gradient κ. In such cases the monotonicity condition is satisfied.
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primitive amplitude equation to the energy stability problem, then λc and λE coincide. That is the
case if the linear operator is symmetric [see the discussions by Waleffe (1995, Sec. IV) and Grossmann
(1996)]. Accordingly, submarginal turbulence can occur only for nonsymmetric linear operators. Such
operators are common in the problems of multiple coupled fields ubiquitous in plasma physics. In
fluid problems the nonsymmetry frequently arises because of boundary-condition constraints.

Henningstone and Reddy (1994) proved a stronger condition: submarginal turbulence is possible
only if the linear operator is non-normal. A non-normal operator L obeys LL† 6= L†L; alternatively,
it is an operator whose eigenvectors are not orthogonal. 250 A simple example is given in Sec. 9.5
(p. 215). In plasma physics, non-normality frequently arises from diamagnetic terms; see the κ∂yϕ
term in the HW density equation (52b).

9.2 Evidence for submarginal turbulence

It has long been known that in particular geometries fluid flows are linearly stable at all Reynolds
numbers (Landau and Lifshitz, 1987); examples include planar Couette flow and Hagen–Poiseuille
(pipe) flow. Since they are experimentally observed to be turbulent at finite Reynolds numbers, those
flows are submarginal. Many references to original work can be found in the various papers of Waleffe
and co-workers cited below; see also the short account by Grossmann (1996) and the colloquium by
Grossmann (2000).

In plasma physics, evidence for submarginal turbulence has accumulated on the basis of computer
simulations of MHD equations (Waltz, 1985), drift waves (Scott, 1992; Drake et al., 1995), resistive
pressure-gradient-driven modes (Carreras et al., 1996b), and current-diffusive interchange modes
(Itoh et al., 1996). Additional theoretical analysis of some models, using simple nonlinear dispersion
relations [see the discussions in Sec. 4.3.5 (p. 114) and footnote 150 (p. 115)], was described by
Itoh et al. (1999) and Yoshizawa et al. (2001). Scott (1992) proposed a qualitative explanation
involving inverse cascade of ϕ, direct cascade of n and T , and the role of magnetic shear; Drake
et al. (1995) discussed a more specific mechanism involving vortex peeling that will be elaborated in
Sec. 9.6 (p. 216). One should also mention the earlier simulations of Berman et al. (1982), interpreted
by Tetreault (1983) as a nonlinear clump instability. Tetreault (1988) discussed an MHD variant.
Although some of that work is quite physically motivated and mathematically detailed, none of those
discussions provided a solid, systematic analysis of the underlying nonlinear dynamical processes that
would satisfy an expert in dynamical systems theory. Progress in that direction is described in Sec. 9.6
(p. 216).

9.3 Introduction to bifurcation theory

The bifurcation theory of ordinary differential equations has been studied extensively; see, for
example, Guckenheimer and Holmes (1983) and Holmes et al. (1996). The following introductory

250 It is a common misconception that normal operators are self-adjoint. A simple counterexample is

L =
(

1 i
i 1

)
, which is not self-adjoint with the usual complex-valued scalar product but is normal:

L · L† = L† · L =
(

2 0
0 2

)
. The complete set of orthogonal eigenfunctions is e± = 2−1/2(1, ±1)T ; the

associated eigenvalues are λ± = 1± i.
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discussion is highly condensed and incomplete. Consider a scalar amplitude variable A depending on
a parameter λ, and let A obey the prototypical dynamical equation

∂tA = (λ− λc)A− βA3 = (λ− λc − βA2)A, (407)

where λc and (positive) β are constants. For λ < λc, A decays to zero; the system is linearly (and
nonlinearly) stable. For λ > λc, the state A = 0 remains an equilibrium solution but is linearly
unstable; however, a stable steady-state nonlinear equilibrium is achieved at A = ±[(λ − λc)/β]1/2.
The equilibrium solutions are diagrammed in Fig. 27 (p. 213). The appearance of a second equilibrium
solution at the critical point λ = λc is called a bifurcation; Eq. (407) provides an example of a
supercritical bifurcation. An early calculation of a supercritical bifurcation in plasma physics was by
Hinton and Horton (1971).

II IIII

cλ

A

λ

A

Fig. 27. Supercritical bifurcation. In regime I, the zero-amplitude solution is absolutely stable (solid line). In
regime III, the zero-amplitude solution is linearly unstable (dashed line) whereas a nonzero-amplitude branch
is stable. (A symmetrical branch A → −A is not shown.) The bifurcation point is at (λ = λc, A = 0). Also
shown are the qualitative shapes of the effective potentials Vλ(A), where ∂tA = −∂Vλ/∂A.

The nonlinear structure of Eq. (407) is insufficiently rich to support turbulence; there are no
fluctuations in the steady state. In more realistic physical systems additional bifurcations ultimately
terminating in chaos may occur as λ is increased farther beyond λc.

251 Nevertheless, the behavior of
Eq. (407) fosters the prevailing intuition that linear instability is responsible for nonzero-amplitude
steady states.

However, subcritical bifurcations are also possible. Consider, for example,

∂tA = (λ− λc + βA2− cA4)A, (408)

251 There is an extensive literature on the transition to turbulence, a topic that would carry us far beyond
the bounds of this article. In addition to Guckenheimer and Holmes (1983), see, for example, Martin (1982)
and more introductory discussions by Eckmann (1981), Ott (1981), Lichtenberg and Lieberman (1992), and
Ott (1993).
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where β and c are positive constants. The bifurcation diagram for the equilibria of Eq. (408) is shown
in Fig. 28 (p. 214). Although the zero-amplitude equilibrium is again linearly unstable for λ > λc,
a nonzero-amplitude stable equilibrium exists for λ > λs

.
= λc − β2/4c. The regime λs ≤ λ < λc is

linearly stable but nonlinearly unstable. This can be seen most vividly by writing ∂tA = −∂Vλ(A)/∂A
and examining the qualitative shape of the potential V as λ is varied. Representative potentials are
also shown in Figs. 27 and 28.

cλλs

I VIVIIIII
A

λ

A

Fig. 28. Subcritical bifurcation. In regime III, stable nonzero-amplitude solutions are possible even though
the zero-amplitude solution is linearly stable. (A symmetrical branch A→ −A is not shown.)

I again remark that the simple model (408) does not support turbulence; the solid curves in
Fig. 28 describe stable attracting states. Nevertheless, its behavior strongly suggests that submarginal
turbulence should be possible. For example, in important and elegant pioneering work McLaughlin
and Martin (1975) [see also McLaughlin (1974)] showed that the subcritical-bifurcation route to
chaos is realized by the famous Lorenz system of equations (Lorenz, 1963). More detailed and modern
discussion of that problem was given, for example, by Ott (1993).

Looking ahead to a later discussion of statistical descriptions, one can give another interpretation
of Figs. 27 and 28. Instead of interpretingA as a dynamical amplitude, let it be a statistically averaged
fluctuation intensity. Then the diagrams no longer describe the detailed dynamical bifurcations, but
offer a usefully coarser-grained description if there is, in fact, underlying chaos. In particular, Fig. 28
with A interpreted as intensity shows the expected dependence on λ of a closure prediction for the
steady-state fluctuation level.

9.4 Digression: Plasma turbulence and marginal stability

The marginal-stability scenario of Manheimer et al. (1976) and Manheimer and Boris (1977)
can be interpreted in terms of bifurcations and the transition to turbulence. The hypothesis states
that turbulent transport adjusts its magnitude to bring the background plasma profiles to linear
marginal stability (λ ≈ λc). If true, this would allow turbulent transport coefficients to be found
from solely linear calculations, a compelling simplification. However, if the transition to turbulence
is supercritical (an assumption made implicitly in Manheimer’s analysis), then a plasma hovering
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precisely at marginal stability cannot be turbulent, so the scenario is prima facie inconsistent. Of
course, if one assumes that the series of supercritical bifurcations to turbulence are compressed into a
very narrow region just above λc, there may be little difference in parameter space between the points
of marginal stability and fully developed turbulence.

If the transition to turbulence is subcritical, then either marginal stability has no relevance or the
subcritical regime is so narrow that its left-hand edge practically coincides with λc.

Even if the transitional regime is very narrow (which must ultimately be proven by detailed
analysis), the marginal-stability hypothesis need not apply. Consider a diffusion equation in which
the diffusion coefficient turns on only when the background gradient exceeds a critical value; for
definiteness, let the equation be forced to carry a fixed amount of turbulent flux Γ injected at the left-
hand boundary. The solution of such an equation can for sufficiently large Γ be driven arbitrarily far
from the critical profile. The larger the intrinsic diffusion, the closer the profile will stay to critical, but
the issue is a quantitative one. For example, detailed numerical solutions of ITG equations for realistic
tokamak parameters [see, for example, Kotschenreuther et al. (1995)] predict profiles that are nearly
marginal in the core but unambiguously supermarginal toward the edge. For some further discussion,
see Krommes (1997c) and the analysis by Krommes (1997b) of the role of instability thresholds in
simple stochastic models.

In summary, the marginal-stability hypothesis camouflages important nonlinear considerations
about the transition to turbulence and assumes that the turbulent diffusion above threshold is
essentially infinitely large. The fidelity of the hypothesis must be confirmed by detailed nonlinear
analysis of each particular situation, which determines the dependence of the turbulent flux on the
driving profiles. The existence of submarginal turbulence, for which the linear stability threshold is
irrelevant, shows that the hypothesis cannot be generally true as a governing principle for turbulent
plasmas.

9.5 An “almost-linear” route to submarginal turbulence

I now return to dynamical possibilities for submarginal fluctuations. In addition to subcritical
bifurcations, another possible mechanism for nonlinearly self-sustained turbulence was discussed by
Trefethen et al. (1993), Baggett et al. (1995), and others. It relies on the ability of non-normal linear
operators to transiently amplify perturbations to large levels even though they ultimately decay. The
simplest nontrivial example of such an operator L (which would appear in the dynamical equation

∂tψ = Lψ + n.l. terms) is L =
(−α 0
κ −β

)
, whose linear eigenvalues 252 are −α and −β. Even for

positive α and β (stable linear spectrum), the Green’s function

exp(Lt) =
(

e−αt 0
κ(e−βt − e−αt)/(α − β) e−βt

)
(409)

exhibits transient growth in the off-diagonal component even for distinct α and β, the maximum
occurring at t∗ = ln(α/β)/(α − β). If the nonlinearity can feed back a portion of that transient
sufficiently rapidly and in the correct phase, nonlinear self-sustainment can result. A three-mode

252 The eigenvectors corresponding to (−α,−β) are e−α = (1, κ/(β − α))T and e−β = (0, 1)T . Since these
cannot be made orthogonal for κ 6= 0, L is non-normal as claimed. Alternatively, one can directly verify that
L · L† 6= L† · L.
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dynamical model that illustrates the possibility was studied in detail by Baggett et al. (1995). A
pedagogical discussion was given by Grossmann (2000).

A frequent source of non-normality in models of magnetized plasma is the E × B advection of
a mean variable ψ (e.g., ψ = n or T ), which couples fluctuations δψ to the fluctuating potential δϕ;
this usually shows up as an off-diagonal effect. For example, the HW equations are non-normal, as
discussed by Camargo et al. (1998). Transient amplification significantly exceeding the linear growth
rate was found in the hydrodynamic regime. (In the adiabatic regime the HW equations approach the
one-field HM model; one-field equations are trivially normal, so do not exhibit such amplification.)
Properties of an electromagnetic extension of that model were discussed by Camargo et al. (2000); it
was found that electromagnetic effects enhance the non-normality.

In considering the relevance of the almost-linear mechanism, note that the issue is not the non-
normality of the linear operator per se, as that is always required for submarginal turbulence. The
question is, is the scenario of transient amplification plus feedback relevant to self-sustainment? Waleffe
(1995) emphasized that it is crucial that the fed-back signal contain projections onto the transiently
unstable directions. He argued that the model proposed by Baggett et al. (1995), which involved a
specific assumed form for the nonlinearity, failed to capture important properties of the Navier–Stokes
operator, and he was in general relatively critical of the almost-linear mechanism for realistic neutral-
fluid shear flows. Clearly considerable additional work must be done to elucidate the relevance of that
scenario for any particular physical problem. A specific alternative is discussed in the next section.

9.6 The roll–streak–roll scenario and its generalization to drift-wave turbulence

In the present section I deviate from the focus on statistical methods in order to elaborate one
plausible physical mechanism for nonlinear self-sustainment. Such discussion is useful because clearly
a statistical description of submarginal turbulence should incorporate salient features of the physical
dynamics.

In a beautiful synthesis of numerical and analytical work, Hamilton et al. (1995) isolated a
“roll–streak–roll” scenario for self-sustaining planar Couette flow that did not rely on the specific
feedback mechanism proposed by Baggett et al. (1995). Their work continued a long series of studies
of so-called streaks in shear flows, both experimental (Kline et al., 1967; Kim et al., 1970) and
analytical (Landahl and Mollo-Christensen, 1992). One works in a planar geometry in which 253

(x, y, z) = (inhomogenity, spanwise, streamwise). The basic idea is that even though the steady-state
velocity profile U = U ′x ẑ is linearly stable at all Reynolds numbers, streamwise rolls (vortices) with
kz = 0 are linearly unstable to kz 6= 0 perturbations; the resulting fluctuations then beat together to
regenerate the original rolls. Waleffe (1997) discussed the process in detail, and proposed and analyzed
various low-dimensional dynamical models that seemed to capture the essence of the mechanism.

Coincidentally in the same year as the work of Hamilton et al., Drake et al. (1995) performed
numerical simulations of 3D drift-wave turbulence linearly stabilized by magnetic shear. They showed
that sufficiently large levels of fluctuations persisted in the face of the shear stabilization, and suggested
a simple analytical model of a nonlinear instability that they physically described as vortex peeling
(Drake et al., 1992).

253 As discussed in footnote 12 (p. 14), the convention in the fluids literature is instead (x, y, z) =
(streamwise, inhomogenity, spanwise); that is, the fluid coordinates are the plasma ones cyclically permuted
by 1 mod3.
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Krommes (1999a) argued that the physical mechanisms described by Hamilton et al. (1995) and
Drake et al. (1995) are closely related. If for plasmas one replaces “streamwise” (z) by “magnetic-field
direction,” then both scenarios begin with z-aligned, kz = 0 vortices that are subsequently unstable to
kz 6= 0 perturbations. The details of those instabilities differ substantially for the fluid and the plasma
situations because of the nature of the collective modes (drift waves for the plasmas) supported by
the two mediums. Nevertheless, in both cases kz 6= 0 fluctuations can beat together to regenerate the
original kz = 0 vortices.

I shall sketch the self-sustainment scenario in the context of the HW equations in the absence of
magnetic shear. (More appropriately, one should study the equations written by Drake et al. (1995),
which include sound-wave propagation and magnetic shear; however, that analysis is very difficult and
has not yet been done.) In the absence of magnetic shear, those equations already possess a linear
instability. Even if that is artificially suppressed, however, the analysis to follow predicts nonlinearly
self-sustained fluctuations. To study those, one begins with the equation for total densityN = 〈n〉+δn:

∂tN + VE ·∇N = α̂(ϕ−N) +Dcl∇2
⊥N. (410)

Postulate that a kz = 0 potential ϕ(x, y) is somehow excited, and assume that its advective effect is
dominant; i.e., VE(x) ≈ VE(x, y). Then Eq. (410) can be averaged over z:

∂tN + VE ·∇N = Dcl∇2
⊥N. (411)

(The α̂ term rigorously disappears under this average.) Equation (411) is a passive advection–diffusion
equation that can be solved if the advecting potential ϕ is given. (I shall solve it in steady state, even
though that assumption is really valid only for statistical averages.) The idea is to postulate a plausible
form for ϕ, then show that it can be appropriately regenerated. To determine ϕ, consider the z average
of the vorticity equation:

∂tω + VE ·∇ω = µcl∇2
⊥ω. (412)

This equation is rigorous; again the α̂ term has disappeared. Following Waleffe, one chooses ϕ to be
the lowest-order eigenfunction of the system ∇2

⊥ω = λω, ω = ∇2
⊥ϕ with no-slip boundary conditions.

The solution is given by Eq. (7) of Krommes (1999a). Then Eq. (411) can be solved in steady state
with the boundary conditions N(x = 1) = 0, N(x = −1) = 2. In the absence of the advection term,
such boundary conditions lead to a solution with a gradient solely in the x direction. The advection
rotates that into a y-dependent solution constrained by the classical diffusion, as shown in Fig. 29
(p. 218).

Note that the x-averaged y dependence N(y) has a characteristically triangular shape. Such a
shape also figured importantly in the model proposed by Drake et al. (1995). Those authors, who
omitted classical dissipation altogether, suggested that it would arise because of turbulent diffusion
and did not attempt to calculate the shape precisely; here the shape is pinned to classical transport
and a more serious calculation is possible. Given the shape, the next step is to examine the linear
stability of this advected density profile. That can be done numerically (Krommes, 1999a). Drake et al.
(1995) essentially used N (y) to introduce a diamagnetic term VE,y∂yN(y) in place of the conventional
VE,x∂xN(x); the new term drives unstable drift waves propagating in the x direction (orthogonal to
the y direction associated with the usual drift waves driven by gradients in the x direction). Note that
although these fluctuations are explicitly driven by N(y), they are implicitly driven by the original
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Fig. 29. Solution of the steady-state advection–diffusion equation (411) [after Fig. 2 of Waleffe (1997) and
Fig. 1(a) of Krommes (1999a), used with permission]. Note the generation of y dependence.

x-directed gradient imposed by the boundary conditions. 254 This is where the source of free energy
(linear forcing or non-normality) enters the formalism, even though the x gradient may be linearly
stable.

Finally, one attempts to close the loop by using the unstable linear eigenfunctions, labeled by
superscript 1, as a source on the right-hand side of the steady-state version of Eq. (412), namely,

µcl∇2
⊥ω = V

(1)
E ·∇ω(1). (413)

One must show that the solution of this equation for ω has a shape similar and sign identical to
those of the original assumed potential. The result of this exercise is shown in Fig. 30 (p. 219); the
agreement is quite acceptable.

These calculations demonstrate a plausible self-sustainment mechanism, although they neither
constitute a rigorous proof that these particular interactions are dominant nor accomplish a proper
steady-state statistical analysis. Additional insights can be gained by using Galerkin truncation to
derive a low-dimensional model that can be studied in its own right with numerical computation and
the techniques of dynamical systems theory. A step in this direction was made by Son (1998), who
derived a nine-dimensional generalization of the six-dimensional model of Drake et al. (1995). Because
that calculation is ongoing, I do not discuss the details here. However, preliminary results show that
Lorentz-type chaotic dynamics can spontaneously arise for sufficiently large density gradients, adding

254 This important result was obscured in the model of Drake et al. (1995), which contained no x gradient
but postulated the existence of the y dependence.
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Fig. 30. Solid curve, steady-state solution of Eq. (412) with nonlinear forcing determined by the most unstable
eigenfunction; dashed curve, original potential. After Fig. 1(b) of Krommes (1999a), used with permission.

further support to the belief that the generalized roll–streak–roll scenario is relevant to nonlinear
plasma self-sustainment.

It seems clear that some sort of model at this level of physical complexity is necessary to explain
submarginal turbulence in continuum systems with advective nonlinearity. However, it has been shown
that certain discrete sandpile models can also exhibit submarginal profiles. For further discussion, see
Sec. 12.4 (p. 241).

9.7 Bifurcations and statistical closures

There is a large gap between the elementary ideas of subcritical bifurcations or transient
amplification—both of which describe detailed dynamical properties of primitive amplitude
equations—and observations or predictions of submarginal turbulent states. The simplest statistical
measure of turbulence is (time- or ensemble-averaged) fluctuation intensity. Because averaging washes
out many fine-grained dynamical details, it may be that the simplest analytical route to the
determination of submarginal regimes is via statistical procedures.

The questions of whether (practical) statistical closures adequately represent any kind of transition
to turbulence or capture essential features of submarginal turbulence are difficult. In general, the
complicated nonlinear structures of the DIA and similar closures are daunting. Such nonlinear
equations may exhibit their own bifurcations. Kraichnan (1964d) noted that the DIA may support
static covariance solutions 255 that presumably become unstable at sufficiently large Reynolds number.
Additional discussion in this vein was given by Herring (1969).

Unfortunately, the presence or absence of bifurcations in a statistical closure may have nothing to

255 Specifically, Ck,ω = 2πδ(ω); Rk,ω contains nonzero ω components. It can be shown that static solutions
are impossible for forced, three-mode, energy-conserving models. In general, the stability condition for static
solutions can be reduced to the study of the eigenvalues of a complicated integral operator in frequency space
and a matrix operator in the wave numbers.
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do with the behavior of the original primitive amplitude equations. Very little in the way of systematic
study has been done in this area. McLaughlin (1974) studied the DIA for the Lorenz equations in
detail; he concluded that the DIA was not a particularly faithful theory and did not capture the
subcritical onset of the strange attractor.

Nevertheless, experience has shown that second-order statistical closures are quite robust; a
closure-based prediction of submarginal turbulence must not be dismissed out of hand. Recently
K. Itoh, S. Itoh, and co-workers have explored in a series of papers, discussed by Itoh et al. (1999)
and summarized by Yoshizawa et al. (2001), the predictions of a Dupree-style diffusive renormalization
of equations characteristic of current-diffusive interchange modes and similar fluctuations. Regimes of
submarginal turbulence are predicted quite generally, and agreement between theory and computer
simulation is found. It remains a major challenge of modern statistical plasma theory to justify the
several substantial approximations 256 and embed the formalism in a systematic theory of nonlinearly
self-sustained fluctuations.

Submarginal states may be relevant to the theory of self-organized criticality. For further
discussion, see Sec. 12.4 (p. 241).

10 HIGHER-ORDER STATISTICS, INTERMITTENCY, AND

COHERENT STRUCTURES

The article thus far has strongly focused on second-order statistics and transport. I now turn to
issues related to higher-order statistics and intermittency. In neutral-fluid theory exciting progress is
presently being made in this area, some of which was reviewed by Frisch (1995) [see also the earlier and
shorter discussion by Frisch (1980)]. In particular, the “anomalous” (non-Kolmogorov) inertial-range
scaling of higher-order structure functions is slowly yielding to concerted analytic attacks. Although
I shall mention some of that work briefly, an extensive review of it is out of place here since very little
has been done on this topic in the context of plasma physics. In general, the topic of higher-order
statistics in plasma problems is poorly developed, partly because a compelling “need to know” has
not been established from the toroidal confinement experiments. A representative early work in which
experimental data were unsuccessfully searched for coherent structures was by Zweben (1985). More
recently, intermittency has been observed in tokamak configurations (Jha et al., 1992; Carreras et al.,
1999a), and there have been suggestions that simple random-walk estimates for confinement may
require modification, although this has not yet been convincingly demonstrated. In any event, the
theoretical issues are challenging in their own right, and one can expect substantial further work in
this area.

256 In brief: The predictions are based on a very approximate theory of the infinitesimal response matrix for
systems involving multiple coupled fields. A Markovian approximation is made, only the diagonal components
of the nonlinear damping are considered, and those are approximated as turbulent diffusion operators that
renormalize the classical dissipation. In the simplest version of the theory the nonlinear noise is neglected,
leading to a nonlinear dispersion relation that in simple cases can be approximately solved algebraically. A
general issue is to what extent consideration of incoherent noise changes the picture. Yoshizawa et al. (2001)
reviewed attempts to include that noise. They concluded that it does not qualitatively change the results
obtained from the nonlinear dispersion relation. From properties of the noise they also derived a PDF that
can be used to predict the rate of transitions between various submarginal states.
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10.1 Introductory remarks on non-Gaussian PDF’s

It was emphasized in Sec. 3.5.2 (p. 59) that nonlinear dynamical evolution precludes Gaussianity.
The spatially differential nature of the nonlinear advection–diffusion equations typical in practice
makes prediction of the inherently non-Gaussian statistics very difficult; this is the central
mathematical problem of turbulence theory. But nontrivial PDF’s can arise in even much simpler
contexts.

Consider, for example, a generalized flux Γ
.
= 〈xy〉, where x and y are jointly Gaussian with

zero means. With x
.
= (x, y)T the joint PDF P (x) is fully characterized by the correlation matrix

C
.
= 〈xxT 〉 =

(
σ2
x σxσyρ

σxσyρ σ2
y

)
, where ρ is the correlation coefficient (0 ≤ |ρ| ≤ 1). The PDF of Γ

follows readily from the formula (Sec. 3.5.1, p. 59) P (Γ) = 〈δ(Γ− x̃ỹ)〉, or upon normalizing x and y
to σx and σy, respectively,

P (Γ) =
1

π(1− ρ2)1/2
exp

[(
ρ

1− ρ2

)
Γ

]
K0

(
|Γ|

1− ρ2

)
, (414)

where K0 is the modified Bessel function of the second kind. P (Γ) exhibits exponential tails as
|Γ| → ∞:

P (Γ) → 1

(2π|Γ|)1/2
e−|Γ|/(1±ρ) (Γ→ ±∞), (415)

a common signature of non-Gaussian PDF’s signifying a relatively enhanced probability of large-
amplitude events and quantified by a non-Gaussian kurtosis [Eq. (96b)]; for ρ = 0, K = 6.
As ρ increases from 0 to 1, P (Γ) becomes increasingly skewed 257 (necessary for positive flux).
Representative PDF’s are displayed in Fig. 31 (p. 222).

The PDF (414) was used by Carreras et al. (1996a) 258 to interpret various experimental data. It
must be cautioned, however, that in practice one or the other of x and y is generally non-Gaussian,
so the above analysis based on jointly Gaussian variables does not apply. [For an example involving
passive advection, see Krommes and Ottaviani (1999).] In the next sections I consider techniques for
predicting the non-Gaussianity arising from nonlinear dynamical evolution.

10.2 The DIA kurtosis

The distinction between PDF methods and moment-based closures for nonlinear dynamical
equations was drawn in Sec. 3.5 (p. 59). In the present section I consider the possibility that moment-
based closures can sensibly predict the kurtosis, a typical fourth-order statistic. 259

257 In the limit ρ → 1 (in which x and y become perfectly correlated, so that Γ = 〈x2〉), P (Γ) vanishes
for Γ < 0 and according to Eq. (415) properly approaches the χ2 PDF P (z) = H(z)(2πz)−1/2e−

1
2
z, where

z
.= x2.

258 When comparing Eq. (414) to Eq. (7) of Carreras et al. (1996a), note that the latter authors use the
definitions W = (1− ρ2)1/2σ and γ = −ρ.
259 For quadratically nonlinear equations, fourth-order statistics have special significance because knowledge
of many-time moments through fourth order is sufficient for one to determine whether the dynamical equation
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Fig. 31. Comparison of the non-Gaussian flux PDF’s P (Γ; ρ), for various correlation coefficients ρ, with a
reference Gaussian (solid line). Dotted line, ρ = 0; dashed line, ρ = 0.75; dash-dotted line, ρ = 0.95. The
logarithmic singularity K0(z) ∼ − ln z as z → 0 is rendered finite by the graphics.

In familiar moment closures such as the DIA, triplet correlations are approximated in terms of
two-point ones; closed equations for the first- and second-order cumulants result. From this point of
view, it may seem that nothing can be said about fourth-order cumulants. Nevertheless, there are
two arguments to the contrary: (i) The MSR formalism shows (Sec. 6.2.1, p. 153) that the n-point
cumulant is the functional derivative of the cumulant of order n−1. (ii) The DIA is the exact statistical
description of the random-coupling model (Sec. 5.2, p. 131). Although the latter observation is usually
used to argue that the second-order statistics are realizable, realizable statistics of all orders can be
predicted from the random-coupling amplitude equation. I shall now argue, following Krommes (1996),
that these two points are intimately related.

Consider the generalized fourth-order statistic

Z(1, 1, t)
.
= 〈z(1, t)z(1, t)〉 = ZG + Zc, (416)

where z(1)
.
= λ(1, 2, 3)ψ(2)ψ(3), λ is a specified coefficient (not necessarily the mode-coupling

coefficient in a dynamical evolution equation), and ZG and Zc are the Gaussian and cumulant

is satisfied in mean square (Kraichnan, 1958c). This observation was used by Kraichnan (1979) to motivate
a computational scheme based on realizability inequalities. Further discussion of fourth-order statistics and
related issues was given by Dubin (1984b).
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contributions to Z, respectively. Chen et al. (1989a) used the RCM to find a formula for Zc (which
is basically an unnormalized flatness). One finds Zc =

∑
kZ

c
k, where

Zc
DIA,k(t)= 4

∑
p,q

∑
p,q

dk,p,q

[
d∗k,p,q

∫ t

0
dt′
∫ t

0
dt

′
Rp(t; t

′)Cq(t; t
′)C∗k (t′; t′)R∗p(t; t

′
)C∗q (t; t

′
)

+

(
c∗k,p,q

∫ t

0
dt′
∫ t′

0
dt
′
Rp(t; t′)Cq(t; t

′)R∗k(t′; t′)C∗p (t; t
′
)C∗q (t; t

′
)

)H ]
, (417)

ck,p,q
.
= λk,p,qM

∗
k,p,q, dk,p,q

.
= λk,p,qM

∗
p,q,k, and AH

p,q;p,q
.
= 1

2
(Ap,q;p,q + A∗p,q;p,q). Formula (417) can be

computed from the usual second-order closure information (R and C). A Markovian version can also
be derived (Krommes, 1996).

Krommes (1996) showed how this result follows more succinctly from the MSR formalism, which
permits ready generalization to inhomogeneous and multiple-field situations. The basic result [see
Appendix A of Martin et al. (1973)] is that the four-point cumulant is approximated in the DIA by
the singly connected term represented by the first diagram of G4 in Fig. 19 (p. 158). Zc

DIA then follows
by contracting each two-point end of G4 with λ and summing over all internal spinor indices, as shown
in Fig. 32.

Fig. 32. The DIA for the cumulant part of the fourth-order statistic Z. The triangles represent the coupling
coefficient λ; other notation is as in Fig. 20 (p. 161).

Formula (417) would appear to make a nontrivial prediction for non-Gaussian fourth-order
statistics. In some cases it is at least qualitatively successful; for example, the DIA correctly captures
a numerically observed depression of nonlinearity (Kraichnan and Panda, 1988; Kraichnan and Chen,
1989). Unfortunately, in several important situations Eq. (417) can be shown to vanish identically
by virtue of symmetry. Chen et al. (1989a) considered 〈|ω|4〉, 〈δε2〉, and other measures of isotropic,
incompressible Navier–Stokes turbulence (ω is the vorticity and ε is the dissipation); Krommes (1996)
discussed a kurtosis statistic for a solvable system of three coupled modes. Such difficulties led Chen
et al. to argue for the necessity of PDF methods; see Sec. 10.4 (p. 224).

10.3 The α2 effect

The preceding section focused on predictions of fourth-order statistics. It is also of interest to
understand how such statistics affect the values of lower-order quantities such as transport coefficients.
One interesting application is the α2 effect discussed by Kraichnan (1976a).

As reviewed in Sec. 5.8 (p. 141), the mean field of the kinematic dynamo evolves according to
Eq. (253), in which the α effect vanishes for nonhelical but isotropic turbulence. Even then, however,
there are helicity fluctuations that may be expected to play some role in the mean square. Indeed,
Kraichnan argued that such fluctuations tended to reduce the value of the magnetic diffusivity µm,
perhaps even to the point of making it negative. Unfortunately, this α2 effect involves a particular
fourth-order cumulant that is not captured by the DIA.
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Kraichnan (1976a) proposed two possible solutions to this difficulty. First, he discussed a double-
averaging procedure in which equations of the form (253) are first obtained for ensembles with locally
coherent helicity fluctuations, then the resulting equation with stochastic α is treated with the DIA.
Second, he showed that the first vertex correction [Secs. 3.9.8 (p. 85) and 6.2.3 (p. 159)] does capture
the effect. These results help one to interpret the meaning and necessity of vertex renormalization.
More importantly, they make a good case for physical understanding. Vertex renormalizations are
very complicated, so probably would not be explored unless absolutely necessary; understanding the
consequences of helicity provide such a motivation. Alternatively, the double-averaging procedure may
provide a useful means of circumventing the tedious mechanics of vertex renormalization in problems
other than the kinematic dynamo.

10.4 PDF methods

“If closure at the level of fourth-order moments cannot deal successfully with [the intermittency
of vorticity and dissipation], then it may be necessary to seek theories in which partial
probability distributions play an irreducible role.” — Chen et al. (1989a).

We learned in Sec. 10.2 (p. 221) that standard moment-based closures are incapable of capturing
important aspects of higher-order statistics and intermittency. Even though convergent sequences of
moment closures can be envisaged [Kraichnan (1985); see Sec. 7.5 (p. 197)], practical implementation
may be difficult or impossible. For many questions relating to the shapes of partial PDF’s, it seems
more natural to develop approximation schemes that work directly on the functional form of the PDF.

10.4.1 The Liouville equation for a PDF

For definiteness, consider turbulence described by a single random variable ψ(x, t) that obeys

ψ̇ ≡ ∂tψ(x, t) + u ·∇ψ = F (ψ,∇ψ,∇2ψ, . . . ), (418)

with ∇ · u = 0. One may inquire about the PDF P (ψ,x, t) (independent of x for homogeneous
statistics and independent of t in a steady state). Clearly P (ψ) is not the complete (fully multivariate in
space and time) probability density functional of the turbulence, but it is experimentally accessible yet
surprisingly difficult to predict analytically. For homogeneous statistics one can show that P (ψ) obeys
the Liouville equation (Pope, 1985)

∂

∂t
P (ψ) +

∂

∂ψ

(
〈ψ̇ | ψ〉P

)
= 0. (419)

Here 〈ψ̇ | ψ〉 denotes the average of ψ̇ conditional on observing the value ψ. A particularly clear version
of the derivation was given by Gotoh and Kraichnan (1993). The procedure 260 is to manipulate the
expression for the time evolution of the average of an arbitrary test function g(ψ). It is readily

260 On the one hand, ∂t〈g(ψ)〉=
∫
dψ g(ψ)∂tP (ψ). On the other hand,〈

∂g

∂t

〉
=
〈
∂g

∂ψ

∂ψ

∂t

〉
=
〈
∂g

∂ψ
(−u ·∇ψ + F )

〉
. (f-22a,b)
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generalized to joint PDF’s such as P (ψ,∇ψ). When ∇ ·u 6= 0 a compressibility term appears on the
right-hand side of Eq. (419).

Equation (419) presents a closure problem that is even more fundamental than the one encountered
in moment-based procedures. Whereas Eq. (419) displays no closure problem for either an advective
nonlinearity or any nonlinear function of ψ itself, to the extent that ψ̇ ≡ V depends on gradients
of ψ the conditional average 〈V | ψ〉 is not known in terms of ψ. This difficulty exists even at linear
order—for example, V = µcl∇2ψ. The technical problem is that an operator such as ∇2ψ couples
the statistics of ψ(x) to those of neighboring points whereas one is attempting to restrict attention
to P (ψ,x, t) at a single space point.

10.4.2 Mapping closure

Some early attempts at the closure problem for PDF’s were reviewed by Pope (1985). A major
advance was made by Chen et al. (1989b), who introduced the technique now known as mapping
closure. Representative papers in which the method was developed include those by Kraichnan (1990),
Gotoh and Kraichnan (1993), and Kimura and Kraichnan (1993). For a recent review, see Kraichnan
(1991). The following brief discussion is taken, in part almost verbatim, from Krommes (1997c).

In the simplest version of the mapping closure, it is assumed that at any point x and time t the
field ψ(x, t) can be represented by a surrogate field mapped via a nonlinear function (not a functional)
from a Gaussian reference field ψ0(x, t) (at the same point in space-time):

ψ(x, t) = F (ψ0(x, t), t). (420)

Given an F , conditional expectations such as 〈∇2ψ | ψ〉 can then be evaluated explicitly. The mapping
function F (ψ0, t) itself is determined such that the evolution of the ψ statistics from t to t+ ∆t are
treated exactly in terms of the estimated conditional dissipation.

The mapping technique is a very bold Ansatz because the statistics at a point depend in a
complicated way on the detailed dynamics for all previous times and all space points. The Liouville
equation closed with Eq. (420) is not exact because the multivariate statistics of the surrogate field
differ from those of the exact field; this means that the conditional dissipation 〈∇2ψ | ψ〉 is not
represented faithfully. A clear discussion was given by Kimura and Kraichnan (1993). Nevertheless,
in the context of Navier–Stokes turbulence Kraichnan (1991) argued in favor of the approximation
by suggesting, “Perhaps only the final stretching, the one that narrows a vortex to the point where
viscosity acts strongly on it, is actually important in determining the asymptotic skirts of the PDF.
It may be that the details of the path in parameter space followed by a fluid element are relatively
unimportant in this respect and, instead, the Gaussianly distributed initial gradient and the final
viscous relaxation are what count.”

Although the theory of mapping closures is still in its infancy, it is already clear that the technique
can capture both qualitative and quantitative features of highly non-Gaussian PDF’s. Chen et al.
(1989b) considered the PDF of a 1D chemical reaction; Gotoh and Kraichnan (1993) studied the

But by chain differentiation, 〈(∂ψg)(−u ·∇ψ)〉 = 〈−u ·∇g〉 = −∇ · 〈u g〉 = 0, the last following by
homogeneity. Also 〈

∂g

∂ψ
F

〉
=
∫

dψ
∂g

∂ψ
〈F | ψ〉P (ψ) = −

∫
dψ g(ψ)

∂

∂ψ
[〈F | ψ〉P (ψ)]. (f-23a,b)
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Burgers equation; Kimura and Kraichnan (1993) focused on passive advection. All of those works
demonstrated strikingly successful agreement with direct numerical simulations. A heuristic model of
the PDF of the transverse velocity gradient for Navier–Stokes turbulence based on these ideas was
very encouraging (Kraichnan, 1990). That work was pursued by She (1991a) and She and Orszag
(1991); for a summary and further discussion, see She (1991b).

In plasma physics the first published work on mapping closures is due to Das and Kaw (1995).
Motivated by simulations of Crotinger and Dupree (1992), they applied a mapping technique to
the HM equation (48). In particular, they considered the PDF for the vorticity ω = ∇2

⊥ϕ. A full-
blown, self-consistent mapping closure for this problem is extremely difficult and was not attempted.
However, by making various heuristic approximations, they were able to argue that the effects of
advective stretching lead to a qualitative model similar to the one studied by Chen et al. (1989b).
There resulted a prediction for non-Gaussian vorticity kurtosis in crude qualitative agreement with
some of the numerical observations.

As Das and Kaw admitted, considerable further work must be done before such theory can make
quantitatively acceptable predictions. For example, the effects of anisotropy, wave propagation, and
linear forcing must be considered. It is probably best to do this in the context of self-consistent
models such as that of Hasegawa and Wakatani. However, straightforward application of the technique
introduces (Krommes, 1994) the algebraic complexity of a 2D mapping functionX(ω, n), uncertainties
in the modeling of the nonlocal relationship ϕ = ∇−2ω, and probably the need for working with the
joint PDF of the fields and their gradients. As of early 2000 the latter calculation had not yet been
done for even a single scalar field.

Various mechanisms can be responsible for intermittency in equations like those of HW. One
obvious candidate is the formation of coherent structures in self-consistent turbulence; see Sec. 10.5
(p. 228). But intermittency can arise even in passive advection. [In the hydrodynamic regime α� 1
of the HW equations, the density field is essentially passive, as discussed in Sec. 2.4.5 (p. 38).] Kimura
and Kraichnan (1993) discussed two mechanisms for inducing non-Gaussian behavior: (i) advection
of fluid elements in a nonlinear mean profile; and (ii) generation (through advection) and subsequent
relaxation (by viscosity) of spatially intermittent temperature gradients. Since many plasma models
such as that of HW are developed from a two-scale approximation in which the logarithmic derivative
of the mean profile is taken to be constant and the background profile is not evolved, the second
mechanism is particularly relevant. In more detail, Kimura and Kraichnan explained that (i) either
advection or classical diffusion separately leave an initially homogeneous and Gaussian field Gaussian;
(ii) in a homogeneous Gaussian field, the field and its gradient are statistically independent at
a point 261; (iii) the independence continues to hold under advection acting alone; but (iv) highly
strained regions diffuse more strongly than others, so the fluctuations in those regions decay rapidly.
This causes statistical dependence between the field and its gradient, so the resulting PDF’s must be
non-Gaussian. Such behavior was studied in a limited way by Krommes and Hu (1995).

261 Consider a Gaussian field T with homogeneous statistics. The gradient of a Gaussian field is also Gaussian.
One has 〈T (x)∇T (x)〉 = ∇〈 12T 2〉 = 0 by homogeneity, so T and ∇T are uncorrelated. But for Gaussian
variables, uncorrelated implies independent.
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10.4.3 Generating functional techniques

The Burgers equation (19) is a popular model for studies of intermittency. Although it describes
physics very different from that of the NSE, one expects that appropriate analytical approximations
that work well in the Burgers context may be generalizable to more physical contexts as well.

This is not the place to review the multitude of approximation procedures that have been applied
to the Burgers equation. The mapping-closure work of Gotoh and Kraichnan (1993) has already been
mentioned. Here I shall briefly introduce the recent work of Polyakov (1995) and Boldyrev (1997, 1998,
1999), who have made impressive progress on the velocity-difference and velocity-gradient PDF’s by
using an operator product expansion and general symmetry considerations.

Let the goal be to calculate the velocity-difference PDF P (∆u, y), where ∆u
.
= u(x+y, t)−u(x, t),

for homogeneous, stationary statistics and very large Reynolds number (µcl → 0). (This P is obviously
a very special case of the fully multivariate space-time PDF.) P (∆u, y, t) is the inverse Fourier
transform with respect to η of the characteristic function

Z(η, y, t)
.
= 〈eη∆u(y,t)〉. (421)

It is not hard to show that Z evolves according to

∂Z

∂t
+

(
∂

∂η
− 2

η

)
∂Z

∂y
− [F ext(0) − F ext(y)]η2Z = µclη〈∆uxx(y)eη∆u〉 ≡ D(η). (422)

Note that the advective term and external forcing are represented exactly. As discussed in Sec. 10.4.1
(p. 224), the closure problem for such a PDF arises from the differential nature of the classical
dissipation.

The dissipation D [the right-hand side of Eq. (422)] remains nonzero as µcl → 0. To approximate
it in that limit, Polyakov (1995) asserted that

D(η)→ [a(η) + β(η)η−1∂y]Z. (423)

Here the undetermined functions a(η) and β(η) are called the anomalies. Equation (423) is a special
case of the so-called operator product expansion. The basic idea is that the coefficient D/µcl, divergent
as µcl → 0, should be expanded in terms of finite operators (with divergent coefficients) already in
the theory; this is an unproven conjecture. Symmetry considerations show that β is a constant.

If Eq. (423) is granted, then one has in steady state(
∂

∂η
− 2b

η

)
∂Z

∂y
− [F ext(0) − F ext(y)]η2Z = a(η)Z, (424)

where b
.
= 1 + β. This equation must be solved subject to the requirements that the PDF is

positive, finite, and normalizable. This was done by Boldyrev (1997, 1998) for various α’s, where
F ext(y) ∼ 1 − yα; he proved that those conditions determine a one-parameter family of solutions
a = a(b). Particular choices of b led to truly excellent agreement with high-quality simulations of
Yakhot and Chekhlov (1996).

Because no theory that determines the value of b has been given, this approach is obviously
incomplete. But the tantalizing agreement with simulations shows that this area is a challenging and
probably fruitful one for future research.
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10.5 Coherent structures

It is well known that nonlinear equations can support coherent as well as stochastic solutions.
Soliton solutions of fluid equations [see, for example, Drazin and Johnson (1988)] are one example.
A useful discussion of solitons in the context of plasmas was by Horton and Ichikawa (1996).
Bernstein et al. (1957) showed how to construct arbitrary nonlinear solutions of the Vlasov equation
(BGK modes); some of those can be stable. Dupree (1982) used maximum entropy methods and the
statistics proposed by Lynden-Bell (1967) to discuss Vlasov holes, phase-space depressions that can
be viewed as particular cases of BGK modes.

Although considerable work on coherent structures in plasmas has been done, the following
discussion of the statistical description of such structures will be very brief, as relatively little is
known and a formalism that is both truly systematic as well as workable is lacking. 262 Development
of such a formalism would be a significant contribution to the general theory of turbulence.

10.5.1 Coherent solutions and intermittency

Berman et al. (1983) performed simulations of both decaying and forced Vlasov turbulence. For
decaying turbulence they observed strong skewness and intermittency of the phase-space PDF that
they interpreted in terms of phase-space holes. At approximately the same time, McWilliams (1984)
performed simulations of decaying 2D NS turbulence that showed the emergence from a sea of random
initial conditions of highly intermittent states with isolated vortices. A heuristic criterion was that
vortices formed when fluctuations raised the local enstrophy above the mean-square shear. For more
detailed and recent simulations and diagnostics, see Benzi et al. (1988). Leith (1984) employed a
variational method, based on the selective-decay hypothesis of Matthaeus and Montgomery (1980),
to predict the structure of the localized vortex solutions. See also more recent discussion by Terry
et al. (1992).

Coherent solutions can make nontrivial contributions to fluctuation spectra and higher-order
statistics. Meiss and Horton (1982) considered a gas of noninteracting drift-wave solitons, each of
which being the solution of a nonlinear equation due to Petviashvili (1977). They calculated fluctuation
spectra that were broad and peaked above the diamagnetic frequency ω∗; note that conventional drift
waves satisfy ω < ω∗.

The degree to which noninteracting limits are sensible depends on the packing fraction p, with
p� 1

2
describing a highly intermittent state. The fate of coherent nonlinear structures for p ≈ 1

2
is far

from clear. An analogy is to KAM theory and phase-space trapping; crudely, when primary islands
overlap, stochasticity ensues (Appendix D, p. 279); analogous effects can be expected for BGK modes
and similar structures.

Uncertainty in the physics of interacting coherent structures shows up in formal statistical theory.
If the final state is fully stochastic, DIA-based descriptions may be adequate. For example, Fedutenko
(1996) has used a two-scale DIA analysis of the Charney–Hasegawa–Mima equation to discuss the
nonlinear generation of large-scale mean flows that he identified with ordered structures; that work

262 Spineanu and Vlad (2000) have recently proposed a direct attack on the problem of mixed states of
coherent structures and drift-wave turbulence by combining approximations to the MSR generating functional
(Sec. 6.2, p. 153) with the inverse scattering method of soliton theory; they performed detailed calculations
on a specific model. The fidelity of this approach for predicting higher-order statistics remains to be assessed.
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is closely related to the discussions of eddy viscosity in Sec. 7.3 (p. 189) and zonal flows in Sec. 12.7
(p. 248). Nevertheless, Dupree has argued that self-trapping effects cannot be properly described at
the DIA level. 263 If not, then vertex renormalization must be considered, a formidable task. A formal
program would be to examine the Bethe–Salpeter equation (Sec. 6.2.4, p. 162) in, say, the first vertex
renormalization and to show some relation to Dupree’s intuitive notions about self-binding. That has
not been attempted to the author’s knowledge. Because of the focus of the present article on systematic
procedures, I shall not attempt to review the detailed (and often qualitatively successful) attempts of
Dupree and co-workers to include the effects of coherent phase-space structures in statistical spectral
balances. For a cogent discussion, see Berman et al. (1983); see also Boutros-Ghali and Dupree (1981).

10.5.2 Statistics and the identification of coherent structures

Modern approaches to the identification of coherent structures frequently rely on the proper
orthogonal decomposition (POD), or Karhunen–Loève expansion, championed by Lumley (1967,
1970, 1981), Berkooz et al. (1993), and Holmes et al. (1996) for problems of fluid turbulence,
especially inhomogeneous flows. The idea is to expand the random flow in terms of orthogonal
deterministic functions φi labeled by eigenvalues λi in such a way that the modal energies decreases
monotonically with i; the energetically most significant modes are then identified with coherent
structures. When the decomposition is performed in space at fixed time, the φi’s are eigenfunctions of
the covariance C(x,x′). More generally, a symmetrical biorthogonal decomposition can be performed
in space-time (Aubry et al., 1991; Aubry, 1991). Usually experimentally determined covariances are
used. A theoretical proposal to self-consistently determine the eigenfunctions was made by Kraichnan
(1988a), but has not been implemented to the author’s knowledge.

The purpose of the POD is not merely to identify coherent structures. One wishes to understand
how they interact and to qualitatively link observed intermittent behavior to those interactions.
Holmes et al. (1996) discussed the current state of an ambitious program to first obtain low-order
systems of coupled, nonlinear ODE’s for the time-dependent amplitudes of the coherent structures,
then to analyze those equations with the powerful tools of nonlinear dynamics and bifurcation theory.
A relatively short recent review is by Holmes et al. (1997). One difficulty of this approach is that it is
frequently impossible to expand the entire flow because the resulting system of ODE’s would be too
large and intractable. Instead, a restricted region near a wall is analyzed. However, the interface to
the interior of the fluid then introduces unusual random boundary conditions whose effect must be
somehow modeled. Since only the most energetic modes are retained, one must also introduce some
sort of eddy-viscosity mechanism to model energy dissipation by the small, unresolved scales.

Some additional discussion of the identification and description of coherent structures in plasma
turbulence can be found in Horton (1996) and in the other articles in the collection edited by Benkadda
et al. (1996). Beyer et al. (2000) used POD analysis to find the appropriate low-dimensional dynamical
system for a plasma model in the presence of magnetic shear. Aspects of statistical closure in the face
of intermittency were considered by Herring and McWilliams (1985).

263 The argument (Berman et al., 1983) is that self-trapping corresponds to the preferred sign δf < 0 (Dupree,
1983); however, conventional second-order closures are built from the covariance 〈δf δf〉, which is invariant
to the transformation δf → −δf .
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11 RIGOROUS BOUNDS ON TRANSPORT

“The optimum theory represents an alternative approach [to statistical moment closures] in
which the lack of information about properties of the fluctuating . . . field is reflected by
the theoretical results. Instead of a theoretical prediction of the physically realized average
properties, bounds on those properties are obtained. No assumptions are introduced in the
theory . . . .” — Busse (1978).

The closure techniques discussed so far represent attempts to predict various quantities (such
as turbulent fluxes) as precisely as possible. A philosophically appealing alternative is the bounding
or “optimum” 264 method, due to workers such as Malkus, Howard, Joseph, and Busse. The basic
formalism and neutral-fluid applications (to the Navier–Stokes or Boussinesq equations in various
bounded geometries) through 1978 were reviewed by Busse (1978), who gave an extensive list of
original references that will mostly not be repeated here. A more recent but much shorter account
was given by Busse (1996). The method was also briefly discussed by Kraichnan (1988a,b). Krommes
and Smith (1987) extended the formalism to treat problems of passive advection, and further analyses
of passive models were done by Kim and Krommes (1988). The results of Krommes and co-workers
were briefly reviewed by Krommes and Kim (1990). Practical applications to plasma problems are
briefly mentioned in Sec. 11.4 (p. 235).

11.1 Overview of the variational approach

Consider the problem of finding an upper bound for a turbulent flux Γ. Such fluxes are bilinear
functionals of two fields. For example, if Γ were the particle flux in a magnetized plasma problem,
it would be given by Eq. (3a); i.e., Γ would be a bilinear functional of potential ϕ and density n.
Now clearly an unconstrained maximum of such a functional taken over all possible fields is infinite,
thus useless. Therefore in the bounding method Γ is maximized subject to one or more additional
rigorous constraints. Typically, those are balance equations appropriately selected from the infinity
of moment constraints that follow from the fundamental equation of motion. However, they can also
be kinematic constraints such as the requirement that the Navier–Stokes velocity field be solenoidal.
One can envisage a sequence of constraints, of increasing number and/or complexity, such that the
sequence of resulting bounds approaches the true answer from above.

The bounding method is not a panacea. An inaptly chosen constraint need not lower the bound
(though at least it cannot raise it). Certain subsequences of constraints may converge, but to an
answer larger than the true result and possibly with different parameter scaling. The simplest version
of the method works with inhomogeneous mean fields; homogeneous problems are much more difficult
and have not yet been satisfactorily addressed. Finally, constraints of richness sufficient to ensure
convergence to the true answer may be of prohibitive complexity.

It is also possible to seek lower bounds on the transport; however, there are technical difficulties
since a rigorous lower bound is zero. The present discussion is restricted to upper bounds.

264 Carefully distinguish optimum, implying a variational procedure, from optimal, implying the best of all
possible worlds (von Leibniz, 1720; Voltaire, 1759). The case for the latter interpretation has not yet been
made by any extant analytical theory of turbulence.
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11.2 The basic upper bound

Original uses of the optimum method for neutral-fluid applications were reviewed by Busse (1978).
Those applications all involved self-consistent dynamics; the simplest cases (e.g., Navier–Stokes pipe
or channel flow) involved a single dimensionless parameter such as the Reynolds number R. [In Sec. 11
I write R and K rather than R and K in order to accommodate a useful notational scheme for the
mathematical statement of the variational principles; see Eqs. (438).]

As I discussed in Sec. 3.4 (p. 56), problems of passive advection are in a certain sense richer
than self-consistent ones since they also involve the Kubo number K as an additional independent
parameter [see the discussion of Fig. 2 (p. 58)]. In the context of the bounding theory, this point was
made by Krommes and Smith (1987), who discussed features and difficulties of the method with the
aid of model problems of passive advection. The following discussion draws heavily from that work.

The general method, either self-consistent or passive, as employed to date invokes a common
formalism that Krommes and Smith called the basic [upper] bound. To derive the basic bound, one
returns to the general energy balance (404). Its steady-state version obviously provides a constraint
on the flux; however, it is inconvenient in that it (i) involves a triplet correlation function (the transfer
term T ), which is both unknown and of indefinite sign; and (ii) contains in the production term P
the gradient of the mean field, which is also unknown. However, as in Sec. 9.1 (p. 211), the transfer
term can be averaged away, giving rise to a steady-state constraint that rigorously relates the volume-
averaged production P to the volume-averaged dissipation D:

P = D. (425)

Equation (425) is the basic constraint. It contains the unknown mean gradient. However, if the mean
field is allowed to evolve solely under the influence of the turbulence and boundary conditions (no
sources or other constraints), its gradient can be eliminated in terms of terms quadratic in the
fluctuations by using the exact equation for the mean field. Then if E has been chosen appropriately,
it is usually possible to prove that an appropriately defined 265 volume-averaged flux Γ is positive
definite. One is then led to the basic variational principle:

Maximize Γ subject to the constraint P = D. (426)

To see how this works in practice, consider the generalized reference model of Krommes and
Smith (1987), namely, Eqs. (87) with µcl → R−1 (a problem of passive advection). Upon defining
Γ(x, t)

.
= 〈δu(t)δT (x, t)〉, one finds that the mean field obeys the continuity equation

∂t〈T 〉(x, t) + ∂xΓ(x, t)− R−1〈T 〉′′(x, t) = 0. (427)

In steady state the total flux (advective plus classical) is conserved:

Γtot(x) = Γ(x) + Γcl(x) = const, (428)

where Γcl(x)
.
= −R−1∂x〈T 〉(x). The constant of integration in Eq. (428) (the conserved total flux)

can be related to the desired volume average Γ by averaging Eq. (428) over x and using the boundary

265 As Busse (1978) has pointed out, the flux that naturally appears in the variational principle need not be
the most interesting or experimentally accessible one.

231



conditions (87b). Specifically, for arbitrary A(x) let us define A
.
=
∫ 1
0 dx 〈A〉(x). (Of course, if the

quantity A has been previously averaged, the angular brackets are redundant.) Then one finds

Γtot = Γ + Γcl, (429)

where Γcl = R−1. Equation (429) can be used in Eq. (428) to express the unknown gradient of the
mean field in terms of quadratic averages:

−∂x〈T 〉(x) = 1− R∆Γ(x), (430)

where ∆A(x)
.
= A(x)−A.

Now consider the exact equation for the fluctuations,

∂tδT (x, t) + δu(t)∂x〈T 〉+ ∂x(δu δT − 〈δu δT 〉)− R−1δT ′′ = 0, (431)

and define an “energy” by E .
= 1

2
〈δT 2〉. [A perhaps better interpretation of this quantity is in terms

of a quadratic approximation to information-theoretic entropy; see Sec. 12.2 (p. 238).] If one further
defines the production by

P .
= −Γ(x)∂x〈T 〉(x), (432)

the transfer by T .
= 1

2
∂x〈δu δT 2〉, and the dissipation by D .

= −R−1〈δT δT ′′〉, one arrives at precisely
Eq. (404).

The steady-state balance

P(x) = T (x) +D(x) (433)

exhibits the closure problem, since T is unknown. T can be eliminated, however, and the basic
constraint (425) obtained by barring Eq. (433), noting that T is a spatial derivative, and using
the statistically sharp boundary conditions that δT vanishes at the boundaries. One can express P
entirely in terms of fluctuating quantities by inserting Eq. (430) into Eq. (432) and using the identity
Γ(x)∆Γ(x) = ∆Γ2(x), which holds because ∆Γ = 0:

P = Γ− R∆Γ2. (434)

For D one can integrate by parts to find 266

D = R−1(∂xδT )2. (435)

Upon inserting Eqs. (434) and (435) into Eq. (425) and rearranging the result, one finds

Γ = R−1(δT ′)2 +R∆Γ2. (436)

266 In Krommes and Smith (1987) the last line of Eq. (2.19) is incorrect. The bracket average alone does
not permit integration by parts in x because of the inhomogeneous boundary conditions. Nevertheless, the
subsequent equations involving D are correct.
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This alternate form of the basic constraint proves that the volume-averaged flux is positive definite.
For any given system of equations, if such a proof is not forthcoming, then the flux function whose
bound is to be sought has been chosen inappropriately. 267

The basic variational principle (426) can be formulated as the problem of determining the
unconstrained maximum γ of the functional

G[δT ; ζ]
.
= Γ + ζ[Γ−R−1(δT ′)2 − R∆Γ2], (437)

where the Lagrange multiplier ζ must be determined such that Eq. (436) is satisfied. In an important
technical advance, Howard (1963) showed how to reformulate the problem as a homogeneous minimum
variational principle in which a Lagrange multiplier does not appear explicitly. The basic idea is to
invert the bounding curve γ(R) and to seek the minimum R for given γ. A principle that accomplishes
this is

Minimize R(γ) subject to Γ = γ, (438a)

where

R(γ) ≡ R[δT ; γ]
.
= γ

(
(δT ′)2 +R2∆Γ2

Γ
2

)
. (438b)

The normalization constraint Γ = γ reduces Eq. (438b) to Eq. (436), and inverting the relation
R = Rmin(γ) gives the bounding curve γ(R) describing the maximum flux γ for fixed R. The
advantage of the minimum principle is that the functional R[δT ] is homogeneous in δT ; because
of that, the implicit Lagrange multiplier that would implement the normalization constraint turns
out to vanish. Further discussion was given by Krommes and Smith (1987); see also Busse (1978). An
interpretation of the minimizing principle and a necessary consistency check follow by noting that at
γ = 0 one has ∆Γ = 0 and Eq. (438a) reduces to the variational calculation (406) for the energy-
stability threshold RE . Thus the variational principles discussed in the present section are nonlinear
generalizations of the linear energy-stability calculation.

For the present model the results of the variational calculation (Krommes and Smith, 1987) are
shown in Fig. 33 (p. 234), where the basic bound Γ(R) is compared with both the exact solution
and the prediction of the DIA. For this particular application the DIA is perceptibly closer to the
exact solution than is the basic bound although it involves considerable more labor to compute.
Interestingly, the DIA lies below the true solution.

For self-consistent problems the structure of the Euler–Lagrange equations is more complicated
because the flow velocity as well as δT (or its analog) must be varied. Busse (1969) has shown that the
optimizing solution possesses multiple, nested boundary layers that can be analyzed asymptotically, 268

and exhibits bifurcations because the number of contributing modes depends on R. The agreement
between the bound and the true solution is sometimes remarkably close, suggesting (Busse, 1972)
that the physically realized turbulence tends to extremalize the transport. This hints at the possible
existence of an underlying variational description of the flow itself, such as a principle of minimum

267 It is presumed that there are no sources; those have not yet been satisfactorily incorporated into the
formalism.
268 For the details, see the discussion and references in Busse (1978) and Joseph (1976, Chap. XII).
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Fig. 33. For the generalized reference model (87), comparison of the exact solution for the mean turbulent flux
as a function of Reynolds number R (solid line) with the basic bound (dashed line) and the direct-interaction
approximation (dotted line). From Fig. 7 of Krommes and Smith (1987), used with permission.

dissipation (Montgomery and Phillips, 1988). It should be stressed, however, that the principles that
have been articulated to date are approximate whereas the bounding method is exact.

11.3 Two-time constraints

An important and undesirable property of the basic-bound procedure as applied to problems
of passive advection is that the basic bound is completely independent of the Kubo number K.
This follows quite generally because only equal-time correlation functions appear in the steady-
state energy balance, so no multiple-time correlation functions that could involve the (linear, or
imposed) autocorrelation time appear in the basic constraint or variational principle. For self-
consistent problems a similar argument shows that the basic principle cannot take account of a wide
variety of potentially important dynamical processes, including, for example, the effects of propagating
waves or streaming particles. Thus neither the basic bound nor more highly constrained bounds that
invoke only one-time constraints properly reduce to the quasilinear scaling (Sec. 3.4.3, p. 57) Γ ∝ K
as K → 0.

In order to recover accurate results as K → 0, Krommes and Smith (1987) argued that it
is necessary to include in the formalism constraints involving two-time correlations. That requires
consideration of time-dependent Lagrange multipliers and time-dependent Euler–Lagrange equations,
significant technical complications. Nevertheless, for one particular two-time constraint they were able
to carry through the formalism for the generalized reference model (87). They found a bound of the
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appealing form

γ−1(R,K) = γ−1
∞ (R) + γ−1

q (K), (439)

where γ∞(R) is the basic bound and γq is the quasilinear flux. Formula (439) has the desired limits

γ(R,K) ∼
{
K (K → 0)
γ∞(R) (K →∞).

(440)

11.4 Plasma-physics applications of the optimum method

An application of considerable practical importance is turbulence in reversed-field pinches
(Bodin and Newton, 1980), which is adequately described by MHD equations (including Ohm’s law
E + c−1u ×B = ηclj, where ηcl is the classical resistivity). In a typical experimental situation, the
axial current is specified. Then Ohm’s law written in the form Ez = −c−1ẑ · (u×B) + ηcljz ≡ ηtotjz
introduces the turbulent electromotive force ε

.
= −c−1ẑ · (δu× δB), and one can show that this is the

natural quantity to maximize. That problem was considered by Kim (1989) and Kim and Krommes
(1990); a brief overview of those latter works was given by Krommes and Kim (1990). The topic was
pursued by Wang et al. (1991). 269

Very recently, Kim and Choi (1996) applied the variational method to the problem of transport due
to ITG fluctuations. However, I shall not describe here the detailed results that emerged from either
of the practical calculations just mentioned, partly for lack of space but also because considerable
additional technical work remains to be done. In particular, the analyses (already very tedious and
involved) were restricted to a single mode, and nested boundary-layer analysis was not performed.
There is considerable room here for further systematic work on the nonlinear behavior of plasma
transport models.

12 MISCELLANEOUS TOPICS IN STATISTICAL PLASMA

THEORY

In this section I briefly discuss various miscellaneous topics that rely on statistical formalisms
but do not fit naturally into the previous discussions of statistical closure techniques. I consider the
possibility of Onsager symmetries for turbulence (Sec. 12.1, p. 235), the interpretation of entropy
balances (Sec. 12.2, p. 238), experimental determination of mode-coupling coefficients (Sec. 12.3,
p. 241), self-organized criticality (Sec. 12.4, p. 241), percolation theory (Sec. 12.5, p. 245), a potpourri
of results on mean-field dynamics (Sec. 12.6, p. 245), and (briefly) the statistical treatment of
convective cells and other long-wavelength fluctuations (Sec. 12.7, p. 248).

12.1 Onsager symmetries for turbulence

Onsager’s theorem (Onsager, 1931a, 1931b) imposes important constraints (the Onsager
symmetries) on the transport matrix describing the hydrodynamic relaxation of perturbations of

269 For some related discussion of the significance of such optimal states, see Hameiri and Bhattacharjee
(1987).
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a steady state. Onsager’s original application was to perturbations of absolute thermal equilibrium.
However, it is also of considerable interest to ask whether systems of steady-state turbulence, which
are far from thermal equilibrium, may also exhibit Onsager-like theorems.

The literature is highly confused on this point. Many references to literature on both sides of the
issue were listed by Krommes and Hu (1993), from whose work most of the following discussion is
drawn. On the one hand, people who believe in thermodynamic descriptions of macroscopic systems
often argue in favor of Onsager symmetries. On the other hand, those who think in terms of the
statistical-mechanical PDF may feel that an Onsager theorem for turbulence is miraculous if it exists
at all, since the PDF for forced, dissipative steady-state turbulence bears no resemblance to the Gibbs
distribution of thermal equilibrium. The correct answer probably lies somewhere in-between.

12.1.1 Onsager’s original theorem

The statement of the classical Onsager theorem is as follows. Consider a system in absolute
thermal equilibrium (so that the appropriate PDF is the Gibbs distribution). Introduce a set of state
variables represented as the column vector X ≡ (X1, . . . , Xn)T . These variables will fluctuate and
possess the two-time correlation matrix C(τ )

.
= 〈δX(t+ τ )δXT (t)〉. Assume that

∂τC(τ ) = −M · C(τ ) (τ > 0). (441)

M is called the regression matrix. It provides a Markovian description of the dynamics and is
appropriate for long-wavelength, low-frequency fluctuations. Define the Onsager matrix

L
.
= M · C, (442)

where C ≡ C(τ = 0). Assume that under time reversal X is transformed to a new set X = ε·B, where
ε is called the parity matrix. It is then a consequence of the microscopic time-reversibility properties
of X that

L(B) = L†(−B), (443)

where L .
= ε · L. Equation (443) is the most general form of the classical Onsager theorem. In the

absence of a magnetic field and for a set of variables that are all even under time reversal, the
theorem reduces to the statement that the Onsager matrix L is symmetric. The generalization to
include magnetic fields and variables odd under time reversal is due to Onsager (1931b); for a more
thorough discussion, see Casimir (1945).

Actually, as the theorem was originally and is still usually stated, M is taken to be a property not
of the decay of the two-time correlation function of the finite-amplitude but microscopically derived
fluctuations, but rather of the regression of mean infinitesimal perturbations 〈∆X〉 away from the
equilibrium state. In thermal equilibrium the equivalence of the two descriptions is guaranteed by the
fluctuation–dissipation theorem (Martin, 1968), one form of which is (Kraichnan, 1959a; Krommes,
1993b) C+(τ ) = R(τ ) · C(0), R being the mean infinitesimal response matrix introduced in Sec. 3
(p. 46) and discussed in Secs. 5 (p. 126) and 6 (p. 146). For further discussion, see Krommes and Hu
(1993).

It is a point of considerable confusion in the literature that Onsager’s theorem applies not to
the regression matrix M itself but rather to the Onsager matrix L

.
= M · C. M describes the fate
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of (nonequilibrium) perturbations away from the steady state; L additionally includes through C
information about the fluctuation intensity in the steady state. In thermal equilibrium and for special
choices of variables, C can be reduced to a form proportional to T I, where T is the equilibrium
temperature and I is the identity matrix. For such special situations the symmetry properties of L are
the same as those of M. However, that is certainly not true in general.

In fact, the presence of C in the definition of the Onsager matrix is just what is needed to develop
a covariant formulation of Onsager symmetry. For example, Grabert and Green (1979) argued, on
the basis of representation independence of the thermodynamic entropy, that thermodynamic forces
naturally transform like a covariant vector and that the Onsager matrix is naturally a contravariant
tensor. For many related references, see Krommes and Hu (1993). A family of covariant descriptions
can be parametrized by the choice of fundamental tensor g. Whereas Grabert and Green chose
gij = Lij, Krommes and Hu argued for the choice

gij = C ij ≡ 〈δXi δXj〉, (444)

with gij = C−1
ij . Indices are raised and lowered in the conventional fashion—for example, Xi = gijX

j.
Note that covariant regression laws are properly written as

∂t∆X
i = −M i

j∆X
j, (445)

so the abstract regression tensor M most naturally appears in the mixed representation M i
j . However,

Onsager’s theorem is a statement about the fully contravariant matrix Lij. By definition, one has

Lij = M i
kC

kj or Lij = M ij , (446a,b)

the latter following by virtue of Eq. (444). That is, the abstract tensors L and M are identical in a
properly covariant formalism. However, one must be sure to not mix representations, since Lij 6= Lij
except in special cases. Thus the standard operational definition of the regression matrix in terms of
incremental perturbations to equilibrium states defines the mixed matrix components M i

j according
to Eq. (445). However, an independent measurement of the steady-state fluctuation level is needed
in order to deduce the fundamental tensor g [Eq. (444)] that is required to raise the indices and
calculate Lij according to Eqs. (446).

The existence of a covariant description renders moot the recurring question of what the
appropriate set of variables that exhibits Onsager symmetry is. In fact, there is no such preferred
set; any set of independent variables may be employed. Onsager’s symmetry, being covariant, holds
for any set related by linear transformation to the original set. Linear transformations are sufficient
because Onsager’s theorem is a statement about infinitesimal perturbations.

12.1.2 The generalized Onsager theorem

Now consider nonequilibrium steady states. It is no longer obvious that Onsager’s theorem holds,
since it was derived from specific detailed-balance properties (Haken, 1975) of absolute thermal
equilibrium. In the case of forced, dissipative turbulence the steady-state PDF bears no resemblance to
that of Gibbs. For the general case Dufty and Rub́ı (1987) showed that a generalized Onsager theorem

holds: L(B) = L†(−B). Here L is a property of the time-reversed steady state. Unfortunately, the
form of a PDF for an equilibrium held steady by the balance between forcing and dissipation need
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not be invariant under time reversal, significantly complicating the practical use of the generalized
theorem. Some examples and further discussion were given by Krommes and Hu (1993).

12.1.3 Onsager symmetries for turbulence

By definition, turbulence describes statistical disequilibrium. If an appropriate set of state
variables that express a sensible Markovian dynamics can be identified, then the generalized Onsager
theorem must hold. With regard to analytical descriptions of turbulence, the existence of realizable,
Markovian Langevin representations with built-in fluctuation–dissipation relations is key. It would
appear that the generalized theorem should hold for the resulting closures. 270

Krommes and Hu considered a model two-variable Langevin system for which nonvanishing cross
correlations of the Langevin forces broke the original Onsager symmetry; such cross correlations are to
be expected in the general case. In any event, it is vital to identify the appropriate matrix to study—it
is L, not M. Thoul et al. (1994) made an ambitious attempt to consider Onsager symmetry for drift
waves described by a crude version of the DIA. Unfortunately, their conclusion that the DIA grossly
violates Onsager symmetry was incorrectly based on M (Krommes and Hu, 1993). In preliminary
analysis of simulation and closure calculations for HW dynamics, Hu (1995) found a mild violation of
Onsager symmetry. Further analysis of Onsager symmetries for turbulence would be very desirable.

12.2 Entropy balances

The evolution of various entropies or entropylike quantities has frequently figured in the
description of statistical-mechanical systems, including plasmas. Martin et al. (1973) discussed a
generalized entropy functional in terms of the MSR formalism, closely following earlier work by
de Dominicis and Martin (1964a).

Entropy figures prominently in the discussion of Onsager relations (Sec. 12.1, p. 235). Pattern-
recognition algorithms, relevant to the diagnosis of turbulent systems, frequently employ a principle
of maximum entropy (Jaynes, 1982).

In plasma physics early and partially unpublished important work on entropy balances for
microturbulence was done by Nevins (1979a,b, 1980). More recently, particular versions of such
entropy balances were considered by Lee and Tang (1988), Rath and Lee (1992), Lee et al. (1992),
and Rath and Lee (1993). This and other literature was summarized and discussed by Krommes and
Hu (1994).

12.2.1 The Entropy Paradox

In most of the works cited in the last paragraph, a quadratic approximation to the information-
theoretic entropy (Shannon and Weaver, 1972) was employed. For example, consider a kinetic theory
described by the PDF f = 〈f〉 + δf . Through second order the conventional information-theoretic

270 The time-reversibility properties of Langevin equations as descriptions of microscopic dynamics can be
confusing because of the dissipative damping on the left-hand side. See Krommes and Hu (1993, Sec. IV B)
for a thorough discussion.
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entropy S (relative to a reference PDF f0) is (Jaynes, 1968)

S ∝ −
∫

dz f ln (f/f0) ≈ −
1

2

∫
dz (δf2/f0). (447)

The quantity F .
= −S was measured in various computer simulations (Rath and Lee, 1992; Lee

et al., 1992; Rath and Lee, 1993). It was observed that F increased without bound in collisionless
particle simulations even after the turbulent fluxes appeared to have achieved saturated steady states.
This behavior was called the entropy paradox by Krommes and Hu (1994) because in a true statistical
steady state all statistical observables must be independent of time. Attempts to reconcile this paradox
led Krommes and Hu (1994) to perform analyses of various quadratic balance equations.

Quite generally, the production term P in the appropriate turbulent energy balance is related to
the flux of some quantity; it often has the simple form P = κΓ, where κ is the inverse of a gradient
scale length (which represents the source of free energy for the turbulence) and Γ is the turbulent
flux. Then one has

∂tF = κΓ−D, (448)

where F is the mean-square average of a certain fluctuating field and D is a positive definite dissipation
functional. For example, the spatially averaged energy balance (14) for the NSE has the form (448), as
do the equations (55c) for fluid energy and (55d) for mean-squared ion density in the HW system. To
the extent that dissipation is negligible and flux is positive, Eq. (448) suggests an indefinite increase
of F , the behavior observed by Rath and Lee. If a steady state is actually achieved, however, Eq. (448)
shows that dissipation can never be negligible, since the steady-state balance

κΓ = D (449)

must hold. This equality raises the question of whether the value of Γ is actually determined by the
dissipation processes. Krommes and Hu (1994) argued to the contrary. Motivated by the well-known
paradigm of NS turbulence (Sec. 3.8.2, p. 73), they argued that detailed nonlinear dynamical processes
not apparent in the macroscopic balance (449) determine the steady-state value of Γ; then the net
dissipation is determined by Eq. (449). The analog to the Kolmogorov picture of NS turbulence is
that the dissipation wave number adjusts to accommodate the amount of long-wavelength forcing.

For an example that fits well with the emphasis of the present article on model equations and
statistical paradigms, I follow Krommes and Hu (1994) in considering steady states of the system
composed of (i) the Terry–Horton equation (43) for the ions, and (ii) an entirely linear kinetic equation
for the electrons that supports linear growth but also includes collisional effects. Recall that the THE
is defined by the complex susceptibility χ, which determines the linear growth γ from the iδ model.
Let an ion damping ηlin

k be added by hand. To obtain the cleanest model, take Ti → 0; then there is
no ion Landau damping, so ηlin must be purely collisional. Recall that the model possesses the single
quadratic invariant Z defined by Eq. (44). The balance equation is

∂tZ = 2
∑
k

(γlin
k − ηlin

k )Zk. (450)
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From Eq. (3b) for the electron particle flux Γe, and with the iδ model for χ, one can show (Krommes
and Hu, 1994) that the γlin term in Eq. (450) is just κΓe:

∂tZ = κΓe − 2
∑
k

ηlin
k Zk. (451)

The fundamental steady-state scenario for fluid-level quantities is as follows: (i) First, fluctuations
are excited by inverse electron Landau damping. (ii) Next, fluid nonlinearities transfer energy to
nonresonant ion sloshing motion. (iii) Finally, that motion is stabilized by ion collisional dissipation.
Krommes and Hu showed that this fluid scenario is compatible with direct calculations at the kinetic
level. Note, however, that if one were to look in detail at the particle distributions, the electrons
would cool and the ions would heat; the fluid scenario does not appear to be compatible with a
kinetic steady-state balance. The resolution is that a true steady state is finally achieved by ion–
electron collisional coupling of the ions back to the electrons. To restate the philosophy of the last
paragraph, one does not need to calculate the latter dissipation explicitly; it adjusts as necessary to
ensure the steady-state flow of Zk through the k space.

12.2.2 Thermostats

Evidently, collisional dissipation is important even in the limit that the collision frequency ν
approaches zero. If so, the limit ν → 0 is singular ; the limits t → ∞ and ν → 0 must not
be interchanged. Krommes and Hu (1994) discussed a solvable stochastic-oscillator model that
demonstrated this behavior explicitly.

The existence of a singular limit poses a problem for collisionless particle simulations because it
implies that purely collisionless algorithms are never correct in principle. Although they may make
valid predictions for low-order statistical moments such as the turbulent flux, they are likely to fail
for long simulation times because successively finer and finer scales in phase space will be excited and
statistical noise may become unacceptably large. One can attempt to model collisions explicitly [for
a discussion of techniques and original references, see Brunner et al. (1999)]. Alternatively, one can
use of thermostats.

Thermostats are a technique originally developed for use in nonequilibrium molecular dynamics
(NEMD). In NEMD one formulates homogeneous algorithms for the calculation of transport
coefficients. Instead of driving, say, thermal flux by imposing a temperature gradient, which would
relax inhomogeneously and give trouble near simulation boundaries, one imposes a fictitious force
that interacts homogeneously with the particles and drives a flux that agrees with linear response
theory (the Green–Kubo formulas). Nevertheless, such a driven system will heat, complicating
the interpretation of diagnostic measurements. To ensure steady state, a dynamical damping or
thermostat ζ̃ is added to the equations of motion according to ṗi = F i − ζ̃(t)pi. The value of ζ̃ is
chosen at each time step to freeze the kinetic temperature, either exactly or on the time average.
The technique was reviewed by Evans and Morris (1984, 1990), and Hoover (1991). Krommes
(1999b) advocated the use of a generalized thermostat for collisionless particle simulations of
plasmas. Nevertheless, as he discussed, the justification of a thermostat for simulations of steady-
state turbulence is substantially less secure than is the one for NEMD simulations. Because heating
is a quadratic effect, the thermostat does not disturb near-equilibrium linear response. Nevertheless,
turbulent transport coefficients do not obey linear response theory, and the proper fluctuation level
at which to stabilize the system is unknown a priori. Krommes suggested a certain extrapolation
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procedure 271 for predicting the collisionless limit of the turbulent flux, but further work is called for.

12.3 Statistical method for experimental determination of mode-coupling

coefficients

In this article I have stressed the analytical statistical analysis of primitive amplitude equations of
the form (223) with specified linear operator Lk and nonlinear mode-coupling coefficient Mkpq. In an
interesting inversion of the procedure, Ritz and Powers (1986) and Ritz et al. (1989) suggested that
statistical analysis of experimental power spectra can be used to deduce Lk and Mkpq. In brief, the
technique is to (i) assume that the quadratically nonlinear, scalar field equation (223) holds; (ii) write
the exact equations for the equal-time two- and three-point correlation functions; (iii) apply the
quasinormal approximation to the undetermined four-point function [Ritz et al. cite Millionshtchikov
(1941a)] ; (iv) insert measured two-point spectra; and (v) infer Lk and Mkpq.

Ritz et al. showed that this procedure could be used successfully if the original Ansatz (223)
provides an adequate description of the turbulent dynamics. 272 Mynick and Parker (1995b,a) applied
the method to the analysis of data from gyrokinetic particle simulations. They showed that a modest
number of dynamical amplitudes sufficed to describe the turbulence, and they were able to explain
various features of the simulations in terms of an HW paradigm.

Nevertheless, questions remain. In general, fluid descriptions of plasma phenomena are best
described by multifield models that do not naturally reduce to the scalar paradigm (223). (This
point was noted by Ritz et al.) For strong turbulence the proper statistical description should also
be self-consistently renormalized; see the triad interaction time in the Markovian theories. How much
the uncertainties upset the interpretation of the data is unknown, and more work is needed. However,
the method is an instructive application of basic statistical theory and is probably sufficiently robust
that broad conclusions about experimental data can be believed.

12.4 Self-organized criticality (SOC)

“We argue and demonstrate numerically that dynamical systems with extended spatial degrees
of freedom naturally evolve into self-organized critical structures of states which are barely
stable. We suggest that this self-organized criticality is the common underlying mechanism
behind [1/f noise and other self-similar phenomena]. . . . We believe that the new concept
. . . can be taken much further and might be the underlying concept for temporal and spatial
scaling in a wide class of dissipative systems with extended degrees of freedom.” — Bak et al.

(1987).

271 Krommes’s work was aimed at the so-called δf simulations (Appendix C.1.7, p. 276), in which an important
role is played by the particle weight w, a measure of δf . The analog of the kinetic temperature in NEMD is
W

.= 〈w2〉. The procedure involves calculating the flux Γ for sample W ’s, then extrapolating Γ(W ) to the
limit W → 0.
272 Ritz et al. pointed out that in some situations cubic or higher nonlinearities may need to be considered.
That may be correct, but it is misleading to call Eq. (223) a “three-wave coupling equation,” as Ritz et al.
did. If the weak-turbulence statistical theory of the quadratically nonlinear Eq. (223) is carried beyond second
order in the intensity expansion, n-wave coupling processes emerge for all n ≥ 3.
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Self-organized criticality (SOC) refers to the states achieved by certain driven nonlinear systems
that exhibit no preferred length or time scales. Unlike the familiar models of equilibrium critical
phenomena (Binney et al., 1992; Goldenfeld, 1992), in which long-ranged correlations emerge only at
a particular critical point in parameter space that can be reached by adjusting an external parameter
such as the temperature, self-organizing systems self-tune to the critical state; they determine that
state self-consistently. 273

12.4.1 Sandpile dynamics

The concept of self-organized criticality was introduced by Bak et al. (1987, 1988) with the aid
of a simple discrete nonlinear dynamics for the slope of a model sandpile. 274 Their motivation was
to provide a dynamical explanation for the 1/f noise 275 observed in many natural phenomena and
physical systems. Because of the relative tractability of the discrete dynamical models and the goal of
a universal mechanism, an explosion of literature followed. Some representative works are by Kadanoff
et al. (1989), Carlson et al. (1990), Carlson and Swindle (1995), and Vespignani and Zapperi (1998).
Bak (1996) gave a nontechnical discussion of the elementary ideas. A pedagogical synthesis of the
literature through the mid-1990s was given by Jensen (1998).

A typical sandpile model gives the dynamics for a discrete height variable h defined on a
d-dimensional lattice. Discrete units of height (“grains of sand”) are added one at a time to random
lattice sites. After each addition the new height is compared with a specified toppling threshold. If
the threshold is exceeded, N units are redistributed to neighboring sites. Those sites, in turn, may
themselves be destabilized and topple. Thus an avalanche may be initiated. In the classic sandpile
the avalanche is allowed to go to completion before the next grain is added. In the absence of any
characteristic length except for the macroscopic lattice size L, avalanches may be of any spatial extent
up to L. In the long-time limit the statistical distributions of the avalanches saturate and a steady-
state profile emerges. Various time series can be constructed from the avalanches (such as measuring
the number of grains crossing an edge of the lattice) and related to spectra of the form ω−α.

Sandpile dynamics are interesting in part because they demonstrate one mechanism by which
local perturbations (forcing or fluctuations) can generate nonlocal effects (avalanches). [It is worth
noting here that even the classical diffusion equation exhibits such phenomena. However, sandpile
models can propagate perturbations faster than diffusive, even approaching ballistic speeds (x ∝ t
rather than x ∝

√
t).] Another interesting feature of many sandpile models is that the mean profiles

can be submarginal [defined in Sec. 9 (p. 210)]. For example, when the toppling condition is based on

273 In fact, various control parameters for SOC have been identified, including the forcing rate (Vespignani
and Zapperi, 1998) and the local rigidity (Cafiero et al., 1995), a measure of the importance of the threshold
condition for toppling or linear growth. Pure SOC emerges in the limit that the forcing rate is tuned to zero
and the local rigidity is tuned to infinity. Vespignani and Zapperi (1998) argued, “SOC models appear to
be nonequilibrium systems with steady states, reaching criticality by the fine tuning of control parameters.”
Nevertheless, they acknowledged that SOC systems are distinct from those of ordinary critical phenomena
because of the limiting procedure required for the former.
274 Real sand need not behave as does the theorists’ reference sandpile model (Nagel, 1992). Nevertheless,
that observation does not vitiate the utility of the sandpile model for studies of and insights about general
nonlinear behavior.
275 That is, the power spectrum of an observed time series varies as ω−1 (ω .= 2πf) over an interesting range
of frequencies. More generally, spectra of the form ω−α are relevant, where α need not be precisely 1.
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the local slope s
.
= hi+1−hi [see, for example, Kadanoff et al. (1989)], the mean slope may saturate a

finite amount below the threshold slope S for toppling. An illustrative 1D model that has been used
in various plasma discussions (Newman et al., 1996; Carreras et al., 1996c) is defined by requiring
that when s ≥ S, then N grains are redistributed according to

hn → hn −N, hn+1 → hn+1 +N. (452a,b)

For N = 1 the steady-state profile is marginal (〈s〉 = S), but for N > 1 it is submarginal. Of
course, the detailed dynamics of a discrete submarginal sandpile are ridiculously simpler than those
of a nonlinearly self-sustained advective continuum system such as discussed in Sec. 9.6 (p. 216).
Nevertheless, one can at least inquire whether all such systems share certain universal characteristics.
The answer is far from clear because nonlinear systems may live in various universality classes.

12.4.2 Continuum dynamics and SOC

Certain perturbation experiments in tokamak plasmas (Gentle et al., 1997) have suggested to
some that nonlocal effects or superdiffusive propagation may be operating. In some situations it may
also be that anomalous transport is observed even for linearly stable profiles, although that is not
very clear. Noting that sandpile dynamics might provide an explanation, Diamond and Hahm (1995)
suggested that concepts of SOC might be applicable to the behavior and determination of steady-
state profiles (of temperature, say) in plasma confinement devices. Their qualitative ideas have been
subsequently reiterated and explored by various authors; representative references include Newman
et al. (1996), Carreras et al. (1996b,c), and Newman (1999).

Although applications to tokamak phenomenology are beyond the scope of this review, the
technical methods are not. Diamond and Hahm reiterated a result from the work of Hwa and Kardar
(1992), who attempted to argue that a relatively universal continuum hydrodynamic model of self-
organizing behavior is the 1D forced Burgers equation (19). Once such an equation is postulated,
standard renormalization techniques can be applied. For the Burgers equation, I have already referred
to the works of Forster et al. (1976, 1977) [Secs. 7.2.1 (p. 183) and 7.4 (p. 196)] as well as Medina
et al. (1989) and Hwa and Kardar (1992; Sec. 7.2.1, p. 183). In Sec. 7.2.1 it was shown that in
one dimension and for nonconservative random forcing, renormalized pulses exhibit on the average
a ballistic scaling with ηnl

k = |k|V rather than k2D. Diamond and Hahm (1995) also showed that
such behavior could be suppressed by the imposition of mean flow shear. Aspects of that work were
reconsidered by Krommes (2000a).

Space does not permit a complete analysis of the various, sometimes contradictory literature on
self-organization in continuum systems; for some early discussion, see Krommes (1997c). One central
issue, however, does not seem to have received adequate attention in at least the plasma-physics
literature. That is the nature of the forcing in the nonlinear continuum model. The rain of sand on
a model sandpile is clearly represented by an additive forcing. The Burgers equation is additively
forced as well. But suppose the goal is to assess the role of microturbulence on steady-state mean
temperature profiles. Such microturbulence would advect the temperature, leading to a multiplicative
forcing; i.e., temperature fluctuations would evolve according to ∂tδT + Ṽ (x, t) ·∇δT + · · · = 0, where
Ṽ represents the random velocity field of the microturbulence. But nonlinear advection equations with
multiplicative statistics are precisely the ones treated in the standard statistical closures described
earlier in this article. In particular, to the extent that the microturbulence is short ranged in space
and/or time (the usual assumption), standard coarse-graining arguments lead to regular diffusion
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equations for the mean fields, not the singular diffusion equations evinced by self-organizing systems
(Carlson et al., 1990). 276

Of course, an advective nonlinearity can always be placed on the right-hand side of the dynamical
equation, where it then plays the role of an additive forcing. However, that is not useful because
(i) the statistics of such a term are not arbitrary and specifically cannot be Gaussian (even for passive
advection), and (ii) such forcing would be conservative (Model A of FNS). But according to the results
of FNS, Models A and B belong to different universality classes.

I have noted that steady-state SOC profiles can be submarginal. Krommes (1997b) analyzed a
simple stochastic model with multiplicative forcing that led to submarginal profiles. However, that
model was simply postulated, not derived. As indicated in Sec. 9 (p. 210) on the general problem of
submarginal turbulence, much further work on the nonlinear dynamics of such systems remains to be
done.

12.4.3 Long-time tails and SOC

Do real confinement devices like tokamaks follow principles of SOC? Carreras et al. (1998b) [see
also Carreras et al. (1998a)] attempted to answer that question by analyzing experimental data
in search of long-time correlations—in particular, algebraic tails on two-time Eulerian correlation
functions of the form C(τ ) ∼ |τ |−β (0 < β < 1). [Intuitively, one expects that long-ranged, scale-
invariant avalanches should give rise to long-lived, scale-invariant time correlations, as argued in
the first paper by Bak et al. (1987), although I will question the uniqueness of this interpretation
shortly.] A related measure is the Hurst exponent (Hurst et al., 1965; Mandelbrot, 1998) H

.
= 1− 1

2
β.

Measurements of edge density fluctuations in a variety of tokamaks were reported to give rise to tails
with 0.62 ± 0.01 < H < 0.72 ± 0.07. It was suggested (Carreras et al., 1998b) that such results are
consistent with ideas of SOC. It was also asserted that if fluctuation data possess such long-time tails,
then the “standard transport paradigm” might have to be abandoned.

Exactly what is the standard transport paradigm is subject to some debate. From the point of
view of this article on fundamental statistical methods, the DIA is a standard paradigm (which makes
no fundamental distinctions between long and short scales and and copes with nonlocal phenomena in
space and time). However, most people would probably consider the standard paradigm to be one in
which Markovian approximations hold and transport coefficients can be calculated from random-walk
estimates like D ∼ L2

ac/τac or D ∼ v2τac for microscopic correlation lengths and times. If one recalls
the Lagrangian representation (Taylor, 1921) D =

∫∞
0 dτ CL(τ ), and if CL(τ ) ∼ τ−β , then D does

not exist for β ≤ 1. This raises the possibility of anomalous diffusion processes Sec. 3.2.3, p. 52 for
which 〈x2〉 ∝ tα with α 6= 1. Various authors have attempted to describe such motion with fractional
Fokker–Planck operators (Metzler et al., 1999; Carreras et al., 1999b).

That Lagrangian correlations enter into the definitions of transport coefficients is crucial. It does
not follow that long-time tails on Eulerian correlation functions—e.g., the equal-space-point density
autocorrelation function 〈δn(x, t+ τ )δn(x, t)〉—necessarily lead to divergent transport coefficients,
because additional decorrelation effects in the Lagrangian variable x(t) can superimpose a short decay

276 It has been suggested that the presence of linear instabilities with nonzero thresholds may vitiate
this argument. Krommes (1997b) discussed some consequences of thresholds for various stochastic models;
although certain assumptions about the behavior near threshold were relevant to the existence of submarginal
profiles, the existence of thresholds did not interfere with the derivation of regular (if nonlinear) diffusion
equations.
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on a long-time envelope. [A simple illustration of this remark is provided by passive quasilinear theory
Sec. 4.1.2, p. 91, in which stochasticity (orbit diffusion) introduces a slow (although not algebraic)
nonlinear envelope but for which the Lagrangian force correlation decays on the short τ lin

ac timescale.]
Krommes and Ottaviani (1999) discussed a specific stochastic model, with an advecting velocity that
was assigned short Lac and τac, in which the Eulerian correlations possessed a well-developed τ−1/2 tail,
yet the transport could be adequately estimated by a quasilinear approximation. Those authors also
attempted to give general arguments based on the spectral balance equation (286). They showed that
if long-wavelength fluctuations developed (due to inverse cascade, say), then one may expect long-
time Eulerian tails. Both a simple estimate based on HM dynamics as well as a numerical simulation
of the HW system (neither of which involved notions of SOC) led to predictions for Hurst exponents
in the range 1

2
≤ H ≤ 3

4
, in reasonable agreement with the experimental observations. That may be

fortuitous, but it shows that there is not an inevitable connection between long-time tails and SOC.
Further discussion of these and related issues was given by Krommes (2000c).

The previous discussion merely provides an introduction to a large literature. Self-organization
is an interesting and challenging topic in its own right and deserves a separate review article.
To the extent that the Burgers equation is a reasonable model (a controversial point), one can
apply techniques described elsewhere in the present article, such as the DIA Sec. 5, p. 126, the
renormalization group Sec. 7.4, p. 196, or theories of intermittent PDF’s Sec. 10.4.3, p. 227. Further
discussion of the relevance of SOC to plasma physics was given by Krommes (1997c).

12.5 Percolation theory

A vast area of research concerns the development of the methods of statistical topography to
describe transport in random mediums. The subject is closely related to classical percolation theory.
An excellent review of these issues (with many references) was given by Isichenko (1992), so it is
unnecessary to develop them here. One interesting result is a nontrivial dependence of the effective
diffusivity D of 2D passive advection on the Kubo number K: D ∼ K−3/10 (Gruzinov et al., 1990).
(The simple strong-turbulence estimates described in this article merely suggest D ∼ K0.) Ottaviani
(1992) discussed difficult attempts to verify this prediction numerically.

12.6 Inhomogeneities and mean fields

The formal moment-based closures emphasized in this article effect their approximations at the
second-order level, i.e., on the fluctuations; the equation for the mean field is retained exactly. This
is true both in the general MSR formalism [Sec. 6 (p. 146); see Eq. (276)] and in the DIA Sec. 5,
p. 126. The fluctuation-induced contributions to the mean-field dynamics generalize the Navier–Stokes
Reynolds stress τ

.
= −ρm〈δu δu〉 introduced in Sec. 2.1.1 (p. 23).

In this article mean fields have appeared in a variety of contexts: (i) fluid equations, like that
of Navier–Stokes, in inhomogeneous geometries; (ii) the one-particle PDF f , the average of the
Klimontovich microdensity Sec. 2.2.2, p. 27; (iii) frozen backgrounds in drift-wave equations such
as those of HM [Eq. (48)], TH [Eq. (43)], or HW [Eq. (52)]; (iv) the theory of eddy diffusivity
Sec. 5.7, p. 140; (v) mixing-length estimates of saturation level; (vi) upper bounds on transport in
inhomogeneous systems Sec. 11, p. 230; and (vii) self-organized criticality Sec. 12.4, p. 241. The
practical importance of mean fields is evident. Nevertheless, for the purposes of this article it is
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necessary to make a clean distinction between formal, systematic theories and the rich potpourri of
practical applications; the latter cannot be reviewed here although a few entry points to the literature
are given.

12.6.1 K–ε models

In a classical K–ε model 277 the form of the Reynolds stress is restricted by the use of
symmetry properties and gradient expansions, and the undetermined coefficients are represented
by dimensionally correct combinations of gross fluctuation properties such as the mean fluctuation
energy K and the energy dissipation rate ε. Similar procedures applied to the evolution equations
for K and ε lead to closure approximations generically called K–ε models (Bradshaw et al., 1981).
There are many variants; see, for example, Besnard et al. (1996). A recent review of this topic and
the more sophisticated second-order modeling is by Yoshizawa et al. (2001).

It is possible to derive K–ε models from second-order closures. For example, Yoshizawa has
proposed and studied in detail a two-scale DIA [Yoshizawa (1984) and references therein; Yoshizawa
et al. (2001)]. The technique was pursued by Sugama et al. (1993) for resistive MHD.

12.6.2 L–H transitions

A typical K–ε model is a system of equations in which quadratic measures of fluctuation intensity
are coupled to mean fields. Such systems exhibit bifurcations Sec. 9.3, p. 212 and phaselike transitions
as functions of external control parameters. This possibility is of considerable interest for magnetic
confinement of plasmas because of the experimentally observed “low–high” (L–H) transition (Wagner
et al., 1982). Diamond et al. (1994) introduced a particular system of two coupled ODE’s for density
fluctuation level and flow shear that exhibited a plausible bifurcation. Considerable research has been
expended on the physics of the transition; recent reviews are by Burrell (1997) and Connor and
Wilson (2000). Spatschek (1999) emphasized the general importance of low-dimensional descriptions
and provided many references.

An example of an attempt to develop a systematic L–H model is the work by Horton et al. (1996).
They considered a 6-ODE model that generalized earlier work of Sugama and Horton (1995), who
used three “thermodynamic” functions to characterize the turbulence. Note, however, that a fully
systematic derivation of a low-degree-of-freedom thermodynamic description of turbulence is highly
nontrivial and has not yet been accomplished. For example, Markovian statistical closures for a system
of n real ODE’s involves without further approximation 1

2
n(n+1) independent correlation functions; in

the absence of symmetry considerations, there is as yet no simple way of deciding in advance whether
any of those is negligible. 278 Also note that for highly nonequilibrium systems “thermodynamics”
is an ill-defined concept (although the MSR formalism can be described as a kind of functional
thermodynamics).

12.6.3 The effects of mean shear

Unquestionably, models with homogeneous statistics are the easiest to analyze. Nevertheless, in a
variety of important physical situations fluctuations are profoundly affected by inhomogeneities. Those

277 This discussion paraphrases a section of Krommes (1997c).
278 LoDestro et al. (1991) noted that cross correlations can be at least quantitatively important.
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enter the formalism as coefficients depending on one or more of the independent variables such as x. In
this case two-point functions must depend separately on x and x′. This general dependence is at the
very least a technical annoyance, but there are important associated physical effects as well. Frequently
the strength of an inhomogeneity is measured by a generalized shear. Given an inhomogeneous
coefficient V (x), the shear is measured by the first Taylor coefficient: V (x) ≈ V (0) + V ′(0)x. The
unnormalized shear is V ′. (If x and V are literally position and velocity, V ′ is a shearing rate.) Given
a reference spatial scale L and a reference velocity V [possibly either V (0) or, if that vanishes, an rms
fluctuation level], a normalized measure of shear is S

.
= LV ′/V .

Here are some examples in which background inhomogeneities play a role: (i) Vlasov plasma. The
streaming term v ·∇ is inhomogeneous in velocity space, so the particle propagator g(x,v, t; x′,v′, t′)
depends separately on v and v′. The background PDF (often taken to be Maxwellian) also varies
with v, so the full infinitesimal response function R Sec. 6.5.2, p. 172 would depend separately on v
and v′ even if the streaming term were absent. (ii) Sheared magnetic fields. Magnetic fields with radially
varying winding numbers (safety factors or inverse rotational transforms) q(r) are characterized by
the shear parameter ŝ

.
= d ln q/d ln r. In a slab geometry periodic in the y and z directions, fluctuations

with given values of ky and kz have a parallel wave number k‖ (in the direction of the magnetic field)
that varies with x: k‖(x) = kz + kyx/Ls, where Ls is the shear length (inversely proportional to ŝ).
In microturbulence problems the spatial variation of k‖ can lead to complete linear stabilization; see
footnote 60 (p. 41). (iii) Mean velocity shear. In fluid problems mean (background) flows U enter
the linearized velocity equation as U(x) ·∇δu, where x labels the inhomogeneity direction in which
boundary conditions are applied. A spatially independent part of U can be transformed away by a
Galilean transformation. Sometimes a pure shear flow, U(x) = U ′x ŷ, is an exact equilibrium, as in
planar Couette flow. As mentioned in the previous section, it is believed that mean flow shear (in the
form of sheared poloidal E ×B flow arising from radial electric fields) is important in the physics of
the L–H transition (Terry, 1999).

An important physical effect is the interaction of shear with diffusion. The resulting behavior
can be illustrated with the 1D Vlasov particle propagator g renormalized as in resonance-broadening
theory to include a velocity-space diffusion term. The form of g is discussed in Appendix E.1.2 (p. 284).
The most important feature of the results (E.10) and (E.13) is the appearance of spatial dispersion
proportional to Dvτ

3. If k is a characteristic spatial scale, the normalized dispersion (proportional

to k
2
Dvτ

3) defines the characteristic diffusion frequency ωd
.
= (k

2
Dv)

1/3 ≡ τ−1
d . By introducing a

characteristic velocity scale ∆v, one has

ωd = ω2/3
s ω

1/3
D , (453)

where ωs
.
= k∆v is the shearing rate and ωD

.
= Dv/∆v

2 is the velocity diffusion rate. One can see
that ωd is a hybrid frequency comprising two-thirds shearing and one-third diffusion.

One significant application of formula (453) arises in the context of sheared magnetic fields. When
a test particle initially streaming along a field line experiences a small amount of radial diffusion, it
moves to a neighboring field line with a different rotational transform; it then streams along the new
field line, rapidly separating azimuthally from its original position. This effect was analyzed in great
detail by Krommes et al. (1983) in their studies of transport in stochastic magnetic fields. Of course,
a completely analogous interpretation of the Vlasov motion can be given in terms of the appropriate
phase-space characteristic trajectories, as was done by Dupree (1972b).

The results in Appendix E.1.2 (p. 284) that lead to formula (453) are based on the diffusive
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propagator described by Eq. (E.9), an approximate description based on a Gaussian white-noise
hypothesis. However, in particular circumstances the result (453) is more general. In the context of
velocity-space diffusion, consider the equation

g−1ψ(x, v, t) = S(x, v, t), (454)

where S is some given source. The Green’s function g is assumed to obey a passive advection equation
such as Eq. (E.9), but the nonlinearity is represented quite generally by a wave-number- and frequency-
dependent mass operator Σnl

k,ω. The driven solution is

ψk(v, t) =
∫ t

−∞
dt′
∫ ∞

−∞
dv′ gk(v, t; v′, t′)Sk(v′, t′) =

∫ ∞

0
dτ
∫ ∞

−∞
dv′ gk(v, τ ; v′)S(v′, t− τ ), (455a,b)

or

ψk(v,∞) =
∫ ∞

−∞
dv′

(∫ ∞

0
dτ gk(v, τ ; v

′)
)
Sk(v

′,∞) =
∫ ∞

−∞
dv′ gk,ω=0(v; v

′)Sk(v′,∞). (456a,b)

This result shows how the ω = 0 Fourier amplitude rigorously enters the long-time solution. If Sk is
concentrated at a characteristic wave number k, then it is Σnl

k,ω=0
that enters the equation for g; for

small k, Σnl
k,ω=0

can be adequately approximated by a diffusive operator, as in Eq. (E.9). Finally,

suppose that S is independent of v and that ψ is desired at v = 0. Then [see the derivation of
Eq. (E.15)]

ψk(v = 0,∞) =
∫ ∞

0
dτ exp(−1

3
k2Dvτ

3)Sk(∞) = [3−2/3Γ(1
3
)τd]Sk(∞). (457a,b)

With these specific approximations, the effective value of the operator g in the formal solution ψ = gS
is seen to be the hybrid diffusion time τd to within a known numerical coefficient. Clearly this simple
result does not hold more generally, although in some cases it may still provide a useful dimensional
estimate.

Biglari et al. (1990) employed arguments related to formula (453) to discuss the influence of
sheared poloidal rotation on the fluctuation and transport levels in edge turbulence. Although their
detailed mathematics based on the clump formalism is suspect [see the discussion in Sec. 4.4 (p. 119)],
their qualitative conclusions are plausible. Burrell (1999) presented experimental evidence that such
sheared flows do affect turbulence and transport.

12.7 Convective cells, zonal flows, and streamers

Convective cells are defined to be fluctuations with kz = 0 (with B ∝ ẑ). The nonlinear generation
of convective cells by drift-wave interactions was originally discussed by Cheng and Okuda (1977);
for more discussion, see Sagdeev et al. (1978). Note that convective cells are already present in
homogeneous, isotropic turbulence. There they are not preferred in any way, though, because of
isotropy; for every Fourier amplitude (kx, ky, 0), there is another statistically equivalent one (0, ky, kz).
Symmetry is broken by a strong magnetic field. For B 6= 0, modes with kz = 0 are special because they
do not experience Landau damping or (in a slab 279) collisional damping. Furthermore, modes with

279 In toroidal geometry the situation is more complicated; see Rosenbluth and Hinton (1998).
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vanishing ky [i.e., dependent only on x; k = (kx, 0, 0)] have vanishing diamagnetic frequency ω∗, so
they cannot be linearly driven by background gradients. Potentials ϕ(x) with such variation generate
purely y-directed E×B velocities VE,y(x), creating random shear layers in poloidal zones; hence they
are called zonal flows. Zonal flows have long been known to be important in rotating systems such
as planets; two representative references are Busse (1994) and Marcus et al. (2000). Accumulated
evidence from many years of computer simulations has shown that they are important constituents of
plasma microturbulence as well. This could be expected from the close analogy between Rossby waves
and drift waves (Horton and Hasegawa, 1994), and indeed was anticipated by Hasegawa and Mima
(1978). Zonal flows are theoretically interesting because they are nonlinearly driven and very weakly
damped, and their self-generated (random) shear can be expected to play a role in the dynamics of
the modes (which will be called drift waves for short) that drive them.

Another extreme limit of convective cells is the case of purely y-dependent potentials [k =
(0, ky, 0)]; the resulting x-directed E × B flows are called streamers. Because streamers provide a
mechanism for direct advection along the background gradient, they can be important in enhanced
transport. Drake et al. (1988) have observed streamers in computer simulations.

As this section of the article was being completed (early 2000), the statistical dynamics of long-
wavelength fluctuations, including zonal flows and streamers, were a subject of active investigation.
Some of that work has been conducted in the context of toroidal magnetic systems, the details of
which are outside the scope of this review [see, for example, Beyer et al. (2000)]. Nevertheless, the
general problem provides interesting and subtle applications of the general statistical theory described
in this article. I shall comment very briefly on some of the conceptual pitfalls.

The interactions between convective cells and drift waves of arbitrary perpendicular wavelengths
are difficult to analyze analytically. Nevertheless, energy conservation provides an important
constraint on the structure of the theory. Consider for definiteness a one-field model (e.g., forced HM).
The spectral evolution equation is

∂tCk − 2γlin
k Ck + 2Re ηnl

kCk = 2F nl
k , (458)

and one knows that the total energy E .
=

∑
k σkCk is conserved by the nonlinear terms Nk

described by ηnl
k and F nl

k . Let k∗ denote the drift waves (abbreviated by d) and k denote the
convective cells (abbreviated by c). The total vanishing wave-number sum over the nonlinear terms,
0 =

∑
k σkNk =

∑
k,p,q δ(k + p + q) . . . , can be broken into eight terms, as follows:

0 =
∑

k,p,q

=
∑

k∗,p∗,q∗︸ ︷︷ ︸
(a): d← d + d

+
∑

k∗,p∗,q︸ ︷︷ ︸
(b): d← d + c

+
∑

k∗,p,q∗︸ ︷︷ ︸
(c): d← c + d

+
∑

k∗,p,q︸ ︷︷ ︸
(d): d← c + c

+
∑

k,p∗,q︸ ︷︷ ︸
(e): c← d + c

+
∑

k,p,q∗︸ ︷︷ ︸
(f): c← c + d

+
∑

k,p∗,q∗︸ ︷︷ ︸
(g): c← d + d

+
∑

k,p,q︸︷︷︸
(h): c← c + c

. (459)

Terms (a) and (h) separately vanish because of internal energy conservation. Terms (d), (e), and (f)
vanish because the interaction of two convective cells cannot generate a nonzero kz. The basic energy-
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conserving structure of the drift-wave–convective-cell system is therefore

∂tE∗ = 2γ∗E∗ − Ėnl︸︷︷︸
(b) + (c)

, ∂tE = −2γE + Ėnl︸︷︷︸
(g)

, (460a,b)

where γ∗ is a typical linear growth rate for the drift waves, γ is a typical damping rate for the
convective cells, and the energy transfer Ėnl can heuristically be argued to be positive (because it is
the drift waves that explicitly extract free energy from the background gradients).

Further insights emerge by calculating Ėnl under the assumption of disparate scales, as discussed
in Sec. 7.3.2 (p. 193). If one ignores incoherent noise, then one finds

∂tE∗ = 2γ∗E∗ − 2aEE∗︸ ︷︷ ︸
≈ (b) + (c)

, ∂tE = −2γE + 2aE∗E︸ ︷︷ ︸
≈ (g)

, (461a,b)

where a > 0. The stable steady-state solutions of Eqs. (461) are E∗ = γ/a and E = γ∗/a. These
results appear to suggest that the drift-wave fluctuation level and, presumably, transport level as well
are proportional to the damping rate of the convective cells, as concluded by Diamond et al. (1998)
for the special case of zonal flows.

Suppose, however, that the convective cells had not been separated out for special attention.
The analog of Eq. (461a) for the total system energy would be ∂tE = 2γE, which for a nontrivial
steady state requires γ = 0 and provides no information about the actual saturation level. The basic
difficulty is that so far no distinction has been made between positive and negative growth rates.
The exact definition 280 of γ is γ

.
=
∑

k σkγ
lin
k Ck/E. The constraint γ = 0 provides some information

on the relative fluctuation levels for different k’s, but says nothing about the absolute spectral level.
A further conceptual problem for systems with well-defined inertial ranges is that the procedure of
encapsulating all growth and damping processes into a single γ does not distinguish between the
positive γk’s, which excite fluctuations (frequently) locally in k space, and the dissipation rate, which
in the presence of an inertial range absorbs cascaded energy (or possibly enstrophy). First consider
3D Navier–Stokes turbulence. A better way of writing the total energy conservation law is

∂tE = 2γ+E − D, (462)

where γ+ represents macroscopic forcing and a dissipation term D is now included explicitly.
Nevertheless, this more explicit equation does not determine the value of E either. According to
the discussion of the entropy paradox in Sec. 12.2.1 (p. 238), the dissipation rate is determined by
the saturation level, not vice versa. Different scalings of E as a function of γ+ emerge depending on
whether the weak- or strong-turbulence limit is appropriate; however, the necessary information (the
dispersion properties of the waves) is absent from the total energy balance.

The perpendicular nonlinear dynamics of the drift-wave–convective-cell system are 2D, not 3D;
that a is positive in Eq. (461b) is a reflection of the inverse energy cascade (Kraichnan, 1976b).
Equations (461) should be augmented by dissipation terms to absorb direct enstrophy transfer;
however, specific predictions about saturation levels are then lost. Diamond et al. (1998) attempted
to introduce more dynamical information by focusing specifically on the zonal flows. Their formulas

280 In Eqs. (461) it must be true that γ∗E∗ − γE = γE , as follows immediately from the definitions of the
various γE terms as partial k sums over γ lin

k Ck. See the explicit example in Appendix J (p. 297).
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for the nonlinear amplification of zonal flows and associated k-space enstrophy diffusion for the drift
waves are related to the formulas derived in Sec. 7.3.2 (p. 193) with one important difference: because
k‖ = 0 fluctuations exhibit highly nonadiabatic response, Poisson’s equation must be modified for
those modes, as explained in Sec. 2.4.4 (p. 38). A consequence is that for generalized HM dynamics
enstrophy is no longer conserved; instead, the appropriate invariant is Z .

= (1 + k2)2〈|ϕk|2〉, as
discussed by Lebedev et al. (1995), Smolyakov and Diamond (1999), and Krommes and Kim (2000).
The last reference gives a unified treatment of both pure and generalized HM dynamics from the point
of view of the interactions of disparate scales. It employs many of the techniques referred to in the
present article, including Markovian closures, MSR generating functionals, wave kinetic equations,
and spectral balance equations, and it presents heuristic derivations of the nonlinear long-wavelength
growth rate that differ from and contradict ones in previous literature. The analysis is valid for
arbitrary q � k; special assumptions about zonal flows or streamers are not required.

Even given a formula for the nonlinear growth rate γnl
q , the analysis is not complete because

the details of the nonlinear couplings into the kz 6= 0 modes, which ultimately provide the principal
dissipation, have not been elucidated. Also note that one cannot cavalierly conclude that the ultimate
drift-wave fluctuation level is controlled by the rms shear generated by the zonal flows, because the
rapid-change model discussed in Sec. 4.4.4 (p. 123) provides a counterexample (Krommes, 2000b).
Detailed information about saturation is provided by the closures discussed in the present article;
however, to date no systematic statistical calculation that extends work such as described in Sec. 8.5
(p. 208) to include convective cells has yet been reported. This is an interesting topic for future
research.

13 DISCUSSION

A wealth of information has been presented in this article. It can be summarized in various ways.

13.1 Time lines of principal research papers

A chronology of some of the principal research papers on systematic, analytical, statistical
turbulence theory is given in Figs. 34 (p. 260) through 36 (p. 262), where specifically plasma-physics
works are listed in the right-hand column and everything else is listed in the left-hand column.
Numerical superscripts preceding an author’s name correlate related items in the left- and right-hand
columns. A historian of science will note the substantially derivative nature of fundamental plasma
turbulence methods, which are deeply indebted to pioneers in statistical physics, quantum field theory,
and neutral fluids.

13.2 The state of statistical plasma turbulence theory 35 years after Kadomtsev

(1965)

In this article I have described the status of the statistical approach to plasma turbulence as it
exists some 35 years after the seminal monograph by Kadomtsev (1965). It is useful to assess the
progress in light of the extended quotation from that reference given in Sec. 1.3.4 (p. 17).
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“Many forms of noise and oscillation arise spontaneously in the plasma.” The presence
of spontaneous or intrinsic noise is the raison detre of the statistical approach. Through the theory of
nonlinear dynamics [not reviewed here; see, for example, Lichtenberg and Lieberman (1992)], we now have
a relatively deep understanding of the origins of that noise. The statistical methods provide the most direct
way of quantitatively describing the resulting processes of turbulent diffusion. They generalize the long-
known methods of Langevin, Fokker, and Planck [see, for example, the articles reprinted by Wax (1954)],
cornerstones of many disciplines of physics, to situations in which time and/or length scales are not cleanly
separated. Modern approaches based on the DIA and its Markovian relatives properly incorporate the effects
of self-consistency.

“The theoretical consideration of a weakly turbulent state is considerably facilitated by the
possibility of applying perturbation theory . . . .” Weak-turbulence theory was already well developed in
the 1960s. The present article adds little to its practical understanding. Instead, I stressed that the structure
of the (unrenormalized) weak-turbulence wave kinetic equation persists in the fully renormalized DIA-like
descriptions. It is useful to note that one now understands how to recover the equations of weak-turbulence
theory, to any order, from the fully renormalized equations of MSR, which lead to a nonperturbative definition
of a nonlinear dielectric function (DuBois and Espedal, 1978).

“For the case of very small amplitude, . . . one can use the so-called quasi-linear
approximation . . . .” In the early 1960s QLT existed as a well-specified mathematical algorithm. In the
interim its foundations in nonlinear dynamics have been solidified by insights into the Chirikov criterion for
stochasticity and the smoothing engendered by the onset of stochastic diffusion [see Appendix D (p. 279)]. In
the simplest cases that diffusion can be described as a resonance broadening, an observation that motivated
the resonance-broadening theory of Dupree (1966, 1967).

“In numerous practical cases one is faced not by weak but by strong turbulence.” The
advances focused on by this article have been very largely in the systematic development of the statistical
description of strong turbulence. Enormous progress has been made. The early semiheuristic descriptions
based on resonance broadening have matured into highly developed methods based on renormalized field
theory (Martin et al., 1973). The intimate links between nonlinear plasma physics, neutral fluids, and
quantum mechanics become particularly evident in the light of that unifying formalism.

“Strong turbulence is related to an anomalous diffusion of the plasma across the magnetic
field.” Because E × B motions dominate cross-field transport, one can work with quasi-2D models.
Fortunately, those have structure quite similar to the intensively studied 2D NSE, from which much can
be learned, including the theory of two-parameter Gibbs ensembles and dual cascades.

“To determine the fluctuation spectrum in a strongly turbulent plasma and the effect of
these fluctuations on the averaged quantities, it is sometimes possible to use the analogy
with ordinary hydrodynamics and, in particular, to apply a phenomenological [mixing-length]
description of the turbulent motion. However, in a plasma other strongly turbulent motions
which are different from the eddy motion of an ordinary fluid may develop. It is therefore
desirable to have available more systematic methods for describing strong turbulence. In our
view, such a method may be the weak coupling approximation . . . .” By the “weak-coupling
approximation,” Kadomtsev meant (DuBois and Pesme, 1985) what is now universally referred to as
Kraichnan’s direct-interaction approximation. Kadomtsev’s remarks heralded a long development of the DIA
for plasma physics, to which this article devoted considerable space. The DIA quantifies the notion of mixing
length 281 for strongly turbulent fluids (Kraichnan, 1964c; Sudan and Pfirsch, 1985). The seminal observations

281 Caveats and limitations on the use of mixing-length estimates in practical situations were given by
Diamond and Carreras (1987). Note that their criticism that the mixing-length level does not depend
on dissipative parameters must be viewed with caution. In some of the more elaborate plasma theories,
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of Orszag and Kraichnan (1967) about realizability of random-coupling Vlasov models were followed by the
unification and derivation by DuBois and Espedal (1978) and Krommes (1978) of various of the simpler
renormalizations from the DIA and the MSR formalism as well as a complete formal description of the
renormalized dielectric function.

“It has now become evident, however, that the coefficient of turbulent diffusion cannot be
obtained without a detailed investigation of the instability of an inhomogeneous plasma and
in particular of its drift instability.” In the last three decades a huge literature on both the theory
and numerical simulation of drift and related instabilities has blossomed with the increasing appreciation of
their relevance to turbulent transport in magnetically confined fusion plasmas. From the involved practical
details of realistic devices have been distilled some simple generic models such as those of Hasegawa and
Mima (1978), Terry and Horton (1982), and Hasegawa and Wakatani (1983). The statistical theory of strong
turbulence has been proven capable of making quantitatively accurate predictions for some key features of
such nonlinear models, including the steady-state turbulent flux and spectral shape. Recent representative
work is by Bowman and Krommes (1997) and Hu et al. (1997).

It is clear that Kadomtsev’s insights were seminal. There were, of course, omissions from his
1965 monograph. He did not comment in any detail on the topics of intermittency and submarginal
turbulence although those were known to occur in neutral fluids. He did not anticipate the possibility
of determining rigorous bounds on turbulent plasma transport Sec. 11, p. 230; the seminal paper on
the variational method for fluids (Howard, 1963) had appeared just a few years earlier. The dual
cascade, now frequently invoked in heuristic interpretations of 2D turbulence phenomena, was not
discussed until several years later (Kraichnan, 1967). The beautiful and systematic results of nonlinear
dynamics had not yet reached the plasma mainstream (Smith and Kaufman, 1975; Karney, 1978;
Treve, 1978). Nonlinear gyrokinetics had not yet been invented (Frieman and Chen, 1982); gyrofluid
closures came still later (Hammett and Perkins, 1990). Advanced computation for plasma turbulence
was in its infancy. Nevertheless, his ideas, either explicit or implicit, of generalizing and applying
known techniques of hydrodynamic turbulence to the magnetized plasma problem were remarkably
apt and prescient.

13.3 Summary of original research and principle conceptual points in the article

Although this is primarily a review article, some research topics appeared here for the first time.
Those include (i) discussion of the relationships between kinetic and fluid resonance-broadening theory,
and extraction of the proper polarization-drift nonlinearity from kinetic renormalization Sec. 6.5.5,
p. 178; (ii) a generating-function approach to the efficient generation of fluid moment equations
Appendix C.2.1, p. 277; and (iii) the class structure of the DIA code Appendix I, p. 295. The
pedagogical discussion in Sec. 6.1.2 (p. 150) of the appearance of anomalous exponents in the stochastic
oscillator model is also new, as are some of the remarks in Sec. 12.7 (p. 248) about the interactions
between convective cells and drift waves.

Significant conceptual points discussed in the article include the following: (i) Nonlinear
gyrokinetics Appendix C.1, p. 267 provides the best route to the derivation of equations for the
low-frequency dynamics of magnetized plasma. (ii) The core of the statistical turbulence problem
is the need for renormalization. (iii) Renormalization embraces much more than the Feynman-like

dissipation enters the saturation level through the clump lifetime τcl. But the discussion in Sec. 4.4.4 (p. 123)
shows that τcl should not arise in a proper description of the energy-containing scales.
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diagrams introduced in Sec. 3.9.5 (p. 81), and can be accomplished [Secs. 6.2 (p. 153) through 6.4
(p. 166)] without ever introducing such diagrams. (iv) An exact definition of the (renormalized)
plasma dielectric function can be given Sec. 6.5, p. 170 [it does not reduce to the algorithm of
resonance-broadening theory Sec. 4.3, p. 108]. (v) Renormalization techniques provide an efficient
and systematic way of discussing the statistical interactions of disparate scales Sec. 7.3, p. 189 and
the nonlinear generation of long-wavelength fluctuations Sec. 12.7, p. 248. (vi) Statistical realizability
Sec. 3.5.3, p. 63 provides a key constraint on the nature of permissible approximations Sec. 8.2, p. 201.
(vii) The DIA Sec. 5, p. 126 is a profoundly unifying approximation to the formal developments.
(viii) Linear waves violate the realizability of the EDQNM Sec. 8.2.1, p. 201. (ix) A tentative solution
to the latter problem, apparently successful in practice, is Bowman’s Realizable Markovian Closure
Sec. 8.2.3, p. 203. (x) Submarginal turbulence Sec. 9, p. 210 provides an interesting challenge for
marrying nonlinear dynamics with statistical closure methods. (xi) PDF methods Sec. 10.4, p. 224
have the potential for treating difficult problems of intermittency. (xii) Rigorous bounds on turbulent
transport can be formulated Sec. 11, p. 230.

13.4 Retrospective on statistical methods

Statistical closure has its limitations. It cannot easily deal with instances of divided phase space,
multiple and macroscopically distinct basins of attraction, etc. Nevertheless, for the many physical
systems of interest that are known to exhibit extreme sensitivity to initial conditions, it is not a
foolish approach. Even when the entire phase space is accessible to the dynamical trajectories, issues
of phase mixing, mode coupling, and self-consistency arise that demand a systematic treatment. A
key advance, both philosophically and technically, was Kraichnan’s version of perturbation theory,
in which the effects of a primitive interaction are assessed by removing it perturbatively from the
sea of all interactions rather than by adding it to a small number of other primitive ones. The latter
procedure leads to the unrenormalized equations of weak-turbulence theory; the former leads to the
more general self-consistent renormalized equations of strong-turbulence theory, the DIA being the
prime example.

Both the similarities and differences between the works of Kraichnan (1959b) and Dupree (1966)
are striking. Dupree’s test waves are loosely analogous to Kraichnan’s primitive wave-number triads.
Unfortunately, in the application to Vlasov dynamics the waves live in x space whereas the particles
live in v space. Because of that extra level of complexity and for other reasons, Dupree was led to
mishandle in detail the effects of self-consistency; his resonance-broadening theory has more conceptual
relevance to problems of passive advection. For self-consistent turbulence RBT is best viewed as a
merely qualitative description of extremely complex mode-coupling processes in phase space. Such
incomplete description can nevertheless be very useful. It may provide the only practical way of
isolating the dominant effects in situations complicated by such practical effects as magnetic shear.
Nevertheless, it cannot reliably provide numerical coefficients or the spectral details of dynamical
mode coupling.

Important goals for this article were to draw the lines between heuristic and systematic statistical
descriptions of plasma turbulence more clearly and to emphasize that some truly systematic steps
can, in fact, be taken. The lowest-order approximation to the formally exact renormalized equations
of Martin, Siggia, and Rose (1973) is the DIA. That approximation is robust, realizable, properly self-
consistent, and quantitatively accurate for energy-containing modes; it can be applied to both kinetic
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and fluid descriptions of both homogeneous and inhomogeneous situations. The formal theory of the
nonlinear dielectric function (DuBois and Espedal, 1978) considerably helps with the understanding
of the structure of the plasma-physics DIA. One now has precise decompositions into nonlinear noise
and dielectric shielding, which help one to avoid egregious examples of double- or undercounting of
mode-coupling processes.

On the other hand, the systematic developments are by no means complete. The MSR equations
are not practically useful beyond lowest order. The DIA is not invariant to random Galilean
transformations (Kraichnan, 1964e) and cannot capture key aspects of intermittency (Chen et al.,
1989a). The DIA can be embedded in a convergent sequence of ever-more-constrained approximations
(Kraichnan, 1985), but the higher-order approximations are complicated and have been little studied.
PDF methods (Chen et al., 1989b) are promising (Kraichnan, 1991), but are in their infancy.

At the practical level, self-consistent Markovian closures seem to be faithful enough to capture the
broad features of turbulent transport due to energy-containing modes. A key advance was made with
the realization (Bowman, 1992) that the evolution of such closures in the presence of waves need not be
realizable. Bowman’s Realizable Markovian Closure (Bowman, 1992; Bowman et al., 1993) generalizes
the EDQNM approximation in a way that ensures realizability. The RMC is clearly not the last word
in the development of realizable Markovian closures, but it stands as a practically useful algorithm
(Bowman and Krommes, 1997; Hu et al., 1997) and perhaps suggests paths of further development.

One significant area where heuristic and systematic approaches to plasma turbulence have
historically collided is the so-called “two-point” analysis [see footnote 154 (p. 122)] of the spectral
balance equation, which can be traced back to Dupree’s 1972 discussion of kinetic phase-space
granulation. Although no detailed discussion of Dupree’s technique for kinetic problems was offered
in the present article, it has become clear [most recently with the discussion of an exactly solvable
statistical model by Krommes (1997a)] that at least for saturation levels in fluid problems the focus on
the dynamics of the very smallest scales, which lies at the heart of the clump algorithm, is misplaced
Sec. 4.4, p. 119. It fosters a qualitatively incorrect picture of the dynamics responsible for saturation,
and it leads to a spurious dependence on the clump lifetime. A consequence with practical implications
is that the issue of whether fluctuation levels are controlled by the rms self-generated shear is more
complicated than had previously been believed (Krommes, 2000b).

13.5 Basic quantities and concepts of practical significance

The article touched only incidently on the more practical uses to which plasma turbulence theory
is frequently put. Most experimentalists are probably not interested in subtleties of, say, vertex
renormalizations in quantum field theory; more likely, they want to know whether their data are
consistent with simple theoretical estimates of turbulent transport. Introductions to some of the
concepts useful in describing or analyzing inhomogeneous plasmas in magnetic fields have been given
by Itoh et al. (1999) and (more briefly) by Yoshizawa et al. (2001). I did not attempt to review the vast
area of correlations (or lack thereof) between theory and experiment; some references include Liewer
(1985), Haas and Thyagaraja (1986), Robinson (1987), Surko (1987), Ritz et al. (1988), Wootton et al.
(1990), and Burrell (1997). Here I shall merely enumerate a few of the more fundamental quantities
or concepts mentioned in those articles, and briefly comment on the principal conceptual points made
about them in the present paper.
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13.5.1 The gyrokinetic description

The gyrokinetic description Appendix C.1, p. 267, based on the unusual gyrokinetic Poisson
equation that includes the effects of the ion polarization drift, represents a fundamental advance
in one’s ability to concisely treat either analytically or numerically low-frequency fluctuations in
magnetized plasmas. Sadly, it has been neglected in even very recent textbooks; it deserves better.

13.5.2 The turbulent diffusion coefficient D

As noted in Sec. 1.3.1 (p. 13), turbulent fluxes can be obtained from equal-time Eulerian
cross correlations. Those are the natural dependent variables of the systematic statistical closures
discussed in this article, including the multifield DIA and the related Markovian approximations.
That formalisms exist that make any sensible predictions at all for those cross correlations in the face
of strong nonlinearity must be seen as significant intellectual progress; one has come a long way from
the early 1960s.

13.5.3 Dimensional analysis

It is worth repeating with Connor and Taylor (1977) that given a nonlinear equation [see examples
in Sec. 2 (p. 22)], many (and sometimes all) predictions about parameter dependence of turbulent
fluxes or transport coefficients follow by general scaling arguments Appendix B, p. 264. As applied
to transport, the roles of a statistical closure are therefore to calculate numerical coefficients and/or
detailed functional dependences on dimensionless parameters ε—heavy burdens, indeed. Nevertheless,
important ε-dependent scaling laws frequently follow from the generally robust structure of the closure;
cf. the appearance of anomalous dimensions, discussed in the next section.

13.5.4 Renormalization

As invoked in the more practical plasma theories, many of which have been strongly influenced by
Dupree’s 1966–67 RBT, renormalization can be said to be an approximate technique for broadening
linear resonance functions by appropriately adding a turbulent diffusion coefficient. If that is done
literally, however, as Dupree did in his early works, ill-behaved formalisms result if one pursues
predictions beyond those of dimensional analysis; as examples, energy is not properly conserved
and wave-number dependence is misrepresented. Systematic renormalization techniques for classical
statistical dynamics lie at the heart of this article. Although renormalization is frequently introduced
through partial diagrammatic summations, as was done in Secs. 3.9.5 (p. 81) through 3.9.8 (p. 85),
the functional approach of MSR shows that the underlying concept is much deeper. The appearance
of anomalous dimensions Sec. 6.1.2, p. 150 is profound, and the related problem in intermediate
asymptotics (Barenblatt, 1996) provides an elegant way of unifying essential concepts in critical
phenomena, quantum field theory, and classical turbulence theory. Anomalous dimensions also have
practical significance: for example, turbulent transport due to E ×B velocities leads in the purely
2D case to the anomalous scaling B−1 (instead of the classical result B−2) and the Bohm diffusion
coefficient (Taylor and McNamara, 1971).
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13.5.5 Clumps

Perhaps no technique in plasma turbulence theory has been as confusing as the clump algorithm
initiated by Dupree (1972b). It has been alleged to be a useful, if approximate, statistical closure.
Nevertheless, it was not derived in the same mathematically clean fashion that, say, the DIA was, and
it has become clear that the way in which it has been applied at least to fluid problems is qualitatively
(and quantitatively) incorrect, as discussed in Sec. 4.4 (p. 119). One cannot argue with the predictions
of the exactly solvable model discussed by Krommes (1997a), which except for one very special case
are not in agreement with those of the clump algorithm.

13.5.6 Saturation mechanisms

The formal statistical theory discussed in this article provides a general framework for thinking
about and calculating the properties of saturated steady states; it quantifies the balance between
(i) the tendency for the nonlinear system to seek statistical equilibrium [see the discussion of Gibbs
ensembles in Sec. 3.7.2 (p. 68)], and (ii) the disequilibrium induced by forcing and dissipation. The
spectral balance equation [Secs. 5.4 (p. 133) and 6.2.2 (p. 155)] is the mathematical backbone of the
formalism, and statistical closures such as the DIA Sec. 5, p. 126 or the RMC Sec. 8.2.3, p. 203 provide
specific formulas for the nonlinear damping and incoherent noise. Solutions of the nonlinear, wave-
number-dependent, coupled equations for modal covariances for specific applications were largely not
discussed in this article although aspects of the important Hasegawa–Mima and Hasegawa–Wakatani
paradigms of drift-wave turbulence were mentioned briefly in Secs. 8.4 (p. 206) and 8.5 (p. 208). The
statistical dynamics of zonal flows Sec. 12.7, p. 248, apparently key constituents of such turbulence,
were under active investigation at the time of writing.

13.6 The future, and concluding remarks

“Closures, as a broad subject, have told us very little about turbulence that we did not know
first from other means.” — Montgomery (1989).

“I will not rule out that renormalization methods will have a lot to say about turbulence once
they are applied to the right objects, which has not been the case so far.” — Frisch (1993).

Some aspects of the future of statistical plasma turbulence theory are easy to predict; others are
not. A variety of unfinished research threads identified in the article are ripe for further development,
including (i) detailed numerical solutions of statistical closures for more practical situations than
have been considered to date, for both weak turbulence Sec. 4.2, p. 98 and strong turbulence [Secs. 5
(p. 126) and 8.2.3 (p. 203)] and for both fluid and kinetic models; (ii) a high-quality numerical
solution of the DIA for a 1D Vlasov model, which would add greatly to one’s understanding Sec. 6.5.6,
p. 180 of turbulent trapping and the roles of self-consistency and non-Gaussian statistics; (iii) detailed
mechanisms for submarginal turbulence Sec. 9, p. 210, and the integration of such mechanisms into a
systematic statistical closure apparatus; (iv) PDF methods Sec. 10.4, p. 224 for strong intermittency
(including studies of more realistic models that involve multiple coupled fields and linear wave effects);
and (v) a systematic quantitative description of the statistical dynamics of interacting zonal flows
and drift waves, including the role of self-generated random flow shear. A workable theory that
systematically incorporates coherent structures and turbulence on equal footing is very desirable, but
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also very challenging.
What is the status of the provocative quote from Montgomery (1989) given at the beginning

of this section? In its defense, one must emphasize that basic ideas such as energy conservation,
cascade direction, or dynamical mechanisms for submarginal turbulence do not require closure;
indeed, one must work hard in order to ensure that closures are consistent with those properties.
The rigorous bounding approach to transport intentionally avoids closure. Nevertheless, the historical
emphasis on closure does not appear to have been misplaced. The analytical formalism identifies
the natural entities and concepts useful for theoretical description, including turbulent damping
coefficients, incoherent noise, statistical transfer, renormalized vertices, etc. Detailed considerations of
the structure of systematically renormalized closures elucidate the difficulties of the clump algorithm.
The mapping-closure approach to PDF’s has motivated plausible heuristic descriptions of intermittent
turbulence. The method of Polyakov and Boldyrev, also a closure, leads to excellent quantitative
agreement with numerical experiment; without such a framework, it would be very difficult to sort
out competing qualitative ideas. Finally, as the concluding quote from Frisch (1993) emphasizes, the
subject is certainly not closed. Although it is difficult to foresee just what sorts of new but also
practically useful statistical techniques will emerge, one general possibility is a hybrid method that
in some clever way combines rapid numerical computation with a theoretical superstructure such as
a path-integral representation Sec. 6.4, p. 166 of the statistical dynamics.

In conclusion, it is hoped that this broad survey of theoretical techniques for predicting the
statistical behavior of turbulent plasmas may somewhat ameliorate any feelings that the plasma
turbulence problem is just too complicated to treat at any level more sophisticated than simple
random-walk ideas and dimensional analysis. It is complicated, but it has yielded—and will yield
further, if slowly—to systematic analysis. In so doing, plasma turbulence theory should come to be
seen as just one more interesting example of the statistical description of nonlinear dynamical systems
rather than as an arcane subspecialty of interest to just a few devoted practitioners. The benefits of
such integration into the wider world of modern physics are considerable. If this article has aided in
elucidating at least some of the appropriate foundations, its goals will have been met.
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— Neutral fluids/general physics —

< 1900 1Boltzmann (1896)—Boltzmann collision operator
1900–04

·
1905–09 Einstein (1905)—Brownian motion

·
1910–14 2Buckingham (1914)—dimensional arguments

·
1915–19

·
1920–24 Taylor (1921)—D as Lagrangian integral

·
1925–29 Prandtl (1925)—concept of mixing length

· Dirac (1927)—quantum theory of radiation
1930–34 Uhlenbeck and Ornstein (1930)—Brownian motion

· 3Onsager (1931a)—symmetry of transport matrix
1935–39

·
1940–44 Kolmogorov (1941)—energy spectrum282 E(k) ∼ k−5/3

· Feynman (1942)—principle of least action (dissertation)
45
·
6
·
7
·
8 Feynman (1948b)—space-time approach to QM
·
9 Feynman (1949)—space-time approach to QED
· Dyson (1949)—synthesis of quantum radiation theories

1950
·
1 Schwinger (1951a)—sources in QFT
·
2
·
3 4Batchelor (1953)—Theory of Homogeneous Turbulence
·
4
·

55
·
6
·
7 Tatsumi (1957)—theoretical studies of quasinormal approx.
· Kraichnan (1957)—insights on fourth-order moments

1958 — DIA era begins; see Fig. 35 (p. 261) —

— Plasmas —

1Landau (1936)—plasma collision operator

Bohm (1949)—D⊥ ∼ cT/eB

— Continued in Fig. 35 (p. 261) —

Fig. 34. Chronology of selected research papers discussed in the present article, for the pre-DIA period earlier
than 1958. The relative youth of plasma-physics research is evident. Limited space precludes completeness. At
most, two references per year and per column are given. Significant conceptual correlations between items in
the left- and right-hand columns [spanning all of Figs. 34–36] are indicated by matching superscripts preceding
the author’s name, with at least one entry in each of the columns. Lines connecting such superscripts would
slope from upper left to lower right; thus the flow of information is from neutral fluids and general physics
to plasmas.

282 Actually, Kolmogorov worked in x space. The Fourier spectrum was given by Oboukhov (1941).
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— Neutral fluids/general physics —

1958 Kraichnan (1958c), Kraichnan (1958b)—first accounts of DIA
· Kraichnan (1958a)—higher order interactions
9 Kraichnan (1959a)—classical FDT
· 5Kraichnan (1959b)—DIA

1960
·
1 Wyld (1961)—diagrammatic formulation of NS turbulence
· Kraichnan (1961)—stochastic osc.; random-coupling model
2 Kubo (1962a)—cumulant expansions
· Bourret (1962)—Bourret closure approximation
3 6Kraichnan (1963)—three-mode DIA
· Howard (1963)—variational bound on thermal convection
4 Kraichnan (1964b)—integrations of DIA
· Kraichnan (1964e)—random Galilean invariance

65 7Herring (1965)—self-consistent field approximation
· 8Kraichnan (1965a)—Lagrangian History DIA
6
·
7 Kraichnan (1967)—dual cascade
·
8
·
9 Chirikov (1969)—PhD thesis on stochasticity
·

1970 Kraichnan (1970a)—Langevin representation of DIA
·
1 9Kraichnan (1971a)—test-field model
·
2 Herring and Kraichnan (1972)—closures compared
· Candlestickmaker (1972)—accurate determination of e
310Martin et al. (1973)—renormalized classical field theory
·
4
·

75 Kraichnan (1975b)—statistical dynamics of 2D flow
·
6 Kraichnan (1976b)—eddy viscosity
· Forster et al. (1976)—randomly stirred fluid and RG
711Orszag (1977)—thorough discussion of EDQNM
·
812Busse (1978)—review of bounding theories
· Fournier and Frisch (1978)—d-dimensional turbulence
9 Rose (1979)—renormalization of many-particle systems
·

1980
·
1 Jensen (1981)—synthesis of path-integrals and MSR
· Carnevale et al. (1981)—H theorems for closures
2 Kraichnan (1982)—renormalized pert. theory vs RG
·13Carnevale and Martin (1982)—reduction of DIA

to Markovian form3
·
4
·

1985 — Continued in Fig. 36 (p. 262) —

— Plasmas —

Balescu (1960), Lenard (1960)—BL operator
Spitzer (1960)—turbulent diffusion in a magnetic field
Taylor (1961)—Bohm diffusion is maximum cross-B transport

Drummond and Pines (1962)—quasilinear theory
Vedenov et al. (1962)—QLT

Rostoker (1964a)—test-particle superposition principle

4Kadomtsev (1965)—monograph on Plasma Turbulence

Dupree (1966)—unmagnetized RBT

5Orszag and Kraichnan (1967)—Vlasov DIA
Dupree (1967)—RBT for E×B motions
Rogister and Oberman (1968)—WTT with Klimontovich
Weinstock (1968)—turbulent diffusion in B
Weinstock (1969)—projection operators and RBT

8Orszag (1969)—stochastic acceleration
Dupree (1970)—collisionless resistivity
Rudakov and Tsytovich (1971)—critique of RBT
Taylor and McNamara (1971)—plasma diffusion in 2D
Dawson et al. (1971)—simulation/theory of 2D convective cells
Benford and Thomson (1972)—probabilistic model of RBT
Dupree (1972b)—phase-space granulation and clumps
Taylor and Thompson (1973)—statistical mechanics

of GC plasma
Dupree (1974)—2D turbulence
Taylor (1974a)—guiding-center dielectric
Misguich and Balescu (1975)—renormalized QLT
Orszag (1975)—comments on convergence

7Krommes and Oberman (1976a)—DIA/SCF from BBGKY
Krommes and Oberman (1976b)—stat. theory of conv. cells

2Connor and Taylor (1977)—scaling laws and transport
Sudan and Keskinen (1977)—DIA for 2D convection
Dupree and Tetreault (1978)—energy nonconservation in RBT

10DuBois and Espedal (1978), Krommes (1978)—plasma DIA
Krommes and Kleva (1979)—nonlinear dielectric
Adam et al. (1979)—reconsideration of QLT
Krommes and Similon (1980)—guiding-center dielectric redux

Boutros-Ghali and Dupree (1981)—two-point correlations
DuBois (1981)—renormalized quasiparticles and plasma turb.
Terry and Horton (1982)—RPA for three drift waves

6Krommes (1982)—DIA for three-mode Terry–Horton eqns.
Waltz (1983)—low-resolution Markovian closure

— Continued in Fig. 36 (p. 262) —

Fig. 35. Chronology of selected research papers on statistical methods (DIA to 1984). Citations are mostly
limited to papers on systematic analytical statistical turbulence theory.
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— Neutral fluids/general physics —

85 Kraichnan (1985)—statistical decimation
· Rose (1985)—cumulant-update DIA
6
·
7 Kraichnan (1987b)—distant-interaction approximation
· Bak et al. (1987)—self-organized criticality
814Chen et al. (1989a)—RCM and non-Gaussian statistics
·
915Chen et al. (1989b)—mapping closure for PDF’s
·

1990
·
1 Hunt et al. (1991)—50-year retrospective on Kolmogorov
· She (1991b)—intermittency and non-Gaussian statistics
2
·
3 Gotoh and Kraichnan (1993)—mapping clos. (Burgers)
· Kimura and Kraichnan (1993)—mapping closure (passive)
416Kraichnan (1994)—rapid-change model & structure functions
·

9517Hamilton et al. (1995)—regeneration in submarginal turb.
· Polyakov (1995)—turbulence without pressure
6 Holmes et al. (1996)—turbulence, coherent structures,

and dynamical systems·
718Waleffe (1997)—self-sustainment in submarginal shear flows
· Boldyrev (1997)—PDF’s for Burgers turbulence
8
·
9
·

2000
· —The present—

— Plasmas —

Sudan and Pfirsch (1985)—mixing length and DIA
DuBois and Pesme (1985)—Vlasov DIA and Kadomtsev
Krommes (1986a)—critique of clump formalism
Horton (1986)—statistical dynamics of drift waves

12Krommes and Smith (1987)—passive upper bounds

Krommes and Kim (1988)—further analysis of clump theory

Hammett and Perkins (1990)—Landau-fluid closures
12Kim and Krommes (1990)—rigorous bound for turbulent EMF

Koniges et al. (1991)—4-parameter Gibbs PDF for HW

11,13Bowman et al. (1993)—Realizable Markovian Closure
3Krommes and Hu (1993)—Onsager symmetries for turbulence
Krommes and Hu (1994)—dissipation and the entropy paradox

15Das and Kaw (1995)—mapping closure for plasma turbulence
17Drake et al. (1995)—nonlinearly self-sustained d.w. turbulence
14Krommes (1996)—non-Gaussian statistics revisited

16Krommes (1997a)—clump lifetime revisited
9Bowman and Krommes (1997)—realizable test-field model
Camargo et al. (1998)—non-normality of resistive drift waves

18Krommes (1999a)—Waleffe’s mechanism for submarginal d. w.’s
Krommes and Ottaviani (1999)—tails, SOC, and transport

13Krommes and Kim (2000)—interactions of disparate scales
—The present—

Fig. 36. Chronology of selected research papers on statistical methods [1985 to 2000; see footnote 1 (p. 7)].
Citations are mostly limited to papers on systematic analytical statistical turbulence theory.

A FOURIER TRANSFORM CONVENTIONS

Space-time quantities are taken to vary as exp(ik · x− iωt). The spatial discrete Fourier series
represents a function A(x) periodic in a d-dimensional box of side L:

Ak =
1

Ld

∫ L/2

−L/2
dx e−ik·xA(x), A(x) =

∑
k

eik·xAk. (A1a,b)

Each Cartesian wave-number component satisfies k = n δk, where δk
.
= 2π/L is the mode spacing and

fundamental wave number. The convolution theorem is [A(x)B(x)]k =
∑

qAk−qBq; for real fields this
can be written as

[AB]k =
∑

∆(k;p,q)

A∗pB∗q ,
∑

∆(k;p,q)

≡
∑
p,q

δk+p+q. (A2a,b)

Frequently
∑

∆(k;p,q) is abbreviated as
∑

∆ when there is no confusion about the relevant wave
numbers. The spectra of statistically homogeneous processes obey 〈AkBk′〉 = 〈AB〉kδk+k′ and
〈|Ak|2〉 = 〈AA〉k, where 〈AB〉k means the transform with respect to ρ of the two-point correlation
function CAB(ρ)

.
= 〈A(x + ρ)B(x)〉 (which is x-independent for homogeneous processes).
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In the limit L → ∞ the Fourier series becomes the continuous Fourier transform with the
replacements

∑
k →

∫∞
−∞dk/δkd, Ak → A(k)/Ld, and δk → δkdδ(k). Thus the integral transform

conventions consistent with Eqs. (A.1) are

A(k) =
∫ ∞

−∞
dx e−ik·xA(x), A(x) =

∫ ∞

−∞
dk

(2π)d
eik·xA(k). (A3a,b)

The convolution theorem for real fields is

[AB](k) =
1

(2π)d

∫
dpdq δ(k + p + q)A∗(p)B∗(q). (A.4)

For homogeneous processes one has

〈A(k)B(k′)〉 = (2π)d〈AB〉(k)δ(k + k′), 〈|A(k)|2〉 = Ld〈AA〉(k). (A5a,b)

Equation (A5b) follows from Eq. (A5a) with the formal rule δ(k = 0) = δk−d.
Consider the case for which A and B are isotropic, i.e., dependent only on wave-number

magnitudes. Then the angular integrations over the delta function can be performed in Eq. (A.4),
giving rise to

δkd
∑
∆

→
∫

dpdq δ(k + p + q) =
∫
∆
dpdq Jd(k, p, q), (A.6)

where the integration is over the domain ∆, shown in Fig. A.1, of magnitudes p and q compatible
with a triangle whose third side is k. For the important case of 2D, J2 = 2| sin(p, q)|−1.

q =
 p - 

k

q =
 p +

 k

k p

q

k
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q = -p + k

Fig. A.1. Integration domain ∆ for the variable sides of a triangle of fixed side k.
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B DIMENSIONAL AND SCALING ANALYSIS

“Even though the necessary non-linear theory may be quite intractable, the mere fact that a
scaling law is, in principle, derivable from certain basic equations already provides information
about that scaling law.” — Connor and Taylor (1977).

I shall very briefly review the theory of dimensional and scaling analysis, following the lucid
presentation by Barenblatt (1996). The method exploits the observation that the form of the governing
system of equations should remain invariant under all possible rescalings of the dependent variables,
independent variables, and physical parameters. In plasma physics, scaling analyses are frequently
associated with the work of Connor and Taylor (1977) [see Connor (1988) for a review] although the
techniques go back at least to Buckingham (1914) and Lamb (1932). A useful discussion was given in
Appendix A of Smith (1986).

Let an abstract variable z measure some physical quantity Q. For example, if z is a spatial
coordinate x, the measurable quantity is length. If the measuring system is changed by the rescaling
z = Zz′, Z is called the dimension of Q; one writes [Q] = Z. More generally, the dimension of any
physical quantity can be proven to be a power-law monomial (the dimension function) in a set of
scaling factors Zi. Closely following the definition of Barenblatt (1996), quantities a1, . . . , ak are said
to have independent dimensions if none of them has a dimension function that can be expressed as
a product of powers of the dimensions of the remaining quantities. For example, consider the set
{length, time, velocity} = {x, t, v}. With [x] = L, [t] = T , and [v] = V , any two of the three
variables can be taken to have independent dimensions. If x and t are chosen as fundamental, then
velocity is clearly not independent because a rescaling of the fundamental definition v = dx/dt leads
to V v′ = (L/T )dx′/dt′. Since this definition must be covariant (its form must remain unchanged by
the choice of units), one finds V = L/T .

Now suppose that a physical problem is specified by a set of quantities a1, . . . , ak, b1, . . . , bm,
where the a’s have independent dimensions and the b’s have dimensions dependent on the a’s. One
wishes to determine the functional dependence of some quantity 284 b on the given quantities according
to

b = f(a1, . . . , ak, b1, . . . , bm). (B.1)

By definition of the b’s, one must have [bi] = [a1]
pi . . . [ak]

ri for certain powers pi, . . . , ri; such a result
also holds for b by dropping the i subscripts. It is now natural to introduce the m dimensionless
parameters

Πi
.
=

bi
api

1 . . . a
ri
k

; (B.2)

these are unchanged by rescalings of the independent quantities. Then it can be shown that Eq. (B.1)
can be expressed as

Π = Φ(Π1, . . . ,Πm), (B.3)

284 Barenblatt (1996) called the determined quantity a rather than b. The present notation is more economical
because results that hold for the bi’s hold also for b if the subscript is dropped.
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where Φ is an undetermined function. The key result is that Φ depends on m rather than k + m
arguments; it does not depend on the k quantities with independent dimensions.

It must be emphasized that dimensionless is being used here in a more generalized sense than in
introductory discussions of systems of physical units. In the cgs system of measurement, the unit of
length is cm; if length is arbitrarily rescaled as above, then the unit of length becomes cm/L. Such
lengths, involving a physical unit of measurement, are frequently said to be dimensional. But suppose
one works with the variable x

.
= x/ρs, where ρs is some spatial distance also measured in cm. One

frequently calls x “dimensionless,” but it is dimensional in the present theory because one can still
perform the rescaling x = Lx′, so [x] = L. That is, the unit of length is the pure number L−1. Only if
a quantity is completely invariant under rescaling should it properly be called dimensionless. I shall
call the physicist’s “dimensionless” variables normalized.

To illustrate these considerations, consider the Hasegawa–Wakatani equations (52) in the constant-
k‖ approximation α̂ = α = const. The equations are already written in normalized variables, whose
dimensions are therefore pure numbers. Let us assume that the classical dissipation coefficients are
small and in the spirit of Kolmogorov analysis will not appear in the final formulas for macroscopic
quantities such as particle flux Γ. Then the complete set of quantities on which any physical quantity
can depend is {x, y, t, ϕ, n, α, κ}. To identify the quantities with independent dimensions, one demands
that the form of the equations remains invariant under the rescalings

x = Lxx
′, y = Lyy

′, t = T t′, ϕ = Pϕ′, n = Nn′, α = Aα′, κ = Kκ′. (B4a,b,c,d,e,f,g)

Invariance of the Laplacian in ω = ∇2ϕ requires Lx = Ly = L, and invariance of the ϕ − n term
requires P = N . The remaining constraints can readily be found to be

TP/L2 = 1, L2TA = 1, TA = 1, TK/L = 1. (B5a,b,c,d)

Since there are k = 4 (independent) constraints in the k + m = 5 unknowns {L, T, P, A,K}, there
is precisely m = 1 independent quantity. That can be chosen arbitrarily, but it is most efficient to
choose it to be one of the physical parameters {α, κ} rather than one of the independent variables;
it is conventional to choose α. (Note that the number of physical parameters is not necessarily equal
to the number of independent quantities.) Equations (B5b) and (B5c) require that L = 1 (i.e., the
spatial variables are truly dimensionless whereas the other normalized variables are dimensional),
whereupon one finds that

T = 1/A, K = A, P = N = A. (B6a,b,c)

Now consider the time-averaged particle flux Γ = δVE,x δn. That must ultimately depend on the
physical parameters: Γ = f(α, κ). Now [Γ] = [δVE,x][δn] = (L/T )N = A2. Therefore the dimensionless
flux is Π

.
= α−2Γ = f(α, (κ/α)α) = Φ(α,Π1) = Φ(Π1) (independent of the independent quantity α),

where Π1
.
= κ/α. Thus dimensional analysis proves that the HW flux must have the form

Γ = α2Φ(κ/α), (B.7)

where the function Φ is undetermined. One can readily check that the gyro-Bohm scaling (6) is
equivalent to Φ(Π) = Π2 (by Fick’s law, Γ contains one extra power of κ relative to D), but serious
statistical analysis is required in order to deduce the proper form of Φ. In fact, gyro-Bohm scaling
does not hold for HW dynamics at general α.
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As Connor and Taylor have emphasized (Connor and Taylor, 1977; Connor, 1988), further
approximation of the dynamics can provide further constraints on the final form of the result. For
example, consider the asymptotic limit α → 0. Then the α term can be neglected in Eq. (52b). [It
cannot be neglected in Eq. (52a) because it provides the only coupling between ϕ and n.] That removes
the covariance constraint (B5c) from consideration and implies that there are 5− 3 = 2 independent
quantities; those can conveniently be taken to be α and κ. The solutions to Eqs. (B5a), (B5b),
and (B5d) are

L = A−1/3K1/3, T = A−1/3K−2/3, P = N = A−1/3K4/3. (B8a,b,c)

Since [Γ] = (L/T )N = A−1/3K7/3, one must have α1/3κ−7/3Γ = f(α, κ) = C , where C (a specialization
of Φ) is a constant since both α and κ are independent. Therefore

Γ = Cα−1/3κ7/3. (B.9)

In this asymptotic limit only the constant C remains to be determined by statistical theory or
numerical simulation. Notice that the form (B.9) is consistent with Eq. (B.7) for Φ(Π) = Π7/3.

Frequently a dimensionless parameter, say, Πm is close to 0 or ∞. It is generally believed that
the Φ function of Eq. (B.3) has a finite limit as Πm → 0 or Πm →∞; however, that is by no means
always true. Let Eq. (B.3) be augmented to include an additional dimensionless parameter ε:

Π = Φ(Π1,Π2, . . . ,Πm; ε). (B.10)

It is assumed that at ε = 0 Φ has a finite limit as Πm → 0, so for small Πm Φ can be approximated
by Φ1(Π1,Π2, . . . ,Πm−1). In this case a small Πm disappears from consideration. However, for ε 6= 0
and Πm small the most general situation is that

Π = Παm
m Φ1

(
Π1

Πα1
m

, . . . ,
Πm−1

Π
αm−1
m

; ε

)
, (B.11)

where the α’s (called anomalous exponents or anomalous dimensions) are definite functions of ε. The
important result is that the anomalous dimensions cannot be determined from dimensional analysis.
They can, however, be calculated by using additional dynamical information about the system; as
discussed by Barenblatt, they frequently obey nonlinear eigenvalue conditions. The behavior (B.11) is
called incomplete similarity asymptotics or self-similarity of the second kind. Barenblatt emphasized
that such behavior is not pathological but rather normal and widespread, and he discussed a variety
of examples drawn from physical applications. In particular, the appearance of anomalous exponents
lies at the heart of renormalized field theory and critical phenomena; for further discussion and a
simple example, see Sec. 6.1 (p. 147).

The possibility of anomalous exponents resolves a fundamental paradox that arises in the
application of dimensional analysis to physical problems. Although in some limits the problem can
apparently be reduced unambiguously to the determination of a single dimensionless constant C [see,
for example, Eq. (B.9) for the HW small-α limit discussed above], the predicted scaling behavior is
not necessarily observed. The resolution is that C can be infinite. A familiar example is gyrokinetic
analysis [Sec. 2.3.1 (p. 28) and Appendix C.1 (p. 267)] based on spatially periodic boundary conditions.
Dimensional analysis leads one to predict gyro-Bohm scaling [Eq. (6)], yet both experimental (Perkins
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et al., 1993) and numerical (Nevins, 2000) observations sometimes display Bohm-like scaling [Eq. (5)].
Such scalings can emerge if the turbulent flux depends on the macroscopic box size 285 L; the small
quantity ε

.
= ρ/L (ρ being the gyroradius) is ignored in naive analyses.

C DERIVATIONS OF GYROKINETIC AND GYROFLUID

EQUATIONS

In this appendix I survey the derivations of the nonlinear gyrokinetic and gyrofluid equations
whose solutions form the focus of much of the modern research on magnetized plasma turbulence. For
gyrokinetics I concentrate on modern techniques utilizing Hamiltonian, Lie, and symplectic techniques.
The discussion is brief and incomplete, but many references to the literature are provided. Lie methods
are the formal implementations of nonresonant averaging procedures, which establishes a connection
to the statistical methods discussed in the body of the article [see the introductory discussion in
Sec. 1.5 (p. 20)]. For gyrofluids I discuss the difficulties of fluid closure from the perspective of general
statistical theory, then briefly describe some of the practical implementations of fluid closures based
on the gyrokinetic equation.

C.1 Gyrokinetics

The fundamental problem of describing turbulence in magnetized plasmas, whether analytically
or computationally, is the vast disparity between the very short timescale for gyration of a charged
particle around a magnetic field line and the much longer timescales characteristics of profile-gradient-
driven microinstabilities. For example, for kyρs . 1 one has ωci/ω∗ = ωci/[(kyρs)(cs/Ln)] & Ln/ρs; for
TFTR parameters this ratio was several hundred.

C.1.1 Adiabatic invariants and charged-particle motion

It was recognized very early that the problem of charged-particle motion in a magnetic field defines
a central problem of asymptotics (Kruskal, 1965), with the formal expansion parameter being ω−1

c .
Kruskal (1962) developed a general theory suitable for many systems whose lowest-order solutions
were periodic. Much early work oriented toward the adiabatic invariants of charged-particle motion
was summarized and unified by Northrop (1963b); for a shorter account, see Northrop (1963a). The
work of Hastie et al. (1967) should also be mentioned.

Kruskal’s work applied to very general dynamical systems. Frequently, however, the dynamics
are Hamiltonian; then special, more efficient techniques can be employed. Perturbation techniques
based on canonical transformations and mixed-variable generating functions (Goldstein, 1951) are
well known (Treve, 1978); however, the resulting algebra can be messy and cumbersome. Significant
qualitative advances in the mathematical technology were made in a series of seminal papers by

285 Nevins (2000) found such a dependence in simulations of ITG turbulence by numerically measuring slowly
decaying algebraic tails in the PDF of heat flux Γ. Note that although the P (Γ) based on jointly normal
variables [Eq. (414)] asymptotically contains the algebraic prefactor |Γ|−1/2, that is dominated by exponential
decay. Nevins’s observations, lacking such an exponential factor, therefore correspond to extremely non-
Gaussian statistics, the significance of which is not understood.
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Littlejohn, who argued for the use of noncanonical Hamiltonian mechanics and Lie perturbation
theory. Littlejohn (1979) pointed out that it is unnecessary to develop Hamiltonian perturbation
theory in canonical coordinates; it is merely required that the symplectic structure (Arnold, 1978,
Appendix 3) be maintained. However, he showed with the aid of a theorem of Darboux that the
theory could be brought to a semicanonical form in which the rapidly varying, periodic coordinate
(the gyro-angle, in this case) and its associated adiabatic invariant 286 µ were canonical to lowest
order; that expedited the application of perturbation theory. The Lie version of perturbation theory
that was actually employed was reviewed by Cary (1981); see also Lichtenberg and Lieberman (1992).

Dubin and Krommes (1982) used these methods to discuss (i) the problem of superadiabatic
invariance in guiding-center theory; and (ii) the nonlinear, stochastic interaction between the first and
second adiabatic invariants µ and J . They also remarked in mathematical detail on a feature that
would later turn out to be of great significance for the development of nonlinear gyrokinetic–Poisson
systems: the Hamiltonian equations for guiding centers, in coordinates for which µ is conserved, do
not contain the polarization drift; instead, the effect is buried in the change of coordinates from those
of the original laboratory (particle) frame.

The basic picture is summarized in Fig. C.1 (p. 269). Consider for simplicity the case of constant
B = Bb̂. At any spatial point, vectors can be resolved onto the right-handed, orthogonal coordinate
system (ê1, ê2, b̂), where the overall orientation of ê1 and ê2 is arbitrary; for constant B one may take
ê1 = x̂ and ê2 = ŷ. Also introduce the triad (â, b̂, ĉ), where the gyroradius vector is ρ = ρâ
(ρ

.
= v⊥/ωc) and the perpendicular vector velocity is v⊥ = v⊥ĉ. With θ being the gyro-angle

(increasing clockwise for a positively charged particle), one has

â = cos θ ê1 − sin θ ê2, ĉ = − sin θ ê1 − cos θ ê2; (C1a,b)

see Fig. C.1(a). This purely circular motion trivially conserves µ
.
= v2

⊥/2ωc.
Now add a constant electric field E in the−x̂ direction. The motion in the presence of the resulting

E×B drift is sketched in Fig. C.1(b). µ is no longer conserved, but a Galilean transformation to the
drifting frame shows that

µ
.
= |v⊥ − VE|2/2ωc (C.2)

is conserved. Locate the instantaneous gyrocenter by R(t). The gyro-angle θ in the drifting frame
differs from the angle θ, defined relative to R(0) ≡ R(0), by a first-order amount proportional to
ε
.
= VE/v⊥. Specifically, one has −v⊥ sin θ = (v⊥ − VE) · ê1. Upon noting that v⊥ = |v⊥ − VE| ≈

v⊥− ĉ ·VE , it is straightforward to find that θ = θ− (c/B)ĉ ·E/v⊥ +O(ε2). Similarly, it follows from
Eq. (C.2) that µ = µ− ρ(c/B)â ·E +O(ε2).

Now let E evolve slowly in time with a characteristic timescale much longer than a gyroperiod.
µ remains conserved through first order, so µ has first-order variation (as does θ). Upon differentiating
the instantaneous relation x = R+ρâ with respect to t, one finds after some straightforward algebra
that

dx⊥
dt

= v⊥ + VE +
1

ωc

d

dt

(
cE⊥
B

)
+O(ε3), (C.3)

286 The overline notation µ, although not common in general physics writing, is used here to be compatible
with my subsequent discussion of changes of variable and the development of µ through all orders in slow
variations.
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the last explicit term of which is the polarization drift. Now the constraint of adiabatic µ conservation
can be systematically enforced through all orders, leading to an asymptotic series µ(ε) and similar
series for the gyrocenter R and gyro-angle θ. One sees that the constraint of µ conservation requires
that the polarization drift does not appear in the formula for R but rather describes the second-order
discrepancy between the gyrocenter and true particle position. If E increases secularly, x deviates
secularly from R.

−θ
âρ

v ĉ

ê2

ê1

(a)

−θ−

v ∆t(     )

R (   t
)∆

∆tEV

R(0)

−θ

E

(b)

Fig. C.1. Geometry of a gyrospiraling particle in a constant magnetic field B = Bb̂. (a) Pure circular motion
(E = 0). (b) Motion including E×B drift, and the gyrocenter position after a time ∆t such that ωc∆t� 1.

The Darboux methods are straightforward though somewhat inelegant. Littlejohn (1981) showed
that the calculations could be further compacted by performing perturbation calculations directly on
differential one-forms. Those methods will be further discussed in Sec. C.1.4 (p. 271) below.

C.1.2 Early derivations of the gyrokinetic equation

By gyrokinetics, one means a low-frequency (ω � ωc) kinetic description in which gyration
has been systematically averaged away. Early derivations of linear GK equations (GKE’s) were by
Rutherford and Frieman (1968) and Taylor and Hastie (1968). The calculations exploited the smallness
of one or more of the following parameters: εω, the ratio of the characteristic frequency ω to the
gyrofrequency (εω

.
= ω/ωci); εx, the ratio of the gyroradius ρ to the scale length LB ∼ R of variation

of the background magnetic field (εx
.
= ρ/LB); and εδ, a measure of the size of the fluctuations (for

example, δf/f , eδϕ/Te, or δB/B). Linear GKE’s in general geometry were considered by Antonsen
and Lane (1980) and Catto et al. (1981).

The first derivation of a nonlinear GKE was given by Frieman and Chen (1982). Those authors
used the conventional and well-developed approach of breaking the Vlasov PDF into its mean and
fluctuating pieces, then applying multiple-scale, secular perturbation theory to each piece. They
employed an optimal ordering in which ε ∼ εω ∼ εx ∼ εδ and k⊥ρ = O(1); the last ordering is
the trademark of a GK (as opposed to a drift-kinetic) theory. While suitable for analytical work, the
resulting equations were not in an obvious characteristic form and did not exploit the Hamiltonian
nature of the dynamics.

Lee (1983) considered the problem of developing a suitable particle-simulation approach to GKE’s.
In that method the characteristic particle trajectories are directly advanced in time, the charge density
is calculated by an appropriately coarse-grained sum over the particles, then a Poisson equation is
solved to find the fields. Because the characteristics are properties of the full kinetic equation not split
into mean and fluctuating parts, Lee found the equations of Frieman and Chen (1982) unsuitable,
and he attempted an alternate “recursive” derivation [for more discussion, see Appendix A of Dubin
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and Krommes (1982)]. A vital feature of the result (already present mathematically, if not fully
emphasized, in earlier derivations of GKE’s) was the appearance of the ion polarization-drift effect
not as a velocity in the characteristic equations of motion but rather in the form of a polarization
charge density in the GK Poisson equation. This could have been anticipated from the work of Dubin
and Krommes (1982), for the GK Poisson equation is essentially Poisson’s original equation (couched
in particle coordinates) restated in the gyrokinetic variables. If the true, adiabatically conserved µ
is taken to be one of those variables, then the polarization drift cannot appear in the characteristic
equations of motion; the effect must appear as a polarization contribution to the charge density.

The simplest heuristic derivation of a GK Poisson equation is as follows. For simplicity,
consider low-frequency fluctuations (ω � ωci), for which the quasineutrality condition is appropriate
(kλD � 1). In particle coordinates Poisson’s equation is therefore ne = ni. In gyrokinetics, however,
the description is instead developed in terms of gyrocenter PDF’s Fs, hence gyrocenter densities nG

s .
For electrons ne ≈ nG

e since the electron polarization is negligible (k⊥ρe → 0). For ions, however, one
has ni = nG

i + npol
i , where the ion polarization density npol

i can be calculated from the continuity
equation ∂tn

pol
i + ∇⊥ · (V pol

i ni) = 0, or through linear order, ∂t(δn
pol
i /ni) = −∇⊥ · V pol

i . The
polarization drift velocity V pol (Chandrasekhar, 1960) is defined by Eq. (30), and its divergence
is readily calculated. Because time derivatives then appear on both the left- and right-hand sides of
the polarization density equation, it can readily be integrated in time; upon normalizing ϕ to Te/e,
one finds δnpol

i /ni = ρ2
s∇2

⊥δϕ. A simple GK Poisson equation is therefore 287

ρ2
s∇2

⊥ϕ = δnG
i /ni − δne/ne. (C.4)

In essence, Lee’s derivation of nonlinear gyrokinetics was successful, and he was able to perform
pioneering GK particle simulations of his “full-F ” gyrokinetic equation. Nevertheless, certain technical
difficulties were also apparent in his approach. In particular, as in the approach of Frieman and Chen
(1982), the Hamiltonian nature of the dynamics was obscured or lost, so certain conservation laws
were difficult to discern and treat accurately.

C.1.3 Hamiltonian formulation of gyrokinetics

Dubin et al. (1983) argued that it was important and even technically simpler in the long run to
retain the Hamiltonian structure of the equations. For the simplest example of constant magnetic field
in slab geometry, they employed the then-current Darboux method of Littlejohn (1979) to find the
appropriate GK change of variables, and they showed how rigorous transformation theory led naturally
to a full-F gyrokinetic equation directly from the Vlasov equation. The same transformation theory
led to natural FLR generalizations of the GK Poisson equation. Dubin et al. also showed how various
simplifications of the resulting system led to important familiar fluid equations, including the HM
equation (48), and the weak-turbulence wave kinetic equation of Sagdeev and Galeev (1969).

Hamiltonian methods have been used in virtually all subsequent GK calculations. Immediate
successors to Dubin et al. included Hagan and Frieman (1985) and Yang and Choi (1985). Following
the work of Littlejohn (1982), Cary and Littlejohn (1983) published a definitive paper on noncanonical
perturbation theory using differential forms that appeared approximately at the same time as the
work of Dubin et al. (1983). It took about five years for the implications of that work to be properly

287 For k‖ = 0 this relation must be modified to take account of the highly nonadiabatic electron response;
see Sec. 2.4.4 (p. 38).
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appreciated, but then development was rapid. Hahm et al. (1988), Hahm (1988), and Brizard (1989)
used the one-form technique to derive GKE’s for general geometries and magnetic fluctuations. Hahm
(1996) revisited the derivation of the GKE for modified orderings more appropriate to regimes of
enhanced confinement observed in modern tokamaks. Much information about the modern tools and
advances, not all of which are described here, can be found in the dissertations by Brizard (1990) and
Qin (1998).

C.1.4 Differential geometry and n-forms

Here I briefly describe aspects of the method of Cary and Littlejohn (1983). A convenient
starting point is the variational approach to classical mechanics (Lanczos, 1949). A well-known
action variational principle that leads to Hamilton’s equations of motion (upon assuming that p
and q are independent) is δ

∫Ldt = 0, where L is the Lagrangian: L .
=
∑N
i=1 pi · vi − H(p, q),

H =
∑N
i=1

1
2
miv

2
i + eϕ(q, t), and v = m−1(p− eA/c) (A being the vector potential). The variational

principle can be written most symmetrically as δ
∫
γ = 0, where γ ≡ ∑N

i=1 pi · dqi − H dt is the
Poincaré–Cartan one-form.

A more general representation is to arrange the phase-space coordinates according to

zi = {q1, . . . , qN ,p1, . . . ,pN} (i = 1, . . . , 2Nd), (C.5)

then to introduce the extended phase-space coordinates zµ = {t, zi}. [It is conventional to use Greek
indices in the extended (2Nd+1)-D phase space and Roman ones in the ordinary 2Nd-D phase space.]
Correspondingly, one introduces

γµ = {−H,p1, . . . ,pN , 0, . . . , 0}. (C.6)

Then the Poincaré–Cartan one-form is

γ = γµdz
µ. (C.7)

The (covariant) coefficients γµ are the components of the abstract differential one-form γ. For a
beautiful discussion of the geometric significance of differential forms, see Misner et al. (1973).

In the form (C.7) there is no longer any reference to the particular representations (C.5) and (C.6).
Therefore if one treats γµ as a covariant vector, then γ can be expressed in any set of coordinates
(including noncanonical ones). Thus γ → γ = γµdz

µ, where γµ = (∂zν/∂zµ) γν . The freedom to deal
with virtually any variables at all is a great technical advantage.

One important example for plasma-physics applications involves the distinction between the
canonical coordinate p and the noncanonical coordinate v in the presence of a magnetic field. In
the canonical coordinates, γ = p ·dq− [(p− eA/c)2/2m+ eϕ]dt. Consider instead the transformation
(x,p) → (x,v), defined by x = x and p = m[v + eA(x)/c]. Then the change of coordinates is
explicitly (in 1D for simplicity)

γx =(∂x/∂x) γx + (∂p/∂x) γp = γx = p = m[v + eA(v)/c], (C8a,b,c,d)

γv =(∂x/∂v) γx + (∂p/∂v) γp = γp = 0, (C8e,f,g)

and the one-form in the new coordinates is

γ = m[v + eA(x)/c] · dx− [ 1
2
mv2 + eϕ(x)]dt. (C.9)
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(Note that in this example the time variable was not transformed; that is typical in practice.)
If one parametrizes the paths in the action principle by a parameter λ (typically the time t), then

one is led with Eq. (C.7) to the general equations of motion in the form

ωµν
dzν

dλ
= 0, ωµν

.
=
∂γν
∂zµ
− ∂γµ
∂zν

; (C10a,b)

ω is called the fundamental two-form. In a canonical coordinate system,

ω =

 0 ∂H/∂qi ∂H/∂pi

−∂H/∂qi 0 −I
−∂H/∂pi I 0

 . (C.11)

The antisymmetric, covariant tensor ω is the exterior derivative 288 of the one-form γ. Equation (C10a)
states that the flow “velocity” is the null eigenvector of ω.

The phase-space components of ωµν define a submatrix ω̂ij that is called the Lagrange tensor.
Equations (C10a) can be written as

ω̂ij
dzj

dz0
= −ωi0 =

∂γi
∂z0
− ∂γ0

∂zi
. (C.12)

It is generally convenient to leave the time untransformed: z0 = t. Then γ0 = −H and

ω̂ij
dzj

dt
=
∂H

∂zi
+
∂γi
∂t
. (C.13)

Upon introducing the Poisson tensor J as the (contravariant) inverse of ω̂, one finds the explicit
equations of motion to be

dzi

dz0
= J ij

(
∂γj
∂z0
− ∂γ0

∂zj

)
, (C.14)

or when time is not transformed,

dzi

dt
= J ij

(
∂H

∂zj
+
∂γj
∂t

)
. (C.15)

In a canonical coordinate system one has ∂γj/∂t = 0 and J =
(

0 I
−I 0

)
, giving rise to Hamilton’s

equations in the conventional form.
Note that the equations of motion are unaffected by the presence of a perfect derivative in

the action principle: δ
∫
(γ + dS) = 0. The transformation γµ → γµ + ∂S/∂zµ is called a gauge

transformation; S is called a gauge scalar. Gauge scalars can be used to great advantage in simplifying
transformed equations of motion, as we will see.

It is well known that symmetries of the Lagrangian are related to conservation properties. In
the present context, Noether’s theorem states (Cary and Littlejohn, 1983) that if all of the γµ are

288 For discussion of exterior derivatives, see Cary and Littlejohn (1983, Appendix A), Misner et al. (1973),
or Arnold (1978).
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independent of some particular coordinate zα, then γα is conserved. An important use of Noether’s
theorem is in determining the adiabatic invariant µ, the momentum variable canonically conjugate
to the gyrophase φ. A familiar result is that µ ≈ 1

2
mv2

⊥/ωc to lowest order in the gyroradius ρ. To
find its form valid through all orders in ρ, one can search for a series of variable transformations
(not necessarily canonical) such that γ = γ(ν)dz

(ν) + µ dφ (the parentheses around ν indicate a sum

over all variables except φ). If one can arrange for ∂γν/∂φ = 0, then µ will be conserved. Note that
µ = µ(µ, φ) and φ = φ(µ, φ) (dependences on other variables being suppressed).

C.1.5 Lie perturbation theory

“After all, what is a Lie [transform]? ’Tis but the truth in masquerade” — Lord Byron, Don

Juan (1823), quoted by Kaufman (1978).

In traditional canonical perturbation theory one effects a transformation to new (barred) variables
by a generating function such as S(p, q) ≡ F2(p, q), viz., q = ∂S/∂p, p = ∂S/∂q. The technical
problem with this approach is that the transformation appears in mixed form, so one must untangle
the equations to get p = p(p, q) and q = p(p, q). When one works to high order in perturbation
theory, this untangling becomes messy and opaque.

In the Lie approach the transformation is explicitly determined from the beginning; i.e., one has
zµ = Tzµ. Here the operator T is constructed from z and ∂z, so it produces a function z = z(z). To
be more explicit about the distinction between functions and values of functions [see, for example,
Appendix B of Cary and Littlejohn (1983)], one sometimes introduces the forward and backward
transformation functions according to zµ = Zµ

f (z) and zµ = Zµ
b (z). In this notation the statement

z = Zb(Zf (z)) is equivalent to the operator identity TT−1 = 1.
In general, T depends on a parameter ε. The trick to developing Lie perturbation theory is to

consider flows that “evolve” in ε instead of in the time variable t. Thus consider transformations
of the form ∂εz

µ(z, ε) = gµ(z) (note that g is assumed to be independent of ε). More explicitly,
∂εZ

µ
f (z, ε) = gµ(Zf (z, ε)). We will see shortly that the corresponding transformation operator is

T = exp(εLg), (C.16)

where Lgψ(z)
.
= gν(z)∂ψ/∂zν. Here g is called the generating function of the flow. In perturbation

theory the strategy is to determine a set of generating functions gi and a corresponding compound
transformation

T = . . . exp(ε3L3) exp(ε2L2) exp(εL1), (C.17)

where Ln ≡ Lgn, such that the representation of the dynamics is simplified in some appropriate way
through some desired order in ε.

The proof of Eq. (C.16) exploits the transformation properties of a scalar field s(z, ε). By definition,
the value of such a scalar is unchanged under a coordinate transformation. However, the functional
form is changed. Thus one writes

s(z, ε) = s(z, ε). (C.18)

Now s(z, ε) = s(Zf (z, ε), ε) ≡ Ts(z, ε). Upon differentiating the last two members of this equivalence,
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one finds

∂s(z,ε)

∂ε
+ g(z)

∂s(z,ε)

∂z
=
∂T

∂ε
s(z, ε) + T

∂s(z,ε)

∂ε
, (C.19)

where in all cases z is evaluated at Zf (z, ε). Because T∂εs(z,ε) = ∂εs(z, ε), the first and last terms of
Eq. (C.19) cancel. Furthermore, upon replacing functions of z by T acting on those same functions,
one obtains TLgs(z, ε) = ∂εTs(z, ε). Because each term now depends on the variable z, this is the
operator equation ∂εT = TLg, whose solution is just Eq. (C.16).

Since Eq. (C.18) can be written as Ts(z) = s(z), one finds that the functional form of a scalar
field changes under the variable transformation according to

s(z) = T−1s(z). (C.20)

The one-form γ is one such field, so

γ = T−1γ + dS (C.21)

(in any coordinate system). It can be shown that the action of Lg on γ is (Lgγ)µ = gσωσµ. Upon
writing out Eq. (C.21) in perturbation theory with the aid of T−1 = exp(−εL1) exp(−εL2) . . . , one
obtains through second order

γ0 = γ0 + dS0, (C22a)

γ1 = γ1 − L1γ0 + dS1, (C22b)

γ2 = γ2 − L1γ1 + (1
2
L2

1 − L2)γ0 + dS2. (C22c)

The gi’s and Si’s can be chosen to satisfy various desiderata for the transformation. In particular, if
the γν(z) are arranged to be independent of φ, then the true magnetic moment µ will be conserved.
A good, relatively straightforward example is the electrostatic case including magnetic drifts (Hahm,
1988).

C.1.6 The gyrokinetic and Poisson system of equations

An appropriate GK transformation begins with a preparatory transformation from the Cartesian
particle coordinates (x,v) to lowest-order gyrocenter coordinates z

.
= {R, µ, φ, v‖}, with x =

R + ρ(µ, φ). The potentials in Eq. (C.9) are then expanded perturbatively, and Eqs. (C22c) are used
to determine z = Tz such that µ is conserved. With a coordinate transformation in hand, one can
derive a kinetic equation for the PDF F of gyrocenters. Let the Vlasov particle PDF f be expressed
in the various sets of variables as f(x,v) = f ′(z) = f(z). According to Eq. (C.20), f ′(z) = Tf (z).
Because the form of the Liouville equation is coordinate independent, one has

∂f(z)

∂t
+
∑
i

∂

∂zi

(
dzi

dt
f

)
= 0. (C.23)

The gyrocenter PDF is defined to be the gyro-angle average of f at fixed gyrocenter R:

F (z)
.
=

1

2π

∫ 2π

0
dφ f(z). (C.24)

274



Because the γµ’s were constructed to be independent of φ, the velocities determined by Eq. (C.15)
are similarly independent, so Eq. (C.23) can trivially be averaged over φ, giving rise to the GKE

∂F(z)

∂t
+
∑
i6=φ,µ

∂

∂zi

(
dzi

dt
F

)
= 0. (C.25)

Note that Liouville’s theorem is preserved by the coordinate transformation, so the generalized
velocities ż can be (simultaneously) moved outside of the gradients if desired.

To complete the description, one must relate the potentials appearing implicitly in the velocities
to F ; i.e., in the electrostatic approximation (considered here for simplicity 289) one must calculate
the charge density, then solve Poisson’s equation. That equation is conventionally couched in particle
coordinates x whereas gyrokinetics is best expressed in the barred coordinates z, so one must be
careful. Now

n(x) =
∫

dx′ dv′ δ(x− x′)f(x′,v′) =
∫
J dz′ δ(x− x′)f ′(z′) (C26a,b)

=
∫
J dz′ δ(x− x′)f ′(z′) =

∫
J dz′ δ(x− x′)T (z′)f(z′). (C26c,d)

In Eq. (C26a) a spatial delta function was inserted in order that one could integrate over the full
phase space (x′,v′). In Eq. (C26b) one changed variables to z′, so the Jacobian J between (x′,v′)
and z′ appeared. In Eq. (C26c) one renamed the dummy integration variable z′ to z′ in order that
in Eq. (C26d) one could according to Eq. (C.20) introduce the transformation operator T relating f ′

to f . Here x
.
= R + ρ(µ, ϕ). To this point the analysis is exact, as the density is still expressed

in terms of the particle PDF. The GK approximation is now to ignore high-frequency dynamics by
writing f(z) = F (z) + δf(z), then neglecting δf . This closure approximation is analogous to the
neglect of the 〈δE δf〉 term in deriving the mean-field Vlasov equation from the exact Klimontovich
equation; it loses information about linear normal modes for ω > ωci, and it neglects quadratic beats
of high-frequency noise that could in principle affect the low-frequency gyrocenter motion. Let us
further write T (z) = 1 + δT (z). Then the GK Poisson equation is ∇2φ = −4π(qini − qene), where

n(x) = nG(x) + npol(x), (C.27)

nG(x) is the gyrocenter density, and

npol(x) =
∫
J dz′ δ(x− x′)δT (z′)F (z′) (C.28)

provides the formal definition of the polarization density. Note that although n(x) is nominally
determined at the particle position x, Eq. (C.25) requires the potential evaluated at the gyrocenter
position R. It is a source of frequent confusion that Eq. (C.25) is almost always written without bars.

289 Finite-β effects were considered by Hahm et al. (1988); see also Qin (1998). One interesting issue of both
conceptual and practical importance is whether to use the canonical momentum pz or the velocity vz as a
fundamental coordinate. Hahm et al. (1988) and Krommes and Kim (1988) argued in favor of pz because of
certain covariance properties of low-β electromagnetics. That appears to be the better choice for numerical
implementations as well.
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When npol is evaluated for a space-independent Maxwellian through linear order in the gyrocenter
transformation, it reduces to

npol
k /n ≈ −(kρs)

2ϕk, (kρs)
2 .

= τ [1− Γ(k)], (C29a,b)

where τ
.
= Te/Ti and Γ(k)

.
= I0(b)e

−b (b
.
= k2

⊥ρ
2
i ); this is the generalization of Eq. (C.4) to scales of

order ρs. The lowest-order GK Poisson equation can then be written as

λ2
De(∇2ϕ+ ε̂⊥∇2

⊥ϕ) = −(nG
i /ni − ne/ne), (C.30)

where the dielectric constant (actually an operator in x space) of the gyrokinetic vacuum [a phrase
introduced by Krommes (1993c)] is

ε⊥(k)
.
= (k

2
ρ2

s )/(k
2
⊥λ

2
De)

k⊥→0→ ρ2
s/λ

2
De = ω2

pi/ω
2
ci. (C.31)

Extended discussion of ε̂⊥ and other related dielectric functions was given by Krommes (1993c). In
practice the lowest-order equation is used in both analytical and numerical work. 290

C.1.7 Modern simulations

A difficulty of particle simulations that work with the complete (“full”) particle distribution is
that most of the particles are merely used to resolve the background PDF. Works by Dimits and
Lee (1993) and Kotschenreuther (1991) on so-called low-noise δf methods (simulations of just the
fluctuating part of the PDF) culminated in the fully nonlinear particle-weighting scheme of Parker
and Lee (1993). Additional interpretation and generalization of that method were given by Hu and
Krommes (1994), who also made analytical calculations of the reduced noise level in such schemes,
and by Krommes (1999b). In the original applications the background PDF was fixed in time; recently,
however, Brunner et al. (1999) have shown how to implement the scheme with a background evolving
on the transport timescale.

Even in thermal equilibrium, the statistical properties of gyrokinetic plasmas are interesting and
subtle. Studies of the GK FDT were done by Krommes et al. (1986) for electrostatics and by Krommes
(1993a,c) for low-β electromagnetics; the latter work was summarized by Krommes (1993d). The
results have been used to partially test GK simulation codes (Lee, 2000).

The present discussion summarizes some of the key features of gyrokinetics related to averaging
procedures and statistics. A rather orthogonal review oriented toward the present state of the art
with regard to computational algorithms and physics results is by Lee (2000).

C.2 Gyrofluids

Gyrokinetic simulations are conceptually direct; in principle they contain all physics appropriate to
low-frequency fluctuations in magnetized plasmas, including both linear and nonlinear kinetic effects.

290 The WKE of Sagdeev and Galeev (1969) follows (Dubin et al., 1983) from Eqs. (C.25) and (C.30). One can
note an interesting inconsistency: According to the discussion of Sec. 4.2.6 (p. 103) and Appendix G.3 (p. 291),
the WKE contains contributions up to third order in the potential. In principle, therefore, second- and third-
order contributions to npol should be retained. It is believed that those corrections do not significantly affect
the physical content of the final result, but they have not been worked out in detail.
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However, they employ a 5D phase space (three positions, µ, and v‖). There is a powerful motivation
to consider fluid descriptions of low-frequency plasma turbulence.

C.2.1 The fluid closure problem

Velocity moments of the Vlasov or GK equation lead to a coupled moment hierarchy analogous to
the BBGKY hierarchy of many-body kinetic theory. The analogy to the statistical closure problem for
passive advection was presented in Sec. 2.4.1 (p. 33). There are subtleties with that analogy, however,
that must be discussed.

To begin, it is useful to have an efficient procedure for deriving the fluid moment hierarchy. The
time- and space-varying density is defined by n(x, t) = n

∫
dv f(x,v, t). To write this as as average of

a known PDF, write f = χF0, where F0 is presumed to be a known function—either the Maxwellian,
say, or the steady-state solution to a statistically averaged kinetic equation. It is assumed that F0 is
normalized,

∫
dv F0 = 1, so F0 can play the role of a PDF for the random variable v. Thus n = 〈nχ〉.

It is conventional to normalize higher velocity moments to n. For example, the fluid velocity u
is defined by nu =

∫
dv nvf , or u = 〈vχ〉/〈χ〉. If an equation for ∂t(nu) is derived by taking the

v moment of the kinetic equation, the equation for ∂tu itself must be derived by subtracting the
lower-order equation for ∂tn. This is, of course, the usual behavior of a moment-based hierarchy; the
subtraction process becomes cumbersome at higher order. Fortunately, it can be circumvented by a
cumulant representation. A generating function for velocity cumulants is

N (λ) = ln[〈χeλ·v〉/〈eλ·v〉] ≡ [[1]]λ; (C.32)

at λ = 0 one has N = ln(n/n). Analogously to Eqs. (263), define

C1 ≡ [[v1]] = ∂N (λ)/∂λ1, C12...n ≡ [[v1v2 . . . vn]] = ∂C12...n−1/∂λn, (C33a,b)

where the subscripts denote Cartesian indices. Explicitly,

[[v]] =
〈vχeλ·v〉
〈χeλ·v〉 −

〈veλ·v〉
〈eλ·v〉

λ=0→ u− u0 ≡ δu. (C34a,b)

Similarly, in 1D one has [[ 1
2
mv2]] = δT , the fluctuation in temperature away from the background.

For definiteness, consider the GKE in the absence of FLR effects and magnetic drifts:

∂tF + v‖∂zF + VE ·∇F + E‖∂‖F = 0. (C.35)

To derive an equation for N , multiply Eq. (C.35) by eλ·v and integrate over v. One finds

DN
Dt

= −∂u
∂z
− D lnn0

Dt
+

q

m
E‖λ‖, (C.36)

where D/Dt
.
= ∂t + u ∂z + VE ·∇ and u ≡ u‖ = u0 + [[v‖]]. Partial derivatives of Eq. (C.36) with

respect to λ directly generate the appropriate velocity cumulant equations. (One must remember the
u dependence of D/Dt.) For example, with T = m∂u/∂λ‖ one finds

Dδu

Dt
=

q

m
E‖ −

(
T

m

)
∂N
∂z
− ∂

∂z

(
T

m

)
− u∂u0

∂z
− T

m

∂

∂z
lnn0, (C.37)
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which at λ = 0, where the last term vanishes, can be seen to be a representation of the fluctuating
momentum equation. [Note that the right-hand term u ∂zu0 combines with the left-hand term u ∂xδu
to give the proper advective term u ∂zu, and that T∂z lnn+ ∂zT = n−1∂x(nT ).] Of course, T remains
undetermined; that is the fluid closure problem.

Upon noting that the undetermined cumulants always enter in combination with ∂z, it is clear
that truncations of the velocity cumulant hierarchy at any order generates successively more refined
nonresonant thermal corrections; the expansion assumes the fluid limit ω/k‖vt � 1. As Oberman
(1960) pointed out, Landau damping is lost in this procedure because that resonant effect is
asymptotically beyond all orders in the small parameter ε

.
= k‖vt/ω. Retaining the dissipative effects

of Landau damping is the principal goal of a plasma fluid approximation, hence the nomenclature
Landau-fluid closure.

C.2.2 Landau-fluid closures

“Our fluid models of kinetic resonances should improve the accuracy of future nonlinear
calculations of ITG and other microinstability turbulence.” — Hammett and Perkins (1990).

If the dynamics are primarily fluid (ε� 1), as is true for ordinary drift waves (but not ITG modes
near the linear stability threshold), a reasonable procedure might be to calculate the undetermined
velocity cumulants from linear kinetic theory, which is well understood. That is essentially the method
underlying the generalized Chapman–Enskog procedure of Chang and Callen (1992a). However, such
a calculation best proceeds in the frequency domain, and it leads to ω-dependent closure coefficients.
Such equations are nonlocal in the time domain and are not suitable for numerical integration.

One possibility would be to evaluate the closure coefficients at the linear eigenfrequency Ωlin.
However, that may be difficult to determine in general geometry, and Ωlin may evolve with time or
may be shifted by nonlinear effects. Of course, a sharp frequency is not even defined nonlinearly.

Instead, Hammett and Perkins (1990) suggested that the form of the fluid equations should be
retained in terms of frequency-independent closure coefficients whose values are determined in such
a way that linear theory is well reproduced. When more than one closure coefficient is involved,
their values are not uniquely determined. Discussions of the methods used in practice were given
by Hammett et al. (1992) and Hammett et al. (1993). Further remarks were made by Smith (1997).
A closely related closure procedure was discussed by Bendib and Bendib (1999), who employed a
projection-operator technique.

The Hammett–Perkins method makes a reasonable approximation to the linear drive and damping,
and furthermore retains the dominant E ×B nonlinearity in the form of the fluid equations that are
integrated nonlinearly. It is therefore expected that saturation processes involving fluid mode coupling
are well represented, and this appears to be born out in practice. For some comparisons between GK
and GF simulations, see Parker et al. (1994).

Unfortunately, although linear theory is modeled accurately, there is no guarantee that nonlinear
processes involving wave–wave–particle interactions are described correctly. As a special case, Mattor
(1992) compared the kinetic and Landau-fluid descriptions of Compton scattering. He concluded that
the Landau-fluid approximation adequately represented Compton scattering for ordinary drift waves
but not for deeply resonant ITG modes near threshold. This may point to a significant practical
difficulty in bringing kinetic and fluid simulations into precise agreement. For recent work on this
difficult problem, see Mattor and Parker (1997) and Mattor (1998, 1999).
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C.2.3 Formal theory of fluid closure

If only the linear streaming term is retained in Eq. (C.35), the Fourier-transformed equation
∂tF + ik‖v‖F = 0 is identical to the stochastic oscillator equation (74) at infinite K. A formal
attempt at closure might begin with the DIA. With n(t) = R(t)n0, that approximation is
∂τR(τ ) + k2

‖v
2
t

∫ t
0dτ R(τ )R(t − τ ) = δ(τ ). The phase-mixing decay of R on the timescale (k‖vt)−1

describes Landau damping in this context. As described in Sec. 3.3.1 (p. 54), the correct result,
R(τ ) = exp(−1

2
k2
‖v

2
t τ

2), is reasonably well reproduced by the DIA. Note that the almost-Markovian
system

∂τR + ηnl(τ )R(τ ) = δ(τ ), ηnl(τ )
.
= k2

‖v
2
t θ(τ ), ∂τθ = 1 (C38a,b,c)

precisely reproduces the correct result. A Hammett–Perkins-type closure that produces the correct
ω = 0 response results by taking ηnl = (2/π)1/2k‖vt (of course, the predicted exponential form of the
decay in τ is not correct). Similar closures could be made by truncating at higher order.

Unfortunately, in the presence of nonlinear effects the analogy to the passive-advection problem
partly breaks down. The difficulty is that VE depends on the potential ϕ, which by Poisson’s
equation is proportional to

∫
dv nF (represented as 〈nχ〉 in the present formalism). That mean

field responds under perturbations; the nonlinear problem includes self-consistent response. This
significantly complicates formal attempts at systematic closure, which are in substantially preliminary
stages of development.

D STOCHASTICITY CRITERIA

Here I derive the Chirikov criterion for stochasticity of the 1D electrostatic field assumed in
the passive quasilinear theory of Sec. 4.1.2 (p. 91), then justify the usual continuum wave-number
representation of the quasilinear diffusion coefficient. Finally, I discuss spatial trapping and the
stochasticity criterion for E ×B motion.

D.1 Stochasticity criterion for a one-dimensional electrostatic wave field

For definiteness and simplicity, consider test-particle motion in the one-dimensional wave field
E(x, t) = 1

2

∑
k Ek exp[i(kx − Ωkt)]. The complex wave amplitudes Ek are assumed to be constant

in time. One has the reality conditions E∗k = E−k and Ω−k = −Ωk. Assume that the modes are
quantized in a box of side L, so the wave-number spacing is δk = 2π/L and the wave numbers are
integer multiples of δk: k = n δk. Also assume there are N (positive) k’s in the spectrum, and define
the spectral width ∆k

.
= N δk.

Let us write Ek = |Ek|eiβk, where the β’s are given, fixed phases. [In studies of wave–wave coupling
Sec. 4.2, p. 98, one allows the wave phases to be random. Here, however, one is concerned only with
particle stochasticity.] Then the equations of motion are

ẋ = v, v̇ =
1

2

(
q

m

)∑
k

|Ek|ei(kx−Ωkt+βk). (D1a,b)

There are resonances where the phase varies slowly: kẋ− Ωk = 0, or v = Ωk/k
.
= vph. If one assumes
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that δk/k� 1, the spacing in velocity between adjacent resonances is

δv =
(

Ωk

k

)∣∣∣∣
k+δk
−
(

Ωk

k

)∣∣∣∣
k
≈ δk ∂

∂k

(
Ωk

k

)
, (D2a,b)

or

|δv| = ∆vgr(δk/k), ∆vgr
.
= |vgr − vph|. (D3a,b)

The stochasticity criterion is found (Zaslavskǐı and Chirikov, 1972; Lichtenberg and Lieberman,
1992) by determining the width of just one resonance, then comparing that to the spacing between
resonances. The Hamiltonian for one resonance (including its complex conjugate) is Hk = p2/2m +
e|ϕk| cos(kx − Ωkt + βk), which in the wave frame xw

.
= x − (Ωk/k)t is the well-known pendulum

Hamiltonian. Particles with energiesH ≤ e|ϕk| are trapped; the island or trapping width is ∆vk = 4vtr,
where the trapping velocity vtr and associated trapping frequency ωtr are

vtr
.
= (e|ϕk|/m)1/2, ωtr

.
= kvtr. (D4a,b)

Then the Chirikov stochasticity parameter is

S
.
= ∆vk/δv = (4/π)(ωtrτ

lin
ac )N, (D5a,b)

where Eq. (152) was used. Let us also introduce the recurrence time τr
.
= 2π/(δk∆vgr) = L/∆vgr,

which is the time it takes for the particle to sense the periodicity of the wave packet (which is periodic
in space with period L). Note that τr/τac = 2N � 1. Then the Chirikov criterion for stochasticity,
S & 1, can very simply be stated as ωtrτr & 1. This criterion is a lower limit on the wave amplitudes;
it is generally very easy to satisfy because δk is small.

D.2 Justification of the continuum approximation

The envelope decay due to the nonlinear orbit diffusion (sometimes called resonance broadening)
smooths the behavior of the correlation function. Due to the discreteness of k = n δk, the linear
phase changes by approximately the first-order variation of kv − Ωk, namely, (vph − vgr)δk, when
k is incremented by δk in the wave-number sum. If the nonlinear frequency νd

.
= τ−1

d [formula (159)
evaluated at a typical wave number k] is greater than this phase change, then the discreteness is not
really seen and one will get essentially the same answer by integrating rather than summing over k.
Thus the continuum limit is justified if |vph− vgr|δk < νd. Upon cubing this inequality and using the
formula for τ lin

ac , one gets

(1/Nτ lin
ac )3 < k2Dv. (D.6)

But one has [Eq. (151)]

Dv = (q/m)2Eτ lin
ac , (D.7)

where E is the total fluctuation intensity. If one approximates E = 〈δE2〉 ≈ N〈δE2
k〉, where δEk is

the strength of one harmonic in the spectrum, then one can rewrite Dv in terms of the trapping
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frequency ωtr for a typical harmonic, ωtr = (ek δEk/m)1/2. With the aid of the last two results,
Eq. (D.7) can be written as Dv = (Nω4

tr/k
2)τ lin

ac . Equation (D.6) then becomes 1 < N4τ lin
ac

4ω4
tr = S4,

where one used the result (D5b). Upon taking the fourth root of of this inequality, one finds that the
continuum limit is justified when S & 1. This inequality is just the Chirikov criterion, so there is a
pleasing consistency: The presence of stochasticity (manifested in the nonlinear terms) is just enough
to justify the continuum limit. The situation is illustrated in Fig. 12 (p. 94).

D.3 E ×B motion and stochasticity

Analogous considerations pertain to cross-field transport due to E × B motions although
the dynamics differ substantially from the field-free case. Ching (1973) considered the potential
ϕ(x, t) = ϕ0 cos(kxx) cos(kyy − Ωkt), which is stationary in the wave frame yw = y − (Ωk/ky)t,
and showed that spatial trapping occurs for |kx(cϕ0/B)| > |Ωk/ky| [a condition on the y component
of the E × B velocity, thereby substantially refining an earlier argument of Dupree (1967)]. When
parallel motion is admitted, Ωk → Ωk

.
= Ωk − k‖v‖. Hirshman (1980) showed that the resulting

dynamics are derivable from a Hamiltonian H(x, yw) = (cϕ0/B) cos(kxx) cos(kyyw)− (Ωk/ky)x, with
x playing the role of a momentum conjugate to yw, and gave an elegant discussion of the conditions
for trapping. Precisely resonant particles (Ωk = 0) circulate with the trapping frequency

ωtr = (cϕ0/B)kxky = kyVE,y; (D.8)

thus the trapping condition is ωtr > Ωk. Further discussion of spatial trapping was given by Smith
et al. (1985).

Horton (1981) showed that the separatrices of the spatial islands are stochastically destroyed by a
small-amplitude secondary wave; for more recent work, see Isichenko et al. (1992). In general, E×B
stochasticity occurs for a spectrum of waves when the trapping frequency based on the rms E ×B
velocity exceeds Ωk. This agrees with the picture suggested by Dupree (1967). 291 Various research on
E ×B motion and stochasticity was summarized by Horton and Ichikawa (1996).

E SOME FORMAL ASPECTS OF RESONANCE-BROADENING
THEORY

Dupree (1966) introduced his resonance-broadening theory with a considerable amount of formal
trappings. In fact, his test wave and random particle propagator techniques have proven to be
somewhat of a dead end, as they are unable to naturally handle self-consistency. Nevertheless, it
is very instructive to understand something of what Dupree tried to do. In this appendix I describe
some of the more formal manipulations related to the random particle propagator Ũ and discuss
the relationship between Ũ and the infinitesimal response function R employed by Kraichnan Sec. 5,
p. 126 and MSR Sec. 6.2, p. 153. Some early related discussion was by Birmingham and Bornatici
(1971).

291 Characteristically, in his early nomenclature Dupree did not distinguish between trapping and
stochasticity although the latter was clearly implied. In the context of plasma turbulence theory, explicit
reference to stochastic motion was finally made by Dupree and Tetreault (1978) more than a decade after
the inception of the RBT.
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E.1 The random particle propagator and passive diffusion

As was described in Sec. 4.3 (p. 108), Dupree’s fundamental insight was that the turbulent
fluctuations will diffuse particles away from their free-streaming trajectories, thereby introducing
the diffusion time τd [see Eq. (159)] into the theory. Let us attempt to make that more quantitative.

E.1.1 Random particle propagator and the method of characteristics

Consider the Vlasov equation [more precisely, the Klimontovich equation (23) for εp = 0]
∂tf + v ∂xf + a ∂vf = 0, where a

.
= (q/m)E. This equation simply states that the particle trajectories

obey Newton’s laws of motion ẋ = v and v̇ = a(x, t). Now suppose that a is random. To be definite, it is
convenient to assume that a(t) ≡ a(x(t), t)) is Gaussian white noise. Then from the elementary theory
of Langevin equations Sec. 3.2, p. 48, one knows that the particle dispersions grow like 〈δv2〉 = 2Dvt
and 〈δx2〉 = 2

3
Dvt

3.
The Gaussian assumption is problematic. The plasma dynamics are highly nonlinear, and in the

general case the particles and fields are coupled self-consistently. There is no reason why Gaussian
statistics should emerge [indeed, as was discussed in Sec. 3.8.1 (p. 71), nonlinearity precludes the
possibility of precisely Gaussian statistics], let alone white noise. Nevertheless, only in the Gaussian
case can one really make analytical progress with the present techniques.

Fokker–Planck theory now allows one to assert that the mean PDF obeys
∂tf + v ∂xf − ∂vDv(v)∂vf = 0. Here, as usual,

Dv =
∫ ∞

0
dτ 〈δa(x(τ ), τ)δa(x(0), 0)〉 =

∫ ∞

0
dτ 〈δa(x(0), 0)δa(x(−τ ),−τ)〉. (E1a,b)

These two formulas are equivalent because one assumes that the fluctuations are time stationary.
The difficulty with general evaluation of a formula such as Eq. (E1b) is its Lagrangian dependence

on the actual turbulent trajectory x(τ ). In order to focus on that trajectory, let us introduce a random
particle propagator Ũ that uniquely captures the details of the motion:

Ũ(z, t; z′, t′) .
= δ(z − z̃f (t; x′, t′)). (E.2)

Here z̃f (t; z
′, t′) is the phase-space location at time t of a particle that passed through point z′ at

time t′ (the f stands for forward). Now what one wants to do is write something like δa(x(−τ )) =∫
dz′ Ũ(z, t; z′, t−τ )δa(x′). However, the utility of this form is a bit obscure since the function x̃f (t; z

′, t′)
that appears in Eq. (E.2) is a highly nonlinear function of z′. What one really wants is a form in
which x′ appears explicitly. Physically, one need merely note that the change in position between x′

and x can be parametrized by either the initial time t′ or the final time t. Thus one will simply write
x̃f(t; z

′, t′) − x′ .= δx̃f(t; z
′, t′) = δx̃b(t

′; z, t) (the b stands for backward). It is useful to see how this
works in detail.

First note that Ũ obeys ∂tŨ(z, t; z′, t′) + v ∂xŨ + a(x, t)∂vŨ = 0, with initial condition
Ũ(z, t′; z′, t′) = δ(z − z′). Now recall the method of characteristics for the solution of first-order
PDE’s of the form ∂tψ(x, t) + V (x, t)∂xψ = 0. [For the present application, V is really the vector
(v, a)T .] The method exploits the fact that the initial conditions on a trajectory are constants of the
motion, so it is convenient to change variables to those initial conditions. Formally, one defines the
characteristic problem dx̃(t̃)/dt̃ = V (x̃(t̃), t̃), where x̃(t) = x and t̃ parametrizes the trajectory; one
must carefully distinguish the independent variables (x, t) of ψ from the time-dependent characteristic
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orbit x̃(t̃; x, t). The formal solution is x̃(t̃; x, t) = x+
∫ t̃
t dt̂ V (x̃(t̂), t̂). Define the new variable x = x̃(t′).

This is the position at time t′ of the orbit that passes through x at time t. Thus x = x− δx̃b(t′; x, t),
where δx̃b(t

′; x, t) .
=
∫ t
t′dt V (x̃(t; x, t), t). Now change variables according to (x, t) → (x, t), with

t = t. One then readily finds that ψ is conserved along the t trajectories: ψ(x, t) = ψ(x, t′). Upon
applying this procedure to Ũ , one finds U(z, t; z′, t′) = Ũ(z, t; z′, t′) = δ(z − z′). More explicitly,
Ũ(z, t; z′, t′) = δ(z − δx̃b(t

′; z, t) − z′). This form is just what one wants for expressing the earlier
motion in terms of Ũ . Thus

δa(x(t′; z, t), t′) =
∫

dz′ Ũ(z, t; z′, t′)δa(x′, t′). (E.3)

Usually it is more convenient to introduce τ
.
= t− t′ as a variable. Let us adopt the notation

δx̃f(t; z
′, t′) ≡ δx̃f(τ | z′, t′), δx̃b(t

′; z, t) ≡ δx̃b(−τ | z, t). (E4a,b)

Then (after trivially integrating out the delta function in v′)

δa(x(t′; z, t), t′) =
∫

dx′ δ(x− δx̃b(−τ | z, t)− x′)δa(x′, t′). (E.5)

Thus one has shown that one can write

Dv =
∫ ∞

0
dτ
∫ ∞

−∞
dv
∫ ∞

−∞
dx 〈δa(x, t)Ũ(x, v, t; x, v, t− τ )δa(x, t− τ )〉. (E.6)

Now in the general case it is still very difficult to systematically perform the ensemble average required
in Eq. (E.6) because the Eulerian accelerations will still be random variables on which Ũ depends.
(They are proportional to the Fourier coefficients of the waves.) However, in the special case in which
the Hamiltonian consists of a given (passive) collection of fixed (in both amplitude and phase) Fourier
components, then the only randomness in the δa’s comes from the initial particle position (which in
practice one takes to be homogeneously distributed). Thus the ensemble average may be factored and
one obtains

Dv =
∫ ∞

0
dτ 〈δa(x, t)U(τ ) δa(x, t− τ )〉, (E.7)

where U
.
= 〈Ũ 〉 and I follow Dupree’s convention of not explicitly writing integrations over the

phase-space coordinates. For passive problems U is identical to the passive response function R.
Equation (E.7) thus has the schematic form

∫∞
0 dτ R(τ )Υ(τ ) already seen in the introductory

discussion of passive statistical closures [cf. Eq. (143b)]. Formulas of the form (E.7) are characteristic
of the RBT. They emerge as well from projection-operator formalism Sec. 3.9.11, p. 88, as shown by
Weinstock (1969) and Weinstock (1970). Note that the RBT school typically arrives at Markovian
rather than nonlocal expressions for transport and response. Thus for the stochastic oscillator
model the resonance-broadening approximation would be ∂τR + [

∫∞
0 dτ R(τ )C(τ)]R(τ ) = δ(τ ) rather

than the properly nonlocal DIA equation (143a). Analogous remarks hold for the spatial variables;
RBT calculations typically do not involve the detailed mode-coupling forms characteristic of DIA-like
approximations.

Instead of working with U itself, it is generally more convenient to work with Fourier amplitudes.
For statistically homogeneous and stationary turbulence with ρ

.
= x − x′, define Uk(v, τ ; v

′) .
=
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∫
dρ e−ikρ U(ρ, v, τ ; v′), where U(ρ, v, τ ; v′) .

= 〈δ(x − δx̃b(−τ | z, t) − x′)δ(v − δvb(−τ | z, t) − v′)〉.
One finds

Uk(v, τ ; v
′) = 〈e−ikδx̃b(−τ )δ(v − δvb(−t)− v′)〉. (E.8)

The function Uk(v, τ )
.
=
∫
dv′Uk(v, τ ; v′) = 〈e−ikδx̃b(−τ )〉, which sometimes arises in practice, is in

principle accessible to cumulant expansion [Eqs. (93)]. Benford and Thomson (1972) discussed the
more complete form (E.8); they observed that certain of Dupree’s approximations of that quantity
were flawed because x and v are correlated. How this works can explicitly be seen in the white-noise
limit, discussed next.

E.1.2 Particle propagator in the white-noise limit

Resonance-broadening theory frequently exploits the Gaussian white-noise hypothesis. In that
case formula (E.8) can be worked out explicitly. It is a rigorous result that Fokker–Planck theory is
exact in that limit [see Sec. H.3 (p. 294)], so g obeys

∂tg(x, v, t; x
′, v′, t′) + v ∂xg − ∂vDv∂vg = δ(t− t′)δ(x− x′)δ(v − v′). (E.9)

In general, Dv depends on v; however, let us assume that Dv = const so one can proceed analytically.
The most physical and direct way of solving Eq. (E.9) for constant Dv is to recognize the equivalence
of Eq. (E.9) to the classical Langevin equations (66). Since the random variables x and v are known
to be (jointly) Gaussian, the form of g is guaranteed to be Gaussian with the means and variances as
given by the short-time (collisionless) limits of Eqs. (68) [see Table 1 (p. 50)] with initial conditions x′

and v′. One finds

g(ρ, v, τ ; v′) =

[
1

(2πσ2
X)1/2

exp

(
−δX

2

2σ2
X

)] [
1

(2πσ2
v)

1/2
exp

(
− δv

2

2σ2
v

)]
, (E.10)

where

δX
.
= ρ− V τ, ρ

.
= x− x′, V

.
= 1

2
(v + v′), δv

.
= v − v′, (E11a,b,c,d)

and

σ2
X
.
= 1

6
Dvτ

3, σ2
v
.
= 2Dvτ. (E12a,b)

Equation (E.10) shows the well-known fact that the variables δX and δv are statistically independent
(Benford and Thomson, 1972). A consequence is that the dispersion of δX (namely, 1

6
Dvτ

3) differs
from that of δx ≡ ρ (namely, 2

3
Dvτ

3).
Another solution method is to Fourier transform with respect to ρ, eliminate the streaming term

via the transformation gk(v, τ ; v
′) = e−ikvτhk(v − v′, τ )H(τ ) and the initial condition hk(v − v′, 0) =

δ(v − v′), Fourier-transform the resulting equation for h with respect to v − v′ (using conjugate
variable λ), integrate in τ , then invert the Fourier transformations. One finds

hk,λ(τ ) = exp(−λ2Dvτ + kλDvτ
2 − 1

3
k2Dvτ

3). (E.13)

At k = 0 one recognizes in the λ2Dv term the Fourier transform of velocity-space diffusion; at
λ = 0 one recognizes the signature of the associated spatial dispersion involving the diffusion time
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τd = (k2Dv)
−1/3. The cross term in kλ reflects the correlated nature of x and v. Upon inverting the

λ dependence, one finds

hk(v − v′, τ ) = e
1
2
ik(v−v′)τe−

1
12
k2Dvτ3

Φ(v − v′; 2Dvτ ), (E.14)

where Φ(δv; σ) is a Maxwellian distribution with variance σ [i.e., Φ(δv; 2Dvτ ) is just the usual diffusion

Green’s function]. Upon multiplying by eikvτ to obtain g from h (note that e−ikvτe
1
2
iδvτ = e−ikV τ ), one

is readily led to Eq. (E.10) by inverting the spatial transform.
As a check on the formulas (E.10) and (E.14), consider their integral over v′ (or, equivalently,

over δv for fixed v). Proceeding from Eq. (E.14) is slightly simpler. One has
∫
dδv hk(δv, τ ) = e−

1
3
k2Dvτ3

(the integral is the Fourier transform of a Gaussian; 1
3

= 1
12

+ 1
4
); then

g(ρ, v, τ ) =
∫

dk

2π
eik(ρ−vτ )e−

1
3
k2Dvτ3

= Φ(ρ − vτ ; σ2
x). (E.15)

The same result is, of course, obtained by integrating Eq. (E.10) over δv after writing V = v − 1
2
δv.

It should be noted that the solution of Eq. (E.9) for nonconstant Dv(v) is not a jointly Gaussian
distribution, and the slope d〈v2〉(t)/dt is not a straight line. Failure to recognize this obvious fact has
led to some confusion in the literature, as discussed by vanden Eijnden (1997).

Further interpretation of the white-noise propagator (E.10) is given in Sec. 12.6.3 (p. 246).

E.2 Random particle propagator vs infinitesimal response function

For passive problems it is easy to see that the infinitesimal response function R̃ and the random
particle propagator Ũ are identical. They differ, however, for self-consistent problems, and substantial
technical difficulties impede attempts to express the mean response function R in terms of U . Consider
self-consistent Vlasov response. R̃ obeys ∂tR̃+ v ·∇R̃+ Ẽ ·∂R̃+ ∂f̃ · ÊR̃ = I, where self-consistency
enters through the last term on the left. Formally, one may attempt to proceed as in the solution of
the linearized Vlasov equation by using the method of characteristics and the definition of Ũ to write
R̃ = Ũ − Ũ∂f̃ · ÊR̃; upon formally solving for ÊR̃, one finds

ÊR̃ = (I + ÊŨ∂ f̃)−1 · ÊŨ . (E.16)

Now although the form of Eq. (E.16) is identical to that of Eq. (343c), Eq. (E.16) is useless as it stands
since the concept of a random dielectric function is not defined. Furthermore, how to perform the
statistical average of Eq. (E.16) is not apparent since random variables appear in both the numerator
(Ũ) and denominator (Ũ and f̃ ). Thus

ÊR = 〈(I + ÊŨ∂ f̃)−1 · ÊŨ〉 6= (I + ÊU∂f)−1 · ÊU. (E17a,b)

Although Eq. (E17b) resembles Eq. (343c), the forms differ in two important ways: (i) The passive
propagator U is not equal to the self-consistent particle propagator g (the latter contains the extra
term Σ(p)). (ii) The nonlinear correction δf is missing in Eq. (E17b).

Fundamentally, attempts to usefully represent R in terms of U fail because self-consistency enters
at the same order as the statistical effects of passive advection. The advantages of the statistical
formalisms advocated by Kraichnan and MSR is that self-consistency is dealt with from the outset;
passive dynamics are never misleadingly brought to the fore.
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F SPECTRAL BALANCE EQUATIONS FOR WEAK

INHOMOGENEITY

In a classic paper by Carnevale and Martin (1982, CM), the reduction of the general Dyson
equations to Markovian form in the presence of weakly inhomogeneous backgrounds was addressed.
They considered the specific application to Rossby waves [in the present context, one may instead
think of the HM model introduced in Sec. 2.4.3 (p. 34)] and found reasonable conservation laws for
both energy and enstrophy. Nevertheless, a recent derivation of such laws by Smolyakov and Diamond
(1999) using a (superficially) different method was shown by Krommes and Kim (2000, KK) to imply
a kinetic equation in disagreement with that of CM. Closer inspection revealed algebraic errors in the
derivation of the CM conservation laws and to the realization that CM had made two compensating
errors. Krommes and Kim pinpointed the flaw in the logic; when corrected, the final kinetic equation
agrees with the one implied by the work of Smolyakov and Diamond.

Let Â and B̂ be the abstract operators corresponding to the two-point functions A(1, 1′)
and B(1, 1′). Operator products are realized as space-time convolutions: (ÂB̂)(1, 1′) = (A?B)(1, 1′) .

=∫
d1A(1, 1)B(1, 1′). The general procedure is to approximate the convolution in the limit of weak

inhomogeneity. To that end, introduce the sum and difference coordinates

ρ
.
= x− x′, X

.
= 1

2
(x + x′), τ

.
= t− t′, T

.
= 1

2
(t+ t′) (F1a,b,c,d)

and write A(x, t,x′, t′) = A(ρ, τ |X, T ). It is assumed that the dependence on ρ and τ introduces a
short autocorrelation length and time (usually one of the functions is a covariance matrix), so Taylor
expansion in ρ/X and τ/T can be performed. Upon truncating at first order and Fourier-transforming
with respect to ρ and τ , one is led to

(ÂB̂)k,ω(X, T ) ≈ Ak,ω(X, T )Bk,ω(X, T ) + 1
2
i{A,B}. (F.2)

Here the braces denote the Poisson bracket, defined for two functions with arguments (k, ω)
and (X, T ) as

{A,B} .=
(
∂A

∂X
· ∂B
∂k
− ∂A

∂k
· ∂B
∂X

)
− [(X,k)⇔ (T, ω)]. (F.3)

Equation (F.2) is the well-known result 292 rederived by CM and used to simplify the Dyson equations.
Suppose, for example, one considers the linear dynamics

∂tϕ(x, t) + i
∫

dxL(x,x)ϕ(x, t) = 0, (F.4)

292 Carnevale and Martin cited prior work in quantum field theory. A classically oriented review that focuses
on the derivations of wave kinetic equations in the eikonal approximation is by McDonald (1988). He showed
that some manipulations can be formalized through all orders in the inhomogeneity by use of the Weyl
calculus ; see also McDonald and Kaufman (1985). The quantity Ak,ω(X , T ) is known as the Weyl symbol of
the operator Â and can be shown to possess certain desirable properties that argue in favor of the use of the
centered representation based on Eq. (F.1). Equation (F.2) is the first-order limit of Eq. (4.29) of McDonald
(1988).
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where L̂ = Ω̂ + iγ̂ is weakly inhomogeneous (and dependent only on space for simplicity). A wave
kinetic equation for Ck(X , T )

.
= 〈|ϕk|2〉 = (2π)−1

∫∞
−∞dω Ck,ω(X, T ) then follows by identifying

Ak,ω(X, T ) = −i[ω−Ωk(X)] and B = Ck,ω(X, T ), taking the real part of Eq. (F.2), and integrating
over all ω. One obtains

∂TCk(X, T )− {Ωk, Ck} − 2γkCk = 0. (F.5)

Here

−{Ωk, Ck} =
∂Ωk

∂k
· ∂Ck

∂X
− ∂Ωk

∂X
· ∂Ck

∂k
(F.6)

defines characteristics

dX

dt
=
∂Ωk

∂k
,

dk

dt
= −∂Ωk

∂X
(F7a,b)

that are the usual ray equations of geometric optics. As is well known (Bernstein, 1975; Stix, 1992),
the rays are Hamiltonian equations of motion with Ω playing the role of the Hamiltonian.

There is a subtle but important assumption in the derivation of Eq. (F.5), which is that the
function Lk(X) is of zeroth order in the large-scale gradient. This is frequently not true. Following KK,
consider the example Ω(x,x′) = −f(x)∇2

xδ(x−x′), where f is an arbitrary slowly varying function.
It is not hard to show that through first order one has Ωk(X) = f(X)k2 + ik ·∇f(X); the k ·∇f
term is absent from equations like (F.2). Such terms arise when Ω̂ is itself the product of two
noncommuting operators Â and B̂. For reducing operator products like Ω̂Ĉ , the proper generalization
is the symmetrical expression

ÂB̂Ĉ ≈ ABC + 1
2
i({A,B}C + {A,C}B + {B,C}A), (F.8)

which can be written as

Ω̂Ĉ ≈ ΩC + 1
2
i({Ω, C}+ {A,B}C). (F.9)

The underlined term, absent from the result of CM, 293 recovers the k ·∇f term in the above example.
As an important practical example, consider the operator that arises in the HME to describe the

advection of short scales by long ones (where the long-wavelength velocity is V , with ∇ · V = 0):

iΩ̂
.
= [(1−∇2)−1][V (x, t) ·∇][−∇2]. (F.10)

This operator can be considered to be the product of the three operators delimited by brackets in
Eq. (F.10). The necessary algebra was performed by KK; the result for γk = 0 is

∂TCk − σ−1
W {Ωk,Wk} = 0, (F.11)

293 It seems to not be considered quite generally. McDonald (1988) reviewed the traditional derivation
of WKE’s, which takes into account a first-order dissipative correction γ̂ arising from the anti-Hermitian
part of the dielectric operator. In contrast, the correction term in Eq. (F.9) arises from the Hermitian part
of the dielectric and is nondissipative.
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where σW
.
= k2(1+k2) is the weight factor associated with enstrophy conservation: Wk = σWCk. Thus

upon integration over X and summation over k, Eq. (F.11) correctly conserves enstrophy whereas
the classical equation (F.5) violates enstrophy conservation and incorrectly conserves C .

Equation (F.11) agrees with a result of Smolyakov and Diamond (1999). Those authors proceeded
by working with a Fourier representation of the X dependence. The present method isolates more
cleanly the source of the difficulty in the analysis leading to Eq. (F.2) (the failure to take into account
all first-order terms), and formulas such as (F.8) are arguably cleaner and easier to apply in general
situations.

G DERIVATION OF WAVE KINETIC EQUATION FROM
RENORMALIZED SPECTRAL BALANCE

In this appendix I sketch the reduction of the Vlasov DIA to the wave kinetic equation of
Vlasov WTT. As an example, the GK WKE of Sagdeev and Galeev (1969) is derived.

G.1 General form of the wave kinetic equation

The calculation begins with the exact spectral balance equation (286) or the nonstationary version
of Eq. (344). With I(t, t′) .

= 〈δϕ(t)δϕ(t′)〉 and ? denoting convolution in time, one has

I(t, t′) = (D−1 ? Φ̂g) ? F ? (D−1 ? Φ̂g)† = D−1 ? 〈δϕ̃2〉 ? D−1†. (G1a,b)

Here the incoherent potential spectrum is 〈δϕ̃2〉 .= Φ̂g ?F ? (Φ̂g)†; spatial and velocity-space variables
are not written explicitly. Initially, one need not commit oneself to specific forms for F and the
nonlinear terms that define the renormalized particle propagator g and the renormalized dielectric
function D.

To deduce a wave kinetic equation, the first step is to operate on Eq. (G1b) on the left with D(t, t′),
thereby obtaining

D ? I = 〈δϕ̃2〉 ?D−1†. (G.2)

This rearrangement introduces an apparent asymmetry. To better appreciate the structure of
Eq. (G.2), first consider the stationary, symmetrical model correlation function C(τ ) = e−ν|τ |C0.
The (two-sided) Fourier transform of this function is C(ω) = [2ν/(ω2 + ν2)]C0, which can be written
as

C(ω) = R(ω)(2νC0)R
∗(ω), R(ω)

.
= [−i(ω + iν)]−1, (G3a,b)

C(τ ) = R(τ ) ? [2νC0δ(τ )] ? R(−τ ), R(τ ) = H(τ )e−ντ . (G4a,b)

A differential equation for (the two-sided) C(τ ) follows by applying R−1(τ )
.
= (∂τ + ν)δ(τ ) to

Eq. (G4a):

∂τC + νC = H(−τ )2νC0e
ντ . (G.5)
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The solution of this equation is indeed the given C(τ ). The left-hand and the right-hand sides of
Eq. (G.5) are each asymmetrical, but in just such a way that symmetry of the solution is maintained.
The role of the right-hand side is to make the effective differential equation be ∂τC + sgn(τ )νC = 0
with C(0) = C0. Note that although R is causal (one-sided), R−1 is not.

In Eq. (G1b) D−1 is causal, analogous to the R in the above model. Consider, then, the time
dependence of Eq. (G.2) in detail. In order to treat a possible weak nonstationarity due to slow growth
or damping, I follow the discussion of Appendix F (p. 286), introduce τ

.
= t − t′ and T

.
= 1

2
(t + t′),

and write, for example, I(t, t′) ≡ I(τ | T ). With τ
.
= t− t′, one finds

D ? I =
∫

dτ D(t − τ | T + 1
2
τ )I(τ | T−1

2
(τ−τ)) (G6a)

≈D(τ | T ) ? I(τ | T ) +
1

2

(
∂D(τ | T )

∂T
? [τI(τ | T )]− [τD(τ | T )] ?

∂I(τ | T )

∂T

)
, (G6b)

where one expanded for mean time T longer than the characteristic autocorrelation time of the
spectrum. Convolutions are now only in τ .

The Fourier transform of the resulting equation is

D(ω)I(ω) +
1

2
i

[
∂

∂T

(
∂D
∂ω

I

)
− ∂

∂ω

(
∂D
∂T

I

)]
(〈δϕ̃2〉/D∗)(ω), (G.7)

where all quantities depend parametrically on T and wave-number labels have been suppressed. Recall
the considerations about stability in the first paragraph of Sec. 6.5.4 (p. 176). In the vicinity of a
normal-mode resonance at complex frequency 294 Ω̂k, one can expand D(ω) ≈ (ω − Ω̂k)∂D/∂Ω̂k.
Consideration of the real part of Eq. (G.7) and the reality of I(ω) shows that to lowest order
Ik(ω) ≈ 2πIkδ(ω− Ωk). Then the wave kinetic equation for Ik emerges by integrating the imaginary
part of Eq. (G.7) over ω. For a more symmetrical notation, I now use ωk instead of ω and write
k ≡ {k, ωk}. Note that

Im(1/D∗k ) ≈ πδ(ωk− Ωk)/[sk|D′k|], (G.8)

where sk
.
= sgn(D′k), D′k

.
= Re (∂D(k,Ω)/∂Ω)|Ω=Ωk

, and one recalled that necessarily γk < 0. 295 Let
us define the action density of the kth mode by 296 Nk

.
= |D′k|k2Ik, where Ik

.
= 〈δϕ2〉k. One finally

finds

∂Nk

∂T
− 2γkNk =

Imk2〈δϕ̃2〉k(Ωk)

|D′k|
, (G.9)

where γk is given by formula (170b) evaluated with the full dielectric D (including nonlinear
corrections).

294 Elsewhere in the article, ωk has been used for complex frequency. I use the caret notation here [not to be
confused with the linear-operator notation in Appendix F (p. 286)] in order that ωk can be used for the real
Fourier frequency associated with k.
295 Establishing the sign of Eq. (G.8) unambiguously is possible only by working with (or at least having
firmly in mind the implications of) the fully renormalized theory. If the linear growth rate were used here,
the sign of the resonance contribution would (incorrectly) depend on the sign of γ lin

k .
296 A conventional denominator of 8π is omitted since it merely clutters the subsequent formulas.
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So far I have assumed spatially homogeneous statistics. When weak spatial inhomogeneities are
allowed, ∂/∂T is conventionally replaced by the total time derivative along the ray trajectories:

d

dT
.
=

∂

∂T
+ V X ·

∂

∂X
+ V k ·

∂

∂k
, (G.10)

where

V X
.
=

(
∂Ω

∂k

)∣∣∣∣∣
X

= −∂D/∂k

∂D/∂Ω
, V k

.
= −

(
∂Ω

∂X

)∣∣∣∣∣
k

=
∂D/∂X

∂D/∂Ω
. (G11a,b,c,d)

However, as discussed in Appendix F (p. 286), this assumes that the function Dk,ω(X, T ) is of zeroth
order in the long-scale gradient; otherwise extra correction terms arise. It is not clear that those
correction terms have been dealt with consistently in most applications of the wave kinetic equation.

G.2 Wave kinetic equation through second order

I shall now indicate the reduction of Eq. (G.9) to weak-turbulence theory, first in general, then
for the specific example of HM dynamics. In principle the procedure can be carried to any order;
however, I shall use the DIA forms of Σnl and F nl, so the results will be correct only through second
order in the intensity. That includes three-mode decay processes as well as the wave–wave–particle
interactions.

For definiteness I consider the Vlasov nonlinearity E · ∂f ; however, with simple transcriptions
[see Eqs. (G.18)] the formulas will remain valid for the E×B nonlinearity VE ·∇f . Consider first the
nonlinear noise, given in the DIA by Eq. (351). Upon Fourier transformation for spatially homogeneous
and temporally stationary statistics, this becomes

F nl
k (1, 2) =

∑
k+p+q=0

[Ipp · ∂1 p · ∂2Cq(1, 2) + q · ∂2〈δϕ δf(2)〉pp · ∂1〈δf(1)δϕ〉q]∗. (G.12)

Here
∑
k+p+q=0 ≡

∑
p,q δk+p+q(2π)−1

∫
dωp dωq δ(ωk + ωp + ωq). The goal is to express all quantities

in terms of spectral intensities. In Sec. 6.5.3 (p. 173) it was argued that in perturbation theory the
coherent response dominates; from Eq. (355a),

Cq(1, 2) ≈ [g0,qq · ∂〈f〉](1)Iq[g0,qq · ∂〈f〉]∗(2). (G.13)

The analogous expression for 〈δϕ δf〉q is best calculated directly from Eq. (355b). If it is calculated
from Eq. (G.13), the result involves the product [D(q, ωq) − 1]Iq; the D contribution is absent
from Eq. (355b), an apparent inconsistency. However, in weak-turbulence theory D(q, ωq)Iq ≈
(ωq − Ωq − iγq)2πδ(ωq − Ωq)Iq ∝ −iγq; such dissipative contributions will be of higher order in
γq/Ωq and can be neglected. The final result is that

〈δϕ̃2〉k =
1

2

∑
k+p+q=0

|ε(2)(k, p, q)|2IpIq. (G.14)

It is now straightforward to perform all frequency integrations, thereby finding that the mode-
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coupling contribution to the wave kinetic equation is

1

2

(
∂N̂k

∂T

)mc

=
1

2

∑
∆

|ε(2)(k,p, q)|2
|D′k||D′p||D′q|

θkpqN̂pN̂q, (G.15)

where N̂k
.
= |D′k|Ik and the triad interaction time θ takes the weak-turbulence form (183c),

θkpq ≈ πδ(Ωk + Ωp + Ωq). The notation ε(2)(k,p, q) means ε(2)(k,Ωk; p,Ωp; q,Ωq).
I now consider nonlinear contributions to the growth rate γk ≈ − Im[D(k,Ωk)]/D′k. The result of

tedious calculations leads to the weak-turbulence dielectric quoted in Eq. (190a). In order to further
reduce the imaginary part of that formula, one must consider two possibilities: either the beat wave
ωp = −(Ωk + Ωq) is a normal mode Ωp; or it is not. If it is, then the resonance approximation (G.8)
can be employed in the second term of Eq. (190a) and one obtains the contribution

γmc
k =

∑
∆

sksp
Re(ε(2)(k,p, q)ε(2)∗(p, q,k))

|D′k||D′p||D′q|
θkpqN̂q. (G.16)

The term γmc
k N̂k obviously describes the process inverse to the three-wave decay term (G.15). If a

modal energy is defined by E =
∑

k σk|D′k|N̂k, it is easy to see that the mode-coupling terms conserve
energy provided that skσkε

(2)(k,p, q) + c.p. = 0. That will be true if only nonresonant contributions
to ε(2) are retained; see the GK example in the next section.

For the case in which the beat wave is a driven non-normal mode, imaginary contributions to
Eq. (190a) stem dominantly from Re g0,p ≈ πδ(ωp−p ·v); this describes induced scattering. Thus one
finds

γind
k =−sk Im

∑
∆

∫
dωp

2π
δ(Ωk + ωp + Ωq)(|D′k||D′q|)−1

× [ε(3)(k | q,−q,−k)− ε(2)(k | p, q)Re(D∗p )−1ε(2)∗(p | q,k)]N̂q. (G.17)

For some general manipulations of this form, see Horton and Choi (1979). A specific illustration is
given in the next section.

Upon assembling all contributions, one is led to the WKE in the form (191). See Sec. 6.5.4 (p. 176)
for important further discussion of its content.

G.3 Example: Wave kinetic equation for drift waves

As an example of the general formulas of the previous sections, consider the GKE for drift waves,
in which the background PDF is assumed to be Maxwellian with a slowly varying density gradient.
It is straightforward to find that one can use the previous Vlasov results provided one makes the
transcriptions

k · ∂〈f〉 → −[k‖v‖ − ω∗(k)]J0(k)(q/T )〈f〉, p · ∂aq → iJ0(p)(c/B)b̂ · p× qaq, (G18a,b)

where aq is any fluctuation-related quantity and J0(k) ≡ J0(k⊥v⊥/ωc). One could proceed
symmetrically for electrons and ions, but I shall consider here the common approximation of adiabatic
electrons, for which only the ions are treated kinetically and the potential operator (for the normalized
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potential ϕ = eφ/Te) becomes Φ̂k = (1 + k
2
)−1

∫
dvJ0(k), where k

2 .
= τ [1 − Γ(k)], τ

.
= Te/Ti,

and Γ(k)
.
= 〈J2

0 (k)〉⊥ = I0(b)e
−b (the ⊥ average being over a perpendicular Maxwellian). Here

the (1 + k
2
)−1 multiplier describes the effects of the ion polarization drift; in the limit Ti → 0,

1 + τ (1−Γ) → 1 + k2 (independent of Ti). Thus the k2 term is not a finite-Larmor-radius correction.
In the drift-wave problem one orders Ωk � k‖v‖. Then

D(k, ω) ≈ 1− (1 + k
2
)−1[ω∗(k)Γ(k)/ω], so Ωk = ω∗(k)Γ(k)/(1 + k

2
). (G19a,b)

It is straightforward to extract the nonresonant portion of ε(2)(k | p, q ). From formula (188a) and
mk

.
= (c/B)b̂ · p× q, one finds Re[ε(2)(k | p, q)] = −iMkpq/Ωk, where

Mkpq
.
=
mk〈J0(k)J0(p)J0(q)〉⊥

1 + k
2

(
ω∗(q)

Ωq
− ω∗(p)

Ωq

)
; (G.20)

as Ti → 0, Mkpq properly reduces to the HM form mk(q
2− p2)/(1 + k2). From Eq. (G19b), note that

ΩkD′k = 1. Then Eq. (G.15) becomes

1

2

(
∂Ik

∂T

)mc

=
1

2

∑
∆

|Mkpq|2θkpqIpIq, (G.21)

precisely the fluid form (183b) of the HM incoherent noise. Similarly, −γmc
k reduces to the fluid

expression (183a) for the nonlinear damping ηnl
k . One can verify that the GK mode-coupling terms

conserve an energy E ∝ ∑
k(1 + k

2
)Γ−1(k)Ik as well as an enstrophy (with an additional weighting

of k
2
). If one introduces the GK action density 297 Nk

.
= (1 + k

2
)Γ−1(k)N̂k, then one obtains the

conventional quantum-mechanical form E =
∑

k ΩkNk.
Reduction of γind

k proceeds similarly although with somewhat more algebra. The final result, which
should be compared with that of Sagdeev and Galeev (1969), is

γind
k =−(1 + k

2
)−1

∑
∆

δ(Ωk + Ωq)m
2
kF (k,p, q)

(
ω∗(k)

Ωk
− ω∗(q)

Ωq

)
Γ(q)

1 + q2
Nq, (G22a)

F (k,p, q)
.
= 〈J2

0 (k)J2
0 (q)〉⊥ − Γ(p)−1〈J0(k)J0(p)J0(q)〉2⊥. (G22b)

It can be seen from the antisymmetric form of Eq. (G22a) that the induced scattering properly
conserves

∑
kNk. Also note that a Schwartz inequality guarantees F ≥ 0. As Ti → 0, F → 0 as k2

⊥ρ
2
i .

This behavior represents the characteristic long-wavelength cancellation between Compton scattering
from bare particles and nonlinear scattering from the shielding clouds.

297 That this is the appropriate definition of GK action follows from considerations of GK energy
conservation (Dubin et al., 1983). In the absence of the 1 term (adiabatic electron response), one has
k

2N̂k = (k
2
/k2)k2N̂k = ε⊥(k)|D′k|k2Ik; see the discussion by Krommes (1993c) of ε⊥ as the permittivity of

the GK vacuum.
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H PROBABILITY DENSITY FUNCTIONALS; GAUSSIAN

INTEGRATION; WHITE-NOISE ADVECTIVE NONLINEARITY

Here I collect a few miscellaneous results about functional integration and Gaussian statistics,
including the interpretation of probability density functionals, Gaussian integration (Novikov’s
theorem), and the treatment of white-noise advective nonlinearity.

H.1 Probability density functions and functional integration

A general probability density functional of a field ψ(t) is interpreted as P [ψ] = limN→∞ P (ψ−N ,
. . . , ψ−1, ψ0, ψ1, . . . , ψN), where ψn

.
= ψ(tn) and tn

.
= n∆t. The statistical average of an arbitrary

functional F [ψ] is written 〈F [ψ]〉 =
∫
D[ψ]F [ψ]P [ψ], where D[ψ]

.
=
∏
n dψn. For example, the PDF

of a multivariate centered Gaussian field ψ(t) has the form 298

P [ψ] = [det(2πC)]−1/2 exp
(
−1

2

∫ ∞

−∞
dt
∫ ∞

−∞
dt′ψ(t)C−1(t, t′)ψ(t′)

)
, (H.1)

where C(t, t′) is a specified two-time correlation function and C−1 obeys
∫∞
−∞dt C(t, t)C−1(t, t′) =

δ(t − t′). Under a discretization in which C(t, t′) → C ≡ Cij and δ(t − t′) → ∆t−1δi,j, one has
C−1(t, t′) → ∆t−2C−1

ij . Because C is symmetric and positive definite, it can be diagonalized with
positive eigenvalues λi. Now det(2πC) =

∏
i(2πλi) is formally infinite as ∆t → 0; however, that

infinity will be canceled by the time integration over the infinite number of variables. For example,
as a special case of Eq. (H.1), the PDF of Gaussian white noise with covariance C(τ ) = 2Dδ(τ ) is
P [ψ] ∝ exp[−(4D)−1

∫∞
−∞dt ψ2(t)]; the argument of the exponential is clearly infinite, the size of the

infinity scaling with the total integration time.
As a consistency check, one may compute 〈ψ(t)ψ(t′)〉ij =

∫
D[ψ]ψ(t)ψ(t′)P [ψ]. Upon introducing

the square root S of C such that C = S · S, one may change variables to ψ
.
= S−1 · ψ, whereupon

〈ψ(t)ψ(t′)〉=
∫

dψ1 . . .dψN detS (Sikψk)(Sjlψl)(2π)−N/2(detS)−1/2exp

(
−1

2

N∑
i=1

ψ
2

i

)
(H2a)

= SikSjlδk,l = Cij . (H2b)

For non-Gaussian functionals, explicit manipulations like this are rarely possible. Nevertheless, the
mere existence of such functionals can be used to good advantage. Both Gaussian and non-Gaussian
functionals have central roles in quantum field theory (Zinn-Justin, 1996). For further discussion, see
the description of the MSR formalism in Sec. 6 (p. 146).

298 An explicit reference to such a Gaussian functional was made by Taylor and McNamara (1971); see their
Eq. (15).
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H.2 Gaussian integration

For a centered Gaussian variable x with variance σ2, and given an arbitrary function F (x), one
has

〈xF (x)〉 = σ2

〈
∂F

∂x

〉
. (H.3)

This result follows by an integration by parts upon noting that for a centered Gaussian distribution
P (x) one has ∂x lnP = −x/σ2. 299 For a multivariate Gaussian PDF with correlation matrix C, the
result (H.3) generalizes to

〈xiF (x)〉 =
∑
j

Cij

〈
∂F

∂xj

〉
. (H.4)

Finally, if F is a functional of a Gaussian time series x(t), namely, F = F [x], then

〈x(t)F [x]〉 =
∫ ∞

−∞
dt C(t, t)

〈
δF

δx(t)

〉
. (H.5)

This result is called Novikov’s theorem (Novikov, 1964) and is frequently referred to as Gaussian
integration. It can be used to good advantage in problems of passive advection with Gaussian
coefficients; see the special case discussed in the next section and the more complicated applications
treated by Schekochihin (2001).

H.3 White-noise advective nonlinearity

Consider an advective nonlinearity with a Gaussian coefficient that is white in time with zero
mean—see, for example, the stochastic acceleration problem ∂tψ + ã(t)∂vψ = 0, where 〈ã(t)ã(t′)〉 =
2Dvδ(t − t′). For this limit it is known (Kraichnan, 1968b) that first-order perturbation theory
is exact, namely, ∂t〈ψ〉 = ∂vDv∂v〈ψ〉. This can be demonstrated directly, and also follows from
a straightforward application of Novikov’s theorem (H.5); it can be viewed as a special case of
Fokker–Planck theory. However, one can also employ the results for multiplicative passive statistics
obtained in Sec. 6.4 (p. 166). This advective nonlinearity corresponds to the random vertex U2(1, 1) =
ã(t1)∂v(1 − 1), which after averaging over the Gaussian statistics enters the field equations as the
spurious (symmetrical) vertex γ′4 with nonvanishing components

γ′4

(
1
−

2
−

1
+

2
+

)
= 2Dv(1, 2)δ(t1 − t2)

∂

∂v1
δ(1− 1)

∂

∂v2
δ(2− 2). (H.6)

Of the three distinct terms in the contribution 1
6
γ′4(〈ϕ〉〈ϕ〉〈ϕ〉 + 3〈ϕ〉〈〈ϕϕ〉〉 + 〈〈ϕϕϕ〉〉) to −iσϕ̇ [see

Eq. (297); one must take the − component to obtain ψ̇], the first vanishes because 〈ψ̂〉 = 0, and
the last vanishes because G3,−++(t, t, t) = 0. The second has a nonvanishing contribution from

299 When F is a polynomial function of x, Eq. (H.3) can be verified directly by using the Gaussian result
〈x2n〉 = (2n− 1)!!.
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〈ϕ〉+G+− = 〈ψ〉R. That simplifies because the time locality reduces R to a delta function in the
nontime coordinates at t = t′; one finally finds

∂〈ψ〉
∂t

+ · · · = ∂

∂v
Dv(v, v)

∂〈ψ〉
∂v

. (H.7)

This result is unambiguous when Dv is independent of v (or, in higher dimensions, when ã is
divergence-free). Otherwise, one must worry about the Itô vs Stratonovich controversy (van Kampen,
1981), in which it is noted that the form of the Fokker–Planck equation that results from a Langevin
equation of the form v̇ = F (v)δa(t) is ambiguous unless one gives a definite prescription about how
to finite-difference the time evolution.

I THE DIA CODE

“The rationale must be that studies of the DIA directly aid one’s theoretical understanding
of the various physical mechanisms. In view of the complexity of the [drift-wave] physics, . . .
such studies are absolutely essential.” — Krommes (1984b).

Both the Eulerian DIA and the Markovian closures discussed in this review are causal initial-
value problems, all of which can be accommodated by a common numerical superstructure. One such
realization is the code DIA developed at Princeton University by the author and his collaborators for
the numerical solution of various statistical closure problems. It has evolved from a Fortran version
that was soon abandoned as being unmanageable, through a mixed C and Ratfor 300 implementation
that has been used for most of the published results (Bowman et al., 1993; Bowman and Krommes,
1997; Hu et al., 1995, 1997), to its present realization in C++. An early collaborator was R. A.
Smith. Bowman (1992) was principally responsible for the implementation of the Markovian closures;
his careful and extensive work can justifiably be described as heroic.

In Fig. I.1 (p. 296) I show a slightly simplified C++ class hierarchy for the DIA code. The notation
A ← B means B is derived from A (A is a base class for B). The structure is relatively standard
and emulates that of many simulation codes. The code employs a second-order predictor–corrector
algorithm (Kraichnan, 1964b), which for the equation ∂tψ = S(ψ(t), t) is

ψ̂(t+ ∆t)=ψ(t) + ∆t S(ψ(t), t), (I1a)

ψ(t+ ∆t)=ψ(t) + 1
2
∆t[S(ψ(t), t) + S(ψ̂(t+∆t), t+∆t)]. (I1b)

Note that the DIA and Markovian closures are accommodated on equal footing in the inheritance tree;
they are both advanced by the same time-stepping algorithm and, broadly speaking, can use the same
data structures. (Additional data structures are required for the Markovian closures because there
is no analog of the triad interaction time θkpq in the DIA.) Information about a particular physics
model is inserted in place of class MODEL. That includes both information about the equations as well
as any model-specific diagnostic and/or graphics routines.

Both real-time as well as off-line graphics are used. The real-time graphics software manages the
main integration loop, after each step of which on-screen graphics are updated. Data for postprocessing
are written to files in the conventional manner.

300 Ratfor (RATional FORtran) was introduced by Kernighan and Plauger (1976).
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Parameters Parse the command line; initialize parameters.
↑

Buffers Allocate data structures dynamically.
↑

ModeCoupling Initialize mode-coupling routines.
↑

Algorithm Execute one step of predictor–corrector algorithm.
↗ ↖

DIA Markovian Implement statistical closure.
↑ ↑
↑ CLOSURE One of EDQNM, RMC, etc.
↖ ↗

Graphics ← Diagnostics Data analysis; real-time graphics.
↑

MODEL Specific physics equations such as HW.
↑

NetCDF ← Problem The main time-stepping loop; dumps and restarts.

main( )
{
static Problem problem; // Realize the class hierarchy.
GraphicsStart( ); // Initialize real-time graphics and enter time-stepping loop.
}

Fig. I.1. Class hierarchy of the DIA code. Names in boldface type represent C++ classes; for example,
Parameters ≡ class Parameters. The entirely uppercase class names in typewriter type are replaced by
specific instances when the code is built—as examples, CLOSURE might be replaced by RMC (a particular
Markovian closure), and MODEL might be replaced by HW (a particular set of equations, those of Hasegawa
and Wakatani).

Integrated source code and documentation are managed by the FWEB utility (Krommes, 1993e), a
nontrivial extension of Levy’s CWEB, 301 which in turn was based on Knuth’s Pascal-based WEB (Knuth,
1992) originally developed to maintain the computer typesetting language TEX. Some virtues of WEB
utilities in general are book-quality documentation (including an automatically generated index) and
the ability to modularize the code at a sub-function level without impacting performance. A feature
unique to FWEB and extensively used in DIA is the built-in macro preprocessor (a generalization of the
C preprocessor). Macros are used to build specialized versions of the code from a common general
template. Thus for example, in addition to time t a general field ψ might depend on statistically
homogeneous variables x, inhomogeneous variables v, and a discrete field index s; the two-point
correlation function C would then be indexed by Cs,s′(k,v, t; v

′, t′), where a Fourier transformation
was performed with respect to x − x′. In general, loops over all of the indices must be done, which
implies that performance can be noticeably improved when loops over unused variables are eliminated
at the compile stage. Thus a single-field Hasegawa–Mima problem possesses a correlation function
C(kx, ky, t; t

′), and macro preprocessing can be used to generate loops that refer only to kx and ky.

301 For references to CWEB, see the bibliography in Knuth (1992).
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J THE EDQNM FOR THREE COUPLED MODES

For precisely three modes labeled by the distinct indices K, P , and Q, the steady-state solution
of the EDQNM can be found explicitly, as shown by Ottaviani (1991) [see also Bowman (1992)]. The
details of the calculation are presented here. The results provide nontrivial test cases for statistical
closure codes [see, for example, Sec. I (p. 295)]. A number of useful insights about growth-rate scalings
and parameter regimes also follow from generalizations of the solution.

Consider the generic amplitude equation (223) for three modes coupled by the real coefficients
Mk ≡ Mkpq, etc. (A k-independent phase can be absorbed into a redefinition of the ψk’s.) One may
also write θ

.
= θk,p,q since there is only one triad interaction time for just three modes, and similarly

introduce the frequency mismatch ∆Ω and the characteristic forcing ∆γ; I define θr ≡ Re θ and
θi ≡ Im θ.

Upon taking account of the appropriate sums over modes, one finds from Eqs. (368) that

Fk− (Re ηnl
k )Ck = −MkA, A

.
= −θr(MkCpCq + c.p.). (J1a,b)

The steady-state balance condition is then

−2γkCk = −2MkA, or
γkCk

Mk
=
γpCp

Mp
=
γqCq

Mq
= A. (J2a,b)

For nonzero γ’s this allows one to eliminate Cp and Cq in terms of Ck. (The Gibbsian thermal-
equilibrium solutions A = 0 are lost at this point.) The results may be substituted into Eq. (J1b),
then combined with Eq. (J2a), yielding the two solutions Ck = 0 (which one assumes is unstable) and

Ck = −
(
γpγq

MpMq

)(
1

θr∆γ

)
. (J.3)

The solution is completed by determining θ from the steady-state solution (372):

θ = (i∆Ω−∆γ + ∆ηnl)−1 =
−i(∆Ω + ∆ηnl

i ) + (∆ηnl
r −∆γ)

(∆Ω + ∆ηnl
i )2 + (∆ηnl

r −∆γ)2
. (J4a,b)

This result fixes the ratio

ι
.
=
θi
θr

= −
(

∆Ω + ∆ηnl
i

∆ηnl
r −∆γ

)
. (J.5)

Upon inserting Eqs. (J2b) and (J.3) into the expression (368a) for ηnl
k , one finds

∆ηnl = α(1− iι), where α
.
= 2(γkγpγq)

(
∆(γ−1)

∆γ

)
. (J6a,b)

Upon inserting the real and imaginary parts of Eq. (J6a) into Eq. (J.5), one may solve for ι, finding

ι = ∆Ω/∆γ. (J.7)
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All quantities can now be determined. One obtains 302

θr = −
(

(∆γ)2

∆(γ2)

)(
∆γ

(∆Ω)2 + (∆γ)2

)
, Ck =

(
γpγq

MpMq

)[(
∆(γ2)

(∆γ)2

)(
(∆Ω)2 + (∆γ)2

(∆γ)2

)]
. (J8a,b)

One can see that the saturation level is controlled by the dimensionless parameter ∆γ/∆Ω as well as
by three independent combinations of the γ’s such as ∆γ, ∆(γ2), and ∆(γ−1). Fundamentally, ∆γ is
the forcing parameter.

The forms of these results demonstrate some constraints on the γ’s. For example, if θr is to be
positive, one must have ∆γ < 0. [According to the theory of entropy evolution described in Sec. 7.2.3
(p. 188), this is equivalent to the requirement that a nonequilibrium steady state exists.] One must
also have γpγq/MpMq > 0.

The saturation level summed over all modes is E .
= 1

2

∑
k σkCk, where σk is a positive weighting

coefficient that is determined by the conservation properties of the original nonlinear equation; it is
assumed that the mode-coupling coefficients obey 303 ∑

k σkMk = 0. The symmetries inherent in the
closure lead to the spectral balance

∂E
∂t

=
∑
k

σkγkCk; (J.9)

this also follows from the primitive equation. It is readily verified that the result (J8b) consistently
obeys

∑
k σkγkCk = 0. As another independent consistency check, one may verify that the right-

hand side of the entropy evolution equation (383) vanishes when the formulas (J8a) and (J8b) are
inserted. 304

If one defines a characteristic mode-coupling coefficient M and a characteristic frequency W by

1

M2

.
=
∑
c.p.

1

MpMq
, W 2 .

= M2
∑
c.p.

σk

(
γpγq

MpMq

)
, (J10a,b)

then one has

E =

(
W 2

M2

)(
∆(γ2)

(∆γ)2

)(
(∆Ω)2 + (∆γ)2

(∆γ)2

)
. (J.11)

One may define the strong-turbulence limit by ∆γ/∆Ω� 1. For strong turbulence,

E →
(

∆(γ2)

(∆γ)2

)(
W 2

M2

)
. (J.12)

302 Exact steady-state solutions of the three-wave model can also be found (Johnston, 1989; Bowman, 1992).
The result is identical to Eq. (J8b) without the factor (∆γ)2/∆(γ2). For further discussion, see Bowman
(1992).
303 For appropriateM ’s one can satisfy this for two independent sets of σ’s, corresponding to the conservation
of both energy and enstrophy by the nonlinear terms.
304 The proof uses the result that

∑
k

∑
q 6=k

∑
p δk+p+q=0 = 3× 2× 1 = 6.
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If one lets all growth rates scale with a common parameter γ, thenW ∼ γ and in the strong-turbulence
limit

E ∼ γ2/M2. (J.13)

This quadratic scaling is in accord with the argument given in Sec. 3.8.2 (p. 73) that equates the rate
of forcing with the eddy turnover rate for the energy-containing modes:

γ ∼ kV E ∼ Mψ (J.14)

(M ∝ k2
⊥).

For ∆γ/∆Ω� 1 one has

E → Eml .=

(
(∆Ω)2

(∆γ)2

)(
W 2

M2

)
∼ (∆Ω)2

M2
. (J.15)

This is the mixing-length level for this problem. Note that this quantity formally remains finite as
γ → 0. If this problem were describing drift waves, the mixing-length level would correspond to an
rms potential

ψ
.
=
√
Eml ∼ ∆Ω

M
∼ ω∗
k2
⊥
∼ κ

k⊥
=

1

k⊥Ln
, (J.16)

which is the usual result (Kadomtsev, 1965).
This model has difficulty capturing the appropriate weak-turbulence scaling. As we have seen in

Sec. 4.2.3 (p. 100), in the weak-turbulence theory of many interacting waves the quantity δ(∆Ω) arises
in a description of the resonant three-wave interaction. The effects of that term are then evaluated
by appropriate integrals over (approximately continuous) p and q. In the present problem one has a
very discrete and essentially trivial k sum, not an integral, so one cannot work with the delta function
in the usual way. However, if one treats these equations as structural prototypes for the many-wave
problem, one may assume that the effect of θr is to introduce an appropriate autocorrelation time τac

for the wave–wave interactions. In the limit ∆γ/∆Ω� 1 one can then write

θr → πδ(∆Ω + ∆ηnl
i ) = πδ(∆Ω[∆(γ2)/(∆γ)2]). (J.17)

[Notice from Eqs. (J6a) and (J.7) that in this three-wave model ∆ηnl
i ∼ ∆Ω, so one obtains an extra

factor of order unity over the usual δ(∆Ω).] One now finds

E ∼
(
W 2

M2

)(
1

|∆γ|τac

)
. (J.18)

If one assumes that ∆Ω τac = O(1), then one finds

E ∼
(

∆γ

∆Ω

)
Eml , (J.19)

which is the conventional weak-turbulence scaling.
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The result (J.19) comes from a simple modification of the strong-turbulence balance. Instead of

writing γ2 ∼ k2V
2

E ∼M2E, one estimates

γ2 ∼
(
γ

ω

)
k2V

2
E =

(
γ

ω

)
M2E, (J.20)

which leads readily to Eq. (J.19). The extra factor of γ/ω describes the fraction of the energy that
can be transferred during one eddy turnover time when the motion is predominantly oscillatory.

The results for the scaling of the saturation level with ∆γ/∆Ω are summarized in Fig. J.1. The
strict model predicts the dashed lines. However, if one extrapolates to a weak-turbulence regime (in
which all modes can couple by three-wave resonance), then E/Eml ∼ ∆γ/∆Ω. Furthermore, if one
allows the possibility of ion stochasticity, then in real life the fluctuations can never grow above the
mixing-length level. In all models that level is achieved at the crossover point ∆γ/∆Ω ∼ 1. The more
realistic scalings are indicated by the solid lines.

Fig. J.1. Saturation levels E vs the driving parameter ∆γ/∆Ω for generic systems of forced, dissipative,
coupled, dispersive waves. The three-wave model treated in this appendix strictly predicts the dashed lines.
The solid line is the more realistic scaling for plasma systems with distributed forcing.

It should be emphasized that these general scaling laws apply to situations in which the forcing
and dissipation are distributed. They must be modified when the forcing is localized, as in a dual
cascade (Ottaviani and Krommes, 1992).

The structure of Eq. (J.11), E ∝ M−2, provides an explicit demonstration that saturation level
for a general system of coupled modes does not depend on the Taylor microscale Sec. 3.6.3, p. 66
or, equivalently, the rms shear; see the discussion in Sec. 4.4.4 (p. 123). Such a result would appear
as E ∝ M+2, since if Eq. (223) were derived for an advective nonlinearity, M would represent the
gradient operator. The present results can be interpreted as a description of generic energy-containing
modes. If the model were supplemented by additional small-scale modes, the fluctuation level would
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not sensibly change since it is determined by the eddy turnover rate for the energy-containing modes;
however, the total rms shear would increase.

The saturation levels of the three-mode model can be used to illustrate some of the general
discussion about zonal flows given in Sec. 12.7 (p. 248). A consistent interpretation of the three
modes is given in Table J.1.

Table J.1
A possible interpretation of the three-mode system as comprising two drift waves and one zonal-flow mode.

mode index interpretation sgnγ sgnM

K drift wave (unstable) + +

P drift wave (damped) − −

Q zonal flow (damped) − −

For simplicity it is assumed that σk = 1, so MK +MP +MQ = 0. The steady-state solution is

CK = a

(
γPγQ
MPMQ

)
, CP = a

(
γQγK
MQMK

)
, CQ = a

(
γKγP
MKMP

)
, (J21a,b,c)

where a is the square-bracketed quantity in Eq. (J8b). The total energy E, the drift-wave energy E∗,
and the zonal-flow energy E are easily shown to be

E = b

(
MK

γK
+
MP

γP
+
MQ

γQ

)
, E∗ = b

(
MK

γK
+
MP

γP

)
, E = b

(
MQ

γQ

)
, (J22a,b,c)

where b
.
= a(γKγP γQ/MKMPMQ). One also finds

γ∗E∗ = b(MK +MP ), −γE = bMQ; (J23a,b)

thus γE = γ∗E∗ − γE = b(MK + MP + MQ) = 0. As predicted by Eqs. (461), it is readily seen that
E∗ ∝ γ = −γQ; the result E ∝ γ∗ can be verified as well. A condensation into a pure zonal-flow state
is found by considering the limit γ → 0, in which case

CK → 0, CP → 0, CQ → a
(
γKγP
MKMP

)
, (J24a,b,c)

or E∗ → 0, E > 0. Nevertheless, as noted in Sec. 12.7 (p. 248), such condensation need not happen in
a realistic drift-wave–zonal-flow system because such a three-mode model does not properly capture
cascades of drift-wave invariants.
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K NOTATION

K.1 Abbreviations

An appended E means Equation, as in gyroki-
netic equation (GKE).

BBGKY — Bogoliubov–Born–Green–Kirkwood–
Yvon

BGK — Bernstein–Greene–Kruskal
CA — clump algorithm
CDIA — cubic direct-interaction approximation
CTR — controlled thermonuclear fusion research
CUDIA — cumulant-update direct-interaction ap-

proximation
c.p. — cyclic permutations
DIA — direct-interaction approximation
DNS — direct numerical simulation
EDQNM — eddy-damped quasinormal Markovian
FDA — fluctuation–dissipation Ansatz
FDT — fluctuation–dissipation theorem
FFT — fast Fourier transform
FLR — finite-Larmor-radius
FNS — Forster–Nelson–Stephen
GK — gyrokinetic
gBL — generalized Balescu–Lenard
HM — Hasegawa–Mima
ITG — ion temperature gradient
KAM — Kolmogorov–Arnold–Moser
LES — large-eddy simulation
LHDIA — Lagrangian-history direct-interaction ap-

proximation
MHD — magnetohydrodynamic
MSR — Martin–Siggia–Rose
NEMD — nonequilibrium molecular dynamics
NS — Navier–Stokes
PDE — partial differential equation
PDF — probability density function
PDIA — particle direct-interaction approximation
QED — quantum electrodynamics
QFT — quantum field theory
QLT — quasilinear theory
RBT — resonance-broadening theory
RCM — random-coupling model
RG — renormalization group
RMC — Realizable Markovian Closure
SO — stochastic oscillator

SOC — self-organized criticality
TFM — test-field model
TFTR — Tokamak Fusion Test Reactor
TH — Terry–Horton
TTM — turbulent trapping model
WKE — wave kinetic equation
WTT — weak-turbulence theory

K.2 Basic physics symbols

— A, a, α —

A(x, t) — vector potential (B = ∇×A)
a — interparticle spacing [a .= (3/4πn)1/3]
ã — random acceleration
α — inverse temperature in Gibbs distribution; fine-

structure constant (α .= e2/~c ≈ 1
137); in MHD,

helical contribution to the kinematic dynamo
α̂ — parallel coupling operator in HW equations

(α̂ .= −ω−1
ci D‖∇2

‖); ratio of inverse temperatures
in two-parameter Gibbs distribution (α̂ .= α/β)

— B, b, β —

B(x, t) — magnetic field (B = ∇×A)
b — k2

⊥ρ
2
i ; impact parameter

b0 — impact parameter for 90◦ scattering (b0
.=

q1q2/T )
b̂ — unit vector in direction of magnetic field (b̂ .=

B/|B|)
β — inverse temperature in a two-parameter Gibbs

distribution; rms frequency of stochastic oscil-
lator (β .= 〈δω̃2〉1/2)

β̂ — in HM equation, projection operator into k‖ 6=
0 subspace

— C , c, Γ, γ —

Ck — Fourier transform of homogeneous correlation
function

Cn — nth cumulant [Cn(1, . . . , n) ≡ 〈〈ψ(1) . . .
ψ(n)〉〉]

Cs[f ] — nonlinear collision operator for species s
(∂tf + · · · = −Cs[f ], where Cs

.=
∑

s′ Cs,s′)
CE , CW — Kolmogorov constants for energy and

enstrophy cascades
Ĉ — linearized collision operator [∂tχ+ · · · = −Ĉχ,

where f .= fM (1+χ)]
C(τ) — Lagrangian correlation function
C(1, 1′) — Eulerian correlation matrix
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c — speed of light
cA — Alfvén velocity (c2A

.= B2/4πnM)
cs — sound speed [cs

.= (ZTe/M)1/2]
Γ — generic notation for a point in Γ space (Γ .=
{Xi | i = 1, . . . , N}); strong-coupling parameter
(Γ .= e2/aT )

Γs(x, t) — flux of some quantity of species s
Γn(1, 2, . . . , n) — renormalized vertex of order n
Γ(k) — 〈J2

0 (k⊥v⊥/ωci)〉M = I0(b)e−b

γ — Poincaré–Cartan one-form
γ(k), γk — growth rate [ω(k) = Ω(k) + iγ(k)]
γ

(1)
k — rate of wave-number evolution in weakly in-

homogeneous medium (γ(1)
k

.= k ·∇Ωk)
γnl

q — long-wavelength nonlinear growth rate
γn(1, 2, . . . , n) — bare vertex (spurious when

primed)

— D, d, ∆, δ —

D — diffusion coefficient
DB — Bohm diffusion coefficient (DB

.= cTe/eB)
Dm — magnetic diffusion coefficient
D — diffusion tensor
D‖ — diffusion coefficient in the parallel direction

(along the magnetic field lines)
D⊥ — diffusion coefficient in the perpendicular di-

rection (across the magnetic field lines)
D(1, 2; 3, 4) — doubly connected graphs in field the-

ory
D — electric displacement
D — dissipation term in turbulent energy balance
D(k, ω), D(k, ω) — dielectric function and tensor
Dlin, Dnl — linear and nonlinear contributions

to D(k, ω)
D[q] — volume element in functional integration
d — number of spatial dimensions
∆(x;L) — periodic delta function with period L
∆k — spectral width of wave packet
∆t, ∆v, ∆x — elementary steps in random-walk

process
∆Ω — frequency mismatch (∆Ω .= Ωk + Ωp + Ωq,

with k + p + q = 0)
δfc, δf̃ — coherent and incoherent fluctuations
δk — Fourier mode spacing in a box of size L

(δk .= 2π/L)
δk — nonadiabaticity factor in the iδ model

[δnk/n = (1− iδk)δϕk]
δk,k′ — Kronecker delta function [δk,k′

.= 1 (k′ = k)

or 0 otherwise; δk ≡ δk,0]
δ(x− y) — Dirac delta function
δf/δη(1) — functional derivative of f [η] with re-

spect to η
∂ — (q/m)∂/∂v

— E, e, ε, ε —

E — total energy of Hamiltonian system (E =
K +W )

E(k) — omnidirectional energy spectrum, normal-
ized such that the total fluctuation energy E =∫∞
0 dk E(k)

E(x, t) — electric field
E‖ — effective, gyro-averaged E‖ [E‖

.= J0(k⊥ρ)E‖]
E — wave or fluctuation energy
Ê — electrostatic electric-field operator. The so-

lution of Poisson’s equation ∇ · E = 4πρ[f ]
is E = Êf . In Fourier space, its kernel is
Êk(v, s; v′, s′) = εk(nq)s′ . Ê = −∇Φ̂.

e — base of the natural logarithms, approximately
equal to 2.7 (Candlestickmaker, 1972)

e— electronic charge (e = |e|). Sometimes (it should
be clear from the context), e is used like q, a
generic charge whose species is not specified.

ee, ei — ee
.= −e, ei

.= Ze
ε — a positive infinitesimal; the wave-number ratio

q/k� 1
ε⊥ — dielectric constant of the gyrokinetic vacuum

(ε⊥ ≈ ω2
pi/ω

2
ci)

ε(2), ε(3) — coupling coefficients in Vlasov WTT, de-
fined by Eqs. (188)

εijk — Levi–Civita fully antisymmetric permutation
symbol

ε(x), εk — Coulomb interaction field, sans charge
[−∇ϕ ≡ −∇(1/|x|) = x/|x|3; the Fourier
transform is εk = −4πik/k2]

εp — plasma discreteness parameter (εp
.= 1/nλ3

D)
ε — constant rate of energy flow through k space in

steady-state homogeneous, isotropic turbulence

— F , f —

F — flatness statistic (F .= 〈δψ4〉/〈δψ2〉2)
F (x, µ, v‖, t) — gyrokinetic PDF
Fnl — covariance of incoherent noise (in MSR for-

malism, Fnl .= Σ−−)
f ext(x, t) — external random forcing in primitive

amplitude equation
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f̃k(x, t) — incoherent noise in generalized Langevin
equation

f(X, t) — one-particle PDF [f(X, t) = 〈Ñ(X, t)〉]
fM (v) — Maxwellian [fM(v) .= (2πv2

t )
−3/2×

exp(−v2/2v2
t )]

— G, g, η —

G, G0 — Green’s functions (renormalized and bare)
G(1, 1′) — correlation matrix in MSR formalism[

G(1, 1′) .= 〈〈Φ(1)ΦT (1′)〉〉 =
(
C(1, 1′) R(1; 1′)
R(1′; 1) 0

)]
g(1; 1′), g0(1; 1′) — particle propagators (renormal-

ized and bare)
g(1, 2) — pair correlation function
gαβ — metric tensor
η — resistivity; rate of enstrophy injection
ηk — total damping (linear plus nonlinear) in

Markovian closures (ηk = ηlin
k + ηnl

k )
ηnl

k — nonlinear damping in Markovian closures
η(r) — two-particle eddy diffusivity
η(1), η̂(1) — additive sources in field theory
ηi — d lnTi/d lnni

— H, h, Θ, θ —

H(Γ) — N -particle Hamiltonian
H(τ) — Heaviside unit step function [H(τ) = 0

(τ < 0), 1
2 (τ = 0), or 1 (τ > 0)]

H — fluid helicity (H .= 〈u · ω〉)
Hc — cross helicity (Hc

.= 〈v ·B〉)
Hm — magnetic helicity (Hm .= 〈A ·B〉)
h(1, 2, 3) — triplet correlation
Θ — canonical angle (new coordinates)
Θkpq — modified triad interaction time in RMC
θ — canonical angle (old coordinates)
θkpq — triad interaction time in EDQNM

— I , i —

I — identity matrix
Ik — fluctuation intensity (usually Ik

.= 〈δϕ2
k〉)

Iν — modified Bessel function (first kind)
I(1, 2; 1′, 2′) — interaction kernel in BSE
I — nonlinearly conserved invariant
i —
√
−1

— J , j —

J, J — action variable; the Poisson tensor ω̂−1

Jν(z) — Bessel function (first kind)

j(x, t) — current density

— K, k, κ —

K — kurtosis statistic (K .= F − 3)
Kν — modified Bessel function (second kind)
K(1, 2; 1′, 2′) — two-body scattering matrix in MSR

formalism
K — Kubo number (K .= βτac)
k — usually, a one-dimensional Fourier transform

variable; occasionally, the set {k, ωk}
k — typical k {in gyrokinetics, k2 .= τ [1− Γ(k)]}
k — Fourier-transform variable conjugate to x

[f(x) ∼ exp(ik · x)]
kd — Kolmogorov dissipation wave number (kd

.=
λ−1
d )

kD — Debye wave number [k2
D

.=
∑

s k
2
Ds, where

k2
Ds

.= 4π(nq2/T )s]
kT — Taylor wave number (kT

.= λ−1
T )

κ — thermal conductivity
κn, κT — inverses of density and temperature scale

lengths (κn
.= L−1

n , κT
.= L−1

T )

— L, l, Λ, λ —

L — box length for discrete Fourier transform;
macroscopic system size

L[F,G] — Legendre transform in MSR formalism
Lc — correlation length
Ln, LT — density and temperature scale lengths

(L−1
n

.= −∇ ln 〈n〉, L−1
T

.= −∇ ln 〈T 〉)
Ls — magnetic shear length
Lu — Lundquist number (Lu .= vAL/µm)
` — mixing length in turbulence; occasionally, arc

length along B
ln, log — loge, log10

Λ — in lnΛ, the Spitzer factor (Λ .= λD/b0 for
B = 0)

L — Onsager matrix (L .= M · C)
L — Lagrangian
L̂, L̂ — linear operator (∂tψ = −iL̂ψ)
λ, λc — general parameter and critical parameter in

bifurcation theory
λD — Debye length (λD

.= k−1
D )

λT — Taylor microscale {λT
.= [−C′′(0)/2C(0)]−1/2}

λd — Kolmogorov dissipation microscale
λmfp — kinetic mean free path (λmfp

.= vt/ν)
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— M , m, µ —

Mkpq — symmetrized mode-coupling coefficient
(symmetrical in p and q)

MU
kpq — unsymmetrized mode-coupling coefficient

(Mkpq = MU
kpq +MU

kqp)
me, m — electron mass
mi, M — ion mass
µ — kinematic viscosity; magnetic moment (µ ≈

v2
⊥/2B)

— N , n, ν —

N, Ns — total number of particles
Ñ(X, t) — Klimontovich microdensity [Ñ(X, t) .=

n−1
s

∑Ns
i=1 δ(X − X̃i(t))]

N — wave action [Nk .= (∂ReD/∂ωk)×
(〈|δEk|2〉/8π)]

Ne — Hasegawa–Wakatani invariant (Ne .= 1
2〈n2

e〉)
Ni — Hasegawa–Wakatani invariant (Ni

.= 1
2 〈n2

i 〉)
n, ne, ni — mean number density (n .= N/V )
ns(x, t), nG

s (x, t) — fluid density of particles (n) or
gyrocenters (nG)

ν — collision frequency
νd — resonance-broadening or diffusion frequency

(νd
.= τ−1

d )

— P , p, Π, π, $ —

P (x, t) — scalar pressure
P (x) — probability density function
P, Π — projection operators (P2 = P)
Pr — Prandtl number (Pr .= µ/κ)
P — production term in turbulent energy balance;

total wave momentum
p — canonical momentum
p — Fourier wave vector, as in k + p + q = 0
Π — dimensionless variable
π — approximately 3.14 (Sagan, 1985)
$ — general probability measure

— Q, q —

Q — orthogonal projection operator (Q .= I− P)
q — generic charge, of unspecified species; canonical

coordinate
q — Fourier wave vector, as in k + p + q = 0

— R, r, ρ —

R(1; 1′), R̃(1; 1′) — mean and random infinitesimal

response functions. If f̃η is a random variable
depending on an external source function η,
then R(1; 1′) .= 〈R̃(1; 1′)〉η=0, where R̃(1; 1′) .=
δf̃(1)/δη(1′). At linear order, where there are
no fluctuations, the averaging is irrelevant and
R is the usual Green’s function, called R0 to
emphasize the linear approximation.

Re, R — Reynolds number (Re .= UL/µ)
ρ, ρ — relative separation (ρ = |ρ|)
ρ(x, t) — charge density
ρe, ρi — gyroradii [ρs

.= vts/ωcs (s is in italics)]
ρs — sound radius [ρs

.= cs/ωci (s is in Roman)]
ρpol — polarization charge density

— S, s, Σ, σ —

S — entropy; stochasticity parameter; action; skew-
ness statistic (S .= 〈δψ3〉/〈δψ2〉3/2)

S(1, 1′) — structure function {S(1, 1′) = 2[C(1, 1)−
C(1, 1′)]}

S — information-theoretic entropy
s — species label (s = e, i)
s — rate-of-strain tensor {s .= 1

2 [(∇u) + (∇u)T ] −
1
3(∇ · u)I}

Σ — MSR mass-operator matrix
Σnl — turbulent collision operator [Σnl .= −Σ−+

(the sign convention is consistent with dissipa-
tion)]

σ — Pauli matrix
[
iσ .=

(
0 1
−1 0

)]
σk — weighting factor that defines nonlinear invari-

ant (I .=
∑

k σkCk)

— T , t, τ —

T — periodicity length or total integration time in
temporal Fourier transform; mean time [T .=
1
2(t+ t′)]

Ts — temperature of species s
Ts(x, t) — fluid temperature field
Tk,p,q — triplet correlation function
T (z) — Lie transformation operator
t, t̄, t′ — time
τ — time difference (τ .= t− t′)
τ — Reynolds stress (τ .= −ρm〈δu δu〉)
τac — autocorrelation time {τac

.= [C(0)]−1×∫∞
0 dτ C(τ)}

τc — collision time (τc
.= ν−1)

τcl — clump lifetime
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τd — turbulent diffusion time (τd
.= ν−1

d )
τr — recurrence time in QLT
τK — Kolmogorov time for exponential separation

— U , u, Υ —

Ũ , U — random and mean particle propagator
in RBT

U — mean velocity
U — ubiquitous tensor in the theory of the Landau

operator [U(u) .= (1− û û)/|u|]
u — rms velocity fluctuation
us(x, t) — fluid velocity
Υ(τ) — covariance of random coefficient for passive

statistics

— V , v —

V — total volume of system (often taken to infinity
in such a way that n .= N/V remains finite)

V — RMS velocity
VE — E ×B velocity (VE

.= cE × b̂)
V∗s — diamagnetic velocity (V∗s

.= −cTs/qsBLn)
V pol
s — polarization drift velocity [V pol

s
.=

ω−1
cs ∂t(cE⊥/B)]

V — Hasegawa–Wakatani invariant (V .= 1
2 〈|∇ϕ|

2〉)
v — particle velocity
vgr(k) — group velocity [vgr

.= ∂Ω(k)/∂k]
vph(k) — phase velocity [vph

.= [Ω(k)/k]k̂]
vt, vte, vti — thermal velocity [vts

.= (Ts/ms)1/2]
vtr, Vtr — microscopic (single-resonance) and

macroscopic (all resonances) trapping velocity
[vtr,k

.= (2q|ϕk|/m)1/2]

— W , w —

W (k), W [η] — cumulant generating function and
functional (W .= lnZ)

W — enstrophy (W .= 1
2 〈ω

2〉)
w̃(t) — Gaussian white noise

— X, x, ξ —

X — phase-space point (X .= {x, v, s})
X̃(t) — trajectory in µ space
X — Hasegawa–Wakatani invariant (X .= 〈ω n〉)
x — vector position in configuration space [x =

(x, y, z)]
x — Cartesian component of x
ξ̃ — external random variable in Langevin represen-

tations for DIA and EDQNM

— y —

y — vector position in configuration space
y — poloidal direction (perpendicular to both den-

sity gradient and magnetic field); Cartesian
component of x

— Z, z —

Z — atomic number (ne = Zni)
Z(k), Z[η] — characteristic (moment-generating)

function and functional
Z(z) — plasma dispersion function [Z(z) .=

π−1/2
∫∞
−∞dt (t− z)−1e−t2 (Im z > 0)]

Z — Terry–Horton invariant
z — toroidal direction; Cartesian component of x

— Φ, ϕ, φ —

Φ — dimensionless function
Φ(1) — extended vector in MSR formalism [Φ .=

(ψ, ψ̂)T ]
Φ̂ — electrostatic potential operator (Ê .= −∇Φ̂)
ϕ(x, t) — electrostatic potential
ϕ — effective (gyro-averaged) potential [ϕk

.=
J0(k⊥ρ)ϕk]

φn(x) — orthonormal eigenfunction

— χ —

χ(x, v, t) — deviation of the one-particle distribu-
tion from a Maxwellian [f = (1 + χ)fM ]

χ(k, ω) — susceptibility (D = 1 +
∑

s χs)

— ψ —

ψ — generic field
ψ̂ — adjoint field or operator in MSR formalism
ψn(t) — amplitude of orthonormal eigenfunc-

tion φn(x)

— Ω, ω —

Ω — solid angle.
Ω(k) — real normal-mode frequency
Ω̂(k), ω(k) — complex mode frequency (Ω̂ = Ω+iγ)
ω — Fourier variable conjugate to time t [f(t) ∼

exp(−iωt)]; the fundamental two-form of differ-
ential geometry, i.e., the exterior derivative of
the one-form γ

ω̂ — Lagrange tensor
ω̃(t) — random coefficient in stochastic oscillator

(〈ω̃2〉 .= β2)
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ω(x, t) — vorticity (ω .= ∇× u)
ω(x, t) — z component of vorticity (ω .= ∇2

⊥ϕ)
ωc, ωce, ωci — gyrofrequencies (ωcs

.= qsB/msc)
ωd — toroidal precession frequency
ωp, ωpe, ωpi — plasma frequency [ω2

p
.=
∑

s ω
2
ps,

where ω2
ps

.= 4π(nq2/T )s]
ωs — shearing rate (ωs

.= k∆v, where ∆v is the ve-
locity difference across a structure of size k−1)

ω∗(ky) — drift (diamagnetic) frequency (ω∗
.=

kyV∗)
ωt — transit frequency (ωt

.= kvt)
ωtr, Ωtr — microscopic (single-resonance) and

macroscopic (all resonances) trapping frequen-
cies (ωtr

.= kvtr)

K.3 Miscellaneous notation

Ã — Tilde signifies a random variable.
A∗ — complex conjugate of A
Ak, A(k) — The subscript and parentheses distin-

guish the discrete Fourier amplitude Ak from
the continuum transform A(k) when both are
in use simultaneously.

A
†
ij — Hermitian conjugate (A†ij

.= A∗ji)
A(t) — time average of A
A — space and ensemble average of A [A .=

L−1
∫ L
0 dx 〈A〉(x)]

〈A〉, δA — ensemble average and fluctuation of Ã
(Ã = 〈A〉+ δA; the tilde is frequently omitted)

〈A | B〉 — scalar product of A and B
〈A |, |B 〉 — Dirac bra and ket
〈〈x y z〉〉 — cumulant of x, y, and z
[[v1v2 . . .]] — fluid velocity cumulant
A[f ] — A depends functionally on f .
(f [A])+ — time-ordered operator product expan-

sion, with later times to the left. See foot-
note 121 (p. 88) for discussion of the time-
ordered exponential. By convention, 〈f [A]〉+ ≡
〈(f [A])+〉.

{A,B} — Poisson bracket of A and B
[A,B] — commutator of A and B ([A,B] .= AB −

BA)
(a ? b) — convolution of a and b [(a ? b)(x) .=∫∞

−∞dy a(x−y)b(y)]
A±(t) — one-sided functions [A±(t) .= H(±t)A(t)]
AT — transpose [ATij

.= Aji]
|A| — absolute value of A
‖A‖ — norm of A
[A] — dimensions of A
k̂ — unit vector (k̂ .= k/|k|)
O(ε) — asymptotically of order ε
P
∫

— principal value
[
P
∫ .= limε→0

(∫ ε
−∞ +

∫∞
ε

)]
Re, Im — real and imaginary parts
.= — definition
≡ — equivalent to

(
.= ≡ def=

)
sgn(x) — sign of x∑
∆

—
∑
p,q

k+p+q=0
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topic; underlining indicates a
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example.

α effect: 141.
α2 effect: 142, 223.
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action: 152.
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effective: 168.
random: 168.
wave: 97, 292.

action. . .
conservation: 107, 292.
density: 289.
principle: 271.

additive forcing: 243.
adiabatic. . .

invariants: 267.
regime: 40.
response: 16, 207.

advection,
passive: 53, 123, 156.
self-consistent: 53.

advective nonlinearity: 45.
white noise: 294.

ambipolarity, intrinsic: 36.
anomalies: 227.
anomalous. . .

diffusion: 17, 252.
dimension: 256, 266.
exponent: 55, 151, 266.
resistivity: 105.
transport: 10.

approximation,
Bourret: 78.
cumulant-discard: 80.
direct-interaction: 84, 126.
Markovian: 48, 79.
quasilinear: 79.
quasinormal: 81.
random-phase: 100.

author index: 361–366.
autocorrelation time: 48.

linear: 53, 54, 91.
quasilinear: 91.

avalanche: 242.
averaging procedures: 20.

background: 14.
backreaction: 32, 65, 113, 119.
backscatter, stochastic: 192.
Balescu–Lenard. . .

equation: 30.
operator: 15, 145, 174.

generalized: 32, 180.
linearized: 145, 176.

ballistic. . .
motion: 52.
scaling: 186, 243.

bare vertex: 82, 156.
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bound: 231–234.
constraint: 231.
variational principle: 231.

BBGKY hierarchy: 26, 277.
multitime: 154.
renormalization of: 143.
reversibility of: 27.
two-time: 143.

beauty: 152, 258.
β term: 176.
Bethe–Salpeter equation:

162–165.
BGK modes: 19, 119, 228.
bifurcation: 213.

subcritical: 213.
supercritical: 112, 213.

bifurcation theory, introduction
to: 212–214.

biorthogonal decomposition:
229.

Bohm. . .
diffusion coefficient: 15, 18.
scaling: 56, 267.

bound, basic: 231–234.
boundary conditions: 23, 211,

231, 247.
no-slip: 217.
periodic: 24.

random: 229.
bounds on transport: 230–235.
Bourret approximation: 78.
broadening,

line: 16.
resonance: 108.

Brownian motion: 48.
fractional: 52.

Burgers equation: 25, 165, 197.
and EDQNM: 185.
and SOC: 243.
and vertex renormalization:

165, 187.

CA: see clump algorithm.
Carleman’s criterion: 60.
cascade: 12.

direct: 73.
dual: 74.
enstrophy: 75.
inverse: 75.

CDIA: see direct-interaction
approximation, cubic.

central limit theorem: 49, 100,
208.

Chapman–Enskog procedure:
33.

characteristic function: 60.
charge,

free: 171.
polarization: 270.
renormalized: 159.

charge renormalization: 149.
Charney–Hasegawa–Mima

equation: 37.
Chirikov criterion: 94, 280.
chopping process: 28.
classical. . .

exponent: 55, 150.
flux: 58.
transport: 15.
transport theory: 33.

closure,
DIA: 126–146.
EDQNM: 183–203.
introduction to: 76–90.
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Lagrangian: 181.
Landau-fluid: 34.
Markovian: 102, 182–189.
RMC: 203–204.

closure problem: 53.
fluid: 33, 277–279.
statistical: 9.

clump. . .
algorithm: 67, 257.
lifetime: 121, 125.

clumps: 119–126.
cluster expansion: 60.
coarse-graining: 48, 101.
coefficient,

Gaussian: 53, 294.
non-Gaussian: 56.

coherent. . .
approximation: 115.
response: 102, 120, 133, 174,

209.
structures: 132, 208.

Cole–Hopf transformation: 25.
collapse: 34.
collision operator,

Balescu–Lenard: 15, 30.
Landau: 15, 31.
renormalized: 143.

compressive: 187.
Compton scattering: 105.
conservation,

action: 107, 292.
energy: 98.
momentum: 98.

constraint,
basic: 231.
two-time: 234.

continuum limit. . .
for particles: 28.
for wave numbers: 280.

convective cells: 38, 143–144,
179, 194, 248–251.

convolution theorem: 262.
correlation coefficient: 204.
correlation function,

Eulerian: 14, 153.
Lagrangian: 14.

correlation time, Lagrangian: 14.

correspondence principle: 196.
Couette flow: 247.
counterterms: 149.
coupling,

strong: 152.
weak: 12.

covariance: 62, 264.
critical exponents: 151.
cross. . .

correlation: 14, 39, 177, 238,
246, 256.

helicity: 44.
cubic. . .

direct-interaction
approximation (CDIA): 162.

nonlinearity: 160.
CUDIA: see direct-interaction

approximation,
cumulant-update.

cumulant update DIA
(CUDIA): 166.

cumulant. . .
discard: 80.
hierarchy: 154.

cumulants: 59.
curvature, magnetic: 42.
cutoff, wave-number: 31.

Darboux’s theorem: 268.
decimation,

primitive: 198.
statistical: 197–199.

density,
action: 289.
gyrocenter: 34, 270, 275.
Klimontovich: 27.
polarization: 270, 275.

density. . .
fluctuations: 35, 244.
profile: 35.
scale length: 14, 35.

depression of nonlinearity: 223.
descriptions,

fluid: 12.
kinetic: 12.

DIA: see direct-interaction
approximation.

diagonal part: 174.

diamagnetic. . .
frequency: 16.
velocity: 16, 35.

dielectric constant,
perpendicular: 29, 276.

dielectric function,
definition of: 171.
for guiding-center plasma:

178.
linear: 31.
nonlinear: 110, 170–181, 253,

255.
differential forms: 271.
diffusion,
v-space: 31, 50, 91, 108.
x-space: 50, 94.
anomalous: 17.
stochastic: 20.

diffusion coefficient,
Bohm: 15, 18.
negative: 95.

diffusion terms: 176.
diffusivity,

eddy: 140.
neoclassical: 15.
single-particle: 124.

dimension: 264.
anomalous: 266.
independent: 264.
noninteger: 74.

dimensional analysis: 46, 256,
264–267.

dimensionless parameter: 264.
flatness: 62.
Kubo number: 54, 57.
kurtosis: 62.
Reynolds number: 57.
skewness: 62.

dimensionless variable: 265.
direct-interaction approximation

(DIA): 84, 85, 126–146, 252,
254.

coherent: 200.
computational scalings for:

205.
cubic: 162.
cumulant update: 166.
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inertial-range spectrum of:
138.

Langevin representation of:
132.

numerical solution of: 138.
original derivation of: 128.
particle: 135.
static solutions for: 219.
two-scale: 246.
Vlasov: 142.
wave-number cutoff in: 140.

direct-interaction approximation
(DIA). . .

and irreversibility: 137.
and mixing length: 141.
and random Galilean

invariance: 138.
and three coupled modes:

144.
for passive advection: 135.
for stochastic oscillator: 84,

137.
direct. . .

cascade: 73.
interactions: 129.

discreteness parameter: 12.
dissipation: 24, 72, 211.

energy: 24, 66.
dissipation. . .

range: 73.
wave number: 66.

distant-interaction
approximation: 197.

distribution,
canonical: 68.
Gibbs: 68.
microcanonical: 69.

distribution function: 59.
divergence,

trajectory: 125, 126.
ultraviolet: 148.

dog: 123, 126.
Doob’s theorem: 53, 55.
drag,

frictional: 48.
polarization: 31.

drift,

E ×B: 9, 14, 29.
magnetic: 29.
polarization: 29, 269.

drift-kinetic. . .
equation: 29.
regime: 29.

drift. . .
instability: 18, 253.
waves: 16, 249.

dual cascade: 70, 74.
dynamo,

kinematic: 44, 141.
self-consistent: 44.

Dyson equation: 85, 127,
155–159.

E ×B. . .
drift: 9, 14, 29.
nonlinearity: 36.

eddy: 74.
damping: 183.
diffusivity: 140.

two-particle: 124.
turnover time: 56, 74, 81, 183,

300.
viscosity: 190.

eddy-damped quasinormal
Markovian (EDQNM)
approximation: 183, 255.

DIA-based: 185.
for the Burgers equation: 185.
Langevin representation of:

201.
nonrealizability of: 201.
three-wave: 297–301.

EDQNM: see eddy-damped
quasinormal Markovian
approximation.

Einstein relation: 48.
electron. . .

current: 106.
inverse Landau damping: 240.
momentum equation: 106.
resonance: 106, 111, 116.
response: 35, 270.
self-energy: 148.

energy,
electromagnetic: 95.

mechanical: 95.
wave: 98.

energy-containing range: 73.
energy. . .

balance equation: 24.
conservation: 37, 98.
dissipation: 24, 66.
flux: 24.
production: 24.
spectrum: 65.

cumulative: 65.
stability: 211.

enhanced reversed shear: 16.
ensemble,

Gibbs: 68–71.
microcanonical: 69.

enstrophy. . .
cascade: 75.
conservation: 37.

breaking of: 74.
entropy, information-theoretic:

239.
entropy. . .

balance: 238–241.
functional: 188.
paradox: 239.

equation,
Balescu–Lenard: 30.
Bethe–Salpeter: 162–165.
Burgers: 25, 165, 197.
Charney–Hasegawa–Mima: 37.
drift-kinetic: 29.
Dyson: 155–159.
Euler: 19, 23, 37, 69.
guiding-center: 30.
gyrokinetic: 29.
gyrokinetic Poisson: 29.
Hasegawa–Mima: 37.
Hasegawa–Wakatani: 39.
Klimontovich: 27.
Kuramoto–Sivashinsky: 43.
Langevin: 48.
Liouville: 26.
Navier–Stokes: 23.
nonlinear Schrödinger: 34.
Poisson’s: 28.
Terry–Horton: 35.
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Vlasov: 29.
Zakharov: 34.

equations: 22–45.
drift-Alfvén: 45.
four-field: 45.
ITG: 42.
Kadomtsev–Pogutse: 43.
Kardar–Parisi–Zhang: 26, 186.
Maxwell’s: 43.
MHD: 43.

equilibrium,
negative-temperature: 69.
thermal: 68.

equipartition: 68.
ergodicity: 19.
Euler equation: 19, 23, 37, 69.
Eulerian: 14.
exponent,

anomalous: 55, 151, 266.
classical: 55, 150.
critical: 151.

exterior derivative: 272.
external sources: 153.

FDT: see fluctuation–dissipation
theorem.

Feynman diagrams: 152.
Fick’s law: 14.
field-line bending: 30.
fields, coupled: 45, 115, 130,

203, 212.
fine-structure constant: 148.
finite-Larmor-radius effects: 16,

29, 34, 36, 37.
first vertex renormalization: 85,

131, 140, 224.
flatness: 62.
FLR effects: see

finite-Larmor-radius effects.
fluctuation–dissipation. . .

Ansatz (FDA): 184, 204.
theorem (FDT): 48, 67, 236.

gyrokinetic: 276.
fluctuations,

energy-containing: 24.
helicity: 142.
intermittent: 19.
magnetic: 27, 30.

non-Gaussian: 72.
fluid. . .

closure problem: 33.
description: 12.
helicity: 25, 44, 223.
limit: 12, 116, 177, 278.
response: 35.

flux,
classical: 58.
energy: 24.
gyrocenter: 36.
particle: 14.

Fokker–Planck. . .
coefficients: 145.
equation,

classical: 284.
turbulent: 119.

force-free magnetic fields: 45.
forcing,

additive: 48, 243.
multiplicative: 52, 243.

forms, differential: 271.
Fourier transform conventions:

262–263.
fractional Brownian motion: 52,

62.
free charge: 171.
frequency,

diamagnetic: 16.
trapping: 280.

Friday the 13th: 149.
functional, probability density:

293.
fundamental. . .

one-form: 271.
two-form: 272.

γ/k2
⊥: 111.

Galilean invariance: 165.
random: 138, 160.

Galilean transformation: 165,
187.

gauge. . .
scalar: 272.
transformation: 272.

Gaussian. . .
coefficient: 53, 294.
integration: 293–294.

probability density functional:
293.

reference field: 225.
white noise: 48, 293.

generalized. . .
Balescu–Lenard operator: 32,

180.
Hasegawa–Mima equation: 38.
reference model: 57, 231.

generating functional: 168.
cumulant: 153.
moment: 153.
time-ordered: 155.
two-body: 162.

generating. . .
function,

cumulant: 60.
for velocity cumulants: 277.
mixed-variable: 267.
moment: 60.
of phase-space flow: 273.

functionals: 153.
Gibbs. . .

distribution: 52, 68.
ensembles: 68–71.

Ginzburg–Landau model: 150.
GK: see gyrokinetic.
golden rule: 101.
graphs, doubly connected: 162.
Green’s function: see also

response function.
clump: 125.
diffusion: 285.
Klimontovich: 32.
Langevin,

linear: 49.
nonlinear: 132.

particle: 11, 32, 96, 247.
quantum-mechanical: 152.
transient growth from: 215.
two-particle: 164.
Vlasov: 11, 32.
wave: 101.

Green–Kubo formulas: 240.
group, renormalization: 151.
guiding-center model: 18, 30, 94,

178.
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gyro-Bohm. . .
scaling: 16, 56, 266.
units: 35, 207.

gyrocenter: 29.
density: 270, 275.

continuity equation for: 34.
flux: 36.
PDF: 29, 274–275.
position: 275.

gyrofluids: 276.
gyrokinetic. . .

equation: 29.
linear: 269.
nonlinear: 269, 274.

Poisson equation: 29, 270.
derivation of: 270.

regime: 29.
simulation: 276.
vacuum: 29, 276.

gyrokinetics: 256, 267–276.
gyrokinetics and gyrofluids:

267–279.

H theorem: 188.
Hasegawa–Mima.. .

equation: 37.
forced: 37.
generalized: 38.

invariants: 37, 69.
Hasegawa–Wakatani. . .

equations: 39.
invariants: 39.

helicity,
cross: 44.
fluid: 25, 44, 223.
magnetic: 44.

helicity fluctuations: 223.
hierarchy,

BBGKY: 26.
fluid cumulant: 277.
two-time: 143.
Vlasov cumulant: 28.

higher-order interactions: 146.
holes: 228.
Hurst exponent: 244.
hydrodynamic-quasilinear

regime: 58.
hydrodynamic. . .

contributions to transport:
143.

regime: 40.

incoherent. . .
noise: 102, 133, 158.

neglect of: 115.
response: 133, 174, 209.

neglect of: 118.
incomplete similarity

asymptotics: 266.
independence hypothesis: 92.
independent dimension: 264.
index,

author: 361–366.
notation: 302–307.

induced scattering: 104, 177,
291.

inertial range: 12, 73.
infinitesimal generator: 165.
infinitesimal response function:

see response function,
infinitesimal.

infinities: 148.
infinity, regularization of: 150.
initial conditions: 54, 168.

Gaussian: 83, 134, 201.
non-Gaussian: 165, 166.
random: 79, 144, 228.
sensitivity to: 19, 254.
singular: 79, 157.

insertion of a vertex: 157.
instability,

current-driven: 105.
drift-wave: 18, 253.
kinematic dynamo: 141.
nonlinear: 41, 216.
nonresonant: 42.
stochastic: 120.
suppression of: 119.

interface dynamics: 26.
intermittency: 19, 62, 255.
intrinsic. . .

ambipolarity: 36.
stochasticity: 45.

invariants,
Hasegawa–Mima: 37, 69.
Hasegawa–Wakatani: 39.

magnetic: 44.
nonlinear: 25.
Terry–Horton: 36.

inverse cascade: 75.
ion acoustic turbulence: 105.
ITG modes: 42.
Ito vs Stratonovich: 295.

K41: 73.
Kadomtsev–Pogutse equation:

43.
KAM surfaces: 97.
Karhunen–Loève expansion:

229.
kinematic dynamo: 44, 141.
kinetic description: 12.
kinetic equation,

Balescu–Lenard: 30.
wave: 18.

kinetic-quasilinear regime: 58.
Klimontovich. . .

equation: 27.
microdensity: 27.

knottedness of magnetic field
lines: 44.

Kolmogorov. . .
constant: 73.
microscale: 67, 74.
spectrum: 73.

KPZ equation: 26, 186.
Kubo number: 54, 56, 82.
Kuramoto–Sivashinsky

equation: 43.
kurtosis: 62.

Hasegawa–Wakatani: 41, 208.
in DIA: 221.

Lagrange. . .
multipliers, time-dependent:

234.
tensor: 272.

Lagrangian: 14, 152.
correlation functions: 244.
correlation time: 14.
random: 168.

Lagrangian History Direct
Interaction Approximation
(LHDIA): 182.
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Lamb shift: 149.
Landau-fluid closure: 34, 278.
Landau. . .

collision operator: 31.
damping: 11, 13.

linear: 33, 43, 110, 240, 278.
nonlinear: 104.

operator: 15.
resonance: 11.

Langevin equations: 48.
classical: 48–52.

Langevin representation. . .
for self-consistent DIA: 132.
of passive DIA: 137.

Langevin representations: 51.
Langmuir turbulence: 34, 146,

160.
large-eddy simulation: 190.
Legendre transformation: 157.

two-body: 163.
LES: see large-eddy simulation.
LHDIA: see direct-interaction

approximation,
Lagrangian-history.

Lie. . .
perturbation theory: 268, 273.
transform: 20, 105, 273.

line. . .
broadening: 16.
renormalization: 84, 146.

linkage. . .
of magnetic field lines: 44.
of vortex lines: 25.

Liouville equation: 26.
for magnetic field lines: 45.
for PDF: 224.

Liouville’s theorem: 68, 275.
local rigidity: 242.
log-normal distribution: 60.
logistic map: 63, 146.
long-time tails: 143.
Lundquist number: 44.
Lévy flights: 52.

Mach number: 23.
magnetic fields,

force-free: 45.
random: 30, 146.

sheared: 30, 247.
magnetic. . .

curvature: 42.
drift: 29.
fluctuations: 27, 30.
helicity: 44.
moment: 29.
Reynolds number: 44.
shear: 30, 41, 43, 212, 216,

247.
viscosity: 44.

Manley–Rowe relations: 99.
map, logistic: 63, 146.
mapping closure: 225.
marginal stability: 20, 214.
Markovian. . .

approximation: 48, 79, 145,
182.
unjustifiable: 119.

closure: 102, 182–189, 255.
computational scalings for:

205.
mass,

bare: 149.
renormalized: 149, 158.

mass. . .
operator: 158.
renormalization: 84.

Maxwell’s equations: 43, 46.
Maxwellian PDF: 83, 306.
Mayer cluster expansion: 61.
mean fields: 62, 245–248.
mean-field theory: 13, 29, 77,

150.
microscale,

Kolmogorov: 67, 74.
Taylor: 66, 74.

minimum dissipation: 234.
minimum impact parameter: 28.
miracles: 19.
mixing: 19.
mixing length: 14, 16, 18, 141.
mixing-length theory,

usage caveat for: 141.
mode-coupling coefficients,

determination of: 241.
Model A: 186, 244.

Model B: 186, 244.
Model C: 186.
modes,
kx = 0 (streamers): 249.
ky = 0 (zonal): 249.
kz = 0 (convective cells): 248.
BGK: 19, 228.
coupling of three: 129, 144,

297–301.
current-diffusive interchange:

212.
decimation of: 197.
drift: 40.
energy transfer between: 47.
energy-containing: 13, 190,

254, 255.
hydrodynamic: 143.
ITG: 42, 278.
resistive

pressure-gradient-driven:
212.

resolved: 190.
trapped-ion: 42, 76.
unresolved: 190.
unstable: 90.
zero-frequency: 143.

moment generating. . .
function: 60.
functional: 153.

moments: 59.
realizability constraints for:

see realizability constraints.
momentum,

electromagnetic: 95.
mechanical: 95.
wave: 97.

momentum conservation: 98.
MSR formalism: 146–181, 254.
multiplicative forcing: 52, 243.

Navier–Stokes equation: 23–25.
negative temperature: 69.
NEMD: see nonequilibrium

molecular dynamics.
neoclassical: 15.
Noether’s theorem: 272.
noise,

1/f : 242.
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incoherent: 102, 158.
spontaneous: 252.

non-Gaussian. . .
coefficient: 56.
PDF’s: 224–227.
statistics: 19.

non-normal operator: 212.
nonadiabatic. . .

correction: 36.
response: 35.

nondiagonal part: 174.
nonequilibrium molecular

dynamics (NEMD): 240.
nonlinear. . .

dielectric function: 105.
dispersion relation: 110, 115,

212.
instability: 41, 216.
interactions: 259.
invariants: 25.
Landau damping: 104.
plasma equations, essence of:

45.
scattering: 105.
Schrödinger equation: 34.

nonlinearity,
cubic: 160.
depression of: 223.
quadratic: 45, 126.

nonresonant particle: 20, 95.
normalized variable: 265.
notation: 302–307.
Novikov’s theorem: see Gaussian

integration.
NS: see Navier–Stokes.
Numerical Tokamak: 10.

observer coordinate: 59.
Ohm’s law: 43, 235.
one-body functions: 162.
one-form,

fundamental: 271.
Poincaré–Cartan: 271.

one-point theory: 122.
Onsager matrix: 236.
Onsager symmetry: 47,

235–238.
covariant formulation of: 237.

generalized: 237.
operator,

Balescu–Lenard: 15, 145, 174.
generalized Balescu–Lenard:

32, 180.
Landau: 15.
non-normal: 212.

operator product expansion:
227.

orbit diffusion: 93, 108.
and smoothing of resonances:

94.
orthogonal polynomials: 63, 89.
oscillation center: 20, 98, 105.
oscillator, stochastic: see

stochastic oscillator.

packing fraction: 228.
Padé approximants: 87.
panacea: 21, 160, 230.
parameter,

dimensionless: 264.
discreteness: 12.

parameters, dimensionless:
56–58.

parity matrix: 236.
part,

coherent: 174.
diagonal: 174.
incoherent: 174.
nondiagonal: 174.

particle,
nonresonant: 20, 95.
resonant: 95.

particle direct-interaction
approximation (PDIA): 135.

particle. . .
flux: 14.
propagator,

linear: 11.
random: 282.
renormalized: 173.

resonant: 20.
weight: 241.

passive advection: see advection,
passive.

path-integral representations:
166–170.

PDF,
approximants to: 89.
characteristic function of: 60,

166.
χ2: 221.
cumulants of: 59.
gyrocenter: 29, 274–275.
Liouville equation for: 224.
log-normal: 60.
Maxwellian: 83, 306.
moments of: 59.
N -particle: 26.
non-Gaussian: 221.
velocity-difference: 227.
Vlasov: 269.

PDF methods: 224–227, 255.
PDIA: see direct-interaction

approximation, particle.
percolation theory: 245.
periodic boundary conditions:

24.
perturbation theory,

failure of: 82.
radius of convergence: 83.
regular: 81.

phase shift: 14.
phase-space granulations: 119.
philosophy: 259.
plasma, guiding-center: 18.
plasma. . .

dispersion function: 83.
parameter: 12.

Poincaré–Cartan one-form: 271.
Poisson. . .

bracket: 286.
equation: 23, 28.

gyrokinetic: 29.
tensor: 272.

polarization, vacuum: 148.
polarization-drift nonlinearity:

36.
polarization. . .

charge density: 270.
density: 275.
drag: 31, 180, 195.
drift: 29, 178, 269, 292.
effects: 145.
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terms: 176.
Poynting theorem: 195.
predictability theory: 130, 170.
pressure, determination of: 23.
primitive amplitude

representation: 132.
principal value: 11.
probability density. . .

functionals: 59, 293.
functions: 59.

production: 24, 72, 121, 211.
energy: 24.

profile: 14.
submarginal: 242.

profile gradient: 16.
projection operators: 88–89.
propagator renormalization: 84,

150.
in RBT: 113.

proper orthogonal
decomposition: 229.

QED: see quantum
electrodynamics.

QLT: see quasilinear theory.
quadratic nonlinearity: 9, 53.
quasilinear theory,

conservation laws for: 98.
passive: 91–95.
self-consistent: 95–98.
verification of: 98.

quasilinear. . .
approximation: 79.
scaling: 150.
theory: 17, 90–98, 252.

stochasticity criterion for:
279–281.

quasineutrality: 270.
quasinormal approximation: 81.

random Galilean invariance:
138, 255.

random-coupling model: 80,
131.

random-phase approximation:
81, 100.

range,
dissipation: 73.

energy-containing: 73.
inertial: 73.

rapid-change model: 123.
rate-of-strain tensor: 23.
ray. . .

equations: 287.
trajectories: 290.

RBT: see resonance-broadening
theory.

RCM: see random-coupling
model.

realizability constraints: 63, 254.
Realizable. . .

Markovian Closure (RMC):
40, 203, 255.

Test-Field Model (RTFM):
204.

recurrence time: 280.
regime,

adiabatic: 40.
drift-kinetic: 29.
gyrokinetic: 29.
hydrodynamic: 40.
hydrodynamic-quasilinear: 58.
kinetic-quasilinear: 58.
strong-turbulence: 58, 109.

regression matrix: 236.
regularization: 150.
relative diffusion: 121.
relaxed states: 45.
renormalization: 83, 148, 256.

charge: 149.
line: 84.
mass: 84.
propagator: 84.
vertex: 85, 159–162.

renormalization group: 151,
196–197.

renormalized. . .
charge: 159.
vertex: 85.

resistivity, anomalous: 105.
resonance broadening: 20, 158,

256.
resonance-broadening theory

(RBT): 61, 108–119.
approximations underlying:

118.
failure of: 187.
formal aspects of: 281–285.

resonant particle: 20, 95.
response,

adiabatic: 16, 207.
coherent: 102, 120, 174, 209.
dielectric: 172.
first-order: 172.
fluid: 35.
incoherent: 102, 133, 174, 209.
nonadiabatic: 35, 36.

response function: see also
Green’s function.

infinitesimal: 54, 64, 155.
particle: 173.
passive: 283.
random: 77, 129, 285.
Vlasov: 173.

response functions: 64–65.
reversion: 182.
Reynolds. . .

number: 57.
magnetic: 44.

stress: 23, 156.
RMC: see Realizable Markovian

Closure.
roll–streak–roll scenario: 216.
rotational transform: 247.

safety factor: 247.
sandpile models: 219.
scalar product, velocity-space:

33.
scale length,

density: 14, 35, 42.
temperature: 42.

scaling,
ballistic: 186, 243.
Bohm: 56, 267.
Connor–Taylor: 264.
gyro-Bohm: 16, 56, 265, 266.
quasilinear: 150.

scaling analysis: 46.
scattering,

Compton: 105.
nonlinear: 105.

scattering matrix, two-body:
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163.
second-order modeling: 246.
selective decay: 44, 228.
self-consistency: 44, 116, 145,

254.
self-consistent field

approximation: 143.
self-energy: 148.
self-organization: 19.
self-organized criticality (SOC):

241–245.
self-similarity of the second

kind: 266.
self-trapping: 229.
self-tuning: 242.
shear: 247.

magnetic: 30, 43, 247.
velocity: 66, 257.

shear-Alfvén waves: 30.
shear. . .

length: 247.
waves: 144.

sheared. . .
magnetic fields: 247.
velocity: 247.

shearing rate: 247.
shielded test particles: 30.
simulation,
δf : 241, 276.
gyrokinetic: 276.
large-eddy: 190.

skewness parameter: 62, 72.
sloshing: 97.
SO: see stochastic oscillator.
SOC: see self-organized

criticality.
solenoidal: 187.
sound. . .

radius: 16.
speed: 16.

sources: 152.
spatial trapping: 281.
spectra,

1/f : 242.
energy: 65.
equipartition: 68.

spectral balance equation: 51,

174.
for DIA: 133.
for weak inhomogeneity:

286–288.
spectral. . .

paradigms: 12, 71–76.
reduction: 198.

spectrum,
hydromagnetic (k−3/2): 74.
Kolmogorov (k−5/3): 73.

spurious vertices: 165, 169.
stability,

energy: 211.
marginal: 20, 214.

state variables: 236.
stationary increments: 66.
statistical. . .

closure problem: 9.
decimation: 197–199.
descriptions: 9.

statistics,
conditional: 195.
non-Gaussian: 19, 145, 220.
second-order: 133.

stochastic. . .
acceleration: 79, 91, 142, 145,

182.
and DIA: 145.

backscatter: 192.
instability: 120, 146.
magnetic fields: 30, 146.
Newton–Raphson iteration:

198.
oscillator: 52–56, 79, 84.

and renormalization: 150.
stochasticity: 20, 252.

criterion for: 280.
intrinsic: 45.
particle: 279.
wave: 99.

stochasticity. . .
criteria: 92.
parameter: 280.
threshold: 55.

Stosszahlansatz: 49.
streaks: 216.
streamers: 249.

stress, Reynolds: 23.
strong turbulence: 17, 252.
strong-turbulence,

limit: 55.
regime: 58, 109.

structure function: 65.
second-order: 124.

subcritical bifurcation: 213.
subdiffusion: 52.
submarginal: 210.
submarginal. . .

profile: 242.
turbulence: 20, 41, 210–220.

supercritical bifurcation: 112,
213.

superdiffusion: 52.
superensemble: 131.
supermarginal: 210.
superposition principle,

Rostoker: 30, 143.
surrogate field: 225.
symmetries: 165.

Onsager: 47.
symplectic structure: 268.

tails,
long-time: 143, 244.
wagging of: 123, 126.

Taylor. . .
microscale: 66, 74, 125.
relaxation: 45.

tensor,
dielectric: 171.
Lagrange: 272.
Poisson: 272.
rate-of-strain: 23.

Terry–Horton. . .
equation: 35.
invariant: 36.

Test Particle Superposition
Principle: 30, 134, 143.

test particles,
Brownian: 48.
quasilinear autocorrelation

time of: 91.
shielded: 30.

test-field model: 187, 191, 204.
realizable: 204.
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TFM: see test-field model.
TH: see Terry–Horton.
theorem,

Darboux: 268.
Noether: 272.

thermostat: 240.
three-wave dynamics: 144.
threshold,

energy-stability: 211, 233.
linear-instability: 211.
toppling: 242.

time ordering: 88, 155.
timeline: 260–262.
toppling threshold: 242.
transfer: 71, 72, 211.
transition to turbulence: 20.
transport: 13.

anomalous: 10.
classical: 15.
neoclassical: 15.

trapping: 111.
frequency: 280.
velocity: 280.

triad interaction time,
renormalized: 184.
weak-turbulence: 102.

truth: 273.
TTM: see turbulent trapping

model.
turbulence,

decaying: 75.
ion acoustic: 105.
Langmuir: 161.
strong: 17.
submarginal: 20, 41.
weak: 17.
weakly ionized: 144.

turbulent. . .
damping: 133.
electromotive force: 235.
trapping model: 180.

two-body functions: 162.
two-form, fundamental: 272.
two-point theory: 122.
two-time correlations: 234.

ultraviolet divergence: 148.
units, gyro-Bohm: 35, 207.

vacuum polarization: 29, 148.
variable,

dimensionless: 265.
normalized: 265.

variational methods: 230–235.
velocity,

diamagnetic: 16, 35.
trapping: 280.

velocity shear: 66, 247.
velocity-difference PDF: 227.
velocity-space diffusion: 31, 50,

91.
vertex,

bare: 156.
four-point: 294.
renormalized: 85.
spurious: 165, 169.

vertex. . .
functions: 157.
insertion: 157.
renormalization: 129, 146,

159–162.
first: 86, 131, 140, 224.
neglect of: 85.

renormalization. . .
and Ward identities: 165.
in the Burgers equation:

165, 187.
viscosity,

kinematic: 11.
magnetic: 44.

Vlasov. . .
cumulant hierarchy: 28.
equation: 29, 46, 62.
operator: 28.
plasma: 247.
turbulence: 28.

vortex peeling: 216.
vortices: 41.
vorticity: 24.

equation: 25.
of E ×B motion: 37.

Ward identity: 165, 187.
wave,

compressional Alfvén: 30.
shear-Alfvén: 30.

wave kinetic equation,
derivation of: 288–292.

wave number,
dissipation: 66.
typical: 111.

wave-number. . .
evolution: 195.
spectra: 14.

wave. . .
action: 97.
energy: 98.
kinetic equation: 18, 100, 101.
kinetic equation. . .

for drift waves: 291.
momentum: 97.
packet: 91.

weak-coupling approximation:
18, 140.

weak-dependence principle: 129.
weak-turbulence. . .

limit: 55.
theory: 20, 98–108, 252.

validity conditions for: 103.
Vlasov: 103–108.

weak. . .
coupling: 12.
turbulence: 17.

Weyl. . .
calculus: 286.
symbol: 286.

white noise: 48, 108, 123, 162,
170, 202, 248, 282, 284, 293.

Wick’s theorem: 61.
winding number: 247.
WKE: see wave kinetic

equation.
WTT: see weak-turbulence

theory.

Zakharov equations: 34.
zonal flows: 38, 249, 257.

growth rate of: 195.
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Métais, O.: 192.

Nagel, S. R.: 242, 243.
Nakayama, T.: 154.
Nelson, D. R.: 185, 196, 261.
Nevins, W. M.: 238, 267.
Newell, A. C.: 34, 99.
Newman, D. E.: 75, 212, 228,

243.
Newman, M. E. J.: 8, 148, 150,

151, 157, 196, 242.
Ng, C. S.: 74.
Nicholson, D. R.: 12, 34, 103,

161, 162.
Nishijima, K.: 163.
Nishikawa, K.: 12.
Northrop, T. G.: 29, 267.
Novikov, E. A.: 294.

O’Neil, T. M.: 31, 120.
Oberman, C. R.: 27, 30, 38, 45,

50, 99, 121, 143, 179, 247,
261, 278.

Ogura, Y.: 81.
Okamoto, M.: 246.
Okuda, H.: 143, 248, 261.
Onsager, L.: 69, 235, 236, 260.
Oppenheimer, J. R.: 148.
Ornstein, L. S.: 14, 48, 49, 260.
Orszag, S. A.: 8, 10, 27, 60, 64,

67, 69, 74, 76, 80, 81, 83, 90,
91, 108, 118, 138, 142, 176,
182, 185, 196, 203, 226, 253,
261.

Ott, E.: 19, 20, 213, 214.
Ottaviani, M. A.: 38, 42, 57,

103, 185, 203, 207, 208, 221,
245, 297, 300.

Pais, A.: 147, 149.
Paladin, G.: 8, 20, 26, 43, 46.
Panda, R.: 223.
Papoulis, A.: 53, 59.
Parisi, G.: 26.
Parker, S. E.: 241, 276, 278.
Patarnello, S.: 41, 228.
Payne, G. L.: 103.
Perkins, F. W.: 16, 33, 253, 262,

267, 278.
Pesme, D.: 93, 140, 174, 176,

180, 181, 252, 262.
Petviashvili, V. I.: 228.
Peyraud, N.: 114.
Pfirsch, D.: 140, 200, 252.
Phillips, L.: 234.
Phillips, O. M.: 11.
Phythian, R.: 154, 155, 166, 167.
Pines, D.: 90, 261.
Plauger, P. J.: 295.
Pogutse, O. P.: 42, 43, 96, 119,

120.
Politzer, P. A.: 119.
Polyakov, A.: 227, 262.
Pope, S. B.: 59, 224, 225.
Porkolab, M.: 99.
Powers, E. J.: 241, 255.
Prandtl, L.: 141, 260.

Qian, Q.: 42.
Qin, H.: 271, 275.

Rath, S.: 238, 239.
Rechester, A.: 27, 121, 170.
Reddy, S. C.: 212.
Reichl, L. E.: 143.
Retherford, R. C.: 148.
Reynolds, O.: 23.
Reynolds, W. C.: 196, 216.
Ritz, Ch. P.: 241, 255.

362



Roberson, C.: 98.
Robinson, D. C.: 255.
Rogister, A.: 99, 261.
Rolland, P.: 114.
Rose, H. A.: 8, 9, 13, 27, 28, 34,

65, 74, 86, 134, 135, 138, 142,
144, 146, 147, 153–156, 159,
161–166, 169, 190, 192, 196,
200, 209, 223, 238, 254, 261,
262.

Rosenbluth, M. N.: 15, 27, 28,
30, 31, 45, 121, 170, 194, 195,
200, 248, 250.

Rostoker, N.: 28, 30, 143, 174,
261.

Rott, N.: 57.
Rub́ı, J. M.: 237.
Rudakov, L. I.: 34, 106, 113,

115, 261.
Ruelle, D.: 19.
Rutherford, P. H.: 12, 269.

Saffman, P. G.: 24.
Sagdeev, R. Z.: 8, 15, 30, 38, 45,

99, 102, 104, 105, 107, 248,
270, 292.

Salat, A.: 93.
Sanderson, A. D.: 114.
Schekochihin, A. A.: 44, 60, 294.
Schiffer, J. P.: 26.
Schram, P. P. J. M.: 27.
Schweber, S. S.: 148, 152.
Schwinger, J.: 147, 148, 152,

153, 156, 162, 260.
Scott, B. D.: 45, 212.
Serber, R.: 149.
Shadwick, B. A.: 198.
Shannon: 238.
Shapiro, V. D.: 38, 248.
She, Z.-S.: 226, 262.
Sheffield, J.: 10.
Shlesinger, M. F.: 52.
Siggia, E. D.: 27, 65, 86, 142,

144, 146, 147, 153, 154, 156,
162–164, 190, 196, 209, 223,
238, 254, 261.

Similon, P.: 7, 34, 76, 118, 123,
144, 178, 179, 200, 261.

Sivashinsky, G. I.: 43.
Skiff, F.: 14.
Smagorinsky, J.: 190.
Smith, G. R.: 120, 230–234, 253.
Smith, L. M.: 196.
Smith, R. A.: 57, 58, 233, 262,

264, 281.
Smith, S. A.: 34, 192, 278.
Smolyakov, A. I.: 38, 192, 193,

251, 286, 288.
Snyder, P.: 42.
Son, S.: 218.
Spitzer, L.: 9, 15, 29, 261.
Sridhar, S.: 74.
Steenbeck, M.: 141.
Stern, M. E.: 37.
Stewart, R. W.: 73.
Stix, T. H.: 12, 287.
Stoltz, P. H.: 181.
Sudan, R.: 7, 34, 140, 144, 196,

197, 200, 252, 259, 261, 262.
Sugama, H.: 246.
Sulem, P. L.: 8, 9, 140, 187, 205.
Sun, G.-Z.: 34, 161, 162.
Surko, C. M.: 255.
Swindle, G. H.: 242.

Tang, C.: 241, 242.
Tang, W. M.: 11, 108, 238.
Tange, T.: 106.
Tatsumi, T.: 81.
Taylor, G. I.: 14, 66, 140, 244,

260.
Taylor, J. B.: 15, 18, 30, 44, 45,

81, 143, 173, 178, 256, 261,
264, 266, 269, 293.

Tennekes, H.: 23, 24, 73, 141.
ter Harr, D.: 34.
Terry, P. W.: 35, 75, 100, 102,

121–123, 144, 200, 228, 247,
253, 261.

Tetreault, D. J.: 91, 114, 115,
118, 142, 176, 212, 228, 229,
261, 281.

Theilhaber, K.: 180.
Thompson, H. R.: 128.
Thompson, W. B.: 81, 261.
Thomson, J. J.: 82, 83, 93, 109,

113, 284.
Thorne, K. S.: 271, 272.
Thornhill, S. G.: 34.
Thoul, A. A.: 123, 238.
Thyagaraja, A.: 255.
Tidman, D. A.: 26, 30.
Tippett, M. K.: 216.
Toda, M.: 54, 67.
Tolman, R. C.: 68.
Tracy, E. R.: 198.
Trefethen, A. E.: 215.
Trefethen, L. N.: 215.
Treve, Y. M.: 253, 267.
Trivelpiece, A. W.: 12, 30.
Tsunoda, S. I.: 181.
Tsytovich, V. N.: 34, 99, 104,

113, 115, 261.

Uhlenbeck, G. E.: 14, 48, 49, 51,
53, 260.

Vaclavik, J.: 114.
Vahala, G.: 81, 94, 95, 196.
Valeo, E. J.: 240, 276.
van Dyke, M.: 23.
van Kampen, N. G.: 34, 54, 63,

76, 88, 295.
van Milligen, B. Ph.: 244.
vanden Eijnden, E.: 30, 45, 50,

93, 285.
Vasil’ev, A. A.: 40.
Vasiliev, A. N.: 196.
Vedenov, A.: 261.
Verlet, L.: 26.
Vespignani, A.: 242.
Voltaire: 230.
Vulpiani, A.: 8, 20, 26, 43, 46.
Vvedensky, D. D.: 166.

Waelbroeck, F. L.: 12.
Wagner, C. E.: 126.
Wagner, F.: 246.
Wainwright, T. E.: 143.
Wakatani, M.: 12, 38, 253.
Walecka, J. D.: 148.
Waleffe, F.: 73, 212, 216, 262.
Wall, H. S.: 60, 63.
Waltz, R. E.: 35, 145, 212, 261.
Wang, C. Y.: 235.

363



Wang, M. C.: 49, 53.
Weaver: 238.
Weichman, P. B.: 132.
Weinstock, J.: 15, 89, 92, 108,

114, 116, 261, 283.
Wersinger, J.-M.: 144.
Wesson, J.: 7.
Wick, G. C.: 61.
Williams, E. A.: 143.
Williams, R. H.: 116.
Williams, T.: 198.
Wilson, H. R.: 246.
Wilson, K. G.: 196.

Wittenberg, R.: 43.
Wootton, A.: 255.
Wu, C.-S.: 32.
Wyld, H. W.: 146, 261.

Xia, H.: 93.

Yaglom, A. M.: 19, 81.
Yakhot, V.: 196, 227.
Yang, S.-C.: 270.
Yang, T.–J.: 197.
Yoshizawa, A.: 7, 8, 13, 45, 190,

212, 220, 246, 255.

Zabusky, N. J.: 10.
Zakharov, V. E.: 34, 99, 103.
Zapperi, S.: 242.
Zarnstorff, M. C.: 16, 210.
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