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Fundamental statistical descriptions of
plasma turbulence in magnetic fields

John A. Krommes *

Princeton University, P.O. Box 451, Princeton, New Jersey 08543-0451 USA

Abstract

A pedagogical review of the historical development and current status (as of early 2000) of systematic
statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and
methodology, not practical applications. Particular attention is paid to equations and formalism appropriate
to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence
is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given
of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those
are developed independently, then shown to be special cases of the direct-interaction approximation (DIA),
which provides a central focus for the article. Various methods of renormalized perturbation theory are
described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose.
A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern
approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian
closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in
the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a
realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-
physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous
topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and
fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of
both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and
scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations, stochasticity criteria for
quasilinear theory, formal aspects of resonance-broadening theory, Novikov’s theorem, the treatment of weak
inhomogeneity, the derivation of the Vlasov weak-turbulence wave kinetic equation from a fully renormalized
description, some features of a code for solving the direct-interaction approximation and related Markovian
closures, the details of the solution of the EDQNM closure for a solvable three-wave model, and the notation
used in the article.
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quasilinear theory; weak turbulence; resonance broadening; clumps; realizable Markovian closure; eddy
viscosity; submarginal turbulence; bounds on transport
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1 INTRODUCTION

“It is open to every man to choose the direction of his striving; and also every man may
draw comfort from Lessing’s fine saying, that the search for truth is more precious than its
possession.” — Finstein (1940).

This article is devoted to a review of the conceptual foundations of statistical descriptions of
turbulence in fully ionized, weakly coupled, classical plasmas as the discipline is understood at the
end of the 20th century.! Particular attention is paid to plasmas in strong magnetic fields, both
because of their importance to the magnetic confinement approach to thermonuclear fusion (Furth,
1975; Wesson, 1997) and because the physics is closely related to the behavior of neutral fluids. The
goals are to unify disparate approaches, exhibit deep underlying connections to other fields (notably
quantum field theory and neutral-fluid turbulence), and provide historical perspective. The emphasis is
on philosophy and systematic mathematical techniques. It is hoped that awareness of unifying themes
and techniques will aid the reader in organizing the abundance of information, clarify disagreements
between competing theories, foster appropriate skepticism about new approaches, and give one a
better appreciation of the roots of the back-of-the-envelope estimates that are frequently employed
in practice. Most of the basic themes discussed in this article are not specific to plasma physics and
should interest anyone intrigued by nonlinear behavior.

The article is not a review of most of the vast experimental, computational, and theoretical
research that falls under the aegis of plasma turbulence. Motivations and a few highly idealized
physical models that illustrate the formalism will by and large be distilled from applications arising
in fusion research, but no attempt will be made to even-handedly survey the many fascinating and
detailed practical applications that arise in astrophysics, fusion, or other places (National Research
Council, 1986). For some of those, entry points to the literature can be found in the recent collection
edited by Sudan and Cowley (1997), which records the activities of the most recent research workshop
focused on plasma turbulence. A short review by the present author that addresses some of the
topics elaborated below can also be found there (Krommes, 1997¢). A useful introductory overview of
selected issues in plasma turbulence was given by Similon and Sudan (1990). Some modern practical
applications of turbulence theory to fusion were described in some detail by Itoh et al. (1999) and
reviewed by Yoshizawa et al. (2001).

Given that turbulence is ubiquitous in many important plasma applications, including magnetic

1 Work discussed in this article is limited to that published before 2000, except for a few selected papers
related to themes developed in this review. Notably, (i) the pedagogical article by Grossmann (2000) describes
current understanding of the submarginal onset of shear-flow turbulence [see Sec. 9 (p. 210)]; (ii) the work by
Krommes and Kim (2000) serves as a minireview in its own right of some plasma-physics literature on zonal
flows, the statistical interactions of disparate scales, and related issues [Secs. 7.3 (p. 189) and 12.7 (p. 248)];
and (iii) the review article by Yoshizawa et al. (2001) describes some of the more practical fluid and plasma
turbulence issues, particularly those related to inhomogeneity, and is nicely complementary to the present
article.



fusion, the need for a fundamental and systematic theory of plasma turbulence may appear to be
self-evident. In reality, however, most theoretical “calculations” of turbulent plasma transport are
still done at the level of primitive mixing-length estimates articulated 35 years ago (Kadomtsev,
1965), and actual research on systematic, mathematically justifiable approximations is almost
nonexistent within the plasma community. To the extent that more quantitative results have been
required, the overwhelming response has been to adopt the brute-force approach of direct numerical
simulations (DNS?). That is both understandable and reasonable. Nevertheless, analytical theory
has its place. Clever physics-based techniques are required even to derive equations that can be
efficiently used in DNS [see the discussion of gyrokinetic and gyrofluid equations in Appendix C
(p. 267)]. Moreover, it is difficult to make sense of the plethora of simulation data without a
detailed and systematic theoretical superstructure, particularly in view of an abundance of theoretical
misconceptions that have proliferated over the years. Formal methods are invaluable in deriving
and justifying heuristic procedures. Finally, the turbulence problem presents one of the outstanding
intellectual challenges of modern science; it is interesting in its own right.

The prospective student of plasma turbulence faces a daunting challenge. She is confronted
with literally thousands of articles on nonlinear plasma behavior,® frequently in the context of
extremely complicated confinement geometries and fusion scenarios. Focusing on papers of obviously
conceptual nature helps to provide initial orientation, but those almost inevitably assume background
in hydrodynamic (neutral-fluid) turbulence, a discipline under development since the early 1900s;
contemporary literature in that field is quite sophisticated (HydrotConf, 2000). Mathematical
turbulence theory was pioneered by workers in the field of neutral fluids, the incompressible Navier—
Stokes equation (NSE) providing the fundamental mathematical model. Very much can be learned
from that outstanding research, so there will be strong overlap between certain parts of the present
article and discussions of statistical turbulence theory for neutral fluids. The collection edited by
Frost and Moulden (1977) contains useful introductory articles on fluid turbulence and associated
mathematical techniques. Some review articles on fluid turbulence are by Orszag (1977), Rose and
Sulem (1978), and Kraichnan (1991); recent books? are by McComb (1990), Frisch (1995), and
Lesieur (1997). There are also strong connections to quantum field theory and the theory of critical
phenomena; some useful books are by Zinn-Justin (1996), Binney et al. (1992), and Goldenfeld (1992).
Applications of dynamical systems analysis to turbulence problems were described by Bohr et al.
(1998). Some important early books on plasma turbulence are by Kadomtsev (1965), Sagdeev and
Galeev (1969), and Davidson (1972), but those do not achieve the breadth and unification for which
the present article strives. A recent review article that discusses some of the more practical aspects
of modeling turbulence in fluids and plasmas is by Yoshizawa et al. (2001); some of those topics were
treated in more detail by Itoh et al. (1999).

Some of the implications of fluid-turbulence theory for plasmas were discussed by Montgomery

2 The principal abbreviations used in this article are summarized in Appendix K.1 (p. 302).

3 A useful survey of important topics in plasma physics can be found in volumes 1 and 2 of the Handbook
of Plasma Physics, edited by Rosenbluth and Sagdeev (1984).

4 The emphases in these books are loosely orthogonal. Frisch (1995) gives an elegant introduction to 3D
turbulence, including an authoritative discussion of intermittency. McComb (1990) [a worthy successor to
the earlier, now out-of-print, book by Leslie (1973Db)] is strong on statistical and field-theoretic methods such
as the direct-interaction approximation. Lesieur (1997) emphasizes Markovian statistical closures and much
real-world phenomenology, including two-dimensional turbulence.



(1977) and Montgomery (1989). In Secs. 1.1 (p. 9) and 1.2 (p. 10) I shall expand on his remarks
and briefly describe the important similarities and differences between turbulence in plasmas and in
neutral fluids. That introductory discussion is not self-contained, being intended to quickly inform
experts about the emphasis and special topics to be discussed here. The topics will all be revisited in
a self-contained way in the body of the article.

1.1 Similarities between plasma and neutral-fluid turbulence

By definition, turbulence involves random motions of a physical system, so statistical descriptions
are required at the outset.

1.1.1 The statistical closure problem

Turbulence is an intrinsically nonlinear phenomenon, so microscopically it exhibits extreme
sensitivity to initial conditions or perturbations. To extract a macroscopic description that is robust
under perturbations, it is useful to treat the turbulent fields as random variables and to introduce
various statistical averaging procedures. The fundamental difficulty faced by any statistical description
of turbulence is the statistical closure problem,® in which the time evolution of cumulants [defined in
Sec. 3.5.2 (p. 59)] of order n for some field 1 is coupled by the nonlinearity to cumulants of order n+1.
For example, if the equation of motion is schematically 0,4 = %M ¥? and one writes 1 = () + 09,
where (...) denotes either a time average (a concept well defined only in a statistically steady state)
or an ensemble average over random initial conditions, ¢ then

On(0) = LM ()? + M (59)?), (1a)
D0 ()8 (1)) = M (#)) (99 ()3 (t)) + 5 M5 ()d (t)d(t)), (1b)

and so on. A moment-based statistical closure (approximation) provides a way of expressing a
cumulant of some order (say, 3) in terms of lower-order cumulants, thereby closing the chain of
coupled equations of which Eqs. (1) are the first two members. Representative general discussions of
the statistical closure problem include those by Kraichnan (1962a,b, 1966a, 1972, 1975a, 1988a), Rose
and Sulem (1978), Krommes (1984a,b), McComb (1990), and Frisch (1995).

The statistical closure problem is common to both plasmas and neutral fluids, and indeed to any
nonlinear system that exhibits random behavior. Most work has been done on quadratic nonlinearity.
The familiar Navier—Stokes (NS) equation (NSE) of neutral fluids (Sec. 2.1.1, p. 23) is quadratically
nonlinear, as is the Klimontovich kinetic equation of plasma physics (Sec. 2.2.2, p. 27). Furthermore,
in strongly magnetized plasmas an x-space fluid description is often adequate, giving rise to various
multifield, quadratically nonlinear generalizations of the NSE [see, for example, Sec. 2.4.3 (p. 34)].
The dominant plasma nonlinearity describes advection by E x B drift motions across the magnetic
field B. A very early but clear paper that discussed the importance of E x B drifts to turbulent
plasma transport was by Spitzer (1960).

> The discussion here relates to moment-based statistical closures. More generally, one can consider
approximations to entire probability density functions (PDF’s). PDF-based closure methods are discussed in
Sec. 10.4 (p. 224).

6 For some discussion of the differences between various averaging procedures, see Appendix A.7 of Balescu
(1975).



Although much neutral-fluid research has been on three-dimensional (3D) turbulence, certain
important applications drawn from geophysics (Holloway, 1986) can profitably be described as 2D;
there are profound differences between 2D and 3D turbulence. In plasmas the presence of a strong
magnetic field introduces a fundamental anisotropy between the directions perpendicular and parallel
to B; various 2D or quasi-2D fluid models result (Sec. 2.4, p. 33), and their physical behavior has
much in common with the 2D neutral fluid. An important review article on 2D turbulence is by
Kraichnan and Montgomery (1980).

1.1.2  Fundamental physics vs practical engineering

Just as in neutral fluids, a dichotomy has arisen in plasma research between the “engineering”
and “fundamental-physics” approaches to the description and calculation of turbulence. To date, the
overwhelmingly dominant practical application of plasma physics has been controlled thermonuclear
fusion research (CTR). The extreme practical complexity of magnetic confinement devices such
as the tokamak (Sheffield, 1994) has inevitably led to a predominance of engineering (“mixing-
length”) estimates of “anomalous” " transport, confinement scaling laws based on statistical analyses
of experimental data (Kaye, 1985; Kaye et al., 1990), etc. Many analogies can be drawn to practical
applications of neutral-fluid turbulence—statistical closure theory is hopelessly inadequate for the
detailed quantitative design of aircraft, for example. Nevertheless, although the engineering approach
is clearly necessary, the need for systematic physics- and mathematics-based foundations exists in
plasma physics just as it does in neutral fluids.

1.1.3 The role of computing

Finally, the continuing development of ever faster, ever cheaper computing power (Orszag and
Zabusky, 1993) has influenced the fields of plasma as well as neutral-fluid turbulence. In both fields this
shows up most clearly in engineering-type modeling of real physical situations. In fusion research, for
example, a Grand-Challenge “Numerical Tokamak” project (Cohen et al., 1995) attempts to employ
state-of-the-art 3D simulations to address practical issues of turbulence and transport in tokamaks.
(An already enormous and rapidly evolving literature on those topics is not reviewed here.) One
may hope that this aggregation of sophisticated codes will eventually shed light on fundamental and
conceptual issues of plasma turbulence just as recent numerical studies of intermittency have done in
neutral fluids [see, for example, Chen et al. (1993)].

1.2 Differences between plasma and neutral-fluid turbulence

The differences between this review and a conventional review of neutral-fluid turbulence theory
are more numerous than the similarities.

7 Anomalous refers to effects beyond those due to Coulomb scattering involving discrete particles. It is an
unfortunate and somewhat outmoded term that suggests profound mystery and ignorance. In fact, it is the
premise of this article that much of the mystery has now been dispelled.
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1.2.1 Heuristics vs systematics

Philosophically, there has been in plasma physics a disturbing emphasis on heuristics rather than
systematics. The need for the engineering approach to CTR has already been stated and is not in
question; however, there has been great confusion over what constitutes a properly systematic theory
of plasma turbulence. One goal of this article is to draw this line more clearly. In particular, it
must be emphasized that in the analytical theory of turbulence described here the starting point is
a given nonlinear equation [representative ones are described in Sec. 2 (p. 22)], and the goal is to
deduce by mathematically defensible operations physically measurable properties (usually statistical)
of that equation. This differs substantially from the problem faced by an experimentalist, who can
perform direct measurements but is typically not confident of the (appropriately simple) underlying
equations. Nevertheless, it is worth repeating that a sound theoretical framework can greatly enhance
one’s ability to interpret experimental data.

1.2.2  Rich linear theory of plasmas

Mathematically, profound differences between the NSE and plasmas show up already in linear
theory through distinctive forms of the linear Green’s functions gy:

gonse = [—i(w + ik?ua)] 7, (2a)

Go.plasma = |—i(w — k- v +i€)] (v — ) = [iP(w—k-v) ' +70(w—k-v)]d(v—1), (2b,c)

where p is the classical kinematic molecular viscosity, € is a positive infinitesimal that ensures
causality, P denotes principal value, and the unmagnetized, collisionless form of the plasma function
is displayed. Linearized Navier-Stokes dynamics describe (in the absence of mean fields) viscous
dissipation. In unmagnetized plasmas, on the other hand, particles free-stream in linear order, and
the Landau resonance w—k-v = 0 [captured by the delta function in Eq. (2¢)] gives rise to collisionless
dissipation (Landau damping). It is important to note that go plasma is the particle Green’s function; the
full Green’s function Ry of the linearized Vlasov equation contains an important extra term relating
to self-consistent dielectric response [see Eq. (36a)]. (For the NSE, Ry = ¢o.) Plasmas can support
a rich abundance of linear motions, including both ballistic particle streaming and collective wave
effects; the waves are supported by the nonresonant particles [described by the principal-value term
in Eq. (2¢)]. The dominance of linear phenomena can in some circumstances lead to the possibility of
a weak- rather than strong-turbulence description. (One interpretation of the linear fluid propagator
for small p is that all particles are resonant.)

Of course, waves are present in certain descriptions of neutral fluids as well, and weak-turbulence
descriptions have been profitably employed in that context. A frequently cited example is gravity
waves in the ocean (Phillips, 1977). However, it is easier for plasmas to support linear collective
oscillations because of the self-consistent coupling between the particles and Maxwell’s equations in
the presence of the long-range Coulomb interaction. What results is an easily polarizable dielectric
medium that exhibits rich collective behavior, particularly in the presence of a magnetic field. ®

The most fundamental description of plasmas is at the level of a phase-space (position x

8 The literature on microturbulence in magnetized, especially toroidal plasmas comprises many thousands of
papers. One early review article is by Tang (1978).
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and velocity v) fluid.? In a useful ordering appropriate for laboratory fusion plasmas, the plasma
discreteness parameter '° ¢, is very small (the plasma is “weakly coupled”), so to zeroth order the
many-particle plasma can be idealized as a continuum phase-space fluid. Even in the limit €, — 0,
however, single-particle (ballistic) effects can be important, so it is often natural to view the plasma as
a collection of interacting waves and particles. The simultaneous presence of both waves and particles
means that plasmas have more and different linear decorrelation mechanisms than does the neutral
fluid. Dupree (1969) argued that the presence of such mechanisms actually simplifies the description
of plasma turbulence; certainly they have consequences for the transport of macroscopic quantities
such as particles or heat. Unfortunately, because waves are collective oscillations involving an infinite
number of particles, questions of double counting can arise [see the discussion of clump formalisms in
Sec. 4.4 (p. 119)], a difficulty not present in the neutral fluid.

1.2.3 A nonlinear dielectric medium

Although introductory plasma-physics texts [e.g., Krall and Trivelpiece (1973), Chen (1983),
Nicholson (1983), Stix (1992), Nishikawa and Wakatani (1994), Goldston and Rutherford (1996), or
Hazeltine and Waelbroeck (1998)] stress the calculation and role of the linear dielectric function D",
the true plasma is a nonlinear dielectric medium. The form of the completely nonlinear dielectric
function D is not well understood (or discussed) even for neutral fluids; it is much more complicated
for the plasma. Great confusion has arisen on this point, some of which I hope to dispel in this article.
A thorough discussion of the nonlinear dielectric function for turbulent mediums is given in Sec. 6.5
(p. 170).

1.2.4  Spectral paradigms

Hand-waving discussions of the behavior of turbulent fluids and plasmas often invoke what I
shall call spectral paradigms—scenarios by which energylike quantities are injected, transferred, and
dissipated in the medium. Those for the NSE are quite different from those for typical fusion-plasma
applications. The well-known Kolmogorov scenario for 3D NS turbulence [see, for example, Landau
and Lifshitz (1987), Hunt et al. (1991), and Frisch (1995)] involves energy injection by random
(typically Gaussian) forcing at long wavelengths, nonlinear and semilocal cascade of energy through a
well-defined inertial range of intermediate scales, and viscous dissipation at very short scales. In this
fluid scenario the macroscale Reynolds number is very large and the inertial range is asymptotically
infinite in extent. The detailed physics of the inertial and dissipation ranges, especially higher-order
statistics and intermittency, is the subject of intense current research. For some references, see Sec. 10
(p. 220) and HydrotConf (2000).

9 In plasma-physics jargon, descriptions and/or phenomena that require velocity space are called kinetic
whereas solely x-space descriptions are called fluid. In linear plasma kinetic theory, the fluid limit means
phase velocities greater than the characteristic particle velocity. Compare the adiabatic limit, discussed in
footnote 48 (p. 35).

10 €p is the inverse of the number of particles in a Debye sphere of radius Ap: ¢, = (n)\?b)_l, where
)\52 = k% = 28(47mq2/T)5, ng is the density, T is the temperature, and ¢ is the charge of species s.
For strongly coupled plasmas (Ichimaru, 1992), one frequently uses the alternate parameter I' = e?/aT,
where a = (3/47n)"/? measures the interparticle spacing. These parameters are related by I' = 0(622;/ %). The
weak-coupling regime is ¢, < 1 or I' < 1.
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In plasmas, in contrast, two factors conspire against the development of a well-developed inertial
range: the abundance of linear dissipation mechanisms (Landau damping, in particular), which limit
the minimum excitable scale; and the nature of the forcing, which is often better modeled by a self-
limiting linear growth-rate term than by an external random forcing that can be made arbitrarily
large. ' This situation unfortunately limits the amount of practically useful asymptotics that can
be done, but fortunately focuses the plasma-turbulence problem more toward the relatively well-
understood issue of transport due to the energy-containing modes. Thus in the present article relatively
little is said about intermittency and higher-order statistics. That is probably the most important way
in which this review fails to adequately describe state-of-the-art research activities in fundamental
neutral-fluid turbulence. Nevertheless, I shall briefly introduce in Sec. 10 (p. 220) a few relevant topics,
including some recent results on the probability density function (PDF) for forced Burgers turbulence,
which both serves as an illustrative mathematical example and arises naturally in a variety of physical
applications.

1.2.5 Interesting mean-field dynamics

In the absence of boundaries or with periodic boundary conditions, the NSE admits solutions
with zero mean velocity. The Vlasov description of plasmas, however, is based on a particle PDF,
which like all PDF’s can be considered (Sec. 3.5.1, p. 59) to be the nonvanishing mean of a singular
microdensity (Sec. 2.2.2, p. 27). At its core the plasma requires (at least) a mean-field theory.

Even when the fluid description of plasmas is adequate (as in fusion contexts it frequently
is), the electromagnetic nature of plasmas guarantees a mean-field dynamics richer than that of
the neutral fluid. Magnetic-field geometries, mean electric fields, background profiles (of density,
temperature, and flow velocity), microturbulence, transport, and extremely complicated boundary
conditions are intricately coupled. Bifurcation scenarios have been identified—first experimentally,
then analytically—in which abrupt transitions between regimes of low (L) and high (H) energy
confinement times occur because of subtle changes in macroscopic conditions. The details are so
complex and applications-specific that those scenarios are largely beyond the scope of this article in
spite of their great practical importance. Nevertheless, a few words on mean-field dynamics can be
found in Sec. 12.6 (p. 245). Additional discussion about the importance and modeling of inhomogeneity
effects in plasmas is given by Yoshizawa et al. (2001).

1.3 Why a theory of plasma turbulence is needed

Although this article is primarily about the systematic mathematical description of plasma
turbulence, it is useful to be aware of the practical applications, experimental data, and intuitive
dynamical considerations that motivate the development of more formal theories.

1.3.1 Transport in plasmas

From the point of view of practical applications such as fusion, the most important output of a
theory of turbulence is the rate of turbulence- or fluctuation-induced transport of some macroscopic

1 However, Rose (2000) has pointed out that in the context of laser-plasma interactions a useful (non-self-
consistent) model is to prescribe the rate of injection of energy into Langmuir waves in a spatially coherent,
temporally incoherent manner.
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quantity such as density n, momentum p, or temperature 7T'. Typically these quantities are assumed to
have macroscopic variations in the z direction, *? such as —9, In (n) = L1 = k,,. (The mean values of
those fields are said to be the background profiles; L, is called the density scale length.) The advective
contribution to the spatial particle flux I' in the x direction is

T, = (0V,(z, t)on(z, 1)) = zk,: (SVas(t)onE (1)), (3a,b)

where §V, is the fluctuation in the x component of the fluid velocity (usually the E x B drift
Vi = cE x b/B, where b is the unit vector in the direction of the magnetic field) and a discrete
spatial Fourier transform was introduced [see Appendix A (p. 262) for conventions|. Formula (3a)
shows that the flux can be evaluated from an equal-time Eulerian '3 cross correlation function. The
form (3b) shows that transport is determined by the following properties of the turbulent (usually
steady-state) fluctuations: (i) wave-number spectra (including both shape and overall intensity); and
(ii) the phase shift between the advecting velocity and the advected quantity. It is important to
note that although turbulent flux is directly specified by a second-order correlation function, higher-
order correlations enter indirectly in determining the actual spectra and phase shift, according to the
discussion of the statistical closure problem in Sec. 1.1 (p. 9).

If the transport is sufficiently local in space and time [a question still actively debated; see
Sec. 12.4 (p. 241)], it can be described by a Fick’s law!? such as I, = —Dd,(n). The particle
transport coefficient D can be estimated from the random-walk formula (Uhlenbeck and Ornstein,
1930; Chandrasekhar, 1943) D ~ Az?/2At, where At is a characteristic time and Az is the typical
spatial step taken during that time. More precisely, when classical dissipation is very small D can in
principle be calculated from the pioneering formula of Taylor (1921):

D= ["dr 4V (r)vi(o)). (@

where §V(7) denotes the Lagrangian dependence 6V (7) = dV(x(7),7), (7) being the actual
turbulent trajectory of a fluid element. Formula (4) can be estimated as D ~ V2Tac, where V is
the rms velocity fluctuation and 7,. is a Lagrangian correlation time. Alternatively, a Lagrangian
mizing length ¢ can be defined by ¢ = Vr,.; then D ~ V/. Frequently V and ¢ can be estimated
by dimensional considerations [Appendix B (p. 264), but see the warning in footnote 175 (p. 141)].

12 Unfortunately, this convention, universally adopted in plasma-physics research, differs from the one used
for geophysical and laboratory flows, for which macroscopic variations are taken to be in the y direction. The
coordinate system usually used for neutral-fluid shear flows—namely, x = streamwise, y = inhomogeneity,
z = spanwise—translates via a cyclic permutation of —1 to z = magnetic-field direction, x = inhomogeneity,
y = orthogonal or poloidal direction.

13 By definition, in an FEulerian correlation function the space and time coordinates are specified
independently. Eulerian correlations are (in principal) easy to measure in the laboratory, for example by
inserting probes. In contrast, in a Lagrangian correlation function the spatial variable is evaluated along
the time-dependent trajectory of a fluid element. Lagrangian correlations are very difficult to measure
experimentally. One technique is optical tagging (Skiff et al., 1989); the state of the art was reviewed by Skiff
(1997). Unfortunately, that is ineffective in the very hot cores of large experiments; appropriate measurement
and visualization techniques are still under development.

14 When self-consistency effects are important, this statement is an oversimplification; see Sec. 6.5 (p. 170).
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However, the difficulties of precisely calculating such Lagrangian quantities are severe in general
(Lumley, 1962; Kraichnan, 1964a; Weinstock, 1976). Much of the statistical theory describeqd in this
article can be viewed as addressing this point in one way or another.

There are both “classical” and turbulent contributions to transport. For plasmas, classical
contributions are defined to be those stemming from Coulomb collisions between two discrete
particles (in the presence of dielectric shielding) and are well understood; see Sec. 2.3.2 (p. 30).
They are formally described by the Balescu-Lenard collision operator [Eq. (32)]; the Landau (1936)
approximation to that operator [Eq. (34)] is usually used in practice. Classical transport was reviewed
by Braginskii (1965).

For transport across a strong magnetic field, the particle transport '° is intrinsically ambipolar (a
consequence of momentum conservation): D = pgl/ei = p?l/ie, where pg = v /wes is the gyroradius of
species s and v,y is the collision frequency for momentum exchange between species s and s’. Here
Vs = (Ts/ms)'/? and wes = qsB/msc are the thermal velocity and gyrofrequency, respectively.

Classical discreteness effects are very small in hot plasmas. A representative value for the
neoclassical ion thermal diffusivity in the experimental Tokamak Fusion Test Reactor (TFTR; Grove
and Meade, 1985) was!® 5 cm?/s; observed values were several orders of magnitude greater. Such
findings suggest, in agreement with the theory to be introduced in Sec. 1.3.3 (p. 16), that even in the
limit €, — O collective effects remain, involving a turbulent mixture of waves and eddies that usually
strongly dominate the transport.

t15

1.3.2  Selected observational data on plasma turbulence

In magnetized plasmas Bohm diffusion, with coefficient
Dy = ¢T,/eB, (5)

provides an important reference level for turbulent transport across a strong magnetic field. In
describing experiments on arc plasma discharges, Bohm (1949) actually wrote D = 10*T/B (T in eV
and B in kG), which is usually quoted as D = %DB. He did not provide a theoretical justification
for the factor of %; see Spitzer (1960) for some related discussion. For parameters typical of
envisaged fusion reactors, Dp is unacceptably large. Early experiments on the stellarator configuration
(Miyamoto, 1978) were plagued by diffusion with the Bohm level and magnetic-field scaling. Taylor
(1961) proved that Bohm’s formula represents the maximum value that cross-field diffusion can attain,
and it was feared that turbulence-induced transport in all magnetic confinement devices might achieve
that maximum. Fortunately, later and more detailed experimental and theoretical research revealed
that the situation need not be so dire. In particular, the magnitude of transport in modern tokamak

configurations is several orders of magnitude below the Bohm level. As we will see in the next section,

15 In the toroidal field configurations characteristic of magnetic confinement, the classical formulas must be
corrected to include neoclassical enhancements (Galeev and Sagdeev, 1967; Rosenbluth et al., 1972; Hinton
and Hazeltine, 1976) due to magnetically trapped particles that execute so-called “banana” orbits (Furth,
1975).

16 Representative TFTR parameter values as quoted by Redi et al. (1995) for shot #67241 were major
radius R = 2.6 m, minor radius ¢ = 0.96 m, toroidal magnetic field B = 4.5 T, central electron density
Neo = 3.8 x 1013 cm™3, and central electron temperature T,y = 6.0 keV.
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simple theory typically predicts !” a gyro-Bohm scaling [Eq. (6)], although controversy remains about
the proper form of the experimentally observed scaling with B (Perkins et al., 1993).

Recent experiments have shown that it is possible to dramatically suppress microturbulence in
the core of TFTR-scale plasmas by working in so-called enhanced reversed shear operating regimes
(Levinton et al., 1995). Although extremely important from a practical point of view, such details are
beyond the scope of this article, which addresses how to quantitatively calculate what happens when
turbulence is actually present.

1.3.3 Introduction to drift-wave transport

Elementary considerations can be used to illustrate formula (3) and motivate the need for a
theory of strong plasma turbulence. If E x B advection occurs in a region with density scale
length L,, it is reasonable to believe that self-limiting density fluctuations dn can grow no larger
than V on ~ V(n)—i.e., if k; is a typical fluctuation wave number, then'® én/(n) < (ki L,)™"
Because electrons stream rapidly along field lines, they tend to establish a perturbed Boltzmann
response [frequently called adiabatic; see footnote 48 (p. 35)]: dn/(n) ~ edp/T., where ¢ is the
electrostatic potential. An estimate of the fluctuating E x B velocity then leads to §Vg < Vi, where
Vi = (cT./eB)L;" is the diamagnetic velocity. Alternatively, the characteristic nonlinear advection
frequency dw ~ k,0Vg is of the order of the diamagnetic frequency wx = kyVi: dw S wx. Drift waves
(Krall, 1968) with characteristic frequencies w < wx are ubiquitous in confined plasmas with profile
gradients (Horton, 1984, 1999). Order-unity line broadening, dw/w = O(1), is one characteristic of a
strong-turbulence regime.

One can now estimate the flux (3a) by (temporarily and incorrectly) assuming maximal correlation
between 6Vg and on; then T' ~ dVepdn ~ Vi(kiL,) "(n) ~ (Vx/k1)((n)/L,) = —D d,(n), where
D = (kips)Yps/Ln)Dp. Here p, = cs/we, where ¢, = (ZT./m;)"/? is the sound speed and Z is
the atomic number, is called the sound radius (the ion gyroradius computed with the electron
temperature); it was introduced here as a convenient normalization, but appears naturally in more
elaborate theories involving the ion polarization drift [see the derivation of the Hasegawa-Mima
equation in Sec. 2.4.3 (p. 34)]. Theory (essentially dimensional analysis) suggests that kjps is
characteristically of order unity, in which case

D ~ (/Os/Ln>DB (6)

—so-called gyro-Bohm scaling. In practice ps/L, < 1 so D < Dp, in agreement with recent
experimental observations.

The result (6) also follows from random-walk considerations if one estimates Az ~ k' and
At ~ (k. V)™ ~ wi'. But this approach highlights some uncertainties. It is not clear why the real
mode frequency should determine the autocorrelation time. If an oscillator of frequency €2 is damped
at the rate 7, the area under the response curve, a measure of 7,, scales with * (n/Q)Q~! for n/Q < 1,

17 More elaborate theories can be compatible with a variety of scalings; see the concluding paragraph of
Appendix B (p. 266).

18 This estimate is called the mizing-length level and is frequently attributed to Kadomtsev (1965). The
overly simplified discussion does not distinguish between electron and ion densities, which in the absence of
polarization-drift and finite-Larmor-radius effects are approximately equal by quasineutrality.

19 Specifically, Re [;°d7 exp(—iQr —n7) = n/(Q* +n?).
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introducing the possibility of additional parametric dependence [frequently 7, which ultimately arises
from nonlinear effects, is proportional to the linear growth rate?’ ~, since it is v that excites the
turbulence] and suggesting that the estimate (6) is merely an upper bound. One of the goals of a
proper theory of strong turbulence is to systematically determine such nonlinear damping rates and
thus to quantify the proper autocorrelation time to be used in calculations of transport coefficients.

1.3.4 An extended quote from Kadomtsev (1965)

Most of the points made so far in this introductory discussion are far from new. Consider,
for example, the following extended quotation from the Introduction to the seminal, 35-year-old
monograph on plasma turbulence by Kadomtsev (1965) %! (italics added):

“It is well known that a real plasma is rarely quiescent; as a rule many forms of noise and oscillation arise
spontaneously in the plasma. Langmuir pointed out that these fluctuations represent more than just harmless
oscillations about an equilibrium position and often wholly determine the character of the phenomena
occurring in the plasma. ...

“Experiments with plasmas in a magnetic field and in particular experiments on magnetic containment
of a high temperature plasma in connection with controlled thermonuclear reactions have revealed further
unexpected phenomena essentially connected with oscillations in the plasma. Prominent amongst these is
the ‘anomalous’ diffusion of a plasma across a magnetic field. ...

“Following the work of Bohm [(1949)], who suggested that the enhanced diffusion of a plasma is due to
random oscillations of the electric field set up by an instability, the term ‘turbulence’ has been increasingly
applied to this process. ... [W]hen applying the term ‘turbulence’ to a plasma, it is used in a broader sense
than in conventional hydrodynamics. If hydrodynamic turbulence represents a system made up of a large
number of mutually interacting eddies, then in a plasma we have together with the eddies (or instead of
them), also the possible excitation of a great variety of oscillations. . ..

“During the eddy motion of an ordinary fluid the separate eddies, in the absence of their mutual
interaction, do not propagate in space. When their interaction is included the eddies ‘spread out’ in space
with time, though the corresponding velocity is not large and therefore each separate eddy has a considerable
time available to interact with its neighbours. In this case we are faced with a strong interaction of excitations
and correspondingly with a strong turbulence. On the other hand, during a wave motion the separate wave
packets can separate from one another over large distances. In this case the interaction of separate wave
packets with one another is weak, and we can therefore refer to a weak turbulence. The motion of the plasma
in the weakly turbulent state, constituting a system of weakly correlated waves, shows greater similarity to
the motion of the wavy surface of the sea or the oscillations of a crystal lattice than to the turbulent motion
of an ordinary fluid.

“The theoretical consideration of a weakly turbulent state is considerably facilitated by the possibility
of applying perturbation theory, i.e., an expansion in terms of a small parameter such as the ratio between
the energy of interaction between the waves and their total energy. ...

“For the case of very small amplitude, when the interaction between the oscillations can be neglected,
one can use the so-called quasi-linear approximation in which only the reaction of the oscillations on the
average velocity distribution function of the particles is considered. . ..

20 Tt is worth emphasizing that calculations of linear growth rates in realistic confinement geometries are far
from trivial, sometimes requiring large-scale codes (Rewoldt et al., 1982) and hours of supercomputer time.
21 Kadomtsev’s review was first published in Russian in 1964. I cite the 1965 English translation because it
was that book that strongly influenced the predominantly Western plasma-physics research reviewed in this
article.
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“Unfortunately the quasi-linear method has only a fairly narrow field of application, since non-linear
interaction of the oscillations already begins to play a considerable part at not very large amplitudes. ...

“In the simplest variant of the kinetic wave equation, only three-wave processes are considered, namely,
the decay of the wave k,w into two waves k’,w’ and k”,w”, and the merging of two waves into one.
Such processes are important only for dispersion relations wg = w(k) for which it is possible to satisfy
simultaneously the laws of conservation of energy and of momentum: k" = k — k', wpr = wi, — wg. When
these conditions are not satisfied, scattering of the waves by the particles is a more important process and
can be taken into account only on the basis of a full kinetic theory. ...

“Unfortunately, in numerous practical cases one is faced not by weak but by strong turbulence. In
particular, strong turbulence is related to an anomalous diffusion of the plasma across the magnetic field.
To determine the fluctuation spectrum in a strongly turbulent plasma and the effect of these fluctuations
on the averaged quantities, it is sometimes possible to use the analogy with ordinary hydrodynamics and, in
particular, to apply a phenomenological [mizing-length] description of the turbulent motion. . ..

“However, in a plasma other strongly turbulent motions which are different from the eddy motion of an
ordinary fluid may develop. It is therefore desirable to have available more systematic methods for describing
strong turbulence. In our view, such a method may be the weak coupling approzimation®? ... . In this
approximation, ... the turbulent motion is described by a system of non-linear integral equations for the
spectral density Ik, and the Green’s function I'g,, describing the response of the system to an external force.
As the coupling between the oscillations decreases, this system of equations goes over into the kinetic wave
equation.

“In conventional hydrodynamics, the weak coupling equations have been obtained by Kraichnan [(1959b)]
who showed that in their simplest form the weak coupling equations lead to a spectrum which is different
from Kolmogorov’s spectrum in the region of large k. As will be shown ..., the reason is that in Kraichnan’s
equations the adiabatic character of the interaction of the short wave with the long wave pulsations is not
taken into account. The consideration of this adiabatic interaction makes it possible to obtain improved weak
coupling equations. ...

“As we have mentioned earlier, the turbulent diffusion problem goes back to Bohm [(1949)], who put
forward the hypothesis that an inhomogeneous plasma in a magnetic field must always be unstable because
of the presence of a drift current of the electrons relative to the ions. If this be in fact so, the corresponding
instability must lead to a turbulent ejection of the plasma with a velocity of the order of the drift velocity.
According to Bohm, this process can be considered phenomenologically as a diffusion with coefficient of
diffusion of the order Dp = 10*T/H, where T is the electron temperature in electron volts and H the
magnetic field in kilogauss.

“Bohm’s argument gave rise to the illusion of a universal validity for this coefficient and as a result
attempts to obtain Bohm’s coefficient from more general considerations have continued to this day. 23 It has
now become evident, however, that the coefficient of turbulent diffusion cannot be obtained without a detailed
investigation of the instability of an inhomogeneous plasma and in particular of its drift instability. ...”

In large measure the research reviewed in the present article provides a mathematical
systematization of the physical concepts emphasized by Kadomtsev, particularly for the description
of strong plasma turbulence. I discuss quasilinear theory in Sec. 4.1 (p. 90), weak-turbulence theory in
Sec. 4.2 (p. 98), and the direct-interaction approximation (Kadomtsev’s weak-coupling approximation)

22 Kadomtsev is referring to the direct-interaction approximation of Kraichnan (1959b); see Sec. 5 (p. 126)
for detailed discussion.

23 One model that leads unambiguously to Bohm diffusion is the 2D thermal-equilibrium guiding-center
plasma (Taylor and McNamara, 1971). Of course, a turbulent plasma is not in thermal equilibrium, and the
true physics is three dimensional.
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in Sec. 5 (p. 126). Facets of drift-wave turbulence are discussed throughout the article: for example,
fundamental equations in Sec. 2.4 (p. 33); basic nonlinear dynamics and statistical closures in Sec. 8.4
(p. 206); submarginal turbulence mechanisms in Sec. 9 (p. 210); and the wave kinetic equation in
Appendix G.3 (p. 291). I shall use the previous quotation as a focus for my concluding remarks in
Sec. 13 (p. 251).

1.4 Nonlinear dynamics and statistical descriptions

Experimental observations make it abundantly clear that plasmas can be turbulent. Some
indication of the physical and mathematical problems that must be described and solved by a
satisfactory theory of plasma turbulence may be found by surveying the many years of research
on neutral fluids (Monin and Yaglom, 1971; Frisch, 1995) and recent advances in the theory of
nonlinear dynamical systems (Lanford, 1982; Lichtenberg and Lieberman, 1992; Meiss, 1992; Ott,
1993). It is now well known that such systems can exhibit extreme sensitivity to small changes in
initial conditions; that observation is sometimes used to justify various statistical assumptions such
as mixing or ergodicity (Zaslavskii and Chirikov, 1972). Gibbsian thermal-equilibrium solutions can
be found for the Euler equation ?* truncated to a finite number of Fourier modes. Although extensive
research on the NSE in the presence of forcing and dissipation shows that actual turbulent steady
states are far from equilibrium, statistical methods have made substantial inroads. A fundamental
difficulty with the statistical approach is that nonlinear systems can also display a tendency toward
self-organization (Hasegawa, 1985). Certain fluid equations admit the possibility of soliton solutions;
in plasmas, the Vlasov equation can support Bernstein-Greene-Kruskal (BGK) modes (Bernstein
et al., 1957). Nonlinear systems can be intermittent; i.e., fluctuations can be distributed sparsely
in space, with turbulent patches intermixed with laminar ones. This observation argues against
theories pinned too closely to Gaussian Ansétze. On the other hand, pronounced intermittency does
not seem to dominate most laboratory plasmas.?® Extensive analyses of diagnostic and simulation
data seem to support the basic ideas of random-walk processes, so one anticipates that reasonable
quantitative predictions of transport coefficients should be possible at least for idealized situations.
Some general remarks on the relationships between statistical closures and nonlinear dynamics were
made by Krommes (1984b). Many of the topics mentioned in this paragraph have been discussed in
the context of plasmas by Horton and Ichikawa (1996).

Ruelle (1976) stated that “[i]t would be a miracle if the usual procedure of imposing stationarity

. and looking for a Gaussian solution would lead to results much related to physics.” Indeed, a
simple argument given in Sec. 3.8.1 (p. 71) proves that the fluctuations in forced, dissipative steady
states cannot be exactly Gaussian. Nevertheless, that does not preclude the possibility that some sort
of quasi-Gaussian hypothesis may be useful if it is applied in an appropriate way. In fact, although
the renormalized statistical moment closures described later retain selected terms of all orders in non-
Gaussian statistics, their structure can both technically and heuristically be understood in terms of a
perturbation theory based on statistics that are Gaussian at lowest order. It is true that in workable
closures the vast majority of all terms is omitted, so it is not surprising that success depends on
the question. Experience shows that conventional low-order moment-based closures can be strikingly

24 The Euler equation is defined to be the NSE with the dissipation set to zero.
25 Nevertheless, experimental observations clearly show that some intermittency is present. For more
discussion, see Sec. 12.4.3 (p. 244).
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successful for predictions of fluxes or spectra even for quite intermittent fluctuations [see Fig. 1 (p. 41)
and Sec. 8.5 (p. 208)]. Nevertheless, predictions of entire PDF’s require more sophisticated treatments;
see, for example, Sec. 10.4.3 (p. 227).

So far the discussion has focused on states of fully developed turbulence. The theory of nonlinear
dynamics is of particular importance in discussing the transition to turbulence; for some general
references, see Eckmann (1981) and Ott (1981). Although transition is largely outside the scope of
this article, the discussion I give in Sec. 9 (p. 210) of mechanisms for submarginal turbulence is best
understood in that context. A somewhat related although much less detailed scenario was proposed
by Manheimer et al. (1976) and Manheimer and Boris (1977); they suggested that information about
turbulent transport can be obtained by assuming that the steady-state profiles sit at linear marginal
stability. Further discussions of that hypothesis and its relation to nonlinear dynamics are given in
Secs. 9 (p. 210) and 12.4 (p. 241).

Clearly, the ultimate theory of turbulence will unify robust statistical predictions with detailed
understanding of the underlying nonlinear dynamics. Some of the useful techniques and results in this
direction were discussed by Bohr et al. (1998).

1.5 Resonance, nonresonance, averaging procedures, and renormalized statistical
dynamics

From the outset, plasma physics must face head-on the linear particle propagator go [Eq. (2¢)] and
especially its nonlinear generalizations. Distinctive formalisms and lines of research can be classified by
how nonlinear corrections to the free-streaming motion are treated. In weak-turbulence theory (WTT)
waves are the central entities. In the presence of a wave-induced potential, nonresonant particles
nonsecularly oscillate around a streaming oscillation center, which can be defined with the aid of
perturbative transformations that remove interaction terms in the Hamiltonian to desired order.
Those averaging procedures can be viewed as special cases of general ensemble-averaging techniques
and thus nominally fall within the purview of this article. Although a complete account cannot
be given here, modern averaging techniques in the form of Lie transforms are reviewed briefly in
Appendix C (p. 267); they have important applications to the derivations of the gyrokinetic and
gyrofluid equations that underpin the modern description of strongly magnetized plasmas. The role
of the oscillation center in quasilinear theory is discussed in Sec. 4.1.3 (p. 95).

A particle resonant with a single wave can be trapped; if multiple waves are present, stochasticity
is likely to ensue and the resonant particles are likely to diffuse. A description of resonant diffusion is
not accessible from the nonresonant averaging procedures. Furthermore, in the presence of stochastic
diffusion, an intrinsically nonlinear phenomenon, the Landau resonance is broadened, rendering for
sufficiently strong turbulence the clean distinction (2c) between resonant and nonresonant particles
useless; resonant and nonresonant effects are inevitably mixed together in nonlinear regimes. The
formal renormalized statistical methods to be described later handle those general regimes naturally;
they are a significant advance over the approaches based on nonresonant perturbations. With the aid
of such formulations one can smoothly pass from a fully kinetic formalism to a strongly turbulent fluid
description, displaying at least at the formal level a beautiful unification of the statistical dynamics of
the physically disparate plasma and neutral fluid. Some of the material related to this topic [Secs. 6.5.4
(p. 176) and 6.5.5 (p. 178)] is published here for the first time.
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1.6 Outline of the article

In the present article I shall describe the progress that has been made on systematic statistical
formalisms for plasma turbulence, with much reference to earlier corresponding work on neutral fluids.
No claim is made that statistical theories as they presently exist are adequate to describe the full range
of random and coherent nonlinear phenomena known to be exhibited by plasmas, or that such theories
can usefully be applied to the calculations of turbulent transport in complicated practical situations.
It is clear that large-scale direct numerical simulations will continue to play an important role in
quantifying turbulence phenomenology, as will various nonstatistical analytical theories; however,
those are subjects for other review articles.

The subsequent discussion is organized as follows. I begin in Sec. 2 (p. 22) by introducing a
representative sampling of the fundamental equations that are generally used for descriptions of
plasma turbulence. In Sec. 3 (p. 46) I give an elementary introduction to the statistical theory
of turbulence, including both rigorous statistical mechanics and phenomenology [Secs. 3.1 (p. 46)
through 3.8 (p. 71)] as well as statistical closure techniques (Sec. 3.9, p. 76). Section 4 (p. 90) is
devoted to a review of the historical development of statistical theories of turbulent plasmas, including
quasilinear theory (QLT}; Sec. 4.1, p. 90), weak-turbulence theory (WTT; Sec. 4.2, p. 98), resonance-
broadening theory (RBT; Sec. 4.3, p. 108), and the clump formalism (Sec. 4.4, p. 119); conceptual
difficulties with the last approach are stressed. In Sec. 5 (p. 126) Kraichnan’s seminal direct-interaction
approximation (DIA), a theory of strong turbulence, is discussed in detail. I turn in Sec. 6 (p. 146)
to the generating-functional formalism of Martin, Siggia, and Rose (MSR; 1973), which provides
a most elegant unification of much earlier research and many clumsy techniques. A brief history
of renormalization techniques is given in Sec. 6.1 (p. 147). The functional apparatus for closure is
described in Sec. 6.2 (p. 153); the DIA emerges as the natural ?° lowest-order MSR renormalization.
Non-Gaussian effects are discussed in Sec. 6.3 (p. 165). A path-integral representation of MSR theory
is given in Sec. 6.4 (p. 166). In Sec. 6.5 (p. 170) the MSR formalism is used to derive a formally
exact expression for the nonlinear plasma dielectric function. The reductions of the renormalized
equations to QLT, WTT, and RBT are indicated, and the important role of self-consistency between
the particles and the fields is stressed. In Sec. 7 (p. 181) various approaches alternative to that of MSR
are described briefly, including Lagrangian methods (Sec. 7.1, p. 181), Markovian approximations
(Sec. 7.2, p. 182), the use of eddy viscosity and the statistical description of interactions of disparate
scales (Sec. 7.3, p. 189), renormalization-group techniques (Sec. 7.4, p. 196), and statistical decimation
(Sec. 7.5, p. 197). Section 8 (p. 199) is devoted to modern developments in the statistical description of
plasmas, including the development and numerical solutions of a new realizable Markovian statistical
closure, the RMC. An introduction to the as yet poorly understood topic of submarginal turbulence
is given in Sec. 9 (p. 210). Some topics relating to higher-order statistics, intermittency, and coherent
structures are discussed in Sec. 10 (p. 220). Variational methods for bounds on transport are described
in Sec. 11 (p. 230). A variety of miscellaneous topics are considered in Sec. 12 (p. 235), including
Onsager symmetries for turbulence (Sec. 12.1, p. 235), the interpretation of various entropy balances
(Sec. 12.2, p. 238), statistical determination of mode-coupling coefficients (Sec. 12.3, p. 241), self-
organized criticality (Sec. 12.4, p. 241), percolation theory (Sec. 12.5, p. 245), some discussion of
the role and dynamics of mean fields (Sec. 12.6, p. 245), and brief remarks on zonal flows and
other long-wavelength fluctuations (Sec. 12.7, p. 248). The present state of affairs and prospects

26 As Martin (1976) has stressed, one should not infer that the formalism is a panacea.
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for the future are assessed in the concluding Sec. 13 (p. 251). Fourier-transform conventions are
recorded in Appendix A (p. 262). A brief review of dimensional and scaling analysis is given in
Appendix B (p. 264). In Appendix C (p. 267) aspects of the derivations of nonlinear gyrokinetic and
gyrofluid equations (central in modern plasma-turbulence research) are described, with particular
focus on methods based on modern Hamiltonian dynamics and Lie perturbation theory. In Appendix D
(p. 279) Chirikov criteria for stochasticity are discussed. Some formal aspects of RBT are considered in
Appendix E (p. 281). The generalization of spectral balance equations to include weak inhomogeneity
is described in Appendix F (p. 286). Details of the derivation of the Vlasov weak-turbulence wave
kinetic equation from the renormalized spectral balance equation are provided in Appendix G (p. 288).
Some miscellaneous discussion of Gaussian functionals is given in Appendix H (p. 293). Salient features
of the author’s DIA code, which has been used to study various problems in statistical plasma physics,
are described in Sec. I (p. 295). Steady-state solutions to a pedagogical three-mode version of the
EDQNM closure are derived in Appendix J (p. 297). Finally, notation is summarized in Appendix K
(p. 302).

An overview of selected papers discussed in this review is presented in Figs. 34 (p. 260) through 36
(p. 262) as a chronological time line that attempts to put into perspective the relatively recent plasma-
physics research, frequently derivative with respect to seminal work in other fields. The reader may
wish to scan those figures now, then return to them at the conclusion of the article. One cannot help
but be impressed by the broad scope and very high quality of the pioneering research on neutral
fluids, to which plasma physics owes a very large debt.

2 FUNDAMENTAL EQUATIONS AND MODELS FOR PLASMA
DYNAMICS

“Unaware of the scope of simple equations, man has often concluded that nothing short of
God, not mere equations, is required to explain the complexities of the world.” — Feynman
et al. (1964).

Turbulence is intrinsically a nonlinear phenomenon. Although much of the formalism to be
discussed below will be quite general, it must ultimately be applied to specific nonlinear equations.
Therefore I discuss in the present section some of the important equations and models of plasma
dynamics. 27 First, however, it is useful to introduce the fundamental equations of neutral-fluid
turbulence.

2.1 Fundamental equations for neutral fluids

I shall consider two extreme paradigms for the descriptions of neutral fluids: the
incompressible Navier-Stokes equation (Sec. 2.1.1, p. 23); and the infinitely compressible Burgers

2T The emphasis on the analysis of specific nonlinear equations already distinguishes the thrust of this
article from much of the experimental focus in fusion physics, in which the goal, not yet entirely successful,
is to deduce the operative model from appropriate diagnostics. [A somewhat related technique, in which
the effective mode-coupling coefficients of the turbulent plasma are inferred from experimental statistics, is
described in Sec. 12.3 (p. 241).]
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equation (Sec. 2.1.2, p. 25).

2.1.1 The Navier—Stokes equation

The continuity equation for mass density py, is O¢pm + V - (pmu) = 0, where w is the fluid velocity.
I consider incompressible flows, V -« = 0; that constraint permits a constant-density solution. ?® The
incompressible Navier—Stokes equation (NSE) is then

ou+u-Vu=—p'Vp+paVu, V- -u=0. (7a,b)

Here p is the pressure and p is the classical kinematic viscosity (taken to be constant). Given the
incompressibility constraint (7b), one can determine p as a functional of w by taking the divergence
of Eq. (7a) and solving the resulting Poisson equation

P VPp ==V - (u-Vu). (8)

In the absence of dissipation (uq = 0), Eq. (7a) is called the Euler equation.

If in Eq. (7a) the velocity is scaled to a typical velocity @ and lengths are measured with respect
to a macroscopic scale L, then ji is replaced by R~!, where the unique dimensionless parameter R
(frequently written as Re) is called the Reynolds number:

R =uL/pa. (9)

Further discussion of R is given in Sec. 3.4.2 (p. 57).

When Eq. (7a) is subjected to nontrivial boundary conditions, turbulence can arise for sufficiently
large R; see many interesting visualizations in van Dyke (1982) and discussions by Lesieur (1997).
Upon averaging Eq. (7a) over many realizations of the turbulence, one finds the equation for the mean
velocity U = (u) to be U + U - VU = p 'V - T, where T = — Pl + 2p,,1aS + 7 and

m

S=1(VU)+(VU)], 7=—pn(dudu). (10a,b)

1
2
S is called the rate-of-strain tensor. The very important nonlinear term 7 is called the Reynolds
stress3® (Reynolds, 1895). Tt describes the effects of the fluctuations on the mean flow (through
turbulent transport of momentum, or turbulent viscosity); a good discussion was given by Tennekes
and Lumley (1972). In general, if one is to understand the macroscopic flow, one must either compute
or approximate 7. There are analogs of 7 in all of the plasma equations to be described shortly. For
some discussion of nontrivial mean fields, see Sec. 12.6 (p. 245).

28 Tn theoretical discussions of incompressible turbulence, the constant p,, is frequently taken to be 1.
Although I shall usually retain p,, in the subsequent formulas for dimensional purposes, the equations will
be generally correct only for the case of constant p,,.

29 Note that the solution of Eq. (8) gives p as a spatially nonlocal functional of u. The effects of boundaries are
felt everywhere in the fluid; if the boundary is slightly changed, the effect is instantaneous. Physically, such
influences are transmitted by sound waves that propagate with infinite phase velocity in the incompressible
limit (which corresponds to zero Mach number).

30 7 is frequently defined without the minus sign. However, the present convention is correct for a positive
stress.
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To learn about properties of the fluctuations, it is useful to study energetics. Let the total velocity
be broken into mean and fluctuating parts, uw = U + du. Then the fluctuations obey

Oou+ou- VU +U - Viu+ du - Vou — (du - Véu) = p, 'V - (=0p| + 2pmiads), (11)

where s is given by formula (10a) with U replaced by du. Upon dotting Eq. (11) with du and
averaging the result, one obtains [see, for example, Tennekes and Lumley (1972)] a balance equation
for the turbulent energy density & = p,,(|0ul?):

0 =-V-W+P-D, (12)
where
W = (6u(ipm|oul® + 0p)) — 2pmpa(ds - du), P =7:S, D =2p,ua(ds:s). (13a,b,c)

W is the energy fluz, P is called the production (of fluctuations), and D (clearly positive definite) is
called the dissipation. (D is a generic symbol applicable to all such balance equations; for the NSE, the
dissipation is conventionally represented by e.) Production involves the interaction of the Reynolds
stresses with the mean strain; it is clearly a property of the large scales (P ~ U3/L).3! Dissipation,
however, is negligible at the large scales. Furthermore, under a spatial average with reasonable
boundary conditions the divergence of the energy flux vanishes, leading to the space-averaged balance
equation 32

0E=P-D. (14)

These observations strongly suggest that steady turbulent states are achieved by a flow of energy from
the large scales to the small ones. [This conclusion is correct for 3D, but must be modified for 2D; see
Sec. 3.8.3 (p. 74).]

For situations with nontrivial boundary conditions that can support a mean strain, P serves as
the driving term whereby turbulent fluctuations are excited. Analysis of this drive requires detailed
study of the turbulent dynamics of the energy-containing fluctuations. Sometimes, however, as when
one is studying properties of the very small scales of turbulence, such large-scale details are of no
concern. In those cases it is common to impose periodic boundary conditions on Eq. (7a) (so that
the mean field vanishes), but then to include a random, solenoidal Gaussian forcing f*(z,¢) on the
right-hand side of the NSE (7a) in order to ensure that a steady state is maintained against the
viscous damping. If £ is intended to model the production terms, then its spectral support ought
to be at long wavelengths at least in 3D.

It is frequently useful to introduce the vorticity®® w = V x u, a measure of the local circulation
of the flow. An alternate representation of Eq. (7a) is

Ou = u X w — p' V(p + 3pmt?) + paVu, (15)

31 One estimates u = <5u2>1/ U , a dimensional result that assumes fluctuations are excited by interactions
with the macroscopic flow. More generally, it is better to write P ~ %3/ L, which embraces the case (discussed
in the next paragraph) in which the mean field vanishes and the system is stirred externally.

32 Such spatially averaged balance equations form the starting point for variational approaches to rigorous
upper bounds on transport; see Sec. 11 (p. 230).

33 Some remarks on the significance of vorticity were made by Saffman (1981).
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where the identity ux (V xu) = V(2u?)—u-Vu was used. The vorticity equation follows immediately

2
as
Ow =V x (u X w) + g Vw, (16a)

which with the identity V x (A x B) = AV-B+ B-VA - (BV - A+ A-VB) together with
V- -u=V-w=0 reduces to

Ow+u-Vw=w-Vu+ paVw. (16b)

In a 2D approximation in which 0, = 0, so w = wZ, the vortex-stretching term w - Vu on the
right-hand side of Eq. (16b) vanishes and one arrives at the 2D vorticity equation

Ow +u - Vw = pgViw. (17)

The equations of strongly magnetized plasma are closely related to Eq. (17) because of the 2D nature
of the E x B velocity. Because that equation conserves all powers of vorticity on the average in
the absence of dissipation whereas Eq. (16b) does not, there are important differences between the
dynamics of two- and three-dimensional turbulence.

It is natural to formulate a balance equation for energy £ because the nonlinear terms in the NSE
conserve £ under spatial averaging; one says that £ is a quadratic nonlinear invariant. A second
quadratic invariant is the fluid helicity 3*

H = pnt-w, (18)

as can be shown from Eqs. (15) and (16a). This quantity vanishes identically in 2D; in 3D it vanishes
for homogeneous, isotropic turbulence with mirror symmetry. That H does not vanish for isotropic
turbulence without mirror symmetry is important in the theory of the magnetic dynamo (Sec. 2.4.8,
p. 43).

2.1.2 Burgers equation

It is also useful to mention Burgers’s nonlinear diffusion equation (Burgers, 1974)
Opu(, 1) + utty — ol Uy = [, 1), (19)

written here with external forcing. Although this equation is reminiscent of the NSE, it is really
very different since it is missing the nonlocal pressure term; the Burgers equation describes infinitely
compressible turbulence and is local. It is generally studied in 1D, but can be formulated in higher
dimensions as well. It is sometimes used to test statistical approximations to the NSE in a simpler
context, is of interest in its own right (it displays a tendency to form shocks and highly intermittent

34 Helicity is related to the degree of linkage or knottedness of vortex lines, as discussed, for example, by
Moffatt (1969).

35 The 1D initial-value problem for the Burgers equation can be solved exactly by means of the Cole-Hopf
transformation u = —2pc) 0, Inv, which reduces Eq. (19) to the linear diffusion equation for v. Nevertheless,
the form of the solution is not useful for performing statistical averages over random forcing or initial
conditions.
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states), and also arises in certain plasma applications (Sec. 2.4.7, p. 42) and in modern work on self-
organized criticality (Sec. 12.4, p. 241). It is the first spatial derivative of the Kardar—Parisi-Zhang
(KPZ) equation (Kardar et al., 1986)

Oh + th2 — pahy, = 5, (20)

where h is the fluctuation in the height of an interface: u = —0d,h. Some general discussion of the
Burgers equation, interface dynamics, and their relation to turbulence was given by Bohr et al. (1998).
Some recent results on Burgers intermittency are described in Sec. 10.4.3 (p. 227).

2.2  Exact dynamical equations of classical plasma physics

In the classical approximation, which is adequate for a wide variety of physical applications,
the N-particle plasma can be described exactly by the set of 2Nd coupled (scalar components of)
Newton’s laws. In rare situations those can actually be numerically integrated as they stand [the
so-called molecular-dynamics approach; see, for example, Verlet (1967), Hansen et al. (1975), and
Evans and Morris (1984)], but the N? scaling of the operation count makes this direct approach
impractical for large numbers of particles®; in a modern tokamak such as TFTR (footnote 16, p. 15),
N might approach Avogadro’s number (approximately 6 x 10%3). Clever particle simulation techniques
for weakly coupled plasmas (Birdsall and Langdon, 1985) achieve an O(N) scaling, but cannot be
discussed here. An alternate analytical approach is to consider first exact, then approximate equations
for low-order PDF’s of the particles. Two equivalent and formally exact descriptions are used: the
Liouwille equation, for the smooth N-particle PDF in the so-called I' space of all 2Nd coordinates and
momenta; and the Klimontovich equation, for the singular density in the so-called p space of a typical
particle whose coordinates are & and v and whose species is s. For some early textbook discussions of
plasma kinetic theory, see Montgomery and Tidman (1964) and Montgomery (1971b). A recent book
that includes some related material is by Balescu (1997).

2.2.1 Liouuville equation

The Liouville equation has been described in many textbooks [for example, Hoover (1991) or
Evans and Morris (1990)]; it has the general form

9 (1,2 Nt)+§:a
o’V ST L

(zifn) =0, (21)

where fy is the N-particle PDF, z stands for {x, v, s}, and 1 = z;. (The set {z1,%1} is frequently
denoted just by 1; the underline denotes all coordinates except time.) Upon successively integrating
over all but 1, 2, ..., N — 1 coordinates, one is led to the conventional Bogoliubov-Born—
Green—Kirkwood-Yvon (BBGKY) hierarchy that links the one-particle PDF f, the pair correlation
function g, the triplet correlation function h, and so on; a particularly elegant discussion was given
by Ecker (1972).37 As the BBGKY form of the statistical hierarchy will not be used explicitly in the

36 Tractable situations arise, among other places, in the theory and application of non-neutral plasmas; see,
for example, Dubin and O’Neil (1988a) and Dubin and Schiffer (1996).
37 A BBGKY formalism for fluid turbulence was given by Montgomery (1976).
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following analysis, I shall not write it here. Nevertheless, it is well worth noting that the Liouville
equation is linear, and that both it and the derived BBGKY hierarchy are time reversible. It may
seem remarkable that such equations can adequately describe dissipative turbulence; the issue has
been discussed by Orszag (1977). The resolution is that the characteristics of the Liouville equation
(Newton’s second laws of motion) are highly nonlinear and can exhibit stochasticity; if the hierarchy
is closed by any reasonable kind of coarse-graining or statistical averaging procedure, nonlinear and
dissipative equations result.

2.2.2  Khmontovich equation

The Klimontovich equation (Klimontovich, 1967) 3% evolves the microscopic p-space density

Nl v, 1) = =3 6w — ()00 — 5:(1), (22)

s i=1

where tildes denote random variables, s is a species label, Ny is the number of particles of species s,

and s = N,/V is the mean density of species-s particles in the volume V. By time-differentiating
Eq. (22), one finds

[0, +v-V+ (E+c¢'vxB) 8N, =0, (23)

where 8 = (¢/m)d, and E and B are the microscopic electric and magnetic fields. Self-energy
interactions [terms ¢ = j in the product N(xz,v,t)N(z',v',t) ~ >, >,] are to be discarded in the
nonlinear term. This equation is appealing for several reasons: its mathematical characteristics are the
equations of motion, so it is closely related to numerical “particle-pushing” schemes (Hu and Krommes,
1994); and it is quadratically nonlinear (since E, B o< N according to Maxwell’s equations), so it fits
neatly into conventional analytical theories of turbulence (Rose, 1979).

For simplicity I shall mostly ignore magnetic fluctuations, 3’ so B = B is an externally specified
background magnetic field. Effectively, we will work in the electrostatic approximation.

The Klimontovich density is normalized *° such that

(N(L ) = f(L1), (SN(L )N, 1)) =m;'0(L 1) f(1) +9(L 1 8), (24a,b)

etc. Here §(1,1') is the product of a Kronecker delta function in the species indices and a Dirac
delta function in the other phase-space coordinates. The average of Eq. (23) then reproduces the first

38 Although plasma physicists tend to cite Klimontovich (1967), the equation is well known to kinetic theorists
generally. Martin et al. (1973) confusingly called it the “Liouville equation.”

39 This is done solely for pedagogical purposes. In no way should this be taken to imply that magnetic
fluctuations are never important (Mackay, 1841, p. 304). They are obviously important in radiation
phenomena (Dupree, 1964), but can also play a role in transport by altering the dispersion properties of
the linear waves (“finite-3 effects”) or by inducing stochastic diffusion of magnetic field lines (Rechester and
Rosenbluth, 1978; Krommes et al., 1983).

40 Tn finite volumes there are normalization subtleties, relating to the distinction between “generic” and
“specific” distribution functions, that cannot be discussed here; see, for example, Schram (1966) and Ecker
(1972).
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member of the BBGKY hierarchy,
Df/Dt = -8 - (JESN) = -8 - Eg, (25)
where the Vlasov operator is
D/Dt=0;+v-V+ (E+c'vxB) -8 (26)

and € is the linear operator that determines E from N. In more detail, E is determined from Poisson’s
equation V - E = 4mp. The solution can thus be represented by E=EN = Jdt’ > fda:’fdv X
Eoo(m, v, t: 2, v, ") Ny (', v/, ). Explicitly, the Fourier transform of € with respect to & — @' is the
non- Hermltlan kernel

Eow (v, 10 1) = e(Tig)sd(t — 1), (27)

where €, = —4mik/k? is the Fourier transform of the field of a unit point particle.

It must be stressed that the g term on the right-hand side of Eq. (25) contains all fluctuation-
related effects, both those related to discrete-particle effects (classical n-body collisions) and all
possible turbulence-related nonlinear collective processes.

2.3 Nonlinear kinetic equations for plasmas

In many laboratory situations one has €, < 1; such plasmas are almost collisionless. The
continuum limit €, — 0 can be thought of as arising from a chopping process (Rostoker and
Rosenbluth, 1960) in which particles are successively divided in two, doubling the density n and
halving the particle charge ¢ and mass m at each step. This preserves the charge density nqg and
the charge-to-mass ratio q/m, so the plasma frequency w, = (47nq?/m)*? is invariant under the
rescaling. In order to also preserve the thermal velocity v;, a natural statistical measure that remains
relevant in the collisionless limit, the temperature must be halved. Then the Debye length Ap is also
invariant; note Apw, = v;. The chopping process is thus consistent with the orderings n = O(e; b,
{g;m, T} = O(ep), {wp, v, Ap} = O(1). For example, one quickly finds that the minimum impact
parameter by = /T is O(e;/€e,) = O(e,); the previously mentioned result (footnote 10, p. 12) that
the strong-coupling parameter I' is O(e]%/ 3) also follows immediately.

2.3.1 Collisionless kinetic equations

In the limit €, — 0 explicit discreteness terms, such as those involving by, can be dropped from the
BBGKY hierarchy, giving the Viasov cumulant hierarchy (Davidson, 1967, 1972). That is an infinite
coupled hierarchy of n-point cumulants in which the first member retains the form (25) (it is not the
Vlasov equation), but the evolution equations for g and higher cumulants do not contain €,. Although
it is common in the literature to initiate a theory of “Vlasov turbulence” by writing f = (f) + df,
that makes no sense in the context of the hierarchy because f is a PDF, hence is already averaged. 4!
What is intended is to write the Klimontovich density as the sum of mean and fluctuating parts,

41 Rose (2000) has stressed that a different point of view may be useful. Because Vlasov dynamics are highly
nonlinear, they may be susceptible to symmetry-breaking perturbations that lead to solutions that are not
asymptotically time-translation invariant in a strong sense; i.e., they are turbulent. If the symmetry is broken
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N = f + 6N, then to work in the continuum limit e, — 0. When fluctuations arising from both
particle discreteness and collective effects are completely negligible, g can be ignored and one recovers
the Viasov equation Df/Dt = 0, a mean-field theory.

The Vlasov equation is necessary for the description of collisionless phenomena with frequencies
comparable to or higher than the gyrofrequency w. = ¢B/mc. For lower-frequency phenomena,
however, the Vlasov equation is unwieldy, both analytically and numerically, and it is better to
turn to a gyrokinetic (GK) description in terms of the particle gyrocenters, which move slowly
across the magnetic field with the E x B drift Vi and the magnetic (gradient and curvature) drifts
(Chandrasekhar, 1960; Spitzer, 1962; Northrop, 1963b; Bernstein, 1971)

Vi=w, ' [2vlbx VIn B +vfb x (b- V)b]. (28)

In a straight, constant magnetic field B = Bz, for which the magnetic drifts vanish, the simplest
collisionless nonlinear gyrokinetic equation (GKE; Frieman and Chen, 1982; Lee, 1983; Dubin et al.,
1983) is (Appendix C, p. 267)

oF oF — q\ = OF

AN v V2 (-)E—:o, 29

ot T 0z VeVl m HGUH (292)
where F(x,u,v|,t) is the PDF of gyrocenters, ;1 is the magnetic moment [an adiabatic invariant
(Appendix C.1.1, p. 267) that is conserved in the GK approximation|, and the overlines indicate
the effective (gyration-averaged) fields seen by the gyrocenters. In the Fourier representation @, =
Jo(kLv1 Jwei)er; to the extent that kv, /we # 0 (Jo # 1), one refers to finite-Larmor-radius (FLR)
effects. To Eq. (29a) must be adjoined the gyrokinetic Poisson equation (Appendix C.1.6, p. 274)

Vi + €, V2o = —dre(Znf —n,) (29b)

(for overall charge neutrality, W, = Z7;), where €, ~ wﬁi Jw? is the perpendicular dielectric constant
(Chandrasekhar, 1960) of the so-called gyrokinetic vacuum (Krommes, 1993a, 1993c) that describes
the effects of the ion polarization drift velocity (Chandrasekhar, 1960)

vl = 219,(cE L /B). (30)

The importance of the GK formulation cannot be overstated; it provides the basis for much modern
analytical theory and a huge body of numerical simulations. Derivations of the GKE are reviewed in
Appendix C.1 (p. 267).

Typically €, is large; the condition ng Jw? > 1 defines the so-called gyrokinetic regime (Krommes
et al., 1986) that is relevant for fusion plasmas. The opposite regime w?;/w? < 1 is called the
drift-kinetic regime. It is described by the drift-kinetic equation, in which J, — 1 and V2p =
—4me(Zn; — n.). Finally, when parallel motion is completely ignored one obtains the guiding-center
plasma model

OF + Vg -V, F =0 (31)

by external noise, it may be possible to let the strength of the noise approach zero and to recover a fluctuating
distribution with nonzero variance. By analogy with Ising and other models that undergo symmetry-breaking
transitions to ordered states (Forster, 1990), it may be simpler to consider symmetry-breaking perturbations
to Vlasov dynamics than to begin with the full N-body ensemble.
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That model [closely related to the dynamics of point vortices moving in two dimensions (Kraichnan,
1975b)] prominently figured in early attempts to understand the nonlinear behavior of plasma
dynamics in strong magnetic fields (Taylor and McNamara, 1971; Vahala and Montgomery, 1971). 42

For general magnetic fields the operator 0, in Eq. (29a) must be generalized to b-V. One can then
analyze several important situations: (i) the effects of (background) magnetic shear; (ii) self-consistent
magnetic perturbations; and (iii) spatially and/or temporally random magnetic fields. Magnetic shear
has important practical consequences that are largely beyond the scope of this review, although see
Sec. 12.6.3 (p. 246). Magnetic fluctuations arise from currents according to Maxwell’s equations. For
sufficiently small § (the ratio of plasma pressure to magnetic-field pressure), the currents are parallel
to B and it is sufficient to derive the perturbed magnetic field from just the parallel component of the
vector potential A: B = By + V x (A2). The resulting approximation describes field-line bending
and the evolution of shear-Alfvén waves, but ignores compressional Alfvén waves. The assumption of
a random perturbed magnetic field is a useful device?? that enables one to assess the consequences
of particle transport in systems with broken flux surfaces (Krommes et al., 1983; vanden Eijnden and
Balescu, 1996).

2.3.2  Collisional kinetic equations

In classical, weakly coupled (0 < €, < 1) plasma kinetic theory (Montgomery and Tidman, 1964),
a kinetic equation analogous to the Boltzmann equation can be derived from various physical and/or
formal points of view. For simplicity I assume B = 0. Fokker—Planck techniques (Chandrasekhar,
1943) that take into account the physics of the motion of shielded test particles** lead (Ichimaru,
1973) to a physically clear derivation of the Balescu—Lenard (BL) equation (Balescu, 1960; Lenard,
1960) Dfs/Dt = —C[f], where

m

Cslf]1= _% . lw <£>S;(ﬁq2)§/dﬁ/(2d7f;3 ]Dhn(el:,f. v)]25(k (v —71))

42 The guiding-center model [see, for example, Joyce and Montgomery (1973) and Kraichnan (1975b)] is an
interesting dynamical system worthy of a review of its own. Nevertheless, because of space constraints and
the practical importance of parallel motion, discussion of this model is limited in the present article to only
a few scattered remarks and references.

43 In the context of particle transport in stochastic magnetic fields, the application of standard statistical
techniques to passive-advection kinetic equations with random magnetic fields was first done by Krommes
et al. (1983). See also Rosenbluth et al. (1966) for a seminal paper on the quasilinear description of stochastic
magnetic fields.

44 The concept of a shielded test particle is one of the central ideas of plasma kinetic theory. Formally, it arises
by expanding the BBGKY hierarchy or the equivalent Klimontovich equation in the small plasma discreteness
parameter €, and proving that to lowest order the natural entity is a discrete test particle surrounded by
its (Vlasov-continuum) shielding cloud. Early work was by Rostoker and Rosenbluth (1960). The results—
notably, the Test Particle Superposition Principle (Rostoker, 1964a, 1964b)—are described both in formal
treatises on plasma kinetic theory (Montgomery and Tidman, 1964; Montgomery, 1971b) and in elementary
textbooks (Krall and Trivelpiece, 1973). More modern proofs of the Superposition Principle, based on the
two-time statistical hierarchy discussed by Krommes and Oberman (1976a), were given by Krommes (1976).
Turbulent generalizations are discussed in Sec. 6.5.3 (p. 173).
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. ( L 9fs 1 0fs f)] (32)

ms Ov  mz 0D

and

Dhn(k,w)il—kz /d— k-0fs/0v (33)

w—k-v+ie

is the linear dielectric function. Although the present article is not a review of classical kinetic theory
(Frieman, 1967, 1969; Montgomery, 1967, 1971b), it is nevertheless useful to recall the interpretation
of the various parts of Eq. (32), as such understanding has provided key insights and motivations
(some misguided) for various developments of plasma turbulence theory. Dimensional analysis reveals
that C' ~ oliw, where o = b2 is the classical collisional cross section, 77 is the mean density of scatterers,
and v is a characteristic relative velocity. The term in f(0,f) describes velocity-space diffusion; the
term in (Of)f represents the polarization drag or self-consistent backreaction of the test-particle-
induced shielding cloud on the test particle; it is responsible for conservation of momentum and
kinetic energy. (The proper treatment of self-consistency in plasma turbulence theory is a recurring
theme throughout this article.) The spatial and dynamical structure of the total shielded test particle
is represented by D' (k,w), with w evaluated at the characteristic transit frequency k - v of a particle
moving with velocity v and impact parameter b = k~!. The §(k- (v —)) arises because the scattering
is computed perturbatively (quasilinear approximation) using straight-line orbits as the zeroth-order
approximation. The k integration describes the accumulated effect of particles with a distribution of
impact parameters b ~ k.

Equation (32) does not contain the effects of large-angle two-body collisions (Boltzmann’s
contribution), so a large-wave-number cutoff at b, Lis required. *® However, because of the presence of
dielectric shielding, the wave-number integral can be shown to possess a natural infrared wave-number
cutoff at k ~ kp. One then recovers the Landau collision operator (Landau, 1936)

2

Coslf] = —2n (e—

m

0 1 0 1 0

) @eetnas - fawu—o)- (15t - St ) m) (34
where“® A = \p /by and U(u) = (I—@aw)/|u|. This is the form that is generally used in most theoretical
and computational analyses of classical (Braginskii, 1965) and neoclassical (Rosenbluth et al., 1972;
Hinton and Hazeltine, 1976) transport.

More formally, the BL operator arises by inserting the linearized solution of the equation for the
Klimontovich fluctuation 6 N into the right-hand side of Eq. (25) (Klimontovich, 1967; Wu, 1967,
Montgomery, 1971b). The Green’s function Ry for the linearized Klimontovich equation obeys

gy 'Ro+8f-ERg =1, (35)

45 Various authors have derived uniformly valid collision operators that do not require a wave-number cutoff;
see, for example, Frieman and Book (1963).

46 The form A = Ap /by must be modified in the presence of large magnetic fields B and, at sufficiently high
energies, to satisfy the Heisenberg uncertainty principle; the details are not important here. For very large B,
so that p < Ap, one must reconsider the derivation of the collision operator to take account of nuances of
guiding-center transport. Representative calculations are by Dubin and O’Neil (1988b, 1997).
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where go = (0; + v - V)7! is the free-particle Green’s function (propagator) whose Fourier transform
is Eq. (2¢); the last term on the left-hand side of Eq. (35) describes the self-consistent polarization
effect of the particles on the fields. Comparison with Eq. (26) reveals that Ry is also Green’s function
for the linearized Viasov equation, which explains why Vlasov dynamics figure so prominently in
many-particle plasma kinetic theory. One can verify by direct calculation that

Ro = go — go@f - (D™)'€go, ERy = (D'™)'Egs. (36a,b)

These are the formal statements that to lowest order in €, bare test particles [the first term on the
right-hand side of Eq. (36a)] carry their shielding clouds (the second term) along with them. It is
remarkable that Eqs. (36) generalize without change in form to fully renormalized turbulence theory.
This crucial result is derived in some detail in Sec. 6.5 (p. 170).

The linearization implies that a vast host of nonlinear processes are ignored. First, of course,
discrete n-particle collisions are ignored for n > 3, but those are very small for ¢, < 1. More
significantly, nonlinear collective phenomena, which exist even for €, — 0, are ignored; those comprise
all of the turbulence effects (both weak and strong), including n—wave and wave-wave—particle
interactions, resonance broadening, trapping, etc.

An alternate derivation (Frieman, 1967; Montgomery, 1967) of the BL operator proceeds from
the BBGKY hierarchy by dropping the triplet correlation function in the equation for g. With the
further neglect of the bare two-particle interaction term (large-angle scattering), the Green’s function
for the resulting left-hand side factors into the product of two one-particle (Vlasov) Green’s functions,
showing the equivalence to the linearized Klimontovich solution. 47

In all approaches it is the full Vlasov response function Ry, including [Eq. (36a)] both free-
streaming motion and self-consistent dielectric shielding, that underlies the Test Particle Superposition
Principle (footnote 44, p. 30). A renormalized response function R prominently figures in the formal
turbulence theories described in Secs. 5 (p. 126) and 6 (p. 146).

The gyrokinetic equation with collisions can be obtained by adding the appropriately gyro-
averaged collision operator to the right-hand side of Eq. (29a).

The forms (32) and (34) of the classical collision operator provide initial insights about the
problems to be faced by a theory of plasma turbulence. As in classical theory, one must deal with not
only turbulent diffusion but also self-consistent backreaction. One may expect some sort of nonlinearly
modified dielectric function to appear. Indeed, Mynick (1988) has advanced a “generalized Balescu—
Lenard” (gBL) operator for Vlasov turbulence by asserting a precise analogy to Eq. (32). Nevertheless,
one must be very cautious. For turbulent situations particles are scattered away from their free
trajectories, collective effects dominate over discrete ones [calling into question the specific form of
the shielding term in Eq. (32)], the actual form of the nonlinear dielectric function is very involved,
and a formal description based on velocity-space effects may not be appropriate or practically useful
when turbulent motions on hydrodynamic scales (long wavelengths and times) dominate the physics.
All of these problems will be addressed and at least partially resolved later in the article.

In fact, a more appropriate transition to the formalism of strong plasma turbulence might be had
by reviewing selected results from the theory of strongly coupled many-particle plasmas (¢, 2 1).
Unfortunately, space limitations preclude such a discussion here; see, for example, Ichimaru (1992).

47 A renormalized version of this factorization was used by Krommes and Oberman (1976a) to derive a
renormalized plasma collision operator that included the effects of convective cells; see Sec. 5.10.1 (p. 143).
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2.4 Nonlinear fluid models for plasmas

In many important situations the details of the kinetic (velocity-space) effects are unimportant,
so fluid models are appropriate. I briefly describe some of the more important ones here, and shall
return to some of them later in the article.

2.4.1 Introduction to the fluid closure problem

I have already mentioned the statistical closure problem, the central difficulty of turbulence theory.
Interestingly, in attempting to derive fluid equations from the more fundamental kinetic equations,
one encounters a fluid closure problem that is closely related to the statistical one. It has prominently
figured in recent derivations of simulation models for tokamak turbulence and in a variety of other
areas. | introduce the fluid closure problem in this section, deferring a more detailed discussion to
Appendix C.2 (p. 276).

By definition, a fluid moment (such as density or momentum) is a weighted velocity integral of the
kinetic PDF. The difficulty with obtaining closed fluid equations arises most fundamentally from the
streaming term v - V (Vlasov theory) or vV (gyrokinetic theory); in gyrokinetics additional closure
problems arise from the dependence of the magnetic drifts and effective potential @, on v. The nth
velocity moment of a kinetic equation such as O,F + vV F' + --- = 0 is coupled to the moment
of order n + 1 by the streaming term. If only the explicitly shown terms are retained, a simple
device makes this problem mathematically identical to the statistical closure problem for passive
advection. Namely, write F' = (1 + x)Fo, where Fp is a time-independent PDF that is often taken
to be the Maxwellian distribution Fj;. Then use Dirac notation to write yFy = | x ); also introduce
a corresponding bra such that (¢| = . It is now natural to define a scalar product such that
(V| x) = X5 [do¢s(T)x5(V) Fo5(D). This scalar product is equivalent to an ensemble average taken
with probability measure Fy; the fluctuating density is dns = (Tisds5 | x). When Fjy is Maxwellian,
the velocity is Gaussianly distributed. The fluid closure problem for 0| x) + v V)| x) = 0 with
Maxwellian background is then formally equivalent to a problem of passive advection by a time-
independent Gaussian velocity. As I shall describe in Sec. 3.3 (p. 52), exactly this model has previously
been discussed in detail as a paradigm for the difficulties of statistical closure for strong turbulence
(Kraichnan, 1961), so many results on strong-turbulence closures have immediate applicability to the
fluid closure problem.

In classical transport theory the fluid closure problem is dealt with by the procedure of Chapman
and Enskog (Chapman and Cowling, 1952), who exploited an asymptotic ordering in the inverse of the
collision frequency to obtain rigorously closed equations (Braginskii, 1965) valid for timescales much
longer than the collision time and wavelengths much longer than the collisional mean free path. This
procedure cannot be justified for high-temperature plasmas, for which the collision frequency is very
small. Chang and Callen (1992a,b) discussed a formally exact generalization. Hammett and Perkins
(1990) advocated a more pragmatic approach in which unknown cumulants are parametrized in terms
of known ones in such a way that the linear fluid response well matches the linear kinetic response.
Because the collisionless dissipation mechanism is Landau damping [well understood (van Kampen
and Felderhof, 1967) as a phase-mixing phenomenon|, such closures are sometimes called Landau-
fluid closures. There are relations to the theory of Padé approximants and orthogonal polynomial
expansions, as discussed by Smith (1997). See Appendix C.2 (p. 276) for further discussion.
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2.4.2  Zakharov equation

Zakharov (1972) derived the following system of equations for the slowly varying envelope 1 of
nonlinear Langmuir oscillations and ion density n:

V(0 +ve) + VY=~V -(nE), (0} +2v;0,—V*Hn=V?E?, (37a,b)

where E = —V 1 and v, and v; are linear damping terms. In the limit in which the time derivatives
in Eq. (37b) may be neglected, this system reduces to the nonlinear Schrodinger equation (Benney
and Newell, 1967), which in 1D and in the absence of linear damping is

10,E +V?E + (|E]> - (|E*))E = 0. (38)

Such equations have been the subject of extensive investigation; generically, they exhibit strongly
nonlinear, often coherent behavior including collapse, the formation of solitary solutions, etc.
Unfortunately, much of that important research cannot be discussed here because of space limitations
and a lack of perceived relevance to practical problems of strongly magnetized plasmas. [For more
information and references, see the early reviews of Thornhill and ter Harr (1978) and Rudakov
and Tsytovich (1978) as well as the more recent work of Dyachenko et al. (1992).] The equations
do prominently figure in various problems of laser—plasma interactions, and important statistical
analyses have been done of them; see, for example, DuBois and Rose (1981), Sun et al. (1985), and
DuBois et al. (1988). A separate review article on related topics is warranted. A review of Langmuir
turbulence was given by Goldman (1984); see also the short introduction to that subject by Similon
and Sudan (1990).

2.4.8 Hasegawa—Mima and Terry—Horton equations

Equations of central importance to the fundamental theory of microturbulence in tokamaks and
other systems with fluctuations driven by gradients of macroscopic parameters are the Hasegawa—
Mima (HM) equation (HME) and its generalization, the Terry—Horton (TH) equation (THE).
The HME is arguably the simplest generic description of the nonlinear behavior of drift waves. It
is used in several places in this article to illustrate general theory.

The original derivation of the HME (Hasegawa and Mima, 1978) proceeded from fluid equations
expressed in particle coordinates [often referred to in plasma physics as the equations of Braginskii
(1965)]. However, it is far more concise and elegant to proceed from the GKE (29a) (Dubin et al.,
1983). Temporarily, let us ignore particle discreteness (classical dissipation). For simplicity, consider
the fluid limit 7; — 0 (i.e., ignore FLR effects). Then, upon integrating Eq. (29a) over the velocity
coordinates (4 and v ), one arrives at the continuity equation for the gyrocenter density:

O +V - (Vgn%) + V) (ufn®) = 0. (39)

For the ions, large inertia suggests that uﬁi is negligible (this approximation is relaxed in more
sophisticated descriptions that include ion sound propagation). One also assumes a frozen-in-time
background (mean) density profile, varying in the = direction such that —9, In (n) = L' = x = const,
and recalls the definition of the diamagnetic velocity Vi given in Sec. 1.3.3 (p. 16). Then the ions obey
u(6ng /(n),) + VaOy(edp/T.) + Vi - V(6ng /(n),) = 0. The electron response could also be analyzed
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from appropriate gyrofluid equations, as in Sec. 2.4.5 (p. 38). For present purposes, however, one

simply asserts a linear, almost adiabatic response *:

(5ne/<n>e)k7w ~ (1 —i0k)(edp/Te ), (40)
(Electron polarization is negligible, so nS a~ n..) The last two equations can be combined with
the GK Poisson equation (29b) to yield a closed equation for the electrostatic potential. Before
doing so, however, it is usual to introduce a convenient set of normalized variables [called gyro-Bohm
normalization after the scaling (6)] in which one normalizes velocities to ¢, perpendicular lengths to ps,
and times to w,;; this makes the normalized Vi equal to ps/L,. It is then reasonable to normalize d¢
to T, /e (the natural units for a perturbed Boltzmann distribution) and dn to (n). This normalization
is frequently used in gyrokinetic particle simulations. Nevertheless, an alternate normalization (also
called gyro-Bohm) is possible. *? If one anticipates that saturated fluctuation levels will scale with &,
it is reasonable to normalize d¢ to (T./e)kps; correspondingly, one normalizes dn to (n)kps. In the
dimensionless time (kps)wit, the equations are unchanged in form (with Vi equal to unity). In either
normalization the resulting equations for the potential and density fluctuations are

V260 = —(0n — dn,), (41a)
ons + Va0, 00 + Vg - Véng =0, (41b)
Sne = (1 —1i6)d¢p. (41c)

Upon inserting Eq. (41c) into Eq. (41a), one obtains
ond = (14 X)dp, where [ =-V2 —id. (42a,b)

Finally, upon inserting Eq. (42a) into Eq. (41b), one obtains the equation of Terry and Horton (1982)
[see also Horton and Ichikawa (1996)]:

(14 X)0bp + Vx0,0p + Vi - V(X dp) = 0. (43)

(One noted that V- Vdp = 0.) In @ space § is a generally nonlocal operator (denoted by the caret),
so X is as well; Eq. (43) is more tractable in k space, where § and ¥ become purely multiplicative.

¢

48 «Adiabatic” is used here not in the thermodynamic sense but rather as “very slowly varying.” In plasma
kinetic theory adiabatic response refers to fluctuations whose frequencies obey w < kjv¢. In this limit particle
density perturbations approach the Boltzmann distribution dn/(n) ~ ¢ d¢/T by rapidly streaming along the

magnetic field lines. Typically, electrons obey the adiabatic ordering w < kjvie whereas ions obey the
opposite “fluid” ordering w > kjjvy;. In linear theory the small nonadiabatic correction —i4 can be calculated
by detailed solution of the GKE. Dimensionally § = O(v'"/Q), where 41" is the linear growth rate and
2 is the real frequency. In nonlinear theory the id model (40) [sometimes attributed to Waltz (1983)] is an
approximation that has been criticized (Gang et al., 1991; Liang et al., 1993) on the reasonable grounds that

nonlinear corrections to v are missing.
49 For the general theory of dimensional analysis and scaling, see Appendix B (p. 264).
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In Eq. (42b) the V3, inherited from the GK Poisson equation, describes the effect of the ion
polarization drift. That is not an ion FLR effect, contrary to frequent assertions, as it survives in the
limit 7; — 0. Furthermore, it is not small. ®°

The statistical dynamics of such equations are strongly constrained by invariants of the nonlinear
terms; see Sec. 3.7.2 (p. 68). The THE has the single nonlinear invariant

- 1
2= 2y Zp= 5’1 + xil*|nl*- (44a,b)
A

(The tilde denotes a random variable, a property of a particular realization; statistically averaged
quantities will be written without tildes, e.g., Z = (Z).) One has

Z = kT, (45)
where

I = Re > 6Veerong, = kybi|owl? (46a,b)
k k

(s = e or i) is the species-independent (intrinsically ambipolar) value of the random gyrocenter
flux. [As noted in Sec. 1.3.1 (p. 13), only the nonadiabatic correction Jj enters in expressions for
turbulent fluxes.| This result demonstrates a significant deficiency of the THE. The average of Eq. (45),
0. Z = kI, is a degenerate form of the general balance equation

W =P-D (47)

[cf. Eq. (14)], where Z is a nonlinear invariant and the overline implies both spatial and statistical
averaging. In the present case the production term P is proportional to the flux I, but the dissipation
term D is absent, implying that either the turbulent flux vanishes if a statistical steady state is
achieved or, more likely (Krommes and Hu, 1994), the system does not saturate in the absence of
dissipation. This is a deep result that is discussed further in Secs. 3 (p. 46) and 12.2 (p. 238). The cure
is to insert, either by hand or systematically, dissipation into the ion equation (41b). One example is
provideded by the Hasegawa—Wakatani equations discussed below in Sec. 2.4.5 (p. 38).

The THE is complicated by the presence of nonadiabatic electron response in two places: linear
theory; and the nonlinear term. According to Eq. (42b), the full TH nonlinearity is composed of two
parts: the polarization-drift nonlinearity V-V (—V26p); and the E x B nonlinearity Vi -V [i0(5¢)].
Properties of Eq. (43) with a particular model of dissipative effects were discussed by Liang et al.
(1993). At the other extreme, if the nonadiabatic contributions are neglected both linearly and

50 Stix (1992, p. 402) might appear to suggest that polarization provides a correction of higher order in w/we;
to the basic drift-wave dispersion relation. Nevertheless, that remark is misleading; the correction is order
unity.
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nonlinearly, °! one arrives at the equation of Hasegawa and Mima (1978) 5%
(1 —V?%)0bp + V0,6 + Vi - V(=V3dp) = 0. (48)

The HME is conservative; it contains neither growth nor dissipation and is a generalization of
the 2D Euler equation. (The absence of dissipative effects arises, of course, from the neglect of
contributions from a collision operator C; those will be reinstated in the subsequent discussion of the
Hasegawa—Wakatani equation.) Indeed, the term V2 ¢ is just the z component dw of the vorticity
fluctuation due to the E x B motion: V x Vg[p] = V x (2 x V¢) = V2 ¢ = w. Thus the HME can
be written

O (0w — 6¢p) — V0,0 + Vi[dy] - Viw = 0. (49)

This equation possesses two quadratic invariants, ®® the energy € and the (potential) enstrophy W:
£ . 1\z 5 .1
(W) = Z <k2> 8167 8’6 = 5(1 + k2)’530k:’2 (50a7b)
k

These conserved quantities play important roles in the nonlinear statistical dynamics of the equation,
as discussed in Sec. 8.4 (p. 206).

If the terms explicitly involving d¢ are neglected, Eq. (49) becomes the 2D neutral-fluid Euler
equation in the vorticity representation [Eq. (17) with uq = 0; see also the guiding-center model (31)],
which has been studied extensively. However, although this observation is instructive, such neglect is
physically unjustified. The first d¢ term in Eq. (49) arises from the nearly adiabatic response of the
electrons, which rapidly stream along the magnetic field lines and exhibit a nearly Boltzmann response.
This behavior is essentially three dimensional and cannot be ignored [at least for long-wavelength
fluctuations (k1 ps < 1), which, as one will see, are the important ones|. The second d¢ term represents
the presence of a background density gradient, imparts a crucial wavelike component to the dynamics,
and [in more complete descriptions; cf. Sec. 2.4.5 (p. 38)] is ultimately responsible for a variety of
instabilities.

As it stands, the conservative HME (3 = 0) predicts vanishing particle transport because there
is no phase shift between density and potential, although dimensional analysis (Appendix B, p. 264)
predicts gyro-Bohm scaling. It is conventional to insert linear dissipative effects by hand; such models
are called forced HM equations and have entirely nontrivial statistical dynamics (Ottaviani and

5L If, on the other hand, one neglects the Vi in Eq. (42b)—i.e., ignores the polarization-drift nonlinearity—
one arrives at an equation studied earlier by Horton (1976). The neglect is justifiable for very long wavelengths,
kipg < 7v/w, but note that it is kj ps that enters, not k; p;. That is, this ki term does not describe an
FLR effect; it remains finite as T; — 0 (footnote 50, p. 36). In gyrokinetics one nominally orders k| ps = O(1),
so neglect of this term is dubious.

52 The HME is intimately related to the nonlinear equation for Rossby waves (Charney and Stern, 1962;
Dickinson, 1978) in geophysics; it is frequently called the Charney-Hasegawa—Mima equation.

53 These conservation laws can be proved in either k space or & space. The latter proof proceeds by multiplying
Eq. (49) by (¢, w)T, integrating over x, integrating by parts, and recalling that w = V2 (. The diamagnetic
term can be formed into a perfect y derivative whose integral vanishes under periodic boundary conditions.
For the nonlinear term, (i) [dz¢VEg-Vw = [de E-Vgw = 0 (the E x B drift does no work), and

(i) [dzwVE Vw = [dz V- (VEsw?) = 0. Note that in the limit of small § the TH invariant is Z ~ & + W.
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Krommes, 1992). The real utility of the HME lies in its clean description of the polarization-drift
nonlinearity; it is an important limit to which more complete, possibly kinetic theories should reduce.

Direct numerical simulations and statistical theories of the HM and TH equations are described
in Sec. 8.4 (p. 206).

2.4.4 Generalized Hasegawa—Mima dynamics

The HME is a reasonable model provided that kj # 0. It must be modified for fluctuations with
ky = 0 (sometimes called convective cells 51) whose response is strongly nonadiabatic. Although the
precise response can be obtained from the gyrokinetic equation, a common approximation (Dorland,
1993; Hammett et al., 1993) is to constrain the electrons to not respond at all for kj = 0. This
requirement changes the 1 in Egs. (41c) and (42a) to the operator 5 /3, where 3 vanishes for k=0

and is the identity operator otherwise (i.e., B projects onto the & # 0 subspace), and leads for 5=0
to the generalized Hasegawa—Mima equation

(B — V)b + Vid,dp + VEloy] - V[(B — V*)dy] = 0. (51)

Like the THE, Eq. (51) possesses only the single invariant Zz  , where Z is defined by Eq. (44)
(Lebedev et al., 1995; Smolyakov and Diamond, 1999). It figures importantly in the theory of zonal

flows and other long-wavelength fluctuations; see Sec. 12.7 (p. 248).

2.4.5 Hasegawa—Wakatani equations

The TH description is fundamentally incomplete in that the nonadiabatic (dissipative) electron
response (o 1dg) is simply specified (it must ultimately be computed from a subsidiary kinetic theory),
not determined self-consistently. In more sophisticated fluid models, dissipative processes enter more
naturally. One such model was developed by Hasegawa and Wakatani (1983) and Wakatani and
Hasegawa (1984), who considered nonadiabatic response due to electron—ion collisions.

To derive the Hasegawa—Wakatani (HW) model from the GKE, one rejects Eq. (40) in favor of
an explicit calculation beginning from Eq. (39) for the electrons. Since electron inertia is negligible,
a simplified electron momentum equation is 0 ~ —n.el)| — V| P, — nemeleitt)e, where P = nT’;
temperature fluctuations and ion parallel motion are neglected for simplicity. This can be rewritten

as uje = D|Vj(¢ — ne), where Dy = vl /v, is the classical parallel diffusion coefficient. Upon
substituting for u., one can reduce the electron continuity equation in the usual gyro-Bohm units
to don./dt = a(dp — on.) — k0,dp, where a = —w;lDHVﬁ. Upon recalling the GK Poisson

equation (29b), one can replace the dn; equation by dw/dt = a(dp — dn.). The latter two equations
are the HW equations in the absence of perpendicular dissipation. Dissipative effects may be added by
hand, but also follow systematically from a careful treatment of collisional gyrokinetics (not discussed

5 Frequently convective cell is used to refer to any fluctuation with k| = 0. More specifically, it is also the
name of a particular linear normal mode of 2D magnetized plasmas, as discussed by Krommes and Oberman
(1976b); see Sec. 5.10.1 (p. 143).

%% Krommes and Kim (2000) used the notation & instead of B, but that conflicts with the operator defined
in Sec. 2.4.5 (p. 38) in conjunction with the Hasegawa—Wakatani equations.
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here). One may summarize the HW system in the form usually used for computation®® as

— =a(pg—n)+ udViw, — =a(p—n)—kK ¢ + DdVin, (52a,b)

with w = V2 . All variables represent fluctuations in these equations.
It is straightforward to show that the HW system possesses the four nonlinear invariants

V=1V, W=luw?), M=1i@n®, X=(wn)=—-(Ve Vn). (53a,b,c,d)
Therefore the combination
Ni = 3{(n —w)?) = 3(on?), (5da,b)

where the gyrokinetic Poisson equation (41a) was used in obtaining Eq. (54b), is also an invariant.
Because N is a physically interesting quantity, one may use it in place of the cross correlation X.
One may also use the fluid energy £ = V + N, in place of N,. Straightforward algebra shows that
these quantities evolve according to

0V =—(p|al(p—n)— palw’), (55a)
OW=(w]|a|(p—n)— palVul?), (55b)
O£ =KL = ((p —n) | & | (¢ = n)) = pa(w?) = Da(|Vn|?), (55¢)

)

ON; =kl — D, (55d
where
D = pa(|[Vwl?) = (e + Da)(Vn - Vw) + Da(|Vn]?) > 0. (56)

The proof that D > 0 follows from a Schwartz inequality. °” Because & oc —9? is a positive-semidefinite
operator, the dissipation of £ is also positive semidefinite. The parallel dissipations of ¥V and W are
of indefinite sign. Note the absence of (explicit) parallel dissipation in Eq. (55d).

6 Often one or more of the dissipative terms like puqV? — —puqk? are generalized to —puc (k)k?, where
pe1(k) contains terms of positive order in k? (hyperviscosity).
5T The spatial average together with the Cartesian dot product can be interpreted as a scalar product. Then
(writing o and D instead of pe and D to avoid clutter)

D = (Vi |Vw])? = (u+ D)(Vn | Vo) + (VD [|Vn]). (-1)
By a Schwartz inequality, |(Vn | Vw)| < [|[Vn|||Vw||. Thus

D> (Vi |Vol)® = (u+ D) | Val V] + (VD [ Va])*. (£-2)
From (/11 — VD)? =y — 2y/uD + D > 0, one proves that p + D > 2/uD. Thus

D> Ve Vw—VDVn|?>0. (£-3)
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Equations (52) are intrinsically three dimensional since & is an operator. 3D simulations of
Egs. (52) and similar equations are feasible and have been done both with and without magnetic
shear [see, for example, Guzdar et al. (1993)]; the results are essential to the theory of submarginal
turbulence (Sec. 9, p. 210). However, in the simplest model & is replaced by the constant parameter
a = w;lkﬁDH for constant kj # 0; in this approximation Eqs. (52) form a 2D system that is
amenable to rapid computation. That system can be viewed as a paradigm useful for demonstrating
and understanding certain features of plasma turbulence. The equations may have some relevance to
fluctuations in the cold edges of tokamaks, but exploring the practical ramifications or deficiencies of
such models is not the focus of this article.

The 2D HW system with constant « exhibits several important conceptual features [for a review,
see Koniges and Craddock (1994)]: (i) The linear theory exhibits a density-gradient-driven instability
that is determined from the equations themselves, 58 not inserted ad hoc. The eigenvalues of the linear
matrix coupling w and n describe two modes, one unstable (for some wave numbers) and propagating
in the electron diamagnetic direction, the other always stable and propagating in the ion diamagnetic
direction. (ii) The system contains a single parameter « that can be varied to exhibit different physical
regimes. (a) For a > 1 consistent balance requires that n = ¢ to lowest order in a'. This becomes
exact as a — o0; then subtracting Eq. (52b) from Eq. (52a) yields the HME in the limit of zero
dissipation. For finite av > 1 Eqs. (52) behave as a forced, dissipative HME with small growth rate
v/w < 1; this regime is called the adiabatic regime. (b) For v < 1 the vorticity equation almost
decouples from the density equation and reduces to the 2D Euler equation. The density is almost
passively advected by the E x B velocity. [The diamagnetic term in Eq. (52b) can be considered
to be a random forcing.] Because of the analogy to the 2D Euler equation, a < 1 is called the
hydrodynamic regime. Here the growth rate is of the order of the real frequency: v/w ~ 1.

It is interesting to see how the HW invariants reduce to those of TH and HM. N; reduces to the
TH invariant U for & = 0. € reduces to the HM & [Eqs. (50)] as @ — oo, for then one has n, — ¢
similarly, V + N. — W, the potential enstrophy.

Equations (55d) and (55¢) show that statistically steady states with positive flux can be achieved,
production of turbulent fluctuations (the kI' term) being balanced by positive definite dissipation.
Aspects of the transition to turbulence of the HW system (52) were considered by Vasil’ev et al. (1990).
The equations have been simulated by several groups (Koniges et al., 1992; Biskamp et al., 1994; Hu
et al., 1995), and there is general agreement on the principle features. The particle transport I'(«)
that follows from DNS is shown by the solid line in Fig. 1 (p. 41). A distinctive scaling I' ~ a~!/3 is
exhibited for aw < 1. This is consistent with the prediction of scaling analysis (Appendix B, p. 264)
applied (LoDestro et al., 1991) to the simplified system arising by dropping the a term in Eq. (52b).
For large « the ordering 7/w < 1 suggests a weak-turbulence treatment [see Sec. 4.2 (p. 98)]; this leads
(Hu et al., 1995, 1997) to the scaling® ' ~ a~2. The other curves in Fig. 1 (p. 41) will be discussed
in Sec. 8.5 (p. 208). In particular, the lowest curve, which closely tracks the exact solution, is the
prediction of the so-called Realizable Markovian Closure (RMC). Much of this article will be devoted

58 For the physics of the instability, see Hu et al. (1997).

% Interestingly, Connor-Taylor analysis applied to the large-a regime predicts (LoDestro et al., 1991) the
scaling I' ~ o', which is actually the mixing-length scaling and disagrees with the weak-turbulence analysis.
This paradox can be resolved by arguing (Hu et al., 1997) that the numerical coefficient of the dominant
Connor—Taylor scaling vanishes in this regime, the scaling theory not taking account of the rapid variation
of the linear waves.
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to a development of the analytical techniques that underlie that clearly successful approximation.
The RMC is described in Sec. 8.2.3 (p. 203).

40 T T T T T T T T TTTTT
= RMC closure code 7
i Pseudospectral DNS code 7
20 T Quasilinear estimate ]
[ 20 — 7
10 o178 .
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Fig. 1. Particle flux I'" vs adiabaticity parameter « for the 2D Hasegawa—Wakatani equations. Solid line,
direct numerical simulation; dashed line, Realizable Markovian Closure; dotted line, quasilinear prediction.
After Fig. 10 of Hu et al. (1997), used with permission.

Time snapshots of typical a-space vorticity fields for o < 1 show (Koniges et al., 1992) well-
defined vortices amidst a sea of random turbulence. The tendency to form such vortices is well known
from extensive studies of decaying 2D Navier-Stokes turbulence (McWilliams, 1984; Benzi et al.,
1988). However, whereas in strictly decaying turbulence the vortex coalescence proceeds indefinitely,
generating larger and larger scales as ¢ — oo and an ever-increasing kurtosis [a fourth-order statistic
defined by Eq. (96b)], the forced, dissipative 2D NSE that Eq. (52a) becomes for a < 1 achieves a
balance between the nonlinear advection in the presence of dissipation, which favors the coalescence,
and the linear forcing, which tends to destroy the vortices. The actual steady-state kurtosis measured
for representative parameters was 12. Such a highly non-Gaussian kurtosis presents a challenge for
analytical theory; see Secs. 8.5 (p. 208) and 10.4.2 (p. 225).

In 3D the physics of systems like that of HW become more interesting because of nonlinear
coupling between planes of k| = 0 [convective cells; see footnote 54 (p. 38)] and kj # 0. Although
such systems can frequently be linearly stabilized by magnetic shear, ® nonlinear instability remains a
possibility (Biskamp and Zeiler, 1995; Drake et al., 1995). The submarginal turbulence that can result
is discussed in Sec. 9 (p. 210).

60 Magnetic shear is defined in Sec. 12.6.3 (p. 247). A detailed discussion of the effects of magnetic shear on
linear stability would carry us too far afield. Early work was cited by Antonsen (1978), who proved that the
collisionless universal instability possesses only stable eigenmodes in the presence of shear.
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2.4.6  FEquations with ion temperature gradients

The HM, TH, and HW equations all describe variants of the universal drift wave (Krall, 1968;
Horton, 1984) driven by gradients in the mean density profile. In the presence of intense ion heating,
as is typical for modern tokamaks, ion-temperature-gradient-driven (ITG) modes (Kadomtsev and
Pogutse, 1970b; Horton, 1984; Cowley et al., 1991) are of considerable interest (Ottaviani et al., 1997).
ITG fluid equations can systematically be derived by taking moments of the GKE in the presence
of mean temperature gradients, then invoking a Landau-fluid closure (Appendix C.2, p. 276). The
equations actually used for modern simulations are substantially too complicated to be recorded
here; see recent representative works such as those of Beer (1995) or Snyder (1999). However, when
FLR effects (Dorland and Hammett, 1993) and the effects of nonconstant magnetic fields are ignored,
one is led to a relatively simple set of fluid equations for a slab ITG mode:

O+ Vg -Vn= —Vu — Oy, (57a)
Oy + Vi - Vu ==V (T + 2¢p), (57b)
0T + Vg -VT'==2Vju—n0,p—0T, (57¢c)

where 1; = dInT;/dInn; = Lp/L, and U o |kj| arises from a Landau-fluid closure. In the limit
wl — 0o the linear dispersion relation for this system is approximately wy = 1/ 3(kﬁc§w£)1/ 3 where
11/3 = exp(2min/3) with n = 0, 1,2. When w is kept nonzero, the root n = 0 reduces to the universal
drift wave as wl — 0. The root n = 1 is the ITG mode, a nonresonant instability that is driven
unstable by negative compressibility; a clear physical picture was given by Cowley et al. (1991). The
root n = 2 is a stable branch of the ITG mode. For tokamak geometries it is important to retain the
effects of magnetic curvature; those can approximately be accounted for (Ottaviani et al., 1997) by
adding a term wg 0,1 to the left-hand side of Eq. (57a). As wg is raised from 0, the roots migrate such
that as wr — oo the unstable root becomes wy ~ i(wgr wl)/2. This curvature-driven ITG mode 5! is
the one considered to be important for experiments.

2.4.7 Nonlinear equations for trapped-ion modes

I have already noted that in toroidal magnetic configurations magnetically trapped particles may
be important. In addition to their contribution to classical transport, trapped populations may lead
to new classes of microinstabilities. Those may be important in a variety of contexts, including space
plasma physics (Cheng and Qian, 1994); the most detailed work has been done on fusion plasma,
a subject by and large too arcane and practically detailed to be described here. Nevertheless, it is
worth mentioning model equations for the trapped-ion mode, as there are interesting links to both
nonlinear dynamics and the theory of 2D turbulence.

The importance of trapped-ion modes was suggested early on in various works by Kadomtsev
and Pogutse [see, for example, Kadomtsev and Pogutse (1970b)]. They considered a two-field set of
coupled equations for the trapped-electron and trapped-ion densities. LaQuey et al. (1975) derived a
one-field model and attempted to consider its nonlinear saturation. Cohen et al. (1976) gave a more
extensive discussion of the one-field equation in 1D. In appropriately dimensionless units the equation

61 In reality the proper treatment of curvature is more complicated than is suggested here. These equations
are presented only for purposes of illustration.
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dp % O d(p?)
ot + B +oaay4 + v+ oy

= 0. (58)

An equation of this form was also derived by Kuramoto (1978) in the context of chemical reactions
and by Sivashinsky (1977) for the description of flame fronts; it is now known as the Kuramoto-
Siwvashinsky (KS) equation. The second-derivative term in y is anti-diffusive; it describes a linear
instability driven by dissipation. The fourth-derivative term, which is stabilizing, arises in this context
from an approximation to ion Landau damping. The ion collision term v is also stabilizing. The last
term is a Burgers-like nonlinearity [cf. Eq. (19)] that leads to the formation of shocks. Cohen et al.
(1976) found chaotic solutions of Eq. (58) and calculated some of their properties analytically; the rich
nonlinear dynamical behavior of the equation has subsequently been studied in considerable detail
[Bohr et al. (1998), Wittenberg (1998), Wittenberg and Holmes (1999), and references therein].

For the fusion application Cohen et al. (1976) emphasized that the 1D approximation was severe
and that detailed predictions from the model should not be believed. Kadomtsev and Pogutse (1970b)
had earlier derived the 2D, one-field equation

O+ §Vadyn + (V2 /4y, + (Vi [4)2 x ¥ (0yn) - Vn =0, (59)

where Vi is the diamagnetic velocity of the trapped ions. Diamond and Biglari (1990) argued that
the 2D nature of this equation was important, as it could lead to broadband strong turbulence. For
further remarks on Eq. (59), see Sec. 3.8.4 (p. 76).

2.4.8 Equations for magnetohydrodynamic turbulence

The plasma equations introduced so far have mostly assumed a spatially and temporally
constant magnetic field. It is not difficult to generalize them to include spatial variations, which
introduces among other things the effect of magnetic shear. The physical effects of magnetic shear
are mostly beyond the scope of this article, but one should appreciate that spatial dependence
of B arises from nontrivial current distributions and boundary conditions. The associated theory
of magnetohydrodynamic (MHD) equilibria is very well developed (Freidberg, 1982, 1987). For
turbulence, however, one is concerned as well with nontrivial time dependence, so one must consider
time-dependent MHD. This subject is vast, and even the part of it that overlaps basic turbulence
theory cannot properly be treated in this article because of space constraints; see Biskamp (1993).
Nevertheless, because MHD not only provides interesting illustrations of some of the fundamental
turbulence concepts but is also useful in many important practical applications, I shall briefly
introduce the basic MHD equations.

The evolution of electromagnetic fields is described by Maxwell’s equations

VxB:4—7Tj+la—E, V-B=0, VXE:—la—B, V - E = 47mp. (60a,b,c,d)
c c Ot c Ot
For low-frequency motions the O,E term in Eq. (60a) is omitted (giving the pre-Maxwell equations).
For consistency one must then require the quasineutrality condition p = 0. The simplest Ohm’s law
in a frame moving with velocity w is

E+ c'ux B =147, (61)
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where a scalar resistivity 7. is assumed. Straightforward vector algebra leads one to the equivalent
representations

OB =V x (ux B) + tinaV*B or % =B -Vu+ VB, (62a,b)
where fi,, . = nac®/4m. The unique dimensionless parameter of Eqs. (62) is the magnetic Reynolds
number % R, = uL /i q.

With A being the vector potential, it is useful to note the analogies A ~u, B ~w (B =V x A,
w = V x u). When u is a specified function (possibly stochastic), Egs. (62a) or (62b) define the
kinematic dynamo problem, which describes the amplification of magnetic fields because of line
stretching. % [Note that although Egs. (62) are analogous to Eqs. (16) for the fluid vorticity w, the
latter have no analog of the kinematic dynamo because w is intrinsically linked to w.] If w is instead
allowed to evolve, one must adjoin to Eqs. (62) the generalization of the NSE to include magnetic
forces:

du 1

1 1
e (- Vp+tc Yy x B+ pgViu = ——V(p+ -B2
& pm( p+c 'y )+ 1aViu o (p+2 )+47Tpm

B - VB + 1aV?u. (63a,b)

The resulting self-consistent dynamo problem is of great current interest, but will mostly not be
discussed in this article because of lack of space.
It is not difficult to show that in 3D the nonlinear terms of Eqgs. (62) and (63) conserve %*

1 — 1
= 5pm“2 + 8—B2 (total energy), H = p,u-@ (fluid helicity), (64a,b)
T
He.=u-B (cross helicity), H,, =A-B (magnetic helicity) (64c,d)

when integrated over a volume on whose boundary (with unit normal n) n-w =0 and nn- B = 0. The
interpretation of H,, as the degree of knottedness of magnetic field lines was discussed by Moffatt
(1969).

Consider a system for which the fluid energy is negligible (u ~ 0). One is left with the two magnetic
invariants € ~ B2/8t and H,, = A - B. In a highly conductive fluid (R,, > 1) both £ and H,, are
approximately conserved. However, when small-scale fluctuations are excited £ is dissipated more
rapidly, since one can verify that

dg/dt = —nalj2, dH.,/dt = —2nacj - B (65a,b)

and € contains a higher spatial derivative because j = ¢V x B /4. [That invariants dissipate at
different rates was called selective decay by Matthaeus and Montgomery (1980).] This faster dissipation
of energy suggested to Taylor (1974b) that the variational principle Minimize £ subject to constant H,,
might be used to determine the ultimate magnetic field that results from turbulent relaxation in

62 When w is scaled to the Alfvén velocity, one refers to the Lundquist number.

63 Considerable progress has been made in the dynamical and statistical description of the kinematic dynamo.
For recent work and prior references, see Boldyrev and Schekochihin (2000) and Schekochihin (2001).

64 Tn 2D the fluid helicity H and the magnetic helicity H,, vanish because w and A are in the z direction
whereas u and B lie in the z—y plane. However, A = (A?) is then an independent inviscid invariant (Fyfe
and Montgomery, 1976).
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pinch experiments. The resulting Euler-Lagrange equation is V x B = AB, where )\ is a Lagrange
multiplier; i.e., the relaxed states are force-free, 3 x B = 0. The consequences of this prediction
have been explored in depth. As reviewed by Taylor (1986) and Taylor (1999), the theory has been
spectacularly successful in predicting quantitative features of magnetic pinches, including the onset
condition for spontaneous magnetic-field reversal and the shapes of the radial field profiles.

2.4.9 Other nonlinear equations

A variety of other nonlinear dynamical equations are important in the literature; some are cited
and/or discussed by Yoshizawa et al. (2001). Conceptually, they mostly present more or less detailed
variations on the themes introduced above, perhaps by providing more elaborate descriptions of the
evolution of the temperature and /or parallel current. A Liouville equation for magnetic field lines was
posed and analyzed by Rosenbluth et al. (1966); a related model was used in the statistical description
of particle transport in magnetic fields by Krommes et al. (1983) and by vanden Eijnden and Balescu
(1996). One should also mention the four-field equations of Hazeltine et al. (1985) and Hazeltine
et al. (1987), which bridge between electrostatic and MHD equations. Very detailed equations for
drift-Alfvén microturbulence have been discussed by Scott (1997).

2.4.10 The essence of the nonlinear plasma equations

To summarize the general properties of all of the equations mentioned so far, they (i) are
nonlinear % (typically quadratic, although the nonlinear Schrédinger equation is cubic); (ii) possess, in
the linear approximation, intrinsic sources of free energy (e.g., profile gradients or linear growth rates),
so are self-forced (leading to intrinsic stochasticity excited by either linear or nonlinear instabilities);
(iii) include linear dissipation that can balance the forcing and permit statistically steady states;
(iv) often involve multiple coupled fields; and (v) contain an advecting velocity field, most often the
E x B velocity, that is usually self-consistently determined from one or more of the advected fields.
These properties help to focus and guide the development of appropriate analytical theories of plasma
turbulence.

3 INTRODUCTION TO THE STATISTICAL THEORY OF
TURBULENCE

“The essential difficulties of the turbulence problem arise from the strongly dissipative
character of the dynamical system and the non-linearity of the equations of motion. The
first of these two characteristics effectively precludes treatment by conventional methods of
statistical mechanics. The second is responsible for the fact that the Navier—Stokes equation
does not yield closed differential equations for the velocity covariance, the statistical quantity
of principal interest. The equations of motion for this covariance contain third-order moments
of the velocity field, the equations of motion for the third-order moments contain fourth-order
moments, and so forth, ad infinitum. A central goal of turbulence theory is the closing of this

65 The kinematic dynamo problem [Eqs. (62) with statistically specified w] is dynamically linear, but is
quadratically nonlinear in random variables. For more discussion of the statistical closure problem for such
cases, see Sec. 3.3 (p. 52).
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infinite chain of coupled equations into a determinate set containing only moments below some
finite order.” — Kraichnan (1959b).

In this and the next several sections I discuss topics in the statistical theory of turbulence.
The present section is introductory: I describe the basic philosophy and goals, present several
solvable models, introduce important dimensionless parameters, give simple random-walk estimates
of transport, define key statistical measures, and survey various strategies that can be used to develop
analytical approximations. In subsequent sections I develop some of those in detail.

3.1 Philosophy and goals

Why does one need a “fundamental” (systematic) theory of turbulence? Useful analogies can be
drawn to Maxwell’s equations of electromagnetism and to the Vlasov equation. Maxwell’s equations
provide the foundation underpinning all of electromagnetic theory and experiment, even though in
many practical electrical-engineering applications they are not solved explicitly. The Vlasov equation
underlies a vast field of linear and nonlinear wave and other collisionless phenomena. In the same spirit
it is important to understand the most general analytical foundations of turbulence even though in
practice much rougher engineering estimates may often be employed.

As T have remarked, turbulence has various facets, both statistical and coherent. In focusing
on statistical approaches rather than descriptions of coherent phenomena, one commits to a basic
philosophy. Upon recalling the goal of calculating transport, one notes that the simplest diffusive
transport problem, a discrete random walk in one dimension, is inherently statistical, so it seems
natural to generalize such ideas as much as possible. Coherent structures may be important, but in
many circumstances they are either subdominant or embedded in a sea of random motions. Because in
some ways statistical theories are simpler than coherent ones (they discard various phase correlations,
for example), it seems reasonable and prudent to develop those first.

This is certainly not to say that statistical methods are either the last word or even at all useful
for certain important problems of nonlinear physics. Some progress in elucidating the dynamical
underpinnings of turbulence was described by Bohr et al. (1998). What needs to be avoided, however,
is the tendency of some workers to dismiss statistical approaches out of hand as being never useful. In
fact, particular statistical theories perform very well indeed for significant questions (e.g., transport)
of central importance to modern applications (e.g., fusion). It is important to understand the reasons
for this success, and we will see that some answers are known. Furthermore, whatever ingredients the
ultimate theory of turbulent phenomena will involve, it seems unreasonable to believe that insights
gained from the statistical approaches will be useless if there is a random aspect of the dynamics at
all.

The goals of a statistical theory of turbulence are both qualitative and quantitative. It is important
to note that if a transport coefficient D is assumed to exist %6 in a particular model, dimensional and
scaling analysis (Appendix B, p. 264) of the primitive equations already determines D to have the
form D/Dy = CF(ey,¢€9,...), where Dy is a combination of appropriate dimensional quantities such
as T or B [cf. the Bohm diffusion coefficient Dp, Eq. (5)], C' is a constant, and F is a dimensionless
function of various dimensionless parameters ¢;. Qualitative understanding of the turbulent physics

66 This assumption is far from trivial: D may be infinite or may vanish, signifying the need for a more refined
model of the physics. See the last paragraph of Appendix B (p. 266).
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helps one to understand the functional form of F, and most research on practical applications
involving turbulence is devoted to this end. However, quantitative solution of adetailed statistical
approximation is needed to determine the value of C' and pin down the precise form of F.67
Additionally, quantitative analysis is needed to predict detailed wave-number and frequency spectra,
rates of energy transfer between modes, and other quantities such as higher-order statistics or PDF’s
that can be compared with experiment. Of course, such quantities can also be computed (at least
in principle) by diagnosing numerical simulations. The analytical and computational approaches are
complementary. Note that the mere numerical computation of a constant coefficient does not explain
why it has that value. Analytical theories tend to be couched in terms of physically intuitive concepts,
such as diffusion coefficients or mean damping rates, that facilitate back-of-the-envelope estimates
and heuristic explanations. Furthermore, the conceptual formulation of the analytical methods may
suggest specific diagnostics to be employed in the analysis of the numerical data. To date, large-scale
numerical simulations in plasma physics have by and large not lived up to their promise of clarifying
in detail the nonlinear dynamics leading to the measured transport.

Another role of an analytical statistical theory of turbulence is to predict general qualitative
properties that are at least in principle amenable to experimental verification. An important example
is the Onsager symmetries. Those are known to hold for small perturbations of thermal equilibrium,
but their status for general, far-from-equilibrium classes of turbulence has been highly confused in
the literature. A discussion is given in Sec. 12.1 (p. 235).

In this article I concentrate on the systematic analysis of well-specified yet tractable nonlinear
equations such as those described in Sec. 2.4 (p. 33). (The Liouville and Klimontovich equations are
well specified, but are intractable in general.) That is not (nor should it be) the principle focus of
current research in plasma confinement, in which many diverse effects operate simultaneously and
an appropriately simple model that describes an entire device may not exist and has certainly not
yet been found. Sufficient motivation is the intellectual challenge of understanding the nonlinear
plasma state. Furthermore, there exists more than one instance of a dramatic qualitative conclusion
drawn from some heuristic statistical turbulence analysis that turns out upon closer inspection to
be erroneous. Some of the issues are quite subtle and demand a robust and systematic analytical
framework for their resolution.

3.2 Classical Brownian motion and the Langevin equations

“Une particule comme celle que nous considérons, grande par rapport a la distance moyenne des
molécules du liquide, et se mouvant par rapport a celui-ci avec la vitesse £ subit une résistance
visqueuse égale a —6mpuaf d’aprés la formule de Stokes. En réalité, cette valeur n’est qu’une
moyenne, et en raison de I’irrégularité des chocs des molécules environnantes, I’action du fluide
sur la particule oscille autour de la valeur précédente, de sorte que ’équation de mouvement
est, dans la direction x, m d2ac/dt2 = —6mpadx/dt + X. Sur la force complémentaire X nous
savons qu’elle est indifféremment positive et négative, et sa grandeur est telle qu’elle maintient

I’agitation de la particule que, sans elle, la résistance visqueuse finirait par arréter.” %8 —

67 Important issues such as the possibility of thermonuclear breakeven or the ultimate economy of fusion
reactors sometimes come down to numbers.

68 «A particle such as the one we consider, large in comparison with the mean distance between the molecules
of the fluid, and moving with respect to the latter with velocity &, is subject to a viscous resistance equal to
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Langevin (1908).

As T will discuss in Sec. 3.3 (p. 52), the formal structure of the turbulence problem involves a
multiplicatively nonlinear random coefficient. Let us begin, however, by examining equations with
additive random forcing. Those are much simpler to analyze and the results have wide applications,
including certain Langevin representations of statistical closures [see Secs. 5.3 (p. 132) and 8.2.2

(p. 201)].

3.2.1 Statement of the classical Langevin equations

The key example, to which I will refer a number of times in this article, is the system of classical
Langevin equations (Langevin, 1908; Uhlenbeck and Ornstein, 1930) for the Brownian motion of a
large test particle (e.g., pollen or a hydrogen ion) of mass M randomly kicked by a sea of much smaller
particles (e.g., air molecules or electrons) in thermal equilibrium at temperature 7":

r=wv, v+vv=all). (66a,b)

The damping term v describes the mean frictional drag imparted by the medium to the test particle
whereas the random acceleration a describes the random excitation due to the individual kicks; it is
usually taken to be Gaussian white noise with (a) = 0 and

F(t,t) = (5a(t)sa(t))) = 2D,5(r), (67a,b)

where 7 = t—t" and D, is a constant (the short-time velocity-space diffusion coefficient, as will be seen
shortly). The Einstein relation (Einstein, 1905) D, = T/Mv is a statement of energy conservation
and the fluctuation—dissipation theorem (Martin, 1968). Montgomery (1971a) discussed the relation
of the Langevin equations to Boltzmann’s equation. In plasmas such equations can be justified [and
formally derived from the Landau collision operator (34)] for the classical motion of a heavy ion due
to collisions with light electrons (Braginskii, 1965). However, their intuitive content is valuable quite
generally.

Several features of this Langevin system are important for the discussion of turbulence theory to
follow. (i) The delta function on the right-hand side of Eq. (67b) reflects a coarse-graining of the time
scale; the microscopic events (Coulomb collisions, in classical kinetic theory) occur on a timescale
much shorter than the time interval with which the motion of the test particle is resolved. It can
more revealingly be written 6(7) = 7,.'0(7/Tac), Where T, is a microscopic autocorrelation time. In
near-equilibrium discrete plasmas 7, ~ w, ' = A\p/v, the time for a thermal particle to traverse a
Debye cloud. Turbulent plasmas may support a variety of autocorrelation times; cf. the quasilinear 7,,
Eq. (152). (ii) The Gaussian assumption reflects a belief that the individual microscopic interactions
are statistically independent. This is a Markov approximation that can usually be justified with the aid

—6mpaé according to the Stokes formula. In reality, this value is but an average, and due to the irregularity
of collisions with the neighboring molecules, the action of the fluid on the particle oscillates around the
aforementioned value, so that the equation of motion in the x direction is m d?z/dt* = —6rpadr/dt + X.
As regards the additional force X, we know that it may equally well be positive or negative, and that its
magnitude is such that it maintains the motion of the particle, which would otherwise be stopped by the
viscous resistance.” I am grateful to A. Schekochihin for this translation.
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of the central limit theorem ®® under an appropriate coarse-graining in time; see the next paragraph.
(iii) The drag coefficient v is a statistical property of the underlying microscopic fluctuations. This is
evident both on physical grounds and from the Einstein relation relating it to D,,.

The relationship between the coarse-graining of the timescale and the Gaussian assumption
requires further discussion. The statistics at the end of one microscopic interaction of duration 7.
are not Gaussian even if they were at the beginning of the interval, because nonlinearity induces
non-Gaussian effects. (This is the issue surrounding the justification of Boltzmann’s Stosszahlansatz.)
However, consider a time interval At > 7,.. During such an interval, many microscopic interactions
will occur. Let the ith kick, of duration 7,., be dv;. The associated acceleration is dv;/T,c, and the
total acceleration during At is da(At) = ZiA:tl/T“ 0v;/Tac. If the kicks are independent (a reasonable
lowest-order idealization), then to the extent that At/7,. > 1, Ja(At) is the sum of many independent
random variables and one can appeal to the central limit theorem to conclude that da(At) is essentially
Gaussian and independent of the actual statistics of the microscopic accelerations. If At is taken to
scale with 7, (for example, At = 57,.), then in the limit 7, — 0 At also shrinks to 0 and one recovers
the Gaussian white-noise approximation.

Equation (67b) shows that D, = [7°d7 (da,(t + 7)da,(t)), a special case of Taylor’s formula (4).
By describing the properties of the Langevin equations in terms of microscopic fluctuations, one
needs to rely less on their classical interpretation. When classical weakly coupled kinetic theory is
appropriate, v and D, can be computed simply; for plasmas, the calculation reduces to the solution
of the linearized Klimontovich equation (Sec. 2.2.2, p. 27). When, on the other hand, the microscopic
events (those on the shortest dynamical timescale of interest) are highly nonlinear, other techniques
must be employed. Those are just the statistical closure approximations for turbulence; they will be
discussed later.

3.2.2  Solution of the classical Langevin equations

Now consider the solution of the Langevin equations (66) for times longer than the microscopic
correlation time 7, (in the classical Langevin theory, 7, — 0). Because Eqs. (66) are linear, the
quantities x(¢) and v(t) can be found by a straightforward Green’s-function approach. For example,
the velocity fluctuation is the time convolution of Green’s function for Eq. (66b) with the random
acceleration. Because integration, a linear operation, can be represented as the limit of a discrete
Riemann sum, one may appeal to the theorem that any sum of Gaussian variables is again Gaussian.
Hence & and v are (jointly) Gaussian, and the entire probability density functional (Sec. 3.5.1, p. 59)
is specified by the two-time correlation matrix of those variables. The calculations are straightforward.
As a special case, the first- and second-order equal-time moments (in 1D for simplicity) conditional
on initial conditions (z,v) at t = 0 are (Uhlenbeck and Ornstein, 1930; Wang and Uhlenbeck, 1945)

(v | 2o, v0) = ey, (| 2o, v0) = 20 + (1 — ™) Atp 0, (68a,b)
((51}2> = Vt2(1 — e_2”t), (02 0v) = Ampp Vi(1 — e_”t)Q, (68¢,d)
(0x%) = Mg (20t — 3+ 4e™"" — e, (68e)

% The central limit theorem (Feller, 1967) states that under certain restrictions the sum of n independent
random variables becomes Gaussian as n — oo.
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where V; = (T/M)Y%, Autp.0 = vo/v, and A, = V;/v. The short- and long-time limits of these results
are collected in Table 1 (p. 50). In particular, one has v-space diffusion with diffusion coefficient "
D, = V2v for 0 = 7, <t < v~! For vt > 1 the velocity of the test particle thermalizes to V; and
z-space diffusion ensues with diffusion coefficient D, = V;?/v = )\fnfpl/. The latter result is the usual
random-walk formula for a diffusion process with step size Ayg, and step time v=1. ™

Table 1

Limits of the classical Langevin statistics. Here D, = V?V and DH = V}Q /V. Amtp,0 and V; are defined after
Eq. (68).

vt < 1 (short times) vt > 1 (long times)

(v | zg, vo) (1 —wvt)vg 0

(collisional slowing down) (randomization of directed velocity)
(x| zo,vo) xo + vot o + Amfp,0
(free streaming) (randomized in a mean free path)
(6v?) 2Dt V2
(v-space diffusion) (thermalization)

<5{L‘ 5’U> Dv t2 D I

(integral of v-space diffusion) (parallel transport)
<(5{L‘2> %Dv t3 QDHt
(double integral of v-space diffusion) (z-space diffusion)
In the collisionless limit the spatial dispersion ((5x>2 = %th?’ figures importantly in the

justification of quasilinear theory [Sec. 4.1.2 (p. 91) and Appendix D (p. 279)] and in Dupree’s
resonance-broadening theory (Sec. 4.3, p. 108). Aspects of the collisionless equal-time PDF
corresponding to these Langevin dynamics are discussed in Sec. 12.6.3 (p. 246) and Appendix E.1.2
(p. 284).

In magnetized plasmas an appropriate Langevin model comprises Eqgs. (66) (for motion along B)
plus &; = V(t) with (§V  (7)0V 1 (0)) = 2D, (7). Such models have figured in discussions of
transport in stochastic magnetic fields (Krommes et al., 1983; Balescu et al., 1995; vanden Eijnden
and Balescu, 1996).

70 According to the theory of classical random walks, a velocity-space diffusion coefficient scales as
D, ~ Av?/At. However, one must not infer from the result D, = V{?v that Av ~ V; and At ~ v~
which would mean one huge kick in one collision time. Instead, the duration of a kick is At = T, = e !,
where € is a small parameter that is taken to zero in the classical Langevin problem. (Physically, € is
the plasma discreteness parameter ¢,.) The size of a kick is Av = 4/eV;. [This is consistent with the
representation F(7) = 2D,7,;.}0(7/7ac). The coefficient of the dimensionless delta function is (Av/At)?,
or Av = (TaeDy)Y? = (v7ac)'/?V4.] Then D, = lim_o(\/€ V;)2/(ev™ 1) = V,2v. When one coarse-grains over a
microscopic timescale, one must take that scale to zero as the last limiting operation.

"I In the presence of a background magnetic field, the Langevin calculation generalizes in a straightforward
way; one merely solves the full Lorentz equations of motion, including gyrospiraling, at the cost of possibly
tedious algebra (Kursunoglu, 1962). As a special case, one obtains for vt > 1 the familiar result (§22) = 2D t,
where for w, > v one finds D| ~ p?v, p being the gyroradius.
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The form of the two-time velocity correlation function C'(¢,t") = (dv(t)dv(t')) is also instructive.
For a thermalized particle (vt, vt’ — o0), the statistics become stationary and C'is found to depend
on only 7 =t — t’ according to

C(r) = VeIl (69)

This result holds even for motion across a magnetic field, but consider parallel motion for simplicity.
Then for 7 2 0 Eq. (69) is seen to involve R(47), where R(7) = H(7)e " is Green’s function for
the left-hand side of Eq. (66b). [H(7) is the Heaviside unit step function defined in Appendix K.2
(p. 304).] It is revealing to consider the temporal Fourier transform:

20V} _ 2
Clw) = 51,2 = [BWIFW), (70)
where
F(w)=2D, or F(1)=2D,(7) (71la,b)

is the covariance of the forcing da. Equation (70) provides a clean statement of the steady-state
balance between forcing (F') and dissipation (v, encapsulated in R); see related discussion in the
vicinity of Eq. (12) of Fox and Uhlenbeck (1970). By inverse Fourier transformation, it leads to the
interesting alternate representation

C(1) = R(1) * F(1) % R'(7), (72)

where RT(7) = R(—7) and * denotes convolution. It can be shown that the form (72) transcends
its derivation and is retained in general turbulence theory; see the discussion at the end of the next
paragraph.

It is impossible to overstate the conceptual importance of these physically elementary and
mathematically straightforward results. Without a firm grasp of the heuristic content of the classical
Langevin problem at hand (especially the roles of the various timescales, the random-walk scalings of
diffusion coefficients, and the concept of a balance between forcing and dissipation), attacks on the
turbulence problem will likely degenerate into a morass of unrecognizable (and probably incorrect)
mathematics. Several of the important statistical closures to be derived, including the DIA, can be
developed in terms of rigorous Langevin representations, the mere existence of which guarantees
important realizability properties. Furthermore, the general form of the equations provides a welcome
unification. Indeed, the Langevin balance between random acceleration and coherent drag, particularly
in the form (72), generalizes to a highly nonlinear spectral balance equation for turbulent fluctuations,
as discussed in Secs. 5.4 (p. 133) and 6.2.2 (p. 155). One important difference between classical
and turbulence theory is that whereas in classical theory the autocorrelation time is taken to be
vanishingly small [reflected by the delta function in Eq. (71b)], so that microscopic, sub-7,. dynamics
are not seen, in general turbulence theory 7,. must be obtained as a self-consistent property of the
fluctuations. In some cases a separation of timescales need not exist; in strong turbulence both 7!
and v meld into a single, nonlinearly determined damping rate . It can be said that the essence of
the turbulence problem is the “opening up” and the self-consistent determination of the microscopic
dynamics. Of course, that is just what is done in the derivation of the Balescu—Lenard collision
operator. However, both that operator as well as the previous Langevin model benefit from properties
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of thermal equilibrium. (In the Langevin calculation the fluctuation level is known once the background
temperature is specified. At the microscopic level the result V,2 = T'/M is ultimately a consequence of
a Gibbs distribution for the combined system of test particle plus background.) The extra difficulty
of a theory of turbulence is that the statistical distribution is far from equilibrium, so its form is
not known explicitly. In the course of solving the balance equation, both the fluctuation level and
autocorrelation time are obtained simultaneously. In general, one must deal with the coupling of
multiple spatial scales as well. Thus with I being intensity, the classical form C(w) = 2v1/(w?* + v?)
generalizes to the transcendental equation

Cro(w) = | Rip(w; BewlI]) *Fie(w; Siew[1]), (73)

where I, = (27)7! [*0 dw Ck(w) and an appropriate form is given for X[/]. The bracket notation is
used to indicate that ¥ may depend functionally on I. Powerful ways of determining that functional
dependence are discussed in Sec. 6 (p. 146).

The linear, additively forced Langevin example leads directly to the concept of the spectral balance
equation. However, the classical problem has nothing to say about the determination of v, a property
of nonlinear microscopic dynamics. To provide insights into that problem, I discuss in Sec. 3.3 (p. 52)
a solvable problem with multiplicative statistics. First, however, a few words on nonclassical random
walks are in order.

3.2.8 Generalized Brownian motion; Lévy flights

It must be emphasized that the classical diffusion law (§z%) o ¢ is a very special case. For
arbitrary nonlinear physical processes, there is no reason why lima, ar.o Az?/At should be finite
and nonzero. More generally, (6x2) o< t* is possible, with a = 2 being called ballistic, 1 < a < 2
being called superdiffusion, and o < 1 being called subdiffusion. Such processes arise from various
kinds of accelerated or “sticky” motion as particles execute their random walks. A short and readable
introduction to such Lévy flights was given by Klafter et al. (1996); see also Zumofen et al. (1999).
More information and references can be found in Balescu (1997). By generalizing the classical Langevin
theory sketched above, Mandelbrot (1982) showed how to construct fractional Brownian motion that
possesses an « # 1; see, for example, the review by Feder (1988). Obviously, a complete turbulence
theory should be able to cope with such unusual processes. At this point one should simply appreciate
that although the structure of the classical Langevin problem is enormously instructive, it does not
capture all possibilities.

3.3 The stochastic oscillator: A solvable example with multiplicative statistics

“There arise from the dynamical equations an infinite hierarchy of coupled equations which
relate given ensemble averages to successively more complicated ones. ... This situation, which
commonly is called the closure problem, arises even when the nonlinear stochastic terms are
linear in the dynamic variables.” — Kraichnan (1961).

The simplicity of the Langevin systems discussed in the last section arose because the random
forcing entered additively. In practice, however, multiplicative statistics are more common [cf. the
advective nonlinearities in the Navier—Stokes, MHD, gyrokinetic, and other equations discussed in
Sec. 2 (p. 22)]. In the present section I discuss an extremely instructive solvable model, the so-called
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stochastic oscillator (SO).™ The model can be derived from radical simplifications of the nonlinear
terms of the NS or GK equations [see point (ii) below]; it also arises naturally in various physical
applications such as stochastic line broadening in magnetic spin resonance (Kubo, 1959). Variants of
this model have been frequently used to illustrate the merits and deficiencies of various attacks on the
statistical closure problem. ™ The most important reference in this context is by Kraichnan (1961);
see also the earlier work by Kraichnan (1958a) and the review by Krommes (1984a). A generalization
was used by Kraichnan (1976a) in his treatment of the role of helicity fluctuations on magnetic-field
diffusion; see Sec. 10.3 (p. 223) for further discussion. For modern plasma-physics applications, see
Krommes and Hu (1994) and Krommes (2000b). A special limit of the model also describes exactly the
linear part of the Landau-fluid closure problem introduced in Sec. 2.4.1 (p. 33); see Appendix C.2.2
(p. 278).
The model is the following primitive equation for a random variable 1):

Db(t) + i (t)y = 0. (74)

Here w(t) is a Gaussian random variable with zero mean and specified, stationary covariance
Y(t,t') = Y(7) characterized ™ by an autocorrelation time 71". The reason for the superscript lin
is described in point (iii) of the next paragraph. For the initial conditions on 1, see the last paragraph
of this section.

The model is intended to capture several important features of the typical quadratically nonlinear
primitive equations that arise in practice (Sec. 2, p. 22): (i) As emphasized by Kraichnan (1961),
although Eq. (74) is linear in the dynamical variable v it is quadratically nonlinear in random
variables. It thus displays the same closure problem that plagues more complicated equations: the
equation for a cumulant of order n involves a cumulant of order n + 1. (ii) The form iw of the
random coefficient echoes the structure of the spatial Fourier transform of an advective nonlinearity
V -V, in the limit that the advecting field has infinite wavelength, the correspondence is exact with
w =k - V. [For some related discussion, see Krommes (2000b).] (iii) The presence of a characteristic
autocorrelation time 71" in Y(7) suggests the linear-theory-induced decorrelation mechanisms of
steady-state turbulence such as wave dynamics or particle streaming; see Sec. 4.1 (p. 90). [For physical
problems Y(7) is best interpreted as a Lagrangian correlation function. Thus the effective 71" can
be finite even for a static Eulerian correlation function provided that the latter has nontrivial spatial
variation.]

One property that Eq. (74) does not share with the equations of Sec. 2.4 (p. 33) is that it models
passive advection (the statistics of @ are specified and are independent of ; cf. the kinematic dynamo
problem) whereas in most physical situations the advecting velocity is determined self-consistently,
being a (usually linear) functional of ¢ itself [cf. the Vlasov equation (E = E[f]) or GF models
involving E x B advection (Vg = Vg[y])]. There are important differences between the statistical
descriptions of problems with passive and self-consistent advection. (In particular, self-consistent
problems possess symmetries and conservation laws that are not shared by passive ones.) Another
simplification is the absence in Eq. (74) of a nontrivial linear response or dependence on independent
variables such as & or v. For example, the characteristic linear streaming term v - V of Vlasov theory

™ See van Kampen (1976) for discussion of more complicated second-order oscillator models.
™ Feynman strongly believed in the utility of “toy models” (Mehra, 1994).
™ For definiteness one usually takes Y (7) = 2 exp(—|7|/7"). This exponential form is demanded by Doob’s

theorem (Wang and Uhlenbeck, 1945; Papoulis, 1991) if the processes giving rise to w are Markov.
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is absent. Such linear effects provide important decorrelation mechanisms; in the stochastic oscillator,
those are encapsulated in the prescribed 7.

For initial conditions one usually takes either (Kraichnan, 1961) ¢(0) = 1 or asserts a centered
Gaussian distribution for 19 = 1 (0). The latter choice (Krommes, 1984a) is closer in spirit to the
behavior of Navier—Stokes-like equations, so I follow it here; dynamical linearity permits one to take
(J0]?) = 1 without loss of generality. If @ and 1)y are statistically independent, it is easy to show that

(o) = 0 implies {i(£)) = 0.

3.3.1 Response function for the stochastic oscillator

The great merit of Eq. (74) as a pedagogical example is that the primitive dynamics can be solved
explicitly (Kubo, 1962b, 1963), whereas the dynamically nonlinear equations that arise in practice
cannot. Thus cumulants of any order can be calculated from the exact solution and compared with

various closure approximations. Introduce the unit step function H (1) that ensures causality, and
define ¥, (t) = H(t)1(t). One then finds ¢, (t) = R(t;0)y, where

R(t:#) = H(r) exp (—i tfdt”@(t”)) (75)

is the random infinitesimal response function or random Green’s function that obeys ™

R(t:t) +i0(t)R = 6(t — ). (76)

In the present dynamically linear problem there is no difference between infinitesimal and finite
response; more generally, though, it turns out to be the infinitesimal response function that is most
useful, a possibly counterintuitive result. In problems of self-consistent advection the equation for the
response function is more complicated because the random frequency must be perturbed as well; see
further discussion in Sec. 3.9.1 (p. 77). In all cases the mean infinitesimal response function R = (R)
is of great importance, as we will see in Secs. 5 (p. 126) and 6 (p. 146). In the present model the
significance of R is emphasized by the easy-to-prove fact

C() = R(7)(|ov0|*). (77)

Only one dimensionless parameter can be built from the two dimensional parameters 3 and 7.

remaining in the problem, the Kubo number(Kubo, 1959, 1962b; Toda et al., 1995; van Kampen, 1976)
K = Brin, (78)

K is a normalized measure of the linear autocorrelation time, and the size of K relative to unity
controls the behavior of the time correlations and infinitesimal response. For example, the exact mean

7 The semicolon between ¢ and t’ is intended to remind one that the function is causal; a comma is used
for the two-sided correlation function C(t,t'). More generally, the arguments to the right of the semicolon
denote when infinitesimal perturbations were applied, and the arguments to the left denote when response
was measured—for example, the “two-in, one-out” response function is R(t;t',¢”). For more discussion of
response functions, see Sec. 3.5.4 (p. 64).
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infinitesimal response function R(t;t') can be calculated from Eq. (75) and the Gaussian property to
be

R(r) = H(7) exp[—(Ba0)*(r/mo = 14 e77/%], (79)

or in terms of the dimensionless time 7 = (7, R(t) = H(7)exp[—K2(K™'7 — 1 + e X '7)]. One
identifies two regimes: short-time (7 < 7 or 7 < K),

R(1) ~ H(r)exp(—37°) = H(7) exp(—36°7%); (80)
and long-time (with the inequalities reversed),
R(r) = H(r) exp(—KT) = H(7) exp(—F*7,8'7). (81)

The area under R(7) is thus controlled by the size of K. For IC > 1 the short-time regime dominates
and the area is O(371); for K < 1 times longer than 7" dominate and the area is O(87*K~1). That
the short-time R does not decay as a simple exponential is a signature that the statistics of ¢ are not
Gaussian-Markov in that regime, according to Doob’s theorem. Note that for L = co R lies entirely
in the short-time regime, whose strongly non-Gaussian nature makes it difficult to treat.

3.3.2  Transport estimates

The behavior of R(7) can be seen to be in accord with simple estimates of diffusion coefficients
if one makes the correspondence 3 = kV, where k is a characteristic wave number and V is the
rms level of a very-long-wavelength advecting velocity. The spatial Fourier transform of the Green’s
function for a diffusion equation is Gx(7) = H(7) exp(—k? D7), having area (k*D)~!. Upon comparing
this area with the above results for R(7) and identifying k with k at this crude level of analysis, one
finds

D~V (K<1) or D~V/E (K> 1) (82a,b)

Equation (82a) is sometimes called the quasilinear or weak-turbulence form of the diffusion coefficient
(D ~ 72) while Eq. (82b) is called the strong-turbulence form (D ~ Vl). It is said that the
quasilinear scaling possesses the classical exponent 2 whereas the strong-turbulence scaling possesses
the anomalous exponent 1. [More refined considerations of transport in strong-turbulence regimes
lead to an exponent that differs slightly from 1; see Sec. 12.5 (p. 245).] The appearance of anomalous
exponents is discussed from a deeper perspective in Sec. 6.1.2 (p. 150) and Appendix B (p. 264).
Both of the results (82) follow from the general random-walk estimate D ~ V2Tac, where the true
autocorrelation time for the random process is

Tae = T8 (K <1) or Tue=(kV)t=p" (K>1). (83a,b)
In other words, K = 7i"/3~! is the ratio of the linear autocorrelation time to the nonlinear one, and
it is always the shorter of those that controls the random walk. Of course, as a function of I the
weak- and strong-turbulence regimes are smoothly connected. Note that one unrealistic feature of
such simple models is that they exhibit no stochasticity threshold; transport exists for any nonzero
fluctuation level.
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For cross-field transport in strong magnetic fields, the characteristic velocity is the E x B
velocity: V' ~ Vi oc B71. One is thus led to anticipate a crossover from a weak-turbulence scaling
D ~ B2 to a strong-turbulence, Bohm-like scaling D ~ B~! when the fluctuations grow so large that
(kVg)™! < 710 provided that neither 7™ nor k depend on B. B-independent k amounts to kL = O(1),

ac ac \-

where L is a macroscopic length; Eq. (82b) can be written D ~ (kL)™' (V' L). If, on the other hand, & is
determined by microscopic physics, kps = O(1), then one recovers gyro-Bohm scaling from Eq. (82b):
D = (kp.) " (p/L)(V'L).

The properties (82) and (83) are general features of transport problems that any sensible statistical
closure theory should be expected to reproduce. The stochastic-oscillator results will serve as a very
useful guide as one proceeds to develop various approximations in Sec. 3.9 (p. 76).

The oscillator model discussed here contains neither forcing nor dissipation. If those are added,
the final fluctuation level depends on the balance between forcing and dissipation. Although that
provides a more faithful representation of the structure of realistic turbulence problems, I shall not

pursue it here but instead refer the reader to the closely related discussion by Krommes (2000b).

3.3.8 Random oscillator with nondecaying response function

For later discussion of the fidelity of statistical closures, it is useful to introduce a slightly more
complicated variant of the simple oscillator:

O (t) 4+ iacos(t + 0)y = 0, (84)

where 0 is a random phase distributed uniformly on the interval [0,27) and a is a constant. The
significant feature of this model, which possesses a non-Gaussian random multiplicative coefficient,
is that its mean response function, R(7) = H(7)Jo(2asin(37)), does not approach zero as T — oo.
This behavior is intended to model various features of integrable or coherent phenomena that present
significant challenges for statistical theories. As we will see, those challenges have not been fully met
to date. For example, the response function of the DIA (Sec. 5, p. 126) for this model incorrectly
decays to 0 as 7 — oo (Sec. 5.6.1, p. 137).

3.4 Dimensionless parameters for turbulence

The two most important dimensionless parameters for turbulence problems are the Kubo
number K and the Reynolds number R. In many heuristic discussions of plasma turbulence, these
parameters are often not distinguished clearly or are confused.

3.4.1  Kubo number I

In principle, some sort of Kubo number—a property of the advecting velocity field—can be defined
for any kind of problem involving passive advection that evinces an autocorrelation time 7,.. (In this
section, to avoid clutter and to permit a later generalization I omit the superscript lin from 7,.)
Specifically, introduce the macroscopic eddy turnover or circulation time 7, = L/, where @ is the
characteristic rms velocity and L is the system size. 77, is the time for the macroscopic flow to advect
a perturbation across the entire system, or for an eddy of the order of the system size to turn over
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once. Then

_autocorrelation time T,  UTac

. (85)

eddy turnover time TL L

The principal difficulty is that usually the advecting field is a function of both x and ¢, so the
appropriate T,. to be used in the definition (85) should be a Lagrangian autocorrelation time, which
is difficult to compute precisely. This point was discussed in the context of the Vlasov stochastic-
acceleration problem by Dimits and Krommes (1986).

3.4.2  Reynolds number R

Additionally, if the problem involves linear dissipation, another dimensionless parameter, the
Reynolds number R (often denoted as Re in fluid problems), can be constructed (Rott, 1990). For
an equation such as that of Navier and Stokes (either passive or self-consistent), one introduces the
hydrodynamic or classical diffusion time 75, = L?/juq. This is the time for a perturbation to diffuse
by microscopic classical processes across the entire system. Then

. classical diffusion time 7, ulL

eddy turnover time TL Ml

(86)

For example, a simple dissipative and passive model that generalizes the stochastic oscillator to include
dissipation ® in a finite-sized domain and thus contains both R and K is the generalized reference
model of Krommes and Smith (1987) [see also Krommes and Ottaviani (1999)]:

0T (x,t) +a(t)Ty — paTee = 0, (87a)
with boundary conditions
T(0,t)=AT, T(L,t)=0. (87b)

3.4.8 The R-K parameter space

For passive problems K and R are independent parameters, so the dynamical behavior must
be classified in terms of an R-K parameter space, displayed in Fig. 2 (p. 58). Various regimes are
evident. " Let a dimensional flux be called T’ [the bar stands for volume average, an operation that
is explicitly exploited in Sec. 11 (p. 230)] and let its dimensionless version be called 7 = T'/(u|AT).
Also introduce an effective diffusivity D such that T' = —D((AT)/L). Of course, dimensionally

D ~ Ax?/At ~ Av?At. (88a,b)

One has D = ulL7. It is clear from this latter relation that D does not necessarily describe local
transport on scales much smaller than L; in general, it is a global property of the entire slab.

76 For general passive advection it is not conventional to call the dissipation coefficient pi.. That is done in
this pedagogical discussion in order that a uniform notation involving a (generalized) Reynolds number can
be used.

™" For a more thorough version of the following discussion, see Krommes and Smith (1987).
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In the model (87) there always flows at least the classical flux vy = pea/(TL); according to Eq. (86),
Y = R~ To estimate advective contributions, it is convenient to use Eq. (88b) with Av ~ 7 and
At = min(Tac, Th, 7). For 7o < 7, (K < R) and 7, < 71 (K < 1), one obtains the usual quasilinear
result Dy ~ @7, or 3, ~ K (K < R, K < 1). Krommes and Smith (1987) called this regime the
kinetic-quasilinear regime on the grounds that it is usually kinetic processes (e.g., free streaming) that
determine 7., hence KC. For 7, < 7, (K > R) and 7, < 71, (R < 1), a hydrodynamic-quasilinear regime,
one obtains Dy, ~ %7, or 7, ~ R (R < K, R < 1). Finally, when 77, < 75 (K > 1) and 77, < 73,
(R > 1), one obtains a strong-turbulence regime with D ~uL or ¥ ~ 1 (R > 1, K < 1). The three
major regimes are delimited by the solid lines OX, XB, and XC in Fig. 2 (p. 58). It is straightforward
to deduce that the advective contribution to transport dominates to the right of line AXC, which is
thus the most interesting part of parameter space. The original SO model corresponds to R = oo, so
sits either in the kinetic-quasilinear regime (K < 1) or the strong-turbulence regime (K > 1).

For self-consistent fluid problems the autocorrelation time is not an independent parameter; one
must take 7, = min(7,,7.), which corresponds to the curve OXB in Fig. 2. In particular, in a
strongly turbulent fluid problem the effective K is O(1). However, in self-consistent kinetic (Vlasov-
like) problems 7,. can persist as an independent parameter related to the streaming motion of the

particles through the wave packets; see the discussion of the quasilinear autocorrelation time in
Sec. 4.1.2 (p. 91).

C Ei
K 1<R<K /,’
~  STRONG
Rei<k 1 TURBULENCE
L 1<K<R
HYDRO. R
1 |F-zmmmmma i X———K=1—28
QUASILINEAR /'
A
R<K<1 .Y
KINETIC
QUASILINEAR .
K<R<1 E K<1<\F§\\A
') !
1 R

Fig. 2. The parameter space of Reynolds number R and Kubo number K [after Fig. 2 of Krommes and Smith
(1987), used with permission].
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3.5 Key statistical measures

Having demonstrated some simple solvable models that display important features of the
statistical closure problem, I turn in the next several subsections to a survey of the formal techniques
that can be brought to bear on the statistics of such models as well as on the much more difficult PDE’s
of plasma physics, for which useful exact solutions do not exist in general. I begin with the key measures
that can be used to quantify the statistical behavior of such systems.

3.5.1 Probability density functions

The most complete description of a continuous random variable Z (sometimes called X) is provided
by the PDF ™ Px(z) = P(x); the probability that T takes on the value x in an interval dz is P(x)dz.
The nonrandom variable z is called the observer coordinate. A useful identity is ™ P(z) = (6(z — 7).
A good introduction to probability theory can be found in Papoulis (1991); see also Feller (1967).
A review of various properties of and methods related to PDF’s was given by Pope (1985); see also
Haken (1975).

In practice one deals more frequently with random fields ¢(z, ) that are parametrically dependent
on space and time. Then one must consider most generally the fully multivariate (including the
entire continuum of space and time points) probability density functional P[t]; the brackets indicate
functional dependence. The meaning of and manipulations with such functionals can be understood
(Beran, 1968; Zinn-Justin, 1996) by discretizing the space and time axes and considering ordinary
functions of the very large number of variables representing the values of the fields at each of the
discrete points in space-time. Seminal discussion in the physics literature was given by Feynman
(1948b), whose work is further reviewed in Sec. 6.1 (p. 147); see also Mehra (1994, Chap. 10.4).
Because probability density functionals are central to the later discussion of renormalized field theory
in Sec. 6 (p. 146), some of the details are elaborated in Appendix H (p. 293).

Because of the wealth of information contained in even a 1D PDF, PDF methods are still in
their infancy [see Sec. 10 (p. 220) for further discussion]. Much better developed are moment-based
approximations.

3.5.2 Moments and cumulants

The nth moments of the PDF P(x) are defined by M,, = (2™) (these may be infinite). The Fourier
transform of P(x), Z(k) = [*_dze **P(z), can be written

Z(k) = (exp(—ik)). (89)

" The PDF is called P in order to distinguish it from the one-particle “distribution function” f of kinetic
theory, which is normalized differently: [* dz P(x) = 1 whereas [* dxzdv f(x,v) = V, where V is
the volume. Note that this usage of the phrase “distribution function” is confusing because in standard
probability theory a distribution function F'x(x) is the probability that X achieves a value less than z; i.e.,
Fx({lf) = ffoodfpx(f)

™ This identity is nontrivial if Z depends on another random variable Z and the average is performed
with Pz(z). It lies at the heart of the path-integral representation of renormalized field theory, as discussed
in Sec. 6.4 (p. 166).
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Z(k) is called the characteristic function. The characteristic function of the Gaussian PDF P(z) =
(2m0?) "2 exp[—(z — 7)?/20%] is Zg(k) = exp(—ikT — 1k?0?). Z(k) is also the moment generating
function, since a formal Taylor expansion of the exponential leads to

o"Z (k)

M, M,= =200 (90a,b)
O(—ik)" o

N
=

I
hE

n=0

[Mo = 1 because P(x) is normalized.] For the use of moment generating functionals in statistical field
theory, see Sec. 6.2 (p. 153).

It is not required that moments of all orders exist. A simple counterexample is the Cauchy or
Lorentzian PDF P(z) = 7 'a/(2*+a?), for which even-integer moments for n > 2 are infinite. In this
case the difficulty is manifested in Fourier space by the appearance of a branch point at the origin
for the characteristic function Z(k) = e~l¥le. Such PDF’s with infinite variance arise in the context
of violations of the central limit theorem. Lévy (1937) inquired about the class of PDF’s of the sum
coz = Y, cir; that obeyed the scaling relation ¢(x) = n'/7P,(n'/7z) subject to the constraint
¢y = 3, ¢]. He proved that the characteristic function obeyed Z(k) o exp(—|k|?) for v < 2. The
special value v = 2 recovers the Gaussian PDF'; processes with v < 2 have infinite variance. However,
Lévy flights with finite variance can be constructed (Zumofen et al., 1999). Further discussion and
references can be found in Balescu (1997).

Even when they exist, moments need not uniquely determine a PDF. Carleman’s criterion
(Carleman, 1922; Wall, 1948) states that the PDF is determined if 33, (1/Ms,)/?" diverges.®°
Kraichnan (1985) discussed appropriate procedures for dealing with PDF’s that violate Carleman’s
criterion. For some early related discussion, see Orszag (1970b).

Moments form a poor basis for statistical approximations since they typically grow at least
exponentially rapidly with order; for example, a centered Gaussian distribution with unit variance
has Ms, = (2n — 1)!!. Another, usually undesirable property is that truncation of Eq. (90a) leads to
a singular description of P(z) in terms of derivatives of delta functions. For example, if Eq. (90a) is
truncated at second order one finds P(z) &~ §(z) — M1d'(z) + $Ma8"(z).

Cumulants (Kubo, 1962a) usually provide a better description than do raw moments. Formally,
cumulants C,, = ((z")) are generated from the logarithm of the characteristic function: with
W (k) =1nZ(k), one writes by definition

W(k) = f:l (_:?RCW C, = % K (91a,b)

Combinatoric properties of the logarithm then lead to a cluster expansion that relates the moments
to the cumulants. For several random variables denoted by 1, 2, ..., the first few members of the
cluster expansion are

M(1)=C(1), (92a)

80 That is not true if the moments increase more rapidly than exponentially with order. An example of a PDF
that violates Carleman’s criterion is the log-normal PDF for a variable € defined such that z = In ¢ is Gaussian
with mean Z and variance 0. One has P(e) = (2re20%)~Y/2 exp[—(Ine—%)?/20?] and M,, = exp(nz+3n’c?).
This distribution figured prominently in early discussions of intermittency (Kolmogorov, 1962; Frisch, 1995)
and also arises in the theory of passive advection (Schekochihin, 2001).
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M(1,2) = C(1)C(2) + C(1,2), (92b)
+[C(1)C(2,3) + 2 terms] + C(1,2,3), (92c)

,4) + 2 terms| + C(1, 2, 3,4). (92d)

For random vectors  and y with jointly Gaussian statistics, only the first two cumulants C(x) =
() = (x) and C(z,y) = (x y?)) = (dx dyT) survive.

Upon combining Eqs. (89) and (91a), one obtains a rule for interchanging averaging and
exponentiation that is often useful in practice:

(exp(—ikX)) = exp (i (_;L]T)nCn) — exp(—ik(Z) — Lk*(07%)) (Gaussian). (93a,b)

The latter result is often employed in Dupree’s resonance-broadening theory (Sec. 4.3, p. 108).

Simple manipulations with the multivariate form of Eq. (93a) can be used to prove that the
cumulant of any two statistically independent variables vanishes (Kubo, 1962a). This result provides
physical insight to the cluster expansion, which is well known as the Mayer cluster expansion (Mayer,
1950) in many-body kinetic theory and as Wick’s theorem in quantum field theory (Wick, 1950; Zinn-
Justin, 1996). In the context of Coulomb interactions between charged particles, the term C(1)C(2, 3)
in Eq. (92c¢) is illustrated in Fig. 3.

1
®

Fig. 3. Ilustration of the Mayer cluster (cumulant) expansion. Imagine three charged particles interacting
with the Coulomb potential (denoted by a dashed line). The various terms of the cumulant expansion (92c)
are generated by turning off the interactions between one or more of the particles in all possible ways. Even
when particle 1 does not interact with particles 2 and 3, as depicted in the figure, there is still a probability of
finding the particles somewhere in phase space; the drawing corresponds to the term C(1)C(2, 3) in Eq. (92c).

Since all cumulants of order higher than 2 vanish for a Gaussian, it might be hoped that PDF’s that
are ‘nearly” Gaussian will possess higher-order cumulants that are small. Unfortunately, “nearly” is ill
defined. If the cumulants grow smaller with order sufficiently rapidly, then reasonable approximations
can sometimes be obtained by truncating the cluster expansion at some order. 8! Nevertheless, even
if a particular cumulant is small, if it has the wrong sign and the cumulant expansion is truncated
inappropriately, the resulting PDF may not be normalizable. Furthermore, innocent-looking PDF’s
can have cumulants that grow with order. Kraichnan (1985) pointed out the simple PDF

P(x) = (2m) 2% exp(—12?), (94)

81 This is the scheme used in classical plasma kinetic theory.
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for which® Cy = 1, Cypy1 =0, Cy = 3, and Cy,, = —(—1)"[(2n)!/n] for n > 1. In such cases superior
and more versatile representations may be found by expanding the PDF in orthogonal polynomials
(Kraichnan, 1985); see Sec. 3.9.12 (p. 89).

Typical moment-based (more properly, cumulant-based) statistical approximations provide closed
equations for the first few cumulants. The most important cumulants have special names. If the mean
field () is nonvanishing, it is crucial to retain it. An example is the Klimontovich density /N, whose
mean is the one-particle distribution function f = (N); the Vlasov equation (closed in terms of f) is
a mean-field theory. However, descriptions based solely on the mean fail to capture a great deal of
physical information. For example, it has been remarked ® that if male < 1 and female < —1, the
mean value (gender) = 0 does not quite capture the essence of the problem (Gray, 1994).

The most common moment-based approximations are second order, based on the covariance
C(1,1) = (0y(t)6(1')). In the moment hierarchy C' is driven by a multipoint generalization of the
skewness parameter S, a normalized triplet correlation function:

3/2.

S = (09%)/(09*) ™ (95)

for a Gaussian, S = 0. Because the three-point correlation function is related to the rate of energy

transfer between modes (Sec. 3.8.1, p. 71), which does not vanish for forced, dissipative turbulence,

such turbulence cannot be Gaussian. This observation is fundamental in statistical turbulence theory.
Typical fourth-order statistics are the flatness F' or the kurtosis K:

F= (6000, K=F-3 (96a,b)

for a Gaussian,® F = 3 and K = 0. It is not hard to find non-Gaussian PDF’s. Although the sum
of two Gaussian variables is Gaussian, their product is not. An explicit example (a bilinear random
flux) is discussed in Sec. 10.1 (p. 221).

The kurtosis is frequently said to be a measure of intermittency, although that is not entirely in
accord with the refined definition of intermittency given by Frisch (1995).% A simple definition of an
intermittent flow is one in which laminar and turbulent regions are intermixed. Let the fractional area
occupied by turbulence be €, and consider a fluctuating field 1) that vanishes in the laminar region and
is approximately Gaussian in the turbulent region. Then K = e(3(61)2)%)/(e(01h%)? — 3 = 3(1 — €) /.
For this simple model, a 50% mixture of laminar and turbulent regions has K = 3; a flow that is
20% turbulent has K = 12. In Sec. 2.4.5 (p. 41) I mentioned simulations of the HW model, which

82 The result Cy = 3 corrects a misprint in Kraichnan (1985). The characteristic function is Z(k) =
(1— k2)ek*/2,

83 Unfortunately and with apologies, the identity of the original author of this incisive observation is lost
among the more than 800 references on statistics in the library system of Princeton University, illustrating
that a good idea is much more memorable than even the most elegant formal mathematics.

84 The flatness of a scalar function of a Gaussian vector need not equal 3. For example, for a Gaussian
vector w in 3D, <\u\4>/<\u\2>2 =3
85 According to Frisch, a random signal is intermittent at small scales if the flatness of the high-pass filtered
signal grows without bound with the filter frequency. That includes the simple definition involving intermixed
laminar and turbulent regions given in the text immediately following this footnote reference, but it excludes
such self-similar functions as fractional Brownian motion. For more discussion of intermittency, see Frisch

and Morf (1981).
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leads to mixtures of coherent vortices and turbulence, for which such a large value of kurtosis was
actually measured.

The values of S, K, and other similar statistics are not entirely arbitrary; they must obey
realizability inequalities, as described next.

3.5.8  Realizability constraints

As we have seen, in a moment-based closure a moment (or cumulant) of some order is
approximated in one way or another by terms of lower-order quantities. That leads to an economy of
description; however, there is no guarantee that the resulting equations are well behaved. In particular,
it is not assured that the infinity of realizability constraints associated with the very existence of a PDF
are preserved.

Realizability constraints stem from the intrinsic non-negativity of a PDF. A trivial example of such
a constraint is that the mean square of a random variable z is non-negative (“positive semidefinite”).
This result follows immediately from the definition: (z?) = [° dz P(z)z* > 0. Less trivially,
this conclusion also applies to the mean-square fluctuation from the mean (the second cumulant),
(62%) > 0, which implies the constraint (97a) below. When z is a physical variable such as an electric
field or fluid velocity, the theorem states that quadratic energylike quantities must be non-negative.

This result may appear to be obvious. Nevertheless, for any particular moment-based closure,
which provides approximate time-evolution equations for such energylike quantities, there is no
guarantee that the constraint is preserved in the course of time, and it is easy to demonstrate
approximations for which it is not (Kraichnan, 1961). Typically, if an energylike quantity goes negative,
it does so catastrophically and diverges to o0 in a finite time. A telling example of this behavior
that is highly relevant to the theory of drift waves in plasma is described in Sec. 8.2.1 (p. 201).

The condition (6z?) > 0 is but one example of an infinite number of constraints that can be
deduced (Wall, 1948; Kraichnan, 1979, 1980, 1985) by asserting the positive-semidefiniteness of (F’),
where F' is any non-negative function. That is equivalent to requiring that (Q?(x)) > 0, where Q, is
the rth orthogonal polynomial.® The first two of the resulting constraints are

(%) = ()" 20, (a") = (@) = ((2°) = (@) (@*))*/((2®) = (2)°). (97a,b)

The latter equation constrains the relationship between the kurtosis and skewness statistics: For a
centered distribution, Eq. (97b) reduces with the aid of the definitions (95) and (96) to K > S? — 2.
For example, this constraint is satisfied by the example (94), for which S = 0 and K = —%.

An excellent introductory discussion of realizability inequalities, including additional difficulties
that arise when the random variables have compact support, was given by Dubin (1984b). He
illustrated some of the issues by describing applications to the logistic map

Tpt1 = ATp(1—2,) (0< A< 4, (98)

properties of which have been intensively studied in the literature (May, 1976).

There are appropriate generalizations of the realizability constraints for several random variables.
When the set of variables is the infinitely multivariate collection of all ’s and all ¢’s, the constraints
become quite difficult to work with explicitly; however, their very existence is profound.

86 Tt is not necessary to introduce the orthogonal polynomials; see Theorem 86.1 of Wall (1948) and the last
exercise on p. 5 of van Kampen (1981).
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The importance of realizability constraints for turbulence was recognized quite early (Kraichnan,
1959b, 1961; Orszag and Kruskal, 1968). Kraichnan (1979, 1980) used them to suggest a computational
scheme in which moments of order higher than fourth never appeared. They have also figured in crucial
ways in several recent developments, both theoretical and computational, of interest to plasma physics.
Those are described in some detail in Secs. 8.2 (p. 201) through 10 (p. 220).

Realizability constraints are necessary but not sufficient. For example, as defined above they
place no constraint on the mean of a random variable. Suppose that variable is the Klimontovich
microdensity N. Then one knows (Sec. 2.2.2, p. 27) that (N ) = f, which is proportional to the one-
particle PDF. The fundamental constraint that f > 0 is not guaranteed by the theory of realizability
inequalities.

3.5.4 Response functions

The 9 cumulants (multipoint correlation functions) are basically measures of fluctuations. Because
a fluctuation, once arisen, must decay in a statistical steady state, it is also useful, both heuristically
and technically, to introduce independent measures of dissipation. Those are provided by the so-called
response functions. Consider a nonlinear field equation of the form

O (1) + 1Ly + NTy] = (1), (99)

where £ is a linear operator, N is a nonlinear functional, and 7 is an arbitrary source field. %" The

random infinitesimal response function R is defined by R(1;1") = 0y (1)/67(1")],_y; it obeys
1)\ = —
;R(l 1) + L‘R+/d1 <5N((1))> R(T: 1) =6(1— 1), (100)

where the functional chain rule was used.® The mean infinitesimal response function R (response
function, in brief) is then R(1;1') = (R(1;1')). It is not easy to find closed equations for R because the
coefficient N /61 in Eq. (100) depends on the random variable v; i.e., Eq. (100) has a multiplicative
random coefficient and thus possesses the closure problem.

Higher-order response functions such as

R(l;ll,lu)i</\52¢—(})>

S(1)sH(17) (101)

7=0

can be similarly defined in terms of the functional Taylor coefficients of ¢ [7], which in general depends
on 7) through all orders because of the nonlinearity.

Equation (100) can be used to succinctly describe the difference between self-consistent and
passive problems. Let N[i)] ~ V. (Physically, V represents an advecting velocity; I ignore details
such as gradient operators for this general discussion.) In a self-consistent problem V = V[¢] depends

87 The hat notation maintains consistency with the general MSR formalism of Sec. 6 (p. 146).

88 For an introduction to functional derivatives, see Beran (1968) or any textbook on variational calculus.
R is nothing but the linearization of Eq. (99) with respect to an infinitesimal source, subsequently rescaled
to unit amplitude at t =t +e.
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functionally on v; in a passive problem it does not. Thus

N VR . (passive)
5n | VR+ <@I§>w (self-consistent).

(102)

The extra term in the self-consistent response describes the backreaction of the advected field on
the advecting velocity; it leads, for example, to an energy-conservation law absent from the passive
problem.

For two-point statistics one thus has available the covariance C'(1,1’) as a measure of fluctuations
and the response function R(1;1’) as a measure of dissipation. ® In turbulence theory the development
of coupled and closed nonperturbative equations for (1), C', and R was pioneered by Kraichnan with
his famous DIA, to be described in Sec. 5 (p. 126). An elegant generalization of the cumulant formalism
was found by Martin et al. (1973); their work will be described in Sec. 6 (p. 146).

3.6 Alternate representations and properties of second-order spectra

The correlation function C(1,1’) can be discussed in either @ space, k space, or other bases such
as wavelets (Farge, 1992). For homogeneous turbulence k space is particularly suitable. Thus one
may consider C'(k), the Fourier transform with respect to & — «’. However, certain superior alternate
representations are also in common use.

3.6.1 Energy spectral density

Instead of C(k) one frequently considers the energy spectral function FE(k), from which the
total energy £ can be calculated according to &€ = [;°dk E(k), where k = |k|. Thus the volume
element in k space is included in F(k), so the physical dimensions of E(k) are independent of
spatial dimensionality d. No assumption about isotropy is made at this point; if the turbulence is
anisotropic, E(k) includes a nontrivial average over solid angle in k space and does not provide a
complete description of the wave-number spectrum. Although use of E(k) is completely standardized
in neutral-fluid theory, in plasma physics mean-squared fields [sans volume element, i.e., C'(k)] are
often plotted instead.

The energy spectrum is the derivative E(k) = d&€(k)/dk of the cumulative energy spectrum
E(k) = C=<(k), where C<(k) is a low-pass-filtered version of C(x) that contains wave-number
components less than %k in magnitude. A detailed discussion of the filtering procedure was given
by Frisch (1995).

3.6.2 Structure functions

Instead of the two-point correlation function C(1,1’), it is often useful to consider the structure
function

S(L, 1) = ([69(1) — 69 (1)]*) = 2[C(1,1) — C(L,1)]. (103a,b)

89 Tn thermal equilibrium C' and R are related via the fluctuation—dissipation theorem; see Sec. 3.7.1 (p. 67).
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A lucid discussion was given by Frisch (1995), who emphasized the importance of such functions for
describing random processes with stationary increments. 0 Spatial structure functions are often used
in analyses of the statistics of the small scales of turbulence.®' They have been seldom employed
in plasma physics to date, but see the application discussed by Krommes (1997a) and in Sec. 4.4

(p. 119).

3.6.3 The Taylor microscale

The Taylor microscale Ar (Taylor, 1935) is a measure of the second derivative of the correlation
function at the origin. Specifically, for a homogeneous, isotropic function C(x,a’) = C(p), where
p=|p|and p =ax — ', A\r is defined by

C(p)/CO)=1=p* /A +--- (p—0). (104)
Alternatively,
L (=CTON\ T [ fedk k2E(R)\ T
= ( 20(0) ) - <2fo°°dk E(k) ) ' (1050.0)

Note that the numerator of Eq. (105b) is the enstrophy or mean-squared velocity shear:
[ kR E®) = (JwP), (106)
0

where w = V X w is the vorticity. Thus kpr = )\}1 is a normalized measure of the rms velocity shear
(Krommes, 1997a, 2000b). For further discussion of the role of turbulent velocity shear, see Sec. 12.7
(p. 248).

Another interpretation of A arises by evaluating the Navier—Stokes energy dissipation €, Eq. (13¢),
for homogeneous, isotropic turbulence. One finds (Taylor, 1935)

15 pee
e = 5 T/ N = S pa /O dk K2 E(k), (107a,b)

where @ is the rms level of any Cartesian velocity component. The result (107a) might lead one
by dimensional reasoning to associate Ay with the characteristic scale at which viscous dissipation
occurs. However, that conclusion is false for high Reynolds-number turbulence. It would be correct if
E(k) decayed exponentially rapidly [consider inserting a Gaussian shape into Eq. (107b)]. However, as
will be discussed in Sec. 3.8.2 (p. 73), the actual (Kolmogorov inertial-range) spectrum is algebraic,
E(k) o €%/3k=%/3 out to a Kolmogorov dissipation wave number kg > kr (after which it falls off
rapidly). Indeed, if that spectrum is inserted into Eq. (107b) and the definition (9) of the Reynolds
number R is used, one finds

k
el/3 R—l/ Ak kY3 o ROLEY?, (108)
0

90 An example of a nonstationary random process with stationary increments is the Brownian path Z(t), the
solution of Z = (t) for delta-correlated 7.

91 Note that any k = 0 component of the fluctuations cancels out in the definition of the structure function.
That is, Eq. (103) is invariant under the addition of a constant ¥y to 1.
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so the dominant contribution to dissipation comes from the vicinity of the upper limit. If € is to be
O(1) (production at the large scales), it then follows that 1 ~ R™1k2 ~ Rk}, or

kr = O(RY?),  kq= O(R**"). (109a,b)

Thus k; > k7 as claimed and merits its interpretation as the dissipation wave number. k;l is called
the Kolmogorov microscale.

The Taylor microscale figures crucially in the theory of the so-called clump algorithm, one crude
procedure for estimating saturation levels in plasma turbulence that is critiqued in Sec. 4.4 (p. 119)
and shown to suffer from misapprehensions about the interpretation of Ar. Those difficulties were
explained by Krommes (1997a, 2000Db).

3.7 Statistical dynamics of thermal equilibrium

Turbulence, being intrinsically forced and dissipative, represents a state that is far from thermal
equilibrium. Nevertheless, particular properties of thermal-equilibrium solutions obtained in the
absence of forcing and dissipation importantly figure in the qualitative description of nonequilibrium
steady states.

3.7.1 Fluctuation—dissipation theorems

One of the most profound results of equilibrium statistical mechanics is the fluctuation—dissipation
theorem (FDT; Martin, 1968; Toda et al., 1995), which states that the equilibrium fluctuation
spectrum C' and a particular linear response function K (different from R) are proportional. This
result is by no means intuitively obvious; indeed, it is remarkable since C' describes finite-amplitude
fluctuations whereas K describes the response to an infinitesimal perturbation of the Hamiltonian.

A well-known consequence of the classical FDT for discrete many-particle systems is that for
weakly coupled plasmas the thermal-equilibrium fluctuation spectrum is (§ E?) (k) /87 = 1T/(1+k?)%,)
[see, for example, Ecker (1972)]; this result is frequently used to test particle simulation codes (Lee,
2000). The generalization of this result to gyrokinetic plasmas is both important and subtle (Krommes,
1993c). For further discussion, see Appendix C.1.7 (p. 276).

Kraichnan (1959a) proved an FDT that directly links C' and R and is of more direct relevance to
the theory of turbulence. By considering a hypothetical weak coupling of two initially isolated systems
in thermal equilibrium, he showed [see also Orszag (1977)] that in thermal equilibrium

Oy (k,w) = R(k,w)C(k), (110)

where C(w) is the temporal Fourier transform of the one-sided function H(7)C(7) and C(k) is
the equal-time wave-number spectrum (independent of time in the steady state). The physical
distinction between R and the K of the original FDT is that R describes the response to infinitesimal
perturbations additive to the equations of motion whereas K describes the response to perturbations
additive to the Hamiltonian, which become multiplicative perturbations to the equations of motion.
The specific mathematical relations between R and K were discussed by Krommes (1993b), who
illustrated some of the formulas with the guiding-center model (31) of cross-field transport. See also
the discussion of dielectric response in Sec. 6.5 (p. 170).
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The importance of an FDT like Eq. (110) for a theory of turbulence is that it provides a
powerful constraint that any statistical theory relating R and C should satisfy in the limit of thermal
equilibrium. Because that limit is achieved by removing forcing and dissipation from the equations
of motion, the constraint is on the nonlinear structure of the theory and is entirely nontrivial. As we
will see in Sec. 8.2 (p. 201), the fluctuation-dissipation relation (110) also serves as a plausible Ansatz
that can be employed (with varying degrees of fidelity) even in highly nonequilibrium situations. The
practical advantage of such a relation is that the two-time dependence (or the frequency spectrum)
can be described by one independent function rather than two.

3.7.2 (Gibbs ensembles for turbulence

It is well known that the existence of Liouville’s theorem Y-, 9(%;)/0z; = 0, where the z;’s are
the phase-space coordinates, permits an equilibrium statistical mechanics (Tolman, 1938). Let ¢,, be
one of a complete set of real orthonormal eigenfunctions such that a general field ¥ can be expanded
as Y(x,t) = X, Un(t)dn(x). For homogeneous turbulence and periodic boundary conditions, plane
waves are appropriate eigenfunctions. Assume that when the equation of motion is truncated to a finite
number of those eigenfunctions, an inviscid constant of motion exists of the form Z = ¥, ¥2(t). (The
tilde denotes a quantity that is in principle a random variable although here it is actually constant
in each realization; the corresponding mean quantity is denoted Z = (i}) It can then readily be
shown (Kraichnan, 1965a; Kraichnan and Montgomery, 1980) that the v, obey Liouville’s theorem
with t, = z,. Accordingly, a Gibbs distribution P[] x exp(—aZ[¢]) is an equilibrium (and stable)
solution of Liouville’s equation. This predicts an equipartition spectrum for the v, as was first shown
for some important special cases in the pioneering paper by Lee (1952). If there are several constants of
motion Z;, one is led to multiparameter Gibbs distributions, P (Y] o< exp(—>; i [¢]), and nontrivial
generalizations of the equipartition spectrum.

The absolute equilibrium distributions do not describe turbulence, which is a forced, dissipative
state with nonvanishing net energy flow from mode to mode. %> Nevertheless, they are important in
several ways: they can be used to partially test numerical simulations and statistical closures; and
they also suggest that the nonlinear terms will transfer energy (or other invariants in some cases) in
the direction that would tend to bring the wave numbers to their thermal equilibrium level. Of course,
for actual forced, dissipative turbulence that attempt is defeated for wave numbers in the dissipation
range, where the steady-state spectrum must lie far below the equilibrium prediction. See further
discussion in Sec. 3.8 (p. 71).

A difficulty with Gibbs’s procedure as applied to the equations of turbulence is that the full set of
constants of motion may not be known or may be infinite. Fortunately, usually the conservation of an
infinite set of quantities does not survive truncation to a finite k space or other bases (Kraichnan and
Montgomery, 1980); frequently only the quadratic quantities survive. If one were to fail to recognize
one or more of the quadratic invariants, qualitatively incorrect results could arise *3; see the following
discussion of the two-parameter Gibbs distribution.

Another issue is that Gibbs’s form is not the unique stable solution of the Liouville equation.

92 Some general aspects of the distinctions between equilibrium and turbulence were discussed by Kraichnan
(1958b).

93 Higher-order invariants may be important as well; see the discussion in Secs. 5.10.3 (p. 144) and 7.2.1
(p. 183) of the problem of three interacting modes, in which in addition to energy and enstrophy a cubic
Hamiltonian invariant is also nonlinearly conserved.

68



Strictly speaking, if the {Z} have the same values in all realizations, then the distribution should
be microcanonical, P[p] o [1;8(Z; — Z;[¢)]). The usual justification for Gibbs’s form is to evaluate
averages by a saddle-point integration that exploits the number of modes as a large parameter. The
differences between the microcanonical and canonical distributions were discussed by Kells and Orszag
(1978), who performed numerical simulations of systems with small number of degrees of freedom and
compared the results with the theoretical predictions of the various equilibrium ensembles.

The (inviscid) HM equation (48) provides an important and nontrivial example of these ideas.
As discussed in Sec. 2.4.3 (p. 37), the HME conserves two quadratic invariants, the energy € and
the enstrophy W [defined by Eqs. (50)]. Those quantities remain invariant if one removes from the
spectrum all triad interactions with the magnitude of any leg larger than some k., which I shall
subsequently assume has been done. (In the following discussion, all k’s are really k,’s.) One is then
led to the two-parameter Gibbs distribution

Plg] o exp[—Y (e + Bk°) Eg] (111)

(the sum is over the independent Fourier components; ¢ and ¢_ are not independent because of
the reality condition ¢_p = ¢§), which in turn leads to mean values £ = (£) and W = (W) with the
equilibrium wave-number spectrum &, = (&) = (a + k27"

As was pointed out in Sec. 2.4.3 (p. 37), if the 1 is neglected in the factor (1 + k?), the
HM description reduces to that of the 2D Euler equation (Onsager, 1949; Joyce and Montgomery,
1973). Kraichnan (1975b) has given an extensive discussion of the two-parameter Gibbs distribution
for that case; his results can be taken over directly. Let M be the number of modes remaining in the
truncated spectrum and introduce the mean energy and enstrophy per mode, respectively, £ = £/M
and W = W/M. Also define the dimensionless parameters

a=fa, B=EB, a=a/f=a/b. (112a,b,c)

Specifying (@, 3) then determines (£, W) and vice versa:

<%> B %«zﬁl) (ﬁ»k (113)

where (...), denotes the wave-number average over the discrete spectrum: (A), = M~ Y, Ag. Now
introduce the ratio of enstrophy to energy, which is the square of a dimensionless wave number k:

k2 =W/E =W/E. Then
=020 —a, f=L@+k)"),. (114a,b)

The usual situation is that one is given {€, W} (prescribed, say, as initial conditions). The
associated o and 3 can then be found as follows. Replace the set {€, W} by {&, k*}. Invert Eq. (114a)
with the aid of Eq. (114b) to give @(x?). Then 3 is known from Eq. (114b) and @ follows from
Eq. (112¢). The actual a and 3 can then be obtained from Egs. (112).

Not all combinations of {€ W} or {@, 3} are accessible. A striking result is that in a discrete
spectrum (kmin > 0) one or the other of o or 3 may be negative, corresponding to negative-temperature
equilibrium states. The parameter space can be analyzed by demanding that £ W, and Ej be non-
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negative, ™ and one can identify three regimes:

I o <0 II: 0,3 >0 IIL: 5 <0
k2, <Kk*P<KZ k2 <k? <kZ, kE<r?<k2, .,
—k2in < a <0, 0<a<oo, —oco<a<—k2,_
—co< @ <0, 0<a<l, 1<@ <oo,
00> B>k k>[5 >0; 0> >—oc.

The qualitative features of this behavior are summarized in Fig. 4 (p. 71), which plots the
approximation obtained by assuming that the spectrum is dense and spherically truncated (Kraichnan,
1975b): M =~ (k2 — k2,

max min )

_ 1 k k2, — k2
G (“7“1) JZ e — kh), kEmg —max _min_ g2 (k2 + k2 (115a,b,c)

T T 8] i )
Regime I corresponds to negative-a states; symmetrically, regime I1I corresponds to negative-(3 states.
States with highly negative a have the longest-wavelength modes excited to very high levels and have
small ratios of enstrophy to energy. For states with highly negative 3, the excitation is concentrated
at the shortest wavelengths and the ratio of enstrophy to energy is large.
A frequent argument is that the equilibrium wave-number distribution of the invariants provides
a clue about the behavior of nonequilibrium dynamics; the nonlinear terms strive to relax the
system to equilibrium, but are thwarted by forcing and dissipation. For example, the existence of
the negative o (large-energy, long-wavelength) and negative [ (large-enstrophy, short-wavelength)
equilibrium regimes suggests that a nonequilibrium HM system forced at intermediate wavelengths
may exhibit a dual cascade in which energy is transferred to long wavelengths while simultaneously
enstrophy is transferred to short wavelengths. This point is pursued in Sec. 3.8.3 (p. 74). Dual cascades
exist in nonhelical MHD [see Eqgs. (64)] as well; a readable introduction was given by Montgomery
(1989).
Although two-parameter Gibbs distributions are frequently discussed because of the practical
importance of 2D turbulence, they are not the only possibility. For example, it was noted in Sec. 2.4.5
(p. 39) that the nonlinear terms of the HW equations conserve four quadratic invariants; the

94 Considered as a function of @, Fy is singular at @ = —k2. and @ = —k2,,,, and one can verify that

the region —k2,. < a < —k2,  is forbidden since one or more of the Ej, would be negative. To analyze the

behavior in the vicinity of @ = —k2, , write @ = —k2,_ + ¢/M. Then one can see that 8 ~ ¢} — 400 as

€ — 0. For fixed &, which will always be assumed in considering the various limiting cases, one can see that
also ﬁ — +00. The behavior of @ = a& follows from @ = af = (k2. +¢/M)3 ~ —k2. B — —oco. One also

min min

has k2 — —a — k2, . Symmetrical behavior ensues in the vicinity of & = —kfnax €/M, where the roles of «
and (@ as well as kpin and kpax are reversed. The other 1nterest1ng points are @ = 0 and & = £oo. Define

the special wave numbers k, and kj according to k2 = (k™ > k2 (k?),,. [That ky, > k, is a consequence

of the Schwartz inequality applied to the identity_((kQ)(k )>_ ] Then at @ = 0 one finds £ = (Qﬁkg)_l_
= (26)7!, and K? = k2. As @ — +oc one has & = (2a)7, W = (2a)7'kZ, and x? = k}. Since for fixed &
« remains finite, one can see that § — 04 as @ — +00. The point @ = —oc is obtained continuously from

a = +oo as 3 passes continuously through 0 from above.
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Fig. 4. Parameter space for a two-parameter Gibbs distribution, displayed as a function of & = «/3. The
solid curves plot k2, the ratio of enstrophy to energy. The chain-dashed curves plot @; the chain-dotted curves
plot 3. The inverse temperatures @ and 3 are seen to pass continuously through 0 as functions of x2.

corresponding four-parameter Gibbs distribution was discussed by Koniges et al. (1991) and used
by Hu et al. (1995) to partially verify numerical solutions of statistical closures [see Sec. 8.5 (p. 208)].
A three-parameter Gibbs equilibrium for a model of electromagnetic turbulence was discussed by
Craddock (1990).

3.8 Spectral paradigms

Since transport is fully determined by two-point spectral functions [see Eq. (3b)], it is important
to have an intuitive understanding of the characteristic shapes of wave-number spectra and of the
directions of flow of energy and other nonlinear invariants in k space. Various scenarios can arise;
they are called spectral paradigms. The characteristic spectral paradigm for the quasi-2D turbulent
fluctuations of strongly magnetized plasma is quite different from the standard one for the 3D NSE.

3.8.1 Definition of transfer

Transfer % is defined as the net amount of a nonlinear invariant leaving a particular region of
k space; a seminal reference is by Kraichnan (1959b). Consider a primitive amplitude equation of the

95 The following discussion of invariant transfer is a slight paraphrasing of Sec. IT A of Krommes (1997c).
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form Oyp + iLgr = %Nk, [¢]. For (1)) = 0 this leads to the spectral evolution equation
0,Cr, = 29,C + Re(Ny[6¢]00)), (116)

where Cj, = |0vk|* and 7% = Im Lg. Let a (nonhnearly conserved) invariant 7 be defined by the
appropriately weighted sum over all k’s: 7 = >k 0kCr. A generalization is to define a partial sum
over only a particular k-space region Ag: Z(Ay) = ke, 01Cr, with Z(As) = Z (A denotes the
whole of the k space). Upon summing Eq. (116) over Ay, one finds the fundamental transfer equation

30Z(Ak) = P(Ax) — D(Ax) — T(Aw), (117)

where the forcing or production is P(Ag) = Yrea, H(vk)ok1wCh, the dissipation is D(Ay) =
— ke, H(—”yk)ak”yk,ék, and the nonlinear transfer is ’]N'(Ak,) = —%Re DkeA, opNEOY;. On the
average, Eq. (117) holds without tildes; in steady state the averaged transfer 7 (Ag) equals the net
forcing P(Ak,) D(Ag). For quadratic nonlinearity 7 is a weighted sum of the triplet correlation

function Trpq = (09VrOVpOYg):

1
T(Ak) = —5Re 33 okMipg T, (118)

k€A, A

where Y o is defined in Appendix A (p. 262). 7 is thus proportional to the skewness of the fluctuations
[Eq. (95)], a non-Gaussian effect. For forced, dissipative steady-state turbulence, the transfer cannot
vanish identically because the forcing and dissipation occur in different regions of k space, so the
fluctuations are necessarily skewed and cannot be Gaussian. The sign and magnitude of the transfer
from various finite regions of k space provide important insights into the nonlinear dynamics, and
verifying that 7 (A) = 0 for each quadratic nonlinear invariant is a powerful test of a simulation
code.

For homogeneous, isotropic turbulence all statistical quantities depend only on k = |k|, so it
makes sense to define Ay as a spherical (3D) or circular (2D) region centered on the origin; this
defines the conventional isotropic function 7 (k). Let us pass to a continuum of wave numbers.
As a consequence of isotropy, both Mypq and Tipq depend on just wave-number magnitudes. The
angular integrations in > 5 can then be performed (Appendix A, p. 263), and Eq. (118) becomes
T(k) = —% fokdEfA dpdg 7 (k,p,q), where for the important 2D case

T (k,p,q) = 2rk[2/|sin(p, @)|orMupq(0k™"Ty,) (119)

(0k being the mode spacing). Because T (c0) = 0, one can alternatively write T (k) = § [°dk x
o dp [°dq T (k,D,q), where T (k,p,q) is assumed to vanish outside of the domain A(k,p,q). Simple
manipulations using the detailed conservation property ox7 (k,p, q) + c.p. = 0 (c.p. means the cyclic
permutation k — p — q) then lead to the form given by Kraichnan (1959b),

1 oo _ rk k k _ roo 00 _
:—(/ dk/ dp/ dq-/ dk/ dp/ dq) T 7,9). (120)
2 \Uk 0 0 0 k k
For a graphical illustration, see Kraichnan’s Fig. 1.

Studying merely the angle-averaged 7 (k) can be misleading for anisotropic situations such as
those characteristic of drift-wave problems in fusion plasmas, in which various important frequencies
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are proportional to k,. So that one does not overlook unexpected physics, one should also study
appropriately defined functions 7 (k) and 7 (k,) [and 7 (k) in 3D]; unfortunately, this is virtually
never done. Nevertheless, the tendency of E x B advection to isotropize fluctuations means that
T (k) is a useful and simple diagnostic for many situations of 2D plasma turbulence.

It should be pointed out that transfer is a necessary but not sufficient diagnostic. By itself transfer
does not provide information about locality of the interactions (Waleffe, 1992). Furthermore, steady-
state transfer measurements provide no direct information about timescales.

In the next several sections I shall discuss various distinctive qualitative scenarios of k-space
transfer that have been identified. To describe all of the various cases within a common framework, I
will employ the energy spectrum F(k) defined and discussed in Sec. 3.6.1 (p. 65).

3.8.2 Direct cascade

For the 3D NSE [Eq. (7a)] the conventional picture [see, for example, Landau and Lifshitz
(1987) and Frisch (1995)] is as follows. For homogeneous, isotropic, mirror-symmetric *® turbulence
the nonlinear terms conserve the single quadratic invariant®” £ = =3k [dug|?. A Gibbsian thermal
equilibrium is thus {|duw|?) o< a™! or E(k) o k?a~!, where « is the inverse temperature and is
determined by the initial value of the mean energy £. Because this equipartition solution weights the
large k’s most heavily, it is expected that the tendency of the nonlinear terms is to transfer energy to
the large k’s (on the average). In the presence of viscous dissipation, energy will therefore be absorbed
at the large k’s; thermal equilibrium will not be achieved. Instead, energy will enter the spectrum
at the forcing wave numbers (assumed to be at large scales, or small k’s), flow in a direct cascade
through the spectrum, and be dissipated at large k’s. This strong statistical disequilibrium is the crux
of the difficulty of developing a satisfactory theory of forced, dissipative turbulence.

The famous theory of Kolmogorov (1941), generally referred to as K41, makes a definite prediction
for the shape of the spectrum in the inertial range—the range of wave numbers intermediate between
the energy-containing range of small, directly forced k’s and the dissipation range where viscous
dissipation is important and the energy flow is absorbed. The argument, dimensional in nature, was
presented elegantly by Frisch (1995); see also Landau and Lifshitz (1987). In its simplest heuristic form
it states that in the inertial range F(k) should depend on just k& and the rate of energy transfer * e.
Dimensional or similarity analysis [see, for example, Tennekes and Lumley (1972)] then leads uniquely
to the Kolmogorov spectrum

E(k) = Cge??k™5/%  (energy cascade), (121)
where the Kolmogorov constant Cg, is undetermined. The k~%/3 scaling was first verified experimentally
in the tidal-channel experiments of Grant et al. (1962); one finds Cp ~ 1.5.

A physical interpretation of Kolmogorov’s result (121) is as follows. Divide the k axis into
logarithmically spaced bands.? The energy content within a band is then kF(k). The square root

96 Tn the absence of mirror symmetry, the fluid helicity H [Eq. (18)] is a second nontrivial (in 3D) quadratic
invariant. Equilibrium ensembles for this case were considered by Kraichnan (1973a).

97 In this and similar discussions I set the mass density p,, to one.

98 In steady state ¢ is also the value of the energy production [P in Eq. (12)] as well as the value of the
energy dissipation [D in Eq. (12)].

9 The arguments can also be couched in terms of length scales ¢, as advocated by Frisch (1995). That is
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of this expression should be interpreted as a characteristic velocity difference Au across an eddy, a
fluctuation of characteristic dimension k7. [A rigorous definition of an eddy can be found in Lumley
(1970).] The eddy turnover time, the k-dependent time for the eddy to be substantially sheared and
thus to change its wave-number content by transferring its energy to neighboring wave-number bands,
is then

Teddy ~ (kAu)™ = k=32 B(k)~1/2, (122)

The associated rate of energy transfer, assumed to be constant for each band in the inertial range, is
£ ~ kE(k)/Teaay = k*/*E(k)3/%. Upon solving this equation for F(k), one recovers Eq. (121). It should
be noted that the argument assumes that only eddies, not waves, are present and that the transfer is
local in k space. One or both of these assumptions are often violated in plasmas.

If an independent, noneddylike process decorrelates the spectral transfer in a time 7,., then the
previous transfer rate must be reduced by Tac/Teddy. If 7ac is independent of E(k), as it would
be for a linear mechanism, then from ¢ ~ [kE(k)/Teddy|(Tac/Teddy) and formula (122), one finds
E(k) ~ [g/Tac(k)]/2k2. If there exists a @ for which 7.}(k) ~ k%, then

E(k) ~ (eu)'/?k=3/2, (123)

Kraichnan (1965b) predicted this spectrum for isotropic !% hydromagnetic turbulence, for which % is
an Alfvén velocity; see also Orszag and Kruskal (1968).

According to the arguments in Sec. 3.6.3 (p. 66), the inertial range should terminate at a large k
that scales with the Kolmogorov dissipation wave number k; = A\;' = O(R3*). )\, is called the
Kolmogorov microscale. 1t can be estimated directly from the qualitative arguments sketched above
by equating the eddy turnover frequency Te_dhy(kd) with the dissipation rate k3. If one estimates the
energy production rate as e ~ U?/L [see Eq. (13b)], notes the Kolmogorov result Teqqy (k) ~ k=2/3¢71/3
[which follows from Eq. (122)], and recalls Eq. (9), one is led immediately to k4L ~ R*>%. As
discussed in Sec. 3.6.3 (p. 66), one must carefully distinguish the Kolmogorov dissipation microscale
Mg = O(R73/%) from the Taylor microscale Ay = O(R~/2) [see Egs. (109)].

3.8.8 Dual cascade

Kraichnan (1967) argued that in 2D turbulence the picture of direct energy cascade must be
profoundly modified because, in addition to energy, enstrophy is also conserved ! by the nonlinear

particularly useful for discussions of intermittency.

100 In the presence of a mean magnetic field (appropriate for applications to astrophysics), the spectrum is
anisotropic and the subject of active research. An incomplete list of recent references is Sridhar and Goldreich
(1994), Goldreich and Sridhar (1995), Ng and Bhattacharjee (1996; this includes a critique of the work by
Sridhar and Goldreich), and Ng and Bhattacharjee (1997).

101 Strict enstrophy conservation is not the whole story behind the inverse energy cascade. Fournier and Frisch
(1978) have considered the predictions of the EDQNM statistical closure (Sec. 7.2.1, p. 183) analytically
continued to noninteger spatial dimensionality d. Enstrophy conservation is broken for d # 2 and apparently
does not generalize to another conservation law. A critical dimension of d. =~ 2.05 is obtained such that
for d < d. the energy cascade is inverse whereas for d > d. the cascade is direct. However, it may be that
enstrophy conservation need only be approximately satisfied over some relevant dynamical time in order to
significantly constrain the dynamics. I am indebted to H. Rose (2000) for emphasizing these points.
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interactions; the same logic applies to the HME (48). Simultaneous direct transfer of those two
invariants, which have differing k& weightings, would appear to be inconsistent with steady states of
both invariants. This implies the possibility of a dual cascade, °? with enstrophy cascading to the right
and energy cascading to the left in an inverse cascade from an intermediate forcing wave number.
The argument is consistent with the existence of the negative-temperature regimes of HM equilibrium
statistics; see Fig. 1 of Kraichnan (1967) for a revealing diagram of triadic energy and enstrophy
transfer. Because the K41 arguments are insensitive to the sign of the transfer, an inverse energy
cascade should still exhibit the k=5/3 scaling. For the direct cascade, however, the arguments must be
repeated using enstrophy rather than energy as the fundamental quantity that is being transferred.
This leads readily to

E(k) = Cwn*3k™® (enstrophy cascade), (124)

where 7 is the rate of enstrophy injection. 1% However, because Eq. (124) predicts that every octave
below a given wave number contributes equally to the mean-square shear [Eq. (106)], which is infrared-
divergent in an infinite inertial range, Kraichnan (1967) argued for the likelihood of logarithmic
corrections to Eq. (124): E(k) — Cywn*?k=3[In(k/k1)]~'/3, where k; is characteristic of the low wave
numbers. For detailed discussion and a practical correction to Kraichnan’s form, see Bowman (1996a).

Very high computer resolution is needed to verify a dual cascade. Early numerical work was by Lilly
(1969). Fyfe et al. (1977) considered 2D MHD; Fyfe and Montgomery (1979) studied the HM equation.
For more recent, high-resolution studies, see Brachet et al. (1988).

The predictions of dual cascade strictly hold only when the inertial ranges are taken to be
asymptotically infinite in extent. Terry and Newman (1993) discussed modifications for spectra
of finite width. The long-time fate of the steady-state inverse cascade depends on the nature of
the long-wavelength dissipation. For some discussion, see Hossain et al. (1974). Recent high-quality
numerical calculations by Montgomery et al. (1992) show that decaying 2D NS turbulence approaches

102 Tt is frequently said [see, for example, Diamond and Biglari (1990)] that it is the number of invariants
rather than the spatial dimensionality that determines the nature of nonequilibrium cascades. Although there
is considerable truth to this, tensorial properties of the invariants also play a role. For example, Kraichnan
(1973a) considered 3D helical turbulence, which (Sec. 2.1.1, p. 23) possesses both energy and fluid helicity
as inviscid invariants. He showed that there are no analogs to either the negative-temperature states of 2D
equilibria or the 2D inverse energy cascade, and that strong helicity should inhibit energy transfer to longer
wavelengths. The distinction between helicity and enstrophy is that whereas enstrophy is fully determined
by the energy spectrum, the helicity and energy spectra are independent.

103 Kraichnan (1967) gave an elegant formal similarity analysis of the dual cascade. If inertial-range similarity
solutions are sought such that E(ak)/FE(k) = a~™ and consistently 7 (ak, ap, aq) /T (k, p, q) = a~+3%/2_ then
rescaling manipulations of the form (120) lead to

Tr(k) k(5—3n)/2 ! o Wg(v,w;n)

_ s Wy T 1 f_4
<Tw(k) k(9—3n)/2 0 dv ) dw Ww(v,w;n) ( 7'an)v ( )
expressed as a (v, w) integration over triangle shapes. Kraichnan found explicit forms for the W’s, which
express the roles of different triangle sizes. Note that the values np = % and ny = 3 produce k-independent
spectra. One finds Wg(v, w; 3) = 0 (no enstrophy transfer in an energy cascade), Wy (v, w; %) = 0 (no energy

transfer in an enstrophy cascade), Wg(v, w; %) > 0, and Wy (v, w;3) < 0. Kraichnan argued in detail that
7 (1,v,w) should be negative, implying inverse energy cascade and direct enstrophy cascade.
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a particular maximum-entropy state; however, a complete theoretical justification is lacking.

3.8.4 Saturated spectra in plasma physics

The previous discussions implicitly assume that (i) forcing is concentrated in a very narrow band
of wave numbers, (ii) the Reynolds number is very large (so a well-defined inertial range exists), and
(iii) the statistics are isotropic. Unfortunately, none of these is true for a wide class of problems
of interest to contemporary plasma applications. Because of the highly dispersive nature of the
plasma medium, linear growth rates are typically broadly distributed in wave number. In addition
to collisional dissipation, strong kinetic (Landau) damping processes also arise at even moderate
scales (in magnetized plasmas, for k; ps 2 1) and greatly limit the width of the excited spectrum.
These observations imply that well-formed inertial ranges will be relatively rare in laboratory plasma
problems. Finally, because instabilities are driven typically by profile gradients, which introduce some
sort of diamagnetic frequency wx o< k,, spectra are naturally anisotropic even in the k; plane.
Krommes (1997c) discussed a possible generalization of 7 (k) that may aid in quantifying the
anisotropy. Furthermore, the presence of a background magnetic field introduces a strong anisotropy
between the parallel and perpendicular directions. Albert et al. (1990) showed that HM fluctuations
excited with a single k| are unstable to the development of a broad kj spectrum. If each k| labels a
wave-number plane, one must now consider interplane as well as intraplane transfers. The steady-state
dynamics can be complex (Biskamp and Zeiler, 1995).

Although the general plasma problem is complicated, specific circumstances yield to useful
modeling. For example, Diamond and Biglari (1990) used Eq. (59) as a description of trapped-ion
modes. They noted that because it conserves the single quadratic invariant (dn?), it should display a
direct cascade. Thus it is not fundamentally the spatial dimensionality that controls the direction of
cascade but rather the number of invariants [but see footnote 102 (p. 75) for a caveat].

This concludes the discussion of key qualitative and exact properties of equilibrium and
nonequilibrium turbulent systems. A successful statistical approximation should be compatible with
those properties if at all possible. In the next section I begin the discussion of such approximate
analytical techniques.

3.9 Introduction to formal closure techniques

A variety of statistical closure techniques have been developed over many years of research. I give
an introductory survey of some of them here; much more detailed development of selected ones will
be given later. Good introductions to some of these techniques (as applied mostly to passive problems
with coefficients depending solely on time) were given by Brissaud and Frisch (1974) and van Kampen
(1976); see also van Kampen (1981). An important fluid-oriented review is by Orszag (1977).
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3.9.1 Formal integral equation

Consider quadratically nonlinear equations of the form '%
O + 1Ly = M <f§b> . (125a)
2

where £ is a linear operator and M is a bilinear operator; both L and M are assumed to be local
in time. The upper and lower choices in the column vector refer, respectively, to a passive problem
(x being a specified random variable) or a self-consistent problem. M may implicitly integrate over
other variables such as velocity. It should really carry a passive or self-consistent label as well; only
in the latter case may M be taken to be symmetric. 15 After Fourier transformation in @, Eq. (125a)
can be written

k
Oton + Ltk = 3" Miepg (Bﬁ;’ ) vF. (125h)
A 27 P

Notice that (i) the exact random infinitesimal response function R obeys

(@ +iD)R(t;t)) — M (i) R=d(t—1t): (126)
and (ii) for passive problems, the formal solution of Eq. (125a) is
Wb (t) = R(t;0)¥(0). (127)

[Recall the discussion of the stochastic oscillator in Sec. 3.3.1 (p. 54).]

Let the goal be to find a closed equation for (i); this is a restricted case of the general closure
problem (of determining all cumulants of ) that is particularly appropriate for a pedagogical
introduction. The exact equation for () is

5 = = [ {(0x 0)
O +iL —M(<X>> :M<< > 128
Setting the left-hand side to zero defines a mean-field theory, closed in terms of (1); an example is
the Vlasov equation, for which () = (N) = f, N being the Klimontovich microdensity (22). The

right-hand side specifies the effects of fluctuations. The exact equation for the fluctuations is obtained
by subtracting Eq. (128) from Eq. (125a) and is

)0V +0ox W)\ = [ Oox0v—(0x0v)
(6) 60 ) =M (%(Ww— <5w6w>>>'

104 In Eq. (125a) the factor of 1 is introduced so that the linearization of the self-consistent problem does
not contain a factor of 2; cf. Eq. (130).

105 For example, consider the HM polarization-drift nonlinearity (1 — V2)™'Vg - V(=V2p) with ¢ = ¢.
If Vg is passively determined from an external potential ¢®' then one chooses xy = ¢ and readily
finds that M E;Z =1+ k2)"'b - p x g¢% In a self-consistent problem (conventional HM), ¢*** — ¢ and

Migq = Mipe + Mgy, = (1+ k) 7' - p x q(¢? — p?).

(8, +iL)0yp — M ( (129)
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A formal integral equation for ¢ can be formed by introducing the zeroth-order infinitesimal
response function Ry, which obeys the linearization of the left-hand side of Eq. (128):

(0, +1L)Ro(t; ) — M (2;;) Ro=6(t—1). (130)

(For the self-consistent case the symmetry of M was used.) Then the formal solution of Eq. (129) is

50 (1) = Ro(1:0)56(0) + [ df Ro(t: )T <5>< OW>>

dx 0¢ — (0x 1) -
>>> 9

131
L5y 8¢ — (5060 (131)

t _—
+/ d%Ro(t;z)M<
0

Notice that for self-consistent problems the symmetry of M means that the term in M in Eq. (130)
contains two physically distinct pieces. For example, for the self-consistent Vlasov equation, for which

—

M(1,2,3) = £(1,2) - 810(1 — 3) + (2 < 3), Eq. (130) would explicitly read

(8, +v-V)Ro+ (E) -8Ry + 8f - ERy = 6(x — ')6(v — V)0, w8 (t — t'). (132)
i —M(p)

The presence of the underlined term, which is responsible for nontrivial dielectric and collective effects
(Sec. 6.5, p. 170), distinguishes Ry from the single-particle propagator g, which obeys Eq. (132) in
the absence of the underlined term [cf. Eq. (2b)]. For passive problems gy and Ry are identical, since
for such cases the analog of the underlined term in Eq. (132) appears as the second term on the
right-hand side of Eq. (131).

3.9.2 The Bourret approximation and quasilinear theory

In general, Eq. (131) may appear to be rather useless since the nonlinear terms on the right-hand
side may be large. However, note that the nonlinear terms always enter in conjunction with a time
integral, so their size must be interpreted as an appropriately nondimensionalized autocorrelation time
such as the Kubo number discussed in Secs. 3.3.1 (p. 54) and 3.4 (p. 56). If the nonlinear terms are
small, the integral equations provide viable starting points for further approximations. In particular,
to lowest order one may neglect the nonlinear terms altogether. Upon doing so, then substituting the
result into Eq. (128), one obtains a closed equation (nonlocal in time) for (¢). Such equations are
frequently called master equations.

The least confusing expression of this procedure occurs for passive problems. It is conventional
to neglect the initial-condition transient [the first term on the right-hand side of Eq. (131)]. Upon
retaining only the second term on the right-hand side, one finds the Bourret approzimation (Bourret,
1962)

(@ +iE)w) — M(x)(0) = [ dm STRo(m)@X()3x(t — 7) M ()t —7) (133)

(written here for the special case in which the second M does not act on dx, as in a solely time-
dependent problem). It involves the two-time correlation function Y(¢,t') = (dx(¢)dx(t)) of the
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random coefficient; that is generally taken to be stationary: Y(¢,t') = Y (¢t — t'). Furthermore, since
one has already assumed a short autocorrelation time by neglecting the nonlinear terms, the Markovian
approximation (V)(t —T) = ()(t) is appropriate; one then obtains

o~

(0 +1L) () = MO W)+ 77 (W) = 0, 7 = — [ ~ar MRy(7) Y (7). (134a,b)

This is, in somewhat abstract notation, the so-called quasilinear'°® approzimation; 7™ represents an
unrenormalized (constructed from Rj) fluctuation-induced damping (nl stands for nonlinear) and is a
nontrivial prediction of the statistical closure. In problems with variables additional to the time, the
presence of Ry in Eq. (134b) has the effect of converting the Eulerian correlation function Y(7) to a
Lagrangian one taken along the zeroth-order orbits. As an illustration, consider the passive Vlasov
model (the so-called stochastic acceleration problem) in which the underlined term in Eq. (132) is
ignored. Equations (134) become

(O +u+ (E)-98)f+[-0-D(v)-0]f=0, D(v)= /OoodT (0E(x,t)0E(x — vT)).(135a,b)
i —]\7[<X> ﬁnl

For further and more explicit discussion of plasma quasilinear theory, see Sec. 4.1 (p. 90); compare
Egs. (135) with the Markovian version of Eq. (171).

It is useful to illustrate these general considerations with the stochastic oscillator model introduced
in Sec. 3.3 (p. 52). Because of the random initial condition that was assumed, the mean field itself
vanishes identically. Nevertheless, the mean response function does not vanish, so one may take
Eq. (76) as the primitive equation analogous to Eq. (125a); alternatively, one may study the mean
field conditional on ¢(0). One identifies £ = 0, M = —i, x = @, and Ro(r) = H(7). Then the
quasilinear approximation for R is

(0 +n™)R(7) = 4(7), 77“1=/000dﬂ(?>= 2Tt (136a,b)

(I shall drop the caret on 7™ when it is merely an ordinary number, not an operator.) The solution
R(t) = H(7)exp(—p%7nr) precisely reproduces the long-time (7 > 7i%) behavior of the exact
solution (81) in the limit K < 1.

The analogous procedure applied to self-consistent problems contains some subtleties. Because of
the 0 in the second term of Eq. (131) (linear self-consistent response is included in Ry), if one wishes
to work with Ry one cannot simultaneously neglect both the initial-condition and nonlinear terms.
Iteration on the nonlinear terms is one route to the self-consistent DIA (Sec. 5, p. 126). A quasilinear
approximation for self-consistent problems, similar in form to the passive theory, can be obtained by
iterating on go rather than Ry; that is how Vlasov QLT is conventionally developed (Sec. 4.1, p. 90).
For the Klimontovich equation, lowest-order classical discreteness effects arise by retaining only the
initial-condition term of Eq. (131). In that case the initial conditions are singular, and their effects
do not entirely phase-mix away even at infinite times.

106 «Linear” because the fluctuations are treated linearly; “quasi” because a nonlinear correction is retained

in the equation for the mean field.
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3.9.8 FExact solutions of model problems

Although it is clearly not hard to obtain approximations suitable for weakly nonlinear cases with
short autocorrelation times, in general one must deal with strongly nonlinear cases with IC > 1. There
are two general ways of proceeding:

(1) Find approximate statistics of the exact equation;

(2) Find the exact statistics of approximate model equations.
Although the bulk of this article will focus on procedure 1, there are important instances of
procedure 2. For example, Brissaud and Frisch (1974) have for passive problems discussed a class
of statistical models, involving stepwise-constant random variables, that can be solved exactly. Given
an exact equation with arbitrary y, one may, for example, match the covariance of the model xy with
that of the exact x, then proceed with the exact solution of the solvable model.

Kraichnan has considered an alternate version of procedure 2 in which instead of modeling the
statistics of y one randomizes the mode-coupling coefficient M in a particular way. The addition of
extra randomness to the exact equation of motion leads to dramatic simplifications in the statistical
analysis. This random-coupling model will be described in some detail in Sec. 5.2 (p. 131).

3.9.4  Cumulant discard

I now turn to a discussion of techniques that implement procedure 1, which has historically
been the main focus of statistical closure theory. One procedure alternative to direct truncation of
the integral equation (131) proposes to generate a sequence of ever-better closures by successively
enlarging the space of variables to retain more and more cumulants. That is, exact equations for the
1th cumulant are written for ¢ = 1, 2, ..., n, and cumulant n + 1 is set to zero. In classical kinetic
theory this corresponds to truncating the BBGKY hierarchy at successively higher and higher order.
Orszag and Kruskal (1968) discussed the analogous hierarchy for the NSE.

Following Kraichnan (1961), I illustrate cumulant-discard approximations for the I = oo limit of
the stochastic oscillator, for which the exact solution is Eq. (81). One may take § = 1. Let us begin
again with Eq. (76). Define the (mixed) nth-order cumulants

0o (n=1)
L ysen—1 By _ ) (00 R) (n=2)
Cn = (00" R)) = (53 R) — (502 R (n = 3) (137a,b)
(6@ R) — 3(0w*)(6wR) (n =4)
((6&*) = 3? = 1). One has rigorously
R+iCy =68(t—t), Cy+iR+iC3=0, Cs+ 2iCy+iCy = 0. (138b,c)
Upon successively ignoring C, 1 for n =1, 2, ..., one obtains
1 (n=1)
R(t) ~ H(1){ cos(T) (n=2) (139)

24+ Lcos(v3r) (n=3).

These approximations are purely oscillatory, 1°7 so none captures the long-time decay of the exact

107 The oscillatory behavior of such cumulant-discard approximations for K = oo was rediscovered by
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solution. This is not surprising: For K > 1 the statistics are intrinsically non-Gaussian. More
specifically, the dynamics are non-Markovian, so no coarse-graining in units of a small autocorrelation
time is possible and thus no argument based on the central limit theorem can be invoked.

Mathematically, this sequence of cumulant discards produces better and better approximations
to the short-time behavior of the true solution (80): R(r) = H(r)(1 — 72 + 7% 4 ---). Thus
approximation n in Eq. (139) matches through O(72™~1). The procedure is unsuitable for describing
the long-time dynamics, which evidently involve cumulants of all orders. What is needed is a way of
introducing the long timescale in a nonsecular way. Various of the techniques to be described in later
sections accomplish this.

Such cumulant-discard approximations have a long history of applications to the Navier—
Stokes and similar equations. Millionshtchikov (1941a,b) advanced '°® the hypothesis that the four-
point velocity correlation function might factor in the Gaussian way (the so-called quasinormal
approximation). However, theoretical and numerical study of that approximation (Kraichnan 1957,
1962a,b; Tatsumi, 1957; Ogura, 1963, and references therein; Orszag, 1970a) for homogeneous,
isotropic NS turbulence showed that the quasinormal approximation is ill founded; indeed, for large
Reynolds numbers it allows the energy spectrum to develop catastrophically negative regions in a
time characteristic of an eddy turnover time of an excited mode. Physically, the zero-fourth-cumulant
approximation does not capture the irreversible decay of the correlation function due to nonlinear
advective scrambling, just as the above cumulant-discard example fails to capture the exponential
decay of the true solution (80).!% A good discussion was given by Orszag (1970a).

It must be emphasized that the regime K = oo is a particularly difficult one, being intrinsically
nonlinear (the linear autocorrelation time is infinite). The presence of mean fields can modify the
situation considerably by introducing a finite 7. Some general discussion was given by Herring
(1969). For example, in drift-wave problems a background gradient introduces a linear, dispersive '
mode frequency proportional to the diamagnetic frequency wx. Nevertheless, in practice it frequently
happens that the system saturates such that the effective K = O(1); i.e., it sits at the boundary
between weak and strong turbulence. For such situations it is best that the closure is capable of
properly dealing with strong turbulence; it can then be specialized to weaker fluctuations on a mode-
by-mode basis as warranted. Accordingly, I concentrate in the next sections on methods capable of
handling fully developed turbulence.

3.9.5 Regular perturbation theory

Given the previous example, one will not be surprised that a regular perturbation procedure
based on formal expansion in a parameter A (assumed to multiply the nonlinear term) that is really
large will not succeed in the strong-turbulence limit if truncated at finite order. Nevertheless, this
approach is particularly instructive as it suggests a necessary generalization. [For definiteness, I now

Hammett et al. (1992) in their considerations of the Landau-fluid closure problem (Appendix C.2.2, p. 278).
108 For a historical note, see Yaglom (1994).

109 T their study of the statistical dynamics of the guiding-center model (31), Taylor and Thompson (1973)
were led to an oscillatory correlation function Cg(7) o< cos(Qg7) on the basis of what they called the
random-phase approzimation. They recognized that the approximation was valid only for short times and
that Ck(7) should be damped for long times. See also the discussions by Vahala et al. (1974) and Taylor and
Thompson (1974).

10 Tt is important that the linear frequency is dispersive; otherwise, it can be transformed away.
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focus exclusively on passive problems; a fully self-consistent formalism will be developed in Sec. 6
(p. 146).] A formal iteration of Eq. (131) can be performed by treating the last, nonlinear term as a
small perturbation; one finds *!!

51 = Rod1)(0) + Ry + Mx(¥)) + Ry x M&x R+ Méx(¥)) + - -- = Ré(0), (140)

where * denotes time convolution and the term (0 d¢) in Eq. (131) has not been written for simplicity
as it does not contribute to the ultimate equation for (¢). It is useful to represent this expansion
diagrammatically, analogous to Feynman’s diagrams for quantum electrodynamics. [Further remarks,
historical background, and references on Feynman’s approach are given in Sec. 6 (p. 146).] Associate
a small dot with the bare vertex M , a light solid line with the zeroth-order Green’s function Ry, and
a light dashed line with the Gaussian random coefficient 0. The expansion (140) is then pictured in
Fig. 5.

: : :
1 1 1
1 1 1
+ ® + ® ¢ +...

Fig. 5. Diagrammatic expansion of the passive random response function R. Light solid line, Ry;
light dashed line, dx; small dot, M.

When Eq. (140) is inserted into Eq. (128), the Gaussian averages produce a variety of terms, as

shown in Fig. 6. 12
/”\\ ,/’\\ ,,—\\
N AY Y
= + . . + — 6 o o
,//' ’,-\\\\\\\ ,,’ ,,’\\\ \\\
+ — ¢ — 66— —9o— |+ — ¢ ¢ o B + ...

Fig. 6. Diagrammatic expansion of the passive mean response function R (heavy solid line) in terms of
the zeroth-order response function Ry (light solid line) and correlation function T of the Gaussian random
coefficient (dashed line).

3.9.6 Failure of reqular perturbation theory

Now consider truncating such series at any finite order. Whether this is a good idea depends once
again on the size of the Kubo number. For K <« 1 the multiple time convolutions introduce higher
and higher powers of 7,., hence K, suggesting that the higher-order terms are small. However, for
IC > 1 one expects that terms from all orders contribute.

To gain an intuitive understanding of the difficulties, consider the formal expansion (1 —z)~! =
1+ + 2%+ ---. For |[x] > 1 the left-hand side is small whereas the right-hand side is large at any
order of truncation. In this particular case regular perturbation expansion around the origin generates
an infinite series that converges for |z| < 1. If one were given the infinite series, one could sum it for

U1 Tt is assumed that (1(0)) = 0. Then the last equality in Eq. (140) follows from Eq. (127) because
() = R(x(0)) = 0 [assuming y and 1 (0) are statistically independent] and thus ¢ = d1).

12 For some discussion of this expansion, especially as it relates to Dupree’s resonance-broadening theory
(Sec. 4.3, p. 108), see Thomson and Benford (1973b).
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|z| < 1, then use analytic continuation to deduce that the solution in the entire complex = plane is
(1 —z)~!. In this context the resummation procedure is called renormalization. An introduction to
renormalization procedures is given in the next two sections; a deeper discussion is given in Sec. 6

(p. 146).
To slightly elaborate the previous example and to place it in a more physical context, consider
the function R(7) = H(7)(e™™7) = H(7)exp(—3k?v#7?), where the average is taken over a

Maxwellian PDF in v. R(7) is nothing but the response function for the stochastic oscillator
(Sec. 3.3, p. 52) at infinite Kubo number with @ = kv. Note that 0 < R(r) < 1. Now many
practical renormalization procedures are conducted in the frequency domain. Therefore consider
R(w) = {[—i(w — kv +ie)]7"). Upon formally expanding in small kv/w, one gets

R(w) = (—iw) ™1 4 (kv/w) + (kv/w)® + ) = (—iw) "1 + (kvy/w)® + - -] (141a,b)
Clearly, finite truncations of this series badly misrepresent the low-frequency response. '3
There are deep and troubling issues connected with formal perturbation expansions in statistical
problems. Kraichnan (1966a) has argued that the perturbative expansions of statistical quantities such
as the correlation function or mean response function of the NSE with Gaussian initial conditions in
powers of the Reynolds number R have zero radius of convergence even though an amplitude expansion
of each realization is convergent; he illustrated the point with an exactly solvable model. The logic is
that (i) the radius of convergence is limited by the distance to the nearest singularity in the complex
R plane; (ii) that distance scales inversely with the initial amplitude; (iii) in a Gaussian distribution
(or any similar one without a high-amplitude cutoff), indefinitely high amplitudes are represented
with nonzero weight. That leads to terms of the form exp(—1/¢) in the statistical quantities, where
€ oc R™1. Such functions, having an essential singularity at ¢ = 0, are well known (Bender and Orszag,
1978) to have an asymptotic expansion whose coefficients all vanish. 114

3.9.7 Propagator renormalization

I now return to the general problem posed by Eq. (140). It should be clear that in the strong-
turbulence limit C > 1 it is necessary to sum the entire perturbation series. In view of the remarks in
the last paragraph, it is not entirely clear what this means, since the series may not completely
represent the exact solution. For now, let us ignore this difficulty, anticipating more powerful
techniques (Sec. 6, p. 146) that bypass the order-by-order expansion. Then the formal summation
can be done in two steps. First, if one temporarily ignores the crossed lines in Fig. 6 (p. 82), it can
easily be recognized that the resulting diagrams can be summed to the result shown in Fig. 7 (p. 84).
This can be seen to define an integral equation for R, namely, > R = Ry — RyX™R, or

o~

R'=R;'+3", $(7) &~ —MR(7)Y(r) M. (142a,b)

13 In terms of the plasma dispersion function (Fried and Conte, 1966) Z(z) = 71/2 ffooodt (t — z)_le_t2
(Im z > 0), which satisfies Z(0) = i\/7, one has R(w) = (v/2ikv;) "' Z(w/v2kvs) and R(0) = /7 /2(kv;) L.
114 The convergence properties of renormalized turbulence theory have confused many people; see, for
example, Thomson and Benford (1973a) and the subsequent comments by Orszag (1975).

15 T now drop the +’s and use the standard notation that operator products imply convolutions in time and
the other independent variables.
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At this stage, one has accomplished propagator renormalization (sometimes called line or mass
renormalization). The resulting approximation is called the direct-interaction approximation (DIA)
for reasons that will be explained in the next section.

IEEESS—— + S ——

Fig. 7. The direct-interaction approximation for passive advection, obtained by ignoring vertex corrections
[the crossed lines in Fig. 6 (p. 82)].

The renormalized form (142b), which contains the true response function R, should be compared
with the quasilinear form (134b), which contains Ry. Even in the absence of the vertex corrections,
the renormalized operator introduces a qualitatively important improvement to the description: it
not only contains the linear autocorrelation time (through T), it also contains the nonlinear time
scale 7,, since R must be computed self-consistently. The multiplicative way in which R(7) and T(7)
enter shows that the time-convolution integrals will properly see!!6 the true autocorrelation time
Tac = min(70 7).

For the response function of the stochastic oscillator, the DIA is (Kraichnan, 1961)

O.R + /O "FSN AR —7) = 6(7), (1) = R(F)Y(7). (143a,b)

It is clear that as KL — 0, X™ falls to zero very rapidly and Eq. (143b) reduces to the correct quasilinear
description; compare Eqs. (143) with Eqgs. (134). For the other extreme K = oo, where Y(7) = 32,
the solution of Egs. (143) can readily be found ''” by Fourier transformation (Kraichnan, 1961):

R(r) = H(r)J1(267)/ (7). (144)

This is compared with the exact solution (and with some other approximations to be discussed later)
in Fig. 8 (p. 85). The most important qualitative feature is that the DIA solution decays to zero on
the proper, nonlinear timescale (although the decay is algebraic, not exponential).

Various authors have drawn opposite conclusions from the comparison in Fig. 8. Frisch and Bourret
(1970) and Brissaud and Frisch (1974) labeled it a failure; the present author, following Kraichnan,
considers it to be a success. Of course, the assessment depends on one’s criterion. A zeroth-order
measure is the area under R(7) [i.e., R(w = 0)]; this R-based autocorrelation time 7,. is relevant for

the calculation of transport coefficients. For the I = oo stochastic oscillator, the true 7, = \/7/2 is
approximated to within 20% by the DIA, which predicts 7., = 1.

16 1f R were exponential with decay constant 7, one would find

o =T () (£5)

Toc =T,
In general, the solution of the nonlinear closure equation for R is not an exponential although Eq. (f-5) still
captures in a qualitatively reasonable way the competition between the linear and nonlinear decorrelation
mechanisms.

17 For the more general finite-KC form Y(7) = 3%e~|7l/7c Frisch and Bourret (1970) succeeded in finding an
analytical solution of Eq. (143a). Nevertheless, in practice it is easier to directly solve Eq. (143a) by numerical

integration than to numerically evaluate the complicated analytical formula.
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Fig. 8. Comparisons of approximations to the stochastic-oscillator response function with the exact solution.
Solid line, exact solution [Eq. (81)]; short dashed line, DIA [Eq. (144)]; dotted line, n = 2 cumulant discard
[Eq. (139)]; chain-dotted line, n = 3 cumulant discard [Eq. (139)]; triple chain-dotted line, Markovian
approximation exp(—7/Tac) for exact Toc = /7/2; long dashed line, exp(—7/Tac) for 7ae = 1/4/2 [see Sec. 7.2.1
(p. 183)].

3.9.8 Vertex renormalization

Now consider the crossed lines in Fig. 6 (p. 82) in more detail. Those are called vertex corrections,
as can be seen by redrawing the last term of Fig. 6 as Fig. 9; the boxed terms play the same role as does
the right-hand bare vertex in the first diagram of Fig. 6. Brief reflection then shows that all possible
terms contributing to Fig. 6 can be summed to the general Dyson equation shown in Fig. 10 (p. 86),
where the large dot contains all possible vertex corrections and is called the renormalized vertex T'.
That equation can be rearranged into Eq. (142a), with ¥ ~ —MRYT (in general, I" depends on at
least two time arguments, which are not shown explicitly). Unfortunately, the equation for I" closes
only in a functional, not algebraic sense [for more details, see Sec. 6.2 (p. 153)]. It is left as an exercise
to show that a partial summation of the vertex corrections leads to the first vertex renormalization
shown in Fig. 11 (p. 86). That result will be systematically rederived in Sec. 6.2.3 (p. 159).

Fig. 9. An equivalent topology for the term with crossed lines. The subdiagram within the dotted box is a
contribution to the renormalized vertex I'.

One can now understand the nomenclature direct-interaction approximation. That closure, which
involves complete neglect of vertex renormalization, is derived by considering only the most direct
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Fig. 10. The complete Dyson equation for R includes both propagator and vertex renormalization.
Rt = Ry' + 20, with ¥*' = - MRYT.

[
L
+
+

7

Fig. 11. Renormalized perturbation expansion for the vertex function: I' = M +TRIYRT +---.

path (solid lines) through the diagrams contributing to X" i.e., the one that involves the least number
of bare vertices. Further interpretation will be given in Sec. 5 (p. 126).

The first vertex renormalization can be completely worked out for the stochastic oscillator. As an
example, I follow Kraichnan (1961) and consider the I = oo limit. With time normalized to 87!, one
is led to the pair of equations '8

—iwR, +X,R, =1, T,=—i+R?, (145a,b)
with ¥, = iR,I,. It can be seen that Eq. (145b) involves only the quantities T, = R,I',, and
7., = —iR,; this is a special case of a general, essentially dimensional principle (Martin et al., 1973).
Upon rewriting Eq. (145b) as ¥y, = T, —Ti, one sees that the vertex renormalization can be interpreted
as an expansion of the bare vertex in powers of the renormalized one (Martin et al., 1973). It is a matter
of straightforward algebra to eliminate I',,, thereby obtaining the equation, first found by Kraichnan
(1961) with the aid of tedious graphical analysis, R? —iw(1—w?)R3 4+ (3w?—1)R% —3iwR,—1 = 0. This
fourth-degree polynomial can be analyzed completely. Its solution is compared with the exact solution
and the DIA in Fig. 13 of Kraichnan (1961); the agreement is excellent. '*® As a special case, one can
easily verify that R,—o = [5(1 + v/5)]"/? & 1.27, to be compared with the exact value ($7)"/? ~ 1.25
and the DIA value 1. One also finds that [Ty—o| = [1(v/5 — 1)]/2 ~ 0.786, to be compared with the
exact value (2/m)'/2 ~ 0.798 and the DIA value 1. Although T is not very small, it is at least less
than one, suggesting that the vertex expansion (145b) may converge at least asymptotically.

Unfortunately, it is not true that mere polynomial extensions of the vertex renormalization, say
to O(T5), are well behaved; for further discussion, see Sec. 6.2.3 (p. 159) and especially footnote 201
(p. 160). Nevertheless, the present example shows the power and importance of vertex renormalization.
Remarkably, although the renormalizations diagrammed above were derived for passive problems, it
is shown in Sec. 6.2.2 (p. 155) that fully self-consistent renormalizations obey a formally identical
matrix generalization (involving three independent vertex functions).

U8 For stationary problems I'(¢,#', ") depends in general on two time differences; however, at X = co one
time dependence goes away.
19 For further discussion of the first vertex renormalization, see Kraichnan (1964e).
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3.9.9 Markovian approximation

It is important to stress that for X = oo the nonlinear time scale 3~! can be entirely removed
from the problem by introducing the dimensionless time 7 = (7. Since causality is never violated,
one always has R(7) = H(7)G(T) for some function G(7). The entire output of a closure calculation
for R is the determination of an approximate form for G. I shall later discuss a variety of reasons why
the DIA is in some sense a preferred approximation. Nevertheless, depending on one’s goals, simpler
approximations may be useful. For example, a Markovian approximation may be found by postulating
the form of Eq. (136a), then demanding that 1/n™ agree with the true (nonlinear) autocorrelation
time determined from the exact solution (assuming that is somehow known, which it is generally
not). That is, 1/n™ = [3°d7T Rexact(7). This procedure is guaranteed to give the exact T,. although
it does not ensure that the shape of the response function will be correct. For example, for I = oo
Rexact(T) is given by Eq. (80) whereas the Markovian approximation gives R(7) = H () exp(—n"'7)
for all I, badly misrepresenting the shape (Fig. 8, p. 85). The reason is clear: Upon recalling the exact
solution and discussion of the SO in Sec. 3.3.1 (p. 54), one notes that the Markovian approximation is
justifiable only for small IC. Nevertheless, such an approximation may be able to capture the proper
timescale even for large /.

In general, it is not fair to obtain n™ from the exact solution because for realistic models that
solution is not available. Markovian closures (Sec. 7.2, p. 182) predict n™'. For example, the eddy-
damped quasinormal Markovian approximation discussed in Sec. 7.2.1 (p. 183) predicts n™ = 1/ V2
for the SO at K = oo, which differs from the exact n™ by about 11%. Although this prediction appears
to be not unreasonable even for strong turbulence, quantitative inaccuracies in a simple model such
as the SO can hint of qualitative failings in more realistic nonlinear dynamical models. One expects
that if the system is only weakly turbulent (here I < 1), the approximations may be better justified.
One practical example is furnished by the Landau-fluid closures of plasma physics. Those closures
determine the analog of n™ (or, in more complicated cases, an array of coefficients) by demanding
that the linear dispersion relation, which can be calculated in detail from kinetic theory, be well fitted
by the fluid closure. It seems clear that this method should become progressively more inadequate as
the turbulence becomes stronger, but this has not been quantified. See Appendix C.2.2 (p. 278) for
further discussion.

3.9.10 Padé approximants

We have seen that it is not difficult to form formal perturbation expansions for various statistical
quantities such as the mean response function. As an alternative to the formal renormalization
procedures described in Sec. 3.9.7 (p. 83), Kraichnan (1968a) considered the use of Padé approximants
(Baker, 1965) to approximately resum the perturbation expansion. For any function f expandable in
a Taylor series in a parameter A as f = Yo% a,\", the Padé approzimant of order (r,s) is defined
tobe frs = (X0 _0bmA™)/ (X0 _y cnA™) with ¢y = 1, where a definite procedure exists for determining
the coefficients b,, and ¢, from the Taylor coefficients a,,. There is an intimate relationship between
Padé approximants and continued fractions.

By using the stochastic oscillator as an example, Kraichnan showed that the most straightforward
expansion of the solution in powers of A did not lead to approximants useful in the limit of large Kubo
number (strong turbulence). The cure was to temporarily treat the mean response function R (itself
a function of A) as given while forming the perturbation expansion. That procedure is a kind of
renormalization; the coefficients of the resulting Padé approximants then contain R.
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Kraichnan’s results were encouraging, and he argued for further research [cf. Kraichnan (1970a)].
But he also stressed that the convergence properties of sequences of approximants are largely unknown,
and there remains the fundamental issue that the perturbation series may not adequately represent
the true solution.

In plasma physics, simple examples of Padé approximants have been used by Hammett and
co-workers in implementing Landau-fluid closures of the gyrokinetic equations. See Appendix C.2.2
(p. 278) for further discussion.

3.9.11 Projection operators

Ensemble averaging can be thought of as a projection operation. A projection operator P is one
that is linear and obeys P? = P. The ensemble-averaging operation (...) qualifies on both grounds.
Because linear operator algebra is often formally quite concise, various authors [notably Weinstock in
plasma physics; see Sec. 4.3 (p. 108)] have tried to exploit projection-operator-based manipulations
to derive closed equations for statistical quantities. The technique (Zwanzig, 1961; Mori, 1965b) is
useful for certain kinds of transport problems in many-particle kinetic theory (Bixon and Zwanzig,
1971; Haken, 1975). Nevertheless, it is fraught with difficulties for the general turbulence problem, as
I attempt to explain in the following brief discussion. 12

Define the projection operator P such that Py = (¢), and define the orthogonal projector
Q = | — P. Thus Q applied to @ generates the fluctuating component: Qi) = 1. It is convenient
to adopt a Dirac notation. Introduce a general time-independent probability measure P(w) such that
() = [dw|w]P(w). For example, P(w) could be a Gaussian distribution of initial conditions.
Now define |9 ) = P and (% | = ¢ so that for an arbitrary linear operator £ one has (a | L | ) =
[dw a[w]| L b[w]|P(w). P is then formally realized by P = |1)(1].

Assume that ¢ obeys the dynamically linear equation O] ) + iZMﬂ} = 0, where £ may be
random and time-dependent. Problems of passive advection have this linear form, as do the equations
for infinitesimal perturbations of a steady state. One may now project onto the mean and fluctuating
subspaces. By inserting the identity operator | = P + Q after the L, one finds

OiP| ) + PiLP| ) + PiLQ|¢) = 0. (146a)
Similarly, by interchanging P and Q, one finds

0Q|¥) + QILQ|Y) = —QLP|¢). (146D)

One now proceeds to formally eliminate Q|1 ). Because all operators on the left-hand side of Eq. (146b)
are linear, the elimination can be accomplished by introducing the Green’s function

Gt:t') = H(t — ') exp, (—i /tfszrZ(z)Q> , (147)

where the + subscript denotes time ordering. '?! Upon ignoring the initial contribution from Q|1 ),

120 Additional remarks about the projection-operator technique are given in Chap. XIV of van Kampen
(1981).

121 Time ordering of products or a function of a time-dependent operator A(t), noncommutative at
different times, is denoted by a + subscript and is defined by arranging the operator from left to right
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which can usually be argued to phase-mix away, one finds
_ t -
0=0:P|Y) + [PLE)PIP|¢) + /o dt' [PL(t)QG(t; t)QL(L)PIP| ) (t). (148)

This equation can be slightly simplified by splitting L into its mean and fluctuating parts, L=L+ oL,
and noting that PQ = QP = 0. Thus

8, +1iL(t)]P| ) +/Otdt’ SR Pl (E) =0, BNt t) = POL(H)QG(: t)QIL(H)P. (149a,b)

The structure of Eq. (149a) is formally identical to that of Eq. (133). Nevertheless, whereas the
kernel ™ of the Bourret approximation is known explicitly, being derived from perturbation theory,
the general representation (149b) is highly formal and intractable because of the presence of the
Q operator in Eq. (147). Nonperturbative approximations to formula (149b) are very difficult to obtain,
and little has been done. In the resonance-broadening theory to be described in Sec. 4.3 (p. 108), the G
in Eq. (149b) is approximated (Weinstock, 1969) by the mean response function GG, which is Green’s
function for the left-hand side of Eq. (149a). That procedure recovers the structure (142b) of a passive
problem (recall that we assumed linear dynamics), but leaves little hint about how to properly treat
self-consistency or successively improve the approximation in a convergent way. 122

3.9.12  Approzimants based on orthogonal polynomials

The cumulant description forms the basis for the most systematic formal approach to the
closure problem that has yet been invented; see Sec. 6 (p. 146). Nevertheless, that truncated
cumulant expansions may correspond to ill-behaved PDF’s is very troubling and led Kraichnan
(1985) to discuss alternate representations based on the orthonormal polynomials p,(x) that obey
Jdzw(x)p,(z)pw(x) = Opn, where w(z) is a positive definite weight (e.g., a Gaussian) with
fdrw(x) = 1. Then the PDF p(z) has the approximants py(z) = w(z) XN o bupna(z), where
b, = (pn(x)) and is constructed from the moments of order less than or equal to n. Under appropriate
conditions discussed in detail by Kraichnan, the py converge in mean square as N — oo. They always
exist and yield uniformly convergent approximants to the characteristic function. The theory of such
approximants is central to Kraichnan’s program of statistical decimation (Sec. 7.5, p. 197).

3.9.13 Summary of formal closure techniques

We have now been introduced to a variety of formal closure and statistical approximation
techniques, including the Bourret approximation and quasilinear theory (Sec. 3.9.2, p. 78); exact
solution of model problems, including random-coupling models (Sec. 3.9.3, p. 80); cumulant discard
(Sec. 3.9.4, p. 80); propagator and vertex renormalizations [Secs. 3.9.7 (p. 83) and 3.9.8 (p. 85)]
via summation of perturbation theory (Sec. 3.9.5, p. 81); Markovian approximations (Sec. 3.9.9,
p. 87); Padé approximants (Sec. 3.9.10, p. 87); projection operator methods (Sec. 3.9.11, p. 83); and
approximants based on orthogonal polynomials (Sec. 3.9.12, p. 89). Some of those can be unified with

in order of descending time. Thus [A(t)A(t)]+ = H(t — t')At)At') + H(t' — t)A(t')A(t)]. The solution of
(1) + A(t) - 2(t) = 0 is exp_ (— [{dEA(E)) - 2(0) for t > 0.

122 For situations involving short autocorrelation times, continued-fraction representations may be useful
(Mori, 1965a).
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the aid of the direct-interaction approximation, which is treated in depth in Sec. 5 (p. 126). In Sec. 6
(p. 146) I show how techniques of quantum field theory can be used to elegantly derive propagator and
vertex renormalizations appropriately generalized for self-consistent problems and including the DIA
as a special case. First, however, I describe in the next section some of the historical development of
statistical closures in plasma physics. That is interesting in its own right, and it also provides useful
motivations for the more formal derivations to follow in subsequent sections.

4 HISTORICAL DEVELOPMENT OF STATISTICAL THEORIES
FOR PLASMA PHYSICS

Modern work on statistical theories of plasma turbulence has focused on the direct-interaction
approximation (Sec. 5, p. 126) and its Markovian relatives (Sec. 7.2, p. 182). Historically, however,
the field evolved quite differently. Although the DIA for Vlasov plasma was proposed by Orszag
and Kraichnan (1967) shortly after the pioneering paper by Dupree (1966) on resonance-broadening
theory, it and many other developments in neutral-fluid turbulence theory were ignored for about a
decade in favor of more physically based, less mathematically systematic descriptions. It is instructive
to trace the development of various early statistical approximations in plasma physics. Some of those,
such as quasilinear theory (QLT) and weak-turbulence theory (WTT), are well grounded in regular
perturbation theory and are essentially proper subsets of the DIA valid in certain limited regimes
of validity; others, such as resonance-broadening theory (RBT) and the clump algorithm, are more
physically motivated and difficult to classify. After discussions of those four approaches in the present
section, I shall then devote in Sec. 5 considerable space to the DIA, a central theme of this article.

4.1 Quasilinear theory

“It will be shown that the development in the non-linear regime for certain types of unstable
modes can be followed in considerable detail for long times. This is illustrated for unstable
electron-plasma oscillations. The result is that these waves, which are initially unstable, grow

in a short time to an equilibrium spectrum ... . The limiting of these waves ... is a result of
a diffusion in the velocity distribution due to non-linear effects ... .” — Drummond and Pines
(1962).

The basic quasilinear approximation for passive advection has already been described in Sec. 3.9.2
(p. 78). However, that brief and formal discussion does not adequately capture the rich physical
processes underlying the quasilinear approximation for plasmas, nor does it convey the enormous
influence that quasilinear arguments had on the historical development of the field of plasma
turbulence.

4.1.1  The basic equations of “strict” Vlasov quasilinear theory

As described in Sec. 2.2.2 (p. 27), the starting point for a theory of Vlasov turbulence is the
Klimontovich equation (23) in the limit €, — 0. The average of that equation leads to Eq. (25), which
is always retained exactly in formal statistical theories. The fluctuations obey exactly

DSN/Dt +6E - 8f = —8 - (§ESN — (SESN)); (150)
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statistical closures are defined by the treatment of the nonlinear terms on the right-hand side. By
definition, in “strict” QLT the right-hand side of Eq. (150) is neglected altogether. Orszag and
Kraichnan (1967) noted that because the left-hand side of Eq. (150) is a linear operator on 0N,
an amplitude equation for the random variable d N is solved in each realization, so the fluctuation
power spectrum must be realizable. They also emphasized that this argument does not guarantee the
positive-semidefiniteness of f; see the last paragraph of Sec. 3.5.3 (p. 64). Even more importantly,
they noted that strict QLT is time reversible, which they found to be unacceptable. Irreversibility can
be restored by retaining and appropriately approximating the right-hand side of Eq. (150), as will be
described in great detail in Sec. 5 (p. 126) in the context of the DIA. In the next several sections,
however, 1 shall approach the problem more heuristically. In Sec. 4.1.2 T review the content of the
theory in the passive limit in which the electric fields are specified with frozen intensities. It will be
seen that the implicit presence of the nonlinear fluctuation terms is crucial for a sensible theory. Then
in Sec. 4.1.3 (p. 95) I describe the additional complications that emerge in the fully self-consistent
problem.

4.1.2  Passive quasilinear theory

Consider first the passive stochastic acceleration problem of a test particle moving (in 1D, for
simplicity) with velocity v in a specified, random electric field E(x,t), which produces a random
acceleration a = qE/m. If this field is assumed to be rapidly varying in time on a Lagrangian
timescale T,¢, then the characteristic acceleration over a time 7,. will be ((5(12}1/ ?. One then knows
from elementary short-time Langevin dynamics and the arguments of Sec. 3.2 (p. 48) that for times
greater than 7,. v-space diffusion will ensue with diffusion coefficient

D, = (§a*) Tae. (151)

The quasilinear theory applies when a linearly derived autocorrelation time 71" can be used.

The appropriate estimate or formal calculation of 7" depends on the ultimate origin of E.Ifitis
merely specified as a random Gaussian time series, E = E (t), then 7" is just the given autocorrelation
time as in Sec. 3.3 (p. 52). Of more interest to subsequent discussions of self-consistency is the case
in which E is generated by a plasma, which is a dielectric medium with linear dielectric function
D (k. w). Then E can be assumed to consist of a sum of randomly phased propagating waves with
linear dispersion relation w = €, phase velocity vpn = Q/k, and group velocity v, = 0Q/0k. A
physical argument (to be supported by formal mathematics below) that leads to 71" is then as follows.
The wave field can be considered to be a wave packet moving at speed vg. A test particle initially
comoving with the wave packet will feel its effects only for a time (Jv — vg,|Ak)™, where Ak is the
width of the wave packet. Furthermore, in order that the test particle feel a secular kick 1?3 it must
be in resonance with the waves of the wave packet: v = vph(E) for, say, the central wave number k of

the packet. Thus for a wave field one has

Tac ~ [vpn (k) — vge (F)| AR (152)

ac

123 A useful discussion of the roles of resonant and nonresonant particles in quasilinear and resonance-
broadening theory was given by Tetreault (1976).
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To be more quantitative, one may begin with the formula
D, = / dr (a(z(t), )da(z(t — 7).t — 7)), (153)
0

Because such Taylor-like formulas arise repeatedly and are surprisingly subtle, I shall attempt to be
relatively systematic in reducing Eq. (153) to the usual quasilinear formula. Consider a homogeneous
ensemble of particles moving in a large box of length L. It is natural to introduce the discrete Fourier
transform (Appendix A, p. 262) with wave numbers k = ndk, dk = 27 /L being the mode spacing
and fundamental wave number. Thus

D, = [ dr Y (eroeieds=n) 54 (0)da,(—7)), 154
0 P q

p.q

where r = z(t) and Az(—7|z,t) = x — z(t — 7). '?* In general, evaluation of the ensemble average
in Eq. (154) is extremely difficult because of hidden statistical dependences. Namely, Az depends
on (i) the Fourier amplitudes dE), which are random variables in a general turbulence problem;
and (ii) the final condition z(¢), which is also random. That is, one does not know the joint PDF
fIOE, Az, z]. However, under the assumption of statistical homogeneity the joint PDF conditional
on z is independent of z: f[0F, Ax, x| = f[0F, Az | x] L. The average over z may now be performed,
yielding a factor of Ld,;,. Thus

D, = /O Tdr Y e85k (0)dag(— 7)), (155)

q

where the average is now interpreted in the sense of the conditional distribution.

As I have remarked, in a general turbulence problem calculation of the average required in
Eq. (155) is exceedingly difficult because Az depends on the da,’s. It is tempting, although not
justifiable for strong turbulence, to factor the average according to

<e—iqAac(—7')5a;l<(0)5aq(_7_>> ~ <e—iqAac(—7')> <5a;"(0)5aq(_7)> (156)

This independence hypothesis was discussed by Weinstock (1976) in the fluid context. However, for the
special case of test-particle motion in a wave field whose Fourier amplitudes are completely specified,
the independence hypothesis is exact since the da,’s can be taken to be statistically sharp in both
amplitude and phase. The resulting stochastic acceleration problem is still interesting and makes sense
from the point of nonlinear dynamics, since test-particle diffusion can ensue if certain stochasticity
criteria are satisfied [see Appendix D (p. 279)]. In this case one has

D, = /O Tdr S (e AT 50 (0)0ag(— 7). (157)

q

124 Although a priori it might appear more natural to express the random orbit z(t) in terms of the initial
condition z(0), I have chosen instead to express it in terms of the final condition z(¢) in order to achieve a
closer correspondence with more formal developments to be given later (Appendix E, p. 281).
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In the passive quasilinear theory of test-particle diffusion, two further assumptions are made:
(i) The particle position is assumed to be a Gaussian random variable'?> whose dispersion obeys
the short-time (v = 0) limit of the Langevin equations (3.2). (ii) The Fourier amplitudes describe
oscillatory waves: 0E,(t) = dE, exp(—i2,t). Because of assumption (i), cumulant expansion truncates
exactly at second order [cf. Eq. (93b)], leading to 2

(o185 = expl—ig(An)(—7) — d(FA2)*(—))] = exp(—igur — Dy®).  (158ab)

This result manifests the effects of orbit diffusion by introducing the diffusion time 27

Taq = (¢*Dy) 717, (159)
Thus

D, = [Tar Y fu et/ (160)
q

The most naive evaluation of formula (160) now proceeds as follows. First, the orbit-diffusion
effect [contained in the nonlinear terms on the right-hand side of Eq. (150)] is ignored. (In strict QLT
the particles are assumed to move on linear trajectories.) The time integral is then performed, leading
to

Dy(v) =7 [daq[*d(qu — Q). (161)

One often sees the quasilinear diffusion coefficient written in this form. However, formula (161) is ill
defined, as it mixes a Dirac delta function (which expects a continuously varying argument) with a
quantized wave-number spectrum. Thus as a function of velocity D, (v) is predicted to be either 0 or co.
Usually this difficulty is “cured” without discussion by letting . — oo and introducing continuous
Fourier transforms:

(A, 2m)
v — 6Qq/aq’q:qo’

Dy=n /_o:og—g A (qu— Q) =2 (162a,b)
where the multiplier 2 accounts for the two positive and negative solutions for the resonant wave
number go(v) satisfying v = Q4 /qo. One can see here the comforting appearance of the relative
velocity between wave packet and particle discussed previously. Upon multiplying Eq. (162b) by the
total width Ak of the spectrum, defined such that Ak A,, = A, one recovers precisely Eq. (151).
Thus several dubious manipulations (neglect of orbit diffusion, and passage to the continuum limit)
have in combination led to a reasonable result. In fact, a much more satisfying picture is achieved

125 This is the assumption that underlies Dupree’s resonance-broadening theory; see Sec. 4.3 (p. 108) and
Benford and Thomson (1972). Subtleties involving the Gaussian assumption were discussed by Pesme (1994).
126 Several authors have suggested that this calculation of the nonlinear orbit correction is in error, and
that the left-hand side of Eq. (158b) should be replaced by a form depending on t as well as 7; see, for
example, Salat (1988) and Ishihara et al. (1992). In fact, Eq. (158b) is correct; see vanden Eijnden (1997)
and Appendix E.1.2 (p. 284) for further discussion.

127 A wave-number-independent diffusion time 7; can be defined by replacing ¢ by a characteristic wave
number k: 74 = (EQD,,)_l/?’.
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by retaining the orbit diffusion. It can be demonstrated that the size of the orbit diffusion is always
sufficient to smooth the integrand of Eq. (160) such that wave-number summation may be replaced
by integration, even for a quantized spectrum,*?® whenever the Chirikov criterion for stochasticity
is satisfied. That criterion is derived in Appendix D (p. 279), where the detailed justification of the
continuum limit is also given. The situation is illustrated in Fig. 12. At short times the Lagrangian
acceleration correlation function decays on the time scale 7. In a discrete spectrum the linearly
computed C(7) would exhibit a quasirecurrence on the timescale 7, ~ N7 However, stochasticity
induces a nonlinear envelope with timescale 7, that is always sufficient to eliminate the recurrence,
and also smooths the wave-number summations enough to justify the continuum approximation.
The quasilinear regime is defined by 7" < 7,4, so 74 does not enter the final result for the diffusion
coefficient.

Fig. 12. Linear response (solid and dotted lines) and nonlinear envelope (dashed line, with width 7;4) in the
quasilinear regime. The solid curve is the actual response, with width T;icn

In the previous discussion the introduction of 7; was done somewhat heuristically. A more detailed
and systematic treatment is afforded by the DIA, discussed in Sec. 5 (p. 126). One of the principle
virtues of that approximation is that it permits a smooth transition between the quasilinear and
strong-turbulence regimes. One should also note the work of Dewar and Kentwell (1985), who
attempted to provide a precise definition and theory of the nonlinear envelope of the correlation
function.

For cross-field diffusion in a strong magnetic field, particles move with the E x B velocity and
should undergo a spatial random walk (6x?) = 2D, t. The expression analogous to Eq. (161) is then

D, = / dry " (0V) e = Oa)me T/ T (163)
0

q

where the perpendicular diffusion time is 745 , = (¢3 D1)™'. One can estimate
D, ~ <5VE2>Taca (164)

where 7,. is the shorter of a characteristic parallel time like Eq. (152) and the characteristic
perpendicular diffusion time 741 = 7,, 7 . Such diffusion coefficients arose in research on the 3D
guiding-center plasma; a good discussion with earlier references was given by Vahala (1974).

In systems with complicated geometries, the appropriate space in which diffusion occurs is best
addressed by inquiring about the adiabatic invariants that are destroyed by resonant interactions.

128 A brief qualitative remark that nonlinearity is necessary for smoothing was made by Kaufman (1972a).

94



Kaufman (1972a) formulated the appropriate quasilinear theory for the important practical case of
an axisymmetric torus. A generalization of Kaufman’s formalism was used by Mynick (1988) in his
discussion of a Balescu—Lenard-like operator for turbulence.

4.1.8  Self-consistent quasilinear theory

Now consider the self-consistent Vlasov equation
ohf+v-Vf+E-90f=0. (165)

The electric field is obtained from Poisson’s equation. Particles are no longer test particles; they
influence the field. The physical picture is that the waves (weakly damped collective oscillations)
are supported by the nonresonant particles. The wave—particle resonance then transfers momentum
and energy between the waves and the resonant particles. That momentum and energy are not
only electromagnetic; they also comprise the mechanical momentum and energy of the nonresonant
particles that participate in the wave motions. Because all of those motions are described by the same
distribution function f, one must ensure that any approximate kinetic equation for f preserves the
proper momentum and energy balances. This problem does not arise in the test-particle case, in which
the test particles can absorb an unlimited amount of momentum and energy from the fixed bath of
turbulence (provided, of course, that the particles do not diffuse from the resonant region).

Various procedures have been used to describe the self-consistent problem. Considerable confusion
and controversy arose in the early days [the literature was nicely reviewed by Burns and Knorr (1972)]
because of difficulties with the proper treatment of growing or damped waves. Mathematically, the
problem boils down to the proper way of treating and interpreting the familiar resonance function
d(w — k - v), which has already appeared in the theory of steady-state fluctuations. Note that the
steady-state quasilinear diffusion coefficient D, satisfies

Dy, x m0(Qp — k- v) = Re[—i(Qg — k - v +ie)] 7, (166)

where Qi is real and € > 0.

Now suppose one asserts that for weakly stable or unstable waves it is valid to replace ¢ by
the linear growth rate ~i™. Since ~i" is finite, not infinitesimal, one would then obtain D, o
Re([i(Q — k- v + i) ™1) = 10 /[(Q% — k - v)? + (14")?]. Unfortunately, this is negative for
damped waves. Since it is difficult to interpret a negative diffusion coefficient, people were somewhat
confounded; it was not uncommon to assert that quasilinear theory did not apply to damped waves
(Vahala and Montgomery, 1970). The paradox is that the estimates of Appendix D (p. 279) for the
stochasticity criterion make no reference to the sign of the growth rate; they merely assume that the
wave field is quasistationary.

In retrospect the resolution of this paradox is easy. It is simply not correct to replace € by vi®. The
presence of ie in Eq. (166) reflects causality of the particle response, so any generalization of € must
always be positive. However, formula (166) is valid only in steady state. Otherwise, in computing the
particle dispersion one cannot reduce the two time integrals over ¢ and t' to a single one over 7 by
using the assumption of statistical stationarity. The calculation is mathematically more involved.

For QLT the clearest exposition of the proper procedure was first given by Kaufman (1972b), who
performed a multiple-timescale analysis of Eq. (165). See also Fukai and Harris (1972) for a related
discussion based partly on a quantum-mechanical derivation. For the generalization of the procedure
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to include nonlinear effects in weak-turbulence theory, see Appendix G (p. 288).

In Kaufman’s derivation one allows for a slow time dependence in the Fourier amplitudes due to
linear growth or damping: d In [Eg|/dt = v}, with |yi®/Qg| < 1. Here vi® may be either positive
or negative. One assumes and is generally able to justify that the mean distribution f evolves on
a timescale slower than both yi® and . As usual, Eq. (165) is split into its mean and fluctuating
parts. Upon assuming homogeneous statistics, one obtains

Of) = (¢/m)(OE - 0,0f), (0 +v-V)of = —(¢/m)OE - Oy(f) + O(SE 5f). (167a,b)

In strict QLT the nonlinear terms on the right-hand side of Eq. (167b) are neglected. ' One can
solve for df by a Green’s-function technique. The transient term is neglected by a phase-mixing
argument. 13 The solution involves the electric field at a retarded time 7, where 7 will turn out to
be < 71 the timescale for the Lagrangian quasilinear correlation function. The key to the method is
to be careful about that time dependence: 0 Ex(t—7) ~ § Ex(t) — 7 0,0 By, = (1 — 1in7)0 Ex(t). When
the solution for df is integrated over velocity and inserted into Poisson’s equation, one is led to the

self-consistency condition
D (K, Q) = —iy" OD'™ (k, Q) /O, (168)

where the linear Vlasov dielectric function is

Dk, w) =1- Y <%> [ ar [dv expl-ith -0 —w — ieyrlik- 5 (169)

[Formula (169) reduces to Eq. (33).] Under the quasilinear assumption |v/€)| < 1, Eq. (168) reduces
to the results

Im D" (K, )

OZRDlinkQ lin%_—'
e DRk, ), e 9 Re Dlin /9,

(170a,b)

which are familiar from linear wave theory. Equation (170a) determines the real frequency, and
Eq. (170b) determines the growth rate of the kth mode. Because (w + ie)™! = P(w™) — imd(w),
reference to Eq. (33) shows the well-known result that the waves (mode frequency) are supported by
the nonresonant particles whereas the growth is driven by the resonant particles.

Upon inserting the solution for §f into Eq. (167a), one obtains

0 0 t—t 0

a—{ =50 (/0 “dr Cla, t; a:—vT,t—T)> . %f(v,t—T), (171)
where C(z, t; ', ') = (da(zx, t)da(x’,t')). The correlation function appearing in Eq. (171) is thus the
Lagrangian function taken along the linear trajectory, in agreement with the calculations presented in

129 Those terms include the diffusive effects that lead to resonance broadening. From the discussion in
Appendix D.2 (p. 280), the orbit diffusion is important to justify smoothing the wave-number integrations.
Here we shall pass directly to the continuum limit.

130 The contribution to the transient potential, which arises from a velocity integration, can easily be shown
to phase mix on the timescale (kv;)~'. Ballistic contributions to df itself are more problematical and are
considered in some more involved theories (Kadomtsev and Pogutse, 1971).
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Sec. 4.1.2 (p. 91); Eq. (171) is the Bourret approximation (133) for this problem. By the arguments of
that section, C(7) will decay on the 71" timescale. An appropriate statistical evolution equation for f
should therefore be coarse-grained in units of time greater than 7,.. Therefore one can replace f(t—7)
by f(t) to lowest order in 7/¢; this is the Markovian assumption. Now introduce a Fourier analysis
in space. From the Eulerian amplitudes arises the contribution (dak(t)da_k(t—7)) ~ Ci(t) — 37 9,Ck.
The first term contributes to Eq. (171) 0, - D(v) - O, f, where D(v) = 7>, Cx(t)0(Q — k - v) is the
same quasilinear diffusion coefficient that was computed in Sec. 4.1.2 (p. 91) on the basis of heuristic
random-walk arguments, except here one is allowing for a slow temporal change in the field intensity.
The 0;Cy term contributes

0 1 dCg 0 1 0
e P( >.—f. (172)
ov 2497 dt 0O Q. —k-v ov
Notice that this term involves nonresonant particles and changes sign under time reversal whereas
D involves resonant particles and is invariant under time reversal. One is thus motivated to write f as

a zeroth-order part F', which includes both the equilibrium and the changes in the resonant particles,
plus a nonresonant correction f,,: f = F + fur, where

OF 9 . . OF Ofn l dC ] OF

- . L2 = — — ] = 173a,b
ot~ av P0Gy at  ov dt v (173a,D)
If one considers F' to be O(1), one can deduce that f,, is O(dE?). Thus it is irrelevant whether one
uses f or F' on the right-hand side of Eq. (173b). The correction f,, describes nonresonant distortion
of Kolmogorov—Arnold-Moser (KAM) surfaces. If one chooses that distortion to vanish at t = t,, one
can integrate Eq. (173b) explicitly:

- 0 1 OF
fur(v,t) = lgkjk: anP(Qk_k.J ~%], (174)

where & = Tr Cg.
One can show that the nonresonant correction just computed contains the mechanical “sloshing”
momentum and energy of the particles in the waves. I demonstrate with the momentum:

Pur = Z/dvmﬁvfnr = Zw Z <k2> 6"’69 P/dv (ka_ilkl) k- % (175a,b)

(after integrating by parts in velocity space). Upon noting the form of the linear dielectric function,
one can write this as

Por = Zé’k,k— Rex'™) =Y kM, (176a,b)
k

where N = (0ReD"™/00)(E/8) is the wave action. Expression (176b) is the total wave
momentum; recall that the electrostatic field itself carries no momentum. In a similar way, one can
show that

1 1
> /dv immﬂfnr =3 N — 8—&, (177a)
S k ™
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= total wave energy — electric field energy (177b)
= mechanical or sloshing part of wave energy. (177c)

It is now easy to show that the quasilinear theory conserves momentum and energy. One wants
to prove that

Z/dv(mnv>F Fur) Ekjg—() (178)

is constant. That is, one must show that, for example,

Z/dv (mn)svFs = —QZ”yhn (179)

This follows, after a straightforward integration in velocity space, from the evolution equation for F'
upon using the definitions of D and ~'".

Dewar (1973) provided a compelling interpretation of the decomposition f = F + f,. by
introducing the concept of the oscillation center. Heuristically, the oscillation center represents
the average trajectory of the real particles, the nonresonant sloshing being subtracted out. More
formally, one defines “a canonical transformation such that only the resonant part of the wave-
particle interaction is left in the new interaction Hamiltonian.” Some discussion of such averaging
transformations is given in Appendix C.1.5 (p. 273). The quasilinear diffusion equation emerges in
the new coordinates whereas the sloshing momentum and energy are contained in the transformation
between the oscillation-center and particle coordinates. ! Elegant generalizations and applications
of this technique were made by Johnston (1976), Cary and Kaufman (1977, 1981), and others.

A compelling and elegant experimental verification of the quasilinear theory was performed by
Roberson et al. (1971) [for more details, see Roberson and Gentle (1971)]. However, carefully designed
computer experiments by Adam et al. (1979) predicted discrete wave-number spectra that were not
the smoothly varying functions of k that simple QLT would suggest. Those observations launched
a difficult literature questioning the foundations of self-consistent QLT; for further discussion, see
Sec. 6.5.6 (p. 180).

4.2 Weak-turbulence theory

“[W]e assert that in the simple situation of weakly interacting dispersive waves a sequence
of closures can be obtained in a systematic and consistent manner.” — Benney and Newell
(1969).

The weak-turbulence theory goes one step beyond quasilinear theory in that it (perturbatively)
incorporates nonlinear effects on the fluctuations. The result is usually written as the wave kinetic

131 The procedure is precisely defined only for the unrenormalized quasilinear limit in which resonant and

nonresonant effects can be cleanly separated. Dewar (1976) made an ambitious attempt to extend the
techniques to turbulence theory. Later Dewar and Kentwell (1985) used the oscillation-center apparatus
to discuss the determination of the nonlinear envelope 74 introduced in Sec. 4.1.2 (p. 93).
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equation (WKE) that advances the wave action density. Fundamental references in the context
of neutral fluids include the works of Hasselmann (1966) and Benney and Newell (1969). A very
incomplete list of early references on weak plasma turbulence theory includes Rogister and Oberman
(1968, 1969), Sagdeev and Galeev (1969), Davidson (1972), Tsytovich (1977), and Galeev and Sagdeev
(1979). The review by Porkolab and Chang (1978) of nonlinear plasma wave effects covers WTT,
including experimental verifications. A recent treatise on the general weak-turbulence problem is by
Zakharov et al. (1992). The derivation of the WKE (and more general spectral balance equations) in
the presence of weak variations in space and/or time is discussed in Appendix F (p. 286).

Many applications of WTT have been studied, but those are largely beyond the scope of this
article, which is focused on fundamental principles. Nevertheless, the general structure of the WKE
is very instructive, as it demonstrates important symmetries and suggests interpretations that are
preserved in more complete renormalizations. Algorithmically, the lowest-order WKE can be simply
derived from a Gaussian Ansatz applied to the four-point correlations of the wave amplitudes. When
and why such an Ansatz is justified is a more difficult issue. Therefore before introducing the general
weak-turbulence apparatus, I digress in the next subsection to discuss the onset of stochasticity for
an ensemble of interacting waves.

4.2.1 Preamble: Random three-wave interactions

As T discussed in Sec. 1.2 (p. 10), a principal difference between neutral fluids and plasmas is
the plethora of linear waves supported by the latter. In weakly turbulent plasmas the fundamental
entities are waves rather than the eddies of strongly turbulent fluids.

Relatively systematic formulations can be given of the weak interaction of a collection of waves.
A Hamiltonian action—angle formalism is convenient. For three weakly interacting waves with phases
{6p,01,0:} = 6 and actions J obeying the resonance Qy ~ Q1 + {2, one can construct a canonical
transformation (J,0) — (J,0), where ©g = 0y — 01 — 03, O15 = 019, To = Jo, and J12 = J12+ Jo.
One is led to the Hamiltonian K (J,0) = AQ J+L(J) cos ©, where © is the phase difference between
the three waves, AQ = Qg — O — Qs is the associated frequency mismatch, J = Jy, and L(J) is a
known coupling coefficient. Being time independent, K is conserved; it describes an integrable system
with one degree of freedom. This integrability of the resonant three-wave interaction strongly contrasts
with the generic result for three coupled fields in the presence of dissipation; see, for example, the
Lorenz system of equations (Lorenz, 1963), which supports chaos.

Because K does not depend on 6, or 3, the new actions [J; 2 are conserved. This is the cleanest
statement of the Manley—Rowe relations J1 = —Jo and j2 = —Jo, which state that during a three-
wave interaction in which wave 0 decays into two others, for each quantum of action lost by wave 0
one quantum of action appears in each of the other two waves.

Given the three conserved quantities {K, J1, 2}, the Hamiltonian equations that follow from
K(J,0) can be integrated explicitly in terms of elliptic functions; a detailed discussion was given by
Sagdeev and Galeev (1969) [see also Davidson (1972)] (those authors did not use the Hamiltonian
formalism). For present purposes the most important qualitative result is that when wave 0 has the
highest initial excitation, a strong transfer of energy occurs between the waves on a characteristic
time 7y that can be calculated.

When more than three waves are present, integrability is generically destroyed according to
standard results of nonlinear dynamics [although see Meiss (1979)]. It is possible to develop a Chirikov-
like criterion for the onset of wave stochasticity (Zaslavskii and Sagdeev, 1967; Zakharov, 1984), but
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the details are somewhat tedious and are not of principal concern in this general discussion. Instead, I
shall simply use the result that an ensemble of weakly interacting waves can be stochastic 132 in order

to justify a statistical description, namely, the WKE that will be derived in the next section.

4.2.2  The random-phase approrimation

I now revert to a dynamical equation of the standard form (125b). One assumes the existence of a
spectrum of waves for which the stochasticity threshold has been exceeded. The goal is to develop an
evolution equation for the energylike quantity C'(¢) = (d1%(¢)). To accomplish that, one must discuss
the properties of the random variable 1. (A k index is temporarily suppressed.)

Once the wave stochasticity criterion is (moderately) exceeded, one may think of the dynamical
amplitudes as complex numbers, §1) = 1, + it); = ael’, where the amplitudes are slowly varying
(a ~ +/J) but the phases are rapidly varying and, in particular, distributed uniformly over the interval
[0,27). This assumption is called the random-phase approzimation (RPA). It is approximately true
over a microscopic time interval 7y, the phase stochasticization time introduced above.

The RPA is similar to a Gaussian approximation. It is not identical, however, since realizations
of ¥, say, take on values between [—a,a] whereas realizations of Gaussian variables take on values
on the entire range (—o00,00).133 In the formal derivation of the WKE, to be discussed in the next
section, one uses the true Gaussian assumption rather than the RPA, so such difficulties disappear.
The justification for this is the same as the one given in Sec. 3.2.1 (p. 49) for Gaussian statistics of
the Langevin acceleration. Namely, one coarse-grains the time axis in units At, where At > 75 but
scales with 7p. Then the central limit theorem can be used to argue for the Gaussian assumption.

4.2.8  The generic wave kinetic equation

One may now proceed to derive the evolution equation for C'(t). At any moment ¢ one may assume
that the complex amplitude of each wave is a Gaussian random variable. The procedure is to integrate
forward for a time increment At that obeys At > 74. (A crude estimate is 7y ~ AQ™!, where AQ is a

132 Numerical illustrations of the stochasticity of three interacting drift waves were given by Terry and Horton
(1982).

133 A more formal way of showing the inequivalence is to consider the joint PDF for the real and imaginary
components of 1. It is easy to prove that the characteristic function of 1, and v; is Jo(ka), where k? = k2 —I—k?.
On the other hand, if ¢, and v; were independent Gaussian variables with the same variance, the characteristic
function would be exp(—1k2a?).

In the RPA and with 1 = ki, one has the important property C; = (193) = a?(e!®1=%)) = 425, =
|1|261 2. More generally, odd-order correlations of randomly phased variables vanish whereas even-order
correlations factor in the Gaussian way if the labels are at most “equal” (actually, the negatives of each
other) in pairs. Thus for example,

(P19a1h3ipa) = (C161,-2)(C303,—4) + (C161,—3)(C202,—4) + (C161,-4)(C202,-3) (f-6)

if no more than two of the indices are simultaneously equal. This factorization is the same as the Fourier
transform of the fourth-order correlation of Gaussian variables. However, suppose that 1 = 2 = -3 = —4.
Then the left-hand side of Eq. (f-6) would be (assuming a = 1 for simplicity) (|1/|%) = 1 whereas the right-hand
side of Eq. (f-6) would be 2C? = 2. Thus one must use the RPA with some care.
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characteristic frequency mismatch 3*: AQ = Qg + Q, + Qg, where k+p+q = 0.) If one assumes that
the wave amplitudes are not too large, one may use perturbation theory to compute the averaged
intensity at time ¢ + At, which is taken to be slowly varying. Upon subtracting off the initial intensity
and dividing by At, one then obtains a coarse-grained approximation to the time derivative:

i OO+ A — {dvr)(t)  dCk
1m ~ .
At o7 At dt

(180)

Here “0” means greater than y.

Because second-order contributions to C(t) stem merely from the first-order (linear) dynamics
of 1, it is clear that one must calculate C'(t) beyond second order in the fluctuations in order to
find interesting nonlinear behavior. Third-order contributions to C' vanish because of the centered-
Gaussian assumption. Contributions to the fourth-order spectrum arise from both second- and third-
order contributions to :

CP(t) = (50 ()00 (0)*) + (502 (5w (1)) + (50 ()00 ()% + (su (16w, (8)*).(181)

The necessary calculations are straightforward, if a bit tedious. The final result is the wave kinetic
equation

0,Cr — 27"C, + 2Re nplCy, = 2F}, (182)

where 13°

ZMkpq pak quz(t>0 (t), Fnl EA: ’Mk:pq’ Re[0kpq ()] Cp(t)Cq(t), (183a,b)

l\’)l»—t

Oupg = TO(AQ)  (WTT). (183¢)

134 Note that if AQ = 0 (nondispersive waves), the linear frequency can entirely be transformed away, so the
turbulence is intrinsically strong and WT'T fails.

135 In Egs. (183) the delta functions of the frequency mismatch arise from integrals over products of the
unperturbed Green’s function Go g (;t') = H(7) exp(—i€k7). For example, from the (2)—(2) term of Eq. (181)
arises the integral

At At
Re / dt’ / A" expiAQ( — )] = [sin(LAQAL) /1AQ). (£-7)
0

Now the function sin(aAt)/a does not have a classical limit as At — oo. To understand its significance, recall
that lima;—oo[sin(aAt)/a] = md(a). The square of this function is even worse:

[sin(3A0QA1) /LA — 75(3AQ)[sin(LAQAL) /LAQ] = 27 AL 5(AQ). (£-8)

The result depends on the integration time. That is fortunate, because the result must be divided by At in
order to properly define the coarse-grained time derivative (180). The result is mathematically equivalent to
the golden rule for quantum-mechanical scattering.
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Equation (182) is called a Markovian closure because all quantities are local in time. Ogpq is called
the triad interaction time. 3¢ The right-hand side of Eq. (182) describes the forward three-wave decay
Qp + Qg — Q_g; the Nl term describes the inverse process Q_g — €, + Q.

The constraint AQgpq = 0, enforced by the delta function in Eq. (183c), restricts three-wave
interactions to modes with particular qualitative dispersion characteristics (Sagdeev and Galeev,
1969). For example, dispersion relations that as functions of wave-number magnitude pass through
the origin and are concave up permit three-wave (“decay”) interactions. If those are not allowed,
one must turn to n-wave interactions with n > 3. Those emerge by continuing the iteration through
higher order, thereby obtaining corrections to Eqgs. (183). I shall not pursue the details here.

Just as in the analogous discussion in Sec. 4.1.2 (p. 91) of the §(w — k - v) quasilinear diffusion
coefficient in formulas such as (161), the 6(AQ) in Eq. (183c) makes sense only in the limit of a
continuous Fourier spectrum. That need not be the case. For example, Terry and Horton (1982) derived
the equations for the interaction of just three drift waves; for this case the delta function is nonsensical.
Terry and Horton replaced wd(AS) by the broadened resonance function v/[(AQ)? + 2], where v was
a nonlinear decorrelation rate. However, v is not determined within the framework of WTT; a theory
of strong turbulence is required. Krommes (1982) reconsidered the three-wave problem in the direct-
interaction approximation (Sec. 5, p. 126), which effectively makes a self-consistent prediction for v,
and found good agreement with numerical solutions. See Sec. 5.10.3 (p. 144) for further discussion.

4.2.4 Interpretation of the wave kinetic equation: Coherent and incoherent response

One of the most important conclusions of the renormalized theory to be described in later sections
is that the general form (182) transcends its derivation from perturbation theory. The term in v, of
course, describes the intrinsic stirring and/or dissipation due to the linear instabilities and damping
mechanisms. The right-hand side of Eq. (182), which describes the coupling of spectral intensities
at two wave vectors p and q different from k, is called (the variance of) incoherent noise. [The
justification of this nomenclature will not be fully apparent until the later discussions in Secs. 5.3
(p. 132) and 8.2.2 (p. 201) of Langevin representations of turbulence.!3”] That term is manifestly
positive definite [provided that Re fkpq > 0, as is required if it is to represent an interaction time; see
more discussion in Secs. 8.2.1 (p. 201) and 8.2.2 (p. 201)]. If the nonlinear terms are to conserve energy
or other positive definite invariants, the n2! term must therefore be typically (for most k’s) positive
as well. The effects embodied in ni! are called coherent response®; they provide a k-dependent
generalization of the nonlinear damping we have already seen in the stochastic-oscillator model.

To explicitly demonstrate conservation of a nonlinear invariant Z defined by Z = }°, 0xC, where
ok is a specified weighting factor, multiply Eq. (182) by ok and sum over k. After symmetrizing the
nil term in p and g, one finds that the nonlinear terms vanish provided that

O'k,Mk,pq + O'pMqu; + O'quk,p =0. (184)

136 Because of the weak-turbulence form (183c), the complex conjugate, order of the indices, and time
argument of 6 are unnecessary in Egs. (183). The forms as shown permit later generalizations; see, for
example, Eqgs. (401).

137 For some discussion of a Langevin equation for weak turbulence, see Elsiisser and Graff (1971).

138 The phrase coherent response is originally due to Dupree (1972b). For more discussion, see Sec. 6.5.3
(p. 173).
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[For some M’s there may be more than one oy that satisfies Eq. (184).] Then 9,Z = 23", 0k 74" C. This
is the same balance between forcing and dissipation displayed by the exact equation; see Eq. (117).
Conservation of the nonlinear invariant by the closure is seen to be a consequence of symmetry between
the coherent and incoherent response; both must be included on equal footing.

As we will see, these results can be generalized to a more complete strong-turbulence theory. For
Markovian closures the principal change will be that the delta function of Eq. (183c) is broadened, so
precise frequency matching is not necessary. According to the arguments in the last paragraph, such
broadening preserves the conservation properties because the symmetries are maintained. A further
non-Markovian generalization is provided by the DIA (Sec. 5, p. 126).

4.2.5 Validity of weak-turbulence theory

For WTT to be valid, one must first satisfy a stochasticity condition for the waves. Additionally,
however, the neglected nonlinear terms must not be too large. In order to develop a quantitative
criterion, one may anticipate the renormalized expression for fkpq discussed in Sec. 7.2.1 (p. 184). A
simple generalization of Eq. (183c) is

Okpg = (—1AQ+ Ay") 7, (185)

where 1" = ™ — 4 for simplicity of presentation I am assuming that n™ is real (so there is no
nonlinear frequency shift), and An"™ = ny, + ny, + n;. Equation (185) plausibly states that the delta
function of the frequency mismatch is broadened by the nonlinear damping. Therefore one condition
for WT'T is

A" /AQ| < 1. (186)

Because one has already assumed |yg/Q%| < 1 in order that the waves be well developed, Eq. (186)
is essentially equivalent to |An™/AQ| < 1; i.e., the linear timescale must be short relative to the
nonlinear one.

Frequently a validity criterion of the form |7/AQ| < 1 is quoted, where 7 is a typical growth rate.
That would be correct if the incoherent noise could be ignored on the right-hand side of Eq. (182) so
that the steady-state balance would be Renj! = 4", However, it cannot be correct in spectral regions
for which vi® & 0, such as an inertial range. There the steady-state balance is between 7! and F,
and only the nonlinear criterion (186) makes sense. For some related discussion, see Ottaviani and
Krommes (1992).

A detailed analysis of validity criteria for WT'T in the context of Langmuir turbulence was given
by Payne et al. (1989). The possibility of weak-turbulence Kolmogorov spectra was discussed at length
by Zakharov (1984) and Zakharov et al. (1992), where more references can be found.

4.2.6 Vlasov weak-turbulence theory

A weak-turbulence analysis can also be carried out for Vlasov or other kinetic equations. The
principal new qualitative feature not present in the implicitly fluid description just given is the
possibility of wave—wave—particle resonances in addition to the wave-wave-wave resonance of fluid
theory. That is, resonant denominators of the form (wp, — p - v +i€)™' occur, where p = —(k + q)
and modes k and q are assumed to label nonresonant normal modes. The reactive contributions from
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such resonances are called induced scattering; the dissipative contributions are usually called nonlinear
Landau damping, although this phrase is sometimes taken to subsume induced scattering as well.

To deduce the general form of the two-time Vlasov spectral balance equation to lowest nontrivial
order (quadratic in the intensity) in the weak-turbulence expansion, define k = {k, wg} and expand
the fluctuating potential deduced from the fluctuating Vlasov equation as

| 1
D™ (k)0pr+ 5 > kiprae” (k | p, ) (005 — ()

P
1 / /
+ 2 Z Ok+ptq Z 5p7p/+q/6(3)(k | q,7'q )[590:(580:/580; D=0+ (187)
P9 v',q

where the coupling coefficients € and €® are symmetrical in their last two arguments. It is readily
shown that 13

€Dk | p,q)=—Prgorlp- dgi,a- 0fo+ (p < q), (188a)
ek | q,p.q)=—iPugorg- 09,0 095 ,d - Ofo+ (V) < )] (188b)

Expand Eq. (187) through third order and form the equation for I ~ (]5@21)]2> + (5@23)5g0§€1)*> +
(5@21)5g0§§3)*> + (]5@22)]2% assuming Gaussian statistics for 5o and steady state. One obtains

D(k)I = (6%, /(D™)* (k), (189)

where D = D' 4 D" and (Sagdeev and Galeev, 1969)

D = X dpeale @k | @, =0, ) = €2k | p, ) (D) 1D (p | 0. K)) 1, (190a)
p.q
o . 1
(7)1 = 5 3 Oesprale® (s | 2, 0) P (190b)
p,q

Note that Eq. (189) is asymmetrical, involving D (containing second-order corrections) on the left but
merely D' on the right. That is an artifact of the second-order perturbation theory; the renormalized
theory described in Sec. 6.5 (p. 170) and Appendix G (p. 288) shows that in a more complete
description D" should be replaced by D, as one would expect. 4°

Reduction of the frequency- or two-time-dependent balance equation (189) to a wave kinetic
equation is somewhat tedious because resonant and nonresonant effects are mixed together; it requires
patience and foresight to properly reduce the results to sensible fluid equations. Important insights
and guidance follow by developing analogies to discrete, quantum-mechanical balance equations; see,
for example, Tsytovich (1970, 1972, 1977) and Motz (1973). Modern analyses exploit the concept of

139 These definitions differ by a factor of 2 from those of Sagdeev and Galeev (1969) because of the different
convention adopted in Eq. (187).

140 Tf that is not done, certain ambiguities of sign arise because D™ may have zeros in the upper half of the
w plane, but D must be stable in steady state. The same confusion surrounds the validity of QLT for damped
modes. See Appendix G (p. 288) for further discussion.
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oscillation centers (Johnston, 1976) and Lie transforms (Johnston and Kaufman, 1978). In any event,
further reduction of Eq. (190a) leads (Appendix G, p. 288) to the WKE of WTT in the form

OrNw(T) — 293" Nie — 2(7 + 1) N = N, (191)

where the action density N and the other terms are defined in Appendix G (p. 288). The nonlinear
terms have been divided into contributions from induced scattering (involving the driven beat
resonance wp — p - v = 0) and fluid mode-coupling contributions involving the three-wave interaction
Qp + Qp + Qg = 0. The €® term in Eq. (190a) describes scattering from bare particles [Compton
scattering; Fig. 13(a)]; scattering from the shielding clouds [sometimes called nonlinear scattering;
Fig. 13(b)] arises as a nonresonant contribution from the e®e®* term of Eq. (190a). The effect
involves a three-wave interaction, but with the fluctuation at p being virtual (driven nonresonantly),
not a normal mode. The forward three-wave decay process {1, + 24 — €2_j, arises from the incoherent
noise N 2¢; the inverse process is described by ~,'¢, which arises as a resonant contribution from the

€@e@* torm.
(a) 1, O
g Kk
q q
\&e—)f— > =

Kk -p Kk P P
Fig. 13. Induced scattering processes in WT'T. Straight line: particle propagation; wiggly line: normal mode

(wave); dashed line: virtual mode. (a) Compton scattering (from bare particles); (b) nonlinear scattering
(from shielding clouds).

For strong turbulence the perturbative expansion (187) fails. In order to properly calculate the
nonlinear contribution to the growth rate, one needs a precise, nonperturbative definition of the
dielectric function. That is derived in Sec. 6.5 (p. 170), where I shall demonstrate the reduction of
general renormalized Vlasov theory to both kinetic WT'T as well as the RBT discussed in Sec. 4.3
(p. 108).

4.2.7  Application: Ion acoustic turbulence and anomalous resistivity

A detailed application of Vlasov weak-turbulence theory was given by Horton and Choi (1979) in
the context of ion acoustic turbulence, one of the few situations for which the weak-turbulence ordering
can apparently be cleanly justified. Because this topic illustrates a number of key plasma-turbulence
concepts (the appearance of an anomalous transport coefficient, the differing roles of electrons and
ions, resonant and nonresonant response, direction of energy flow, etc.), I shall briefly review the
essential physical points, closely following the discussion of Sagdeev (1979); see also Sagdeev (1974).

Ion acoustic turbulence is easy to excite through a current-driven instability. One then expects
that the resulting fluctuations will act in such a way as to hinder the driving current. In other words,
one guesses that an anomalous resistivity '*! will appear. Because usually the current is primarily

141 A general formulation of the theory of anomalous resistivity in terms of correlation functions was given
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carried by the electrons, one develops a picture in which the electrons emit fluctuations (just like
Cerenkov emission in a near-equilibrium plasma). In order to achieve a nonlinear steady state, either
those fluctuations must completely turn off the driving current (by quasilinear relaxation) or the ions
must absorb the emitted fluctuations. Usually, since the system is being driven externally (e.g., by
Ohmic heating), the current cannot be completely destroyed and the ion damping mechanism wins.

The anomalous resistivity is defined by considering the momentum equation for electrons:
(mn)du./dt = —(e/me) E — (mn) vegu.. The last term describes the loss of electron momentum due
to the emission of unstable ion acoustic waves. Sagdeev found the result veg ~ 102w, (T./T;)(u/cs),
the interpretation of which will now be described.

The dielectric function for ion acoustic waves is easily obtained. One searches for waves in the
frequency range kvy; < w < kvg. This means that to lowest order the ions are hydrodynamic,
contributing a susceptibility _ng Jw?, and the electrons are adiabatic, contributing a susceptibility
1/(kApe)?. Thus D' (k,w) = 1 — w2 /w® +1/(kApe)? + 1D (k, w). It is useful to recall that Ap, can
be written in the alternate ways Ap. = vie/wpe = ¢5/wpi. Assume that the electron PDF is a shifted
Maxwellian with mean velocity u.. It is then easy to show that the dispersion relation for the ion
acoustic waves is Qf = k?c?/[1 + (kcs/wp;i)?] and the growth rate is

lin 2 12 /1., 0 12 k. N
6 -G QG (5 ) ~ () 7 @esre &
Ik _ [k ) (= —E )~ (= s, K -u > c).(192a,b
O (kCS 8 M Cs kcs M Cs ( ke “ C>( ’ )

In the long-wavelength limit, there is an instability when the fluid velocity in the direction of the
wave vector is greater than the sound speed. Also note that the dispersion relation is of the nondecay
type, so three-wave interactions can be neglected if the criterion (186) is satisfied.

In order to find a general expression for v.g, recall the quasilinear momentum conservation law:
d(Pres + Pur)/dt = 0. For acoustic waves the electron interaction is primarily resonant; most of the
nonresonant energy and momentum is in the ions. Thus one is entitled to write —(mn).vegu. =
dPres/dt = —dPy,/dt. This states that the electrons emit the acoustic waves and the (nonresonant
motions of the) ions absorb them. Since P, = ¥ kN, one has dPy/dt = S k(270N =
25k V8 (k Q) Ex, where one changed from the action to the total wave energy & = QN as the
fundamental unknown. Thus one arrives at the formula

Vet = 2(mnu); "> 7™ (k - @/ ) Ex.- (193)
k

From now on, let us drop numerical factors. Then upon using the previous expression for 7 to
estimate Eq. (193), one obtains

Vesr (% >1/2Z(k)\De) ( fjﬁ) . (194)

Wpi m &

In order to proceed, one must find the saturated level of the wave energy E.

Because the ion-acoustic dispersion relation is of the nondecay type, the lowest-order nonlinear
process is induced scattering. [There is also a quasilinear distortion of the electron distribution
function; see Rudakov and Korablev (1966) and Kovrizhnykh (1966).] The general form of the WKE

by Tange and Ichimaru (1974).
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is schematically 0;&, = 27};“&, — MyER. The last term here is written in a highly schematic form; it
should really involve a convolution over wave numbers. Nevertheless, very crudely one can estimate
the steady-state saturation level due to induced scattering to be & ~ it/ M.

One must ask which species dominates in the induced scattering process. Because w < kvy., one
has Qg, + O, < (k1 + k2) - v.. Therefore this beat resonance falls on the flat part of the electron
distribution function, where there is very little net Landau interaction. However, the beat resonance
Qp, — Q, = (k1 — k2) - v; can interact with the heart of the ion distribution. Therefore the ions
dominate the induced scattering. [The detailed proof of this remark is actually rather complicated;
see Horton and Choi (1979).]

One can now estimate the size of the induced-scattering mode-coupling coefficient. On dimensional
grounds one argues that My, ~ (nT,) ' Qx(T;/T.). The first factor, involving the inverse of the electron
thermal energy density, is the natural normalization for &. (The waves exist even for cold ions, so
it would not be appropriate to use T; here.) The frequency factor arises because one is describing
rates. One uses a frequency rather than a growth rate because the primary waves are assumed to
be nonresonant. The temperature ratio appears because the beat-wave interaction is resonant with
the ions, so an ion thermal spread is required in order to give an effect. Thus one estimates that
Ex/nT, ~ (7 /) (T../T;), or upon summing over all excited wave numbers to get the total fluctuation
level, W/nT.) ~ (m/M)"*(T./T;)(u/cs). If one puts this expression into expression (194) and ignore
the dimensionless factor kAp., one estimates veg/wy; ~ (Te/T;)(u/cs), which is just Sagdeev’s result.
Of course, one cannot obtain the numerical coefficient 1072 without performing a detailed study of
the mode coupling buried inside M.

Because the induced scattering is nonresonant, action is conserved by the waves. '*? This differs
from the resonant three-wave interaction, in which the Manley—Rowe relations show that action is
not conserved for that process.

The natural flow of energy in this problem is from high frequencies to low frequencies. This
can be remembered very heuristically as follows. The electron current is driving the fluctuations.
Assume that one initially populates the wave spectrum with waves of characteristic frequency w and
energy £. As other fluctuations at other frequencies are driven up, one expects £ to decrease as
energy is transferred to those other frequencies. However, because the induced-scattering process is
nonresonant, action is conserved, as has already been remarked. Since most of the wave energy is
in the ions (in the form of nonresonant sloshing), the wave action derives from the derivative of the
ion susceptibility: N ~ (w2 /w?)€E. Consider a process w — w + dw and & — € + 6€ (during which
ON = 0). Then N =0 ~ 6 (£/w?), which leads to 6€/E = 3dw/w. Since it was argued that §&€ < 0,
one finds that dw < 0; i.e., the energy flows to lower frequencies.

Since energy is always being pumped into the nonresonant ion waves by the nonlinear induced
scattering, a further mechanism is needed in order to saturate the spectrum (assuming that the
electron current and the shapes of the distribution functions are maintained). Conventionally,
collisional dissipation is assumed to absorb the energy. Another possibility is that the fluctuations
grow so large that they begin to interact resonantly with the ion distribution. This mechanism is
related to Dupree’s resonance-broadening theory, to be discussed in Sec. 4.3 (p. 108).

This concludes the discussion of the ion-acoustic application. Since the equations of WT'T follow

142 Tn some sense this is a tautology, since wave action can be defined as the number of plasmons. What is
needed is a proper statistical definition of action in terms of fluctuation intensity. That the appropriately
defined N is conserved follows from the detailed algebra (Sagdeev and Galeev, 1969).
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from a straightforward algorithm, it is not surprising that such theories have been derived and studied
for a variety of physical problems (including ones for which the fundamental assumptions are at best
only marginally satisfied); a representative work is by Hahm and Tang (1991). Ultimately the fidelity
of such calculations will only become clear when the results are compared with more comprehensive
strong-turbulence theories. I turn now to the development of such theories.

4.3 Resonance-broadening theory

“The nonlinear mechanism ... is the broadening of the Landau resonance due to particle
‘trapping’ which results from the perturbation of the particle orbits in a turbulent plasma.”
— Dupree (1966).

Both QLT and WTT are examples of systematic approaches to the problem of turbulence. They
have well-defined if limited regimes of validity. Modern systematic approaches appropriate for strong
turbulence, such as the DIA, are (in some sense) natural generalizations of those theories.

Dupree pioneered several approaches to strong turbulence: the resonance-broadening theory (RBT;
Dupree, 1966, 1967), discussed in the present section; and what I shall call the clump algorithm (CA;
Dupree, 1972b), discussed in Sec. 4.4 (p. 119). These approximations are ultimately more intuitive
in nature although the original paper on RBT (Dupree, 1966) and related works of other authors
(Weinstock, 1969, 1970) invoked considerable mathematical apparatus. Orszag and Kraichnan (1967)
made a seminal critique of the RBT, but their excellent work was unfortunately largely ignored.
Historically, it therefore took considerable time to elucidate the deficiencies in the formal trappings
and the relations of Dupree’s work to the DIA and associated approximations.

4.3.1 Perturbed orbits and resonance broadening

A heuristic introduction to some of the basic phenomenology of plasma and fluid turbulence was
given by Dupree (1969); that is a good place to start if one wants to appreciate Dupree’s motivations.
The fundamental intuition behind RBT stems from the classical Langevin equations described in
Sec. 3.2 (p. 48). As did Dupree (1966), I consider first the unmagnetized, collisionless plasma. If the
microturbulence is idealized to be Gaussian white noise, it leads (Sec. 3.2.2, p. 49) to v-space diffusion
((6v?) = 2Dyt) of a test particle and an associated @-space dispersion ({62?) = 2D,t*) around the
free-streaming motion; the secular development of this latter probability cone is sometimes called
orbit diffusion. 143

One has already seen the appearance of orbit diffusion in Eq. (158b). An alternate interpretation of
that effect follows by noting that the uncertainty in position broadens the Landau resonance between
the test particle and the waves. To see this quantitatively, consider the time integral in Eq. (160),
which is an approximation to a renormalized single-particle propagator gg,. It is rigorously an Airy

function, but the principal effect can be seen by defining** v; = 7, and considering the simple

143 Tn the unmagnetized case it should more properly be called orbit dispersion. In strongly magnetized
situations a truly diffusive effect does appear in x space; see Sec. 4.3.3 (p. 110).

144 Recall that the actual diffusion time depends on k, but a k-independent diffusion time 74 can be defined
in terms of a reference wave number k: 74 = T aF
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exponential approximation gy, ~ [5°dr el kFv+ra)T namely,
O = [—i(w — kv +ivg)] . (195)

It is the real part of g that contributes to D,:

l/d ]/d—>0

— . 1
k) 112 = 7md(w — kv) (196a,b)

Re Gkw =

The origin of the term resonance-broadening theory is clear from the Lorentzian form of Eq. (196a).
The effect can be viewed as arising from random Doppler shifts (Dum and Dupree, 1970); it is the
same phase-mixing mechanism that is responsible for the decay of the mean response function of the
stochastic oscillator (Sec. 3.3, p. 52). Some explicit discussion about the relationship between RBT and
the Brownian-motion problem was also given by Dum and Dupree (1970) and Benford and Thomson
(1972).

4.8.2  The strong-turbulence diffusion coefficient

The role of resonance broadening in justifying the continuum wave-number representation has
already been discussed in Sec. 4.1 (p. 90) and Appendix D (p. 279). There the point was made that
in the quasilinear regime 71" < 74 the size of the resonance broadening does not appear in the final
expression for D, [recall Fig. 12 (p. 94)]. However, one can admit the possibility of a strong-turbulence
regime 74 < 7.2, In general, the true autocorrelation time to be used in the random-walk formula (151)

should be the smaller of 7; and 7.

ac

S 7in - (quasilinear regime) (197)
o 74 (strong-turbulence regime).

Since 74 depends on D,, the strong-turbulence expression (151) for D, is actually a self-consistent
formula to be solved for D,: D3 = (q/m)QEE_Q/g. This result can be interpreted by introducing,
by analogy to the expression (D4b) for the trapping frequency in a single harmonic, a macroscopic
trapping frequency Qi = [(gk/m)2E]'/4. This formula is built from the effective intensity that would
result from strongly overlapping but randomly phased islands, a concept already discussed by Chirikov
(1969). The diffusion time is simply the inverse of this frequency: 74 ~ (EQD,,)_U 3 = Q' If one also
defines a macroscopic trapping velocity according to Vi, = €, /k, then

D, = Vi, (198)

which is the proper formula for a random-walk process!#® with characteristic velocity step Vi and
autocorrelation time ;' = 7. These results were known to Dupree (1966).

145 There is a troubling aspect of the interpretation of Eq. (198) that to the author’s knowledge has never
been satisfactorily discussed. Given that there are a finite number of unstable waves, the width of the resonant
region in velocity has a finite extent. In the strongly overlapped limit, Vi, represents the entire width of the
resonant region. It does not make sense to talk of a random-walk process with step size Av ~ V4, if a single
step would scatter the particle from that region.
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To show that Eq. (198) is smoothly connected to the quasilinear result, one can use Eq. (197) to
write Eq. (151) in the form

D, ~ { ViQu(reu) (' < 1a) (199)
‘/‘L%Qtr (Td < Ta?)'

At the point where 7 = 7, one has 74 ~ Qg', so the formula smoothly interpolates between the

quasilinear and strong-turbulence regimes. (If it had not done so, there would have been an extra

parameter regime yet to be discovered.)

4.8.8  Saturation due to resonance broadening

Since linearly unstable waves grow due to inverse Landau damping, resonance broadening can
lead to a reduction in the growth as the resonant particles (substantially perturbed from their free-
streaming trajectories) sample a nonvanishing region of the background PDF around the phase
velocity of the waves. More dramatically, resonance broadening can bring nonresonant particles
into resonance, possibly causing onset of strong Landau damping and immediate saturation of the
turbulence. Such effects related to the wave—particle resonance should be describable by nonlinear
modifications to the linear dielectric function. Let us postulate, without deep understanding or
justification at this point, that the generalization (w — kv +i€)™" — (w — kv + ivy) ™! that appeared
in the discussions of the diffusion coefficient should hold also for the dielectric function. Because in
this Ansatz iy, always appears in conjunction with w, one is led to a simple recipe for the nonlinear
dielectric:

D(k,w) = D™ (k,w + ivy). (200)

If a nonlinear dispersion relation wg = Qg +17k is constructed from D(k,w) = 0, the known properties
of D' can be taken over immediately; one is led to

Qk, = Qin, T = "y};n — Uq. (201a,b)

If one defines the saturation criterion by v = 0, where v = max g, one finds that saturation occurs
when

Vg ~ . (202)

There are several noteworthy things about formula (202). First, since v; depends algebraically
on D,, Eq. (202) directly determines the value of the diffusion coefficient! Unlike the usual predictive
approach in which one first obtains the fluctuation level, then uses the appropriate formula [such
as Eq. (46b)] to find D, here D, is given immediately in terms of the linear growth rate. If this
algorithm is to be believed, it is extraordinarily convenient, since often the diffusion coefficient is the
most important thing one wants to know. Later, if one desires, one can use the relation between D,
and the fluctuation level to determine the latter. (In that calculation one must ascertain whether the
system saturated in the quasilinear or strong-turbulence regimes.)

Second, consider the estimate (202) from the point of view of the limits of validity of quasilinear
theory. The most fundamental criterion was 7" < 7,. With Eq. (202) this can be written as 4 7lin < 1,
which was another of the validity criteria. This demonstrates a nice consistency.
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In practice the saturation algorithm (202) is usually applied to strongly magnetized situations
(Dupree, 1967). Recall the discussion of Eq. (163). If the perpendicular diffusion time 74, =
(k? D, )~! dominates, then according to Eq. (202) (and temporarily ignoring the distinction between

lin

and ~) the waves should saturate when k% D ~ i or
Dy~ A i, (203)

Formula (203) is one of the most frequently quoted formulas in applications-oriented plasma
turbulence theory although in the literature there is relatively little demonstrated understanding of
its limits of validity. Certainly one should not assume that anything that has been said up to this
point can be systematically derived or justified. One obvious difficulty with formula (203) is that
although D, is independent of k (being summed over all k’s), the right-hand side of Eq. (203) will
depend on k for typical growth rates. The only resolution can be that the k’s on the right-hand side
of Eq. (203) must be interpreted as typical k’s; the wave-number dependence of Eq. (203) must not
be taken seriously. This point will be further discussed below.

One must be strongly warned that the RBT recipe (200) for the nonlinear dielectric
function is simply incorrect in detail, particularly in the strong-turbulence limit. The proper
theory is subtle, as discussed in Sec. 6.5 (p. 170). Fortunately, dimensional consequences of
Eq. (203) are more robust than is this initial “derivation” based on the kinetic resonance-broadening
approximation to D. In the subsequent discussions I shall frequently return to Eq. (203) in attempts
to understand it in detail.

In order for random-walk phenomenology to be a valid description, there must be stochasticity.
Some aspects of the stochasticity criterion for E x B motion are described in Appendix D (p. 279).
Those considerations lead to the estimate that a-space stochasticity ensues when the rms E x B
velocity exceeds the perpendicular phase velocity. [Dupree (1967) called this a “trapping condition,”
but that phrase is misleading since coherent islands are destroyed in a spectrum of waves.] Now
consider the physically important scenario in which the normal modes are drift waves (with frequencies
w ~ wx). The stochasticity criterion then reduces to the condition that Vg 2 Vi, where Vi is the
diamagnetic velocity. This same criterion was found in the crude estimates of Sec. 1.3.3 (p. 16); the
stochasticity criterion offers a partial justification.

Consider the consequences of stochasticity onset for a drift-wave problem with w ~ wx = k, Vi
and kjvy; < w < kjve. Random E x B motions cause Doppler broadening dw = ki 6V = O(w),
the ordering following since Vg = O(Vi). Because w < kjvi., such broadening has little effect on the
electron resonance; the waves are driven unstable by the linear electron growth rate. However, dw ~ w
broadens the ion resonance into the heart of the ion distribution. In Dupree’s scenario this gives rise
to strongly stabilizing ion Landau damping. Temporarily ignore the possibility of a 7" induced by

parallel motion, and define V' = ((5VE2>1/ ?_ Then a saturation scenario is that (i) fluctuations grow
according to y"; (ii) when V/Vix grows to be O(1), stochasticity ensues and perpendicular diffusion
turns on abruptly; finally (iii) the fluctuations are stabilized due to ion dissipation. The amount of
that dissipation adjusts such that D; ~ 1 /k?; the details of the ion distribution do not enter into
this formula. Thus any form of ion dissipation, including collisions (Krommes and Hu, 1994), can
provide the stabilizing sink. Indeed, ion Landau damping vanishes as T; — 0, so cannot be effective

in that limit.
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A crude model 6 for the onset of such diffusion is
Dy ~HV: = VAV = V2) (k. D)™ (204)

[This form incorporates the postulate that D, vanishes for V' < Vi, and it reduces to formula (163) for
V > Vi when 74, dominates.] From the solution D o (72 — V&)/2, one finds that D(V) has infinite
slope at the transition. This behavior is an example of a supercritical bifurcation of the turbulence
intensity; for more discussion of such bifurcations, see Sec. 9.3 (p. 212). If the E x B velocity were
passive, the solution of Eq. (204) would be the solid curve of Fig. 14, with D, asymptoting to
the strong-turbulence limit D — V /k; for V > V4. For self-consistent fluctuations, however, the
turbulence is argued to saturate with EiD L~ Ye-

In the presence of parallel motion, diffusion need not turn on so abruptly since v should induce
a 712 that has the quasilinear form (152); once again, the true 7,. to be used in Eq. (164) should be

ac
min(7" 7,). The actual D, is then shown as the dashed line in Fig. 14.
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Fig. 14. Onset and saturation of cross-field diffusion due to E x B motions. V = (V)% V ~ Vi is the
onset of spatial stochasticity in Dupree’s resonance-broadening scenario. The solid curve is the supercritical
bifurcation that results when only the nonlinear correlation time 7, is admitted; the dashed curve incorporates

. . -9 .
the possibility of a 7)i*. For self-consistent problems fluctuations are expected to saturate at k| D ~ 1o,

16 1f formula (163) is evaluated for kjj = 0 and Qg ~ w«(q), one obtains

SVA D _
Dy —ReY — e (KDL g (9a.,b)
7 “llwx(q) +igi Di]  \ @2 4 (k| D)2
where V° = Zq <5V§> a and k, is a typical perpendicular wave number. The real solution for D, of
1= EiV2/[wi + (EiDl)Q] exists only when Vs VZ; then D = (VQ — V)2 /k 1, which is equivalent to

Eq. (204).
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The saturation mechanism just described is reminiscent of the weak-turbulence ion-acoustic
saturation described in Sec. 4.2.7 (p. 105); in both cases nonlinearities couple energy from the
destabilizing electrons to the stabilizing ions. Clearly the RBT is intended to be some sort of strong-
turbulence limit of WTT, but the details of the mode coupling underlying RBT are unclear at this
point in the discussion.

4.3.4  Propagator renormalization and resonance-broadening theory

The best way of understanding the mathematical systematology, or lack thereof, underlying
the RBT is to first develop a more general theory such as the DIA (Sec. 5, p. 126) or the MSR formalism
(Sec. 6, p. 146), then to demonstrate the approximations necessary to recover RBT. That is done
in detail from a kinetic renormalization in Sec. 6.5.5 (p. 178). Nevertheless, some introductory
observations and references are appropriate here.

Fundamentally, Dupree renormalized the zeroth-order particle propagator by adding a turbulent
diffusion term. A good interpretation of the resulting equations in terms of Langevin-related concepts
(Sec. 3.2, p. 48) was given by Benford and Thomson (1972), " whose work is an important early
reference on the basic formalism; some details are given in Appendix E (p. 281). Although Dupree
did not clearly spell it out, the calculation is passive; backreaction of the particles on the fields was
not considered. 148

In more detail, consider the passive advection problem gy'f 4+ V - Vf = 0, where V = b x V.
In Fourier space with k = (k,w), this can be written as

Jo k.t Z kpaPp fa (205)

where the unsymmetrized mode-coupling coefficient is M, ,ﬁ,qu =b- P X q = myg. A standard second-
order iterative renormalization following the procedures of Sec. 3.9.7 (p. 83) ' leads to a renormalized

passive propagator g that obeys gk_1 = Y. ,1§ + E;d), where

dw, d
W= Y MY MY g, —Z/% §(w + wp + we)migy °1, (206a,b)

kqp'"' pkq9p
k+p+q=0

147 An analogous discussion for magnetized plasma was given by Thomson and Benford (1978).

148 The extra term in Eq. (102) is missing. Dupree (1966), in describing his formal theory of test waves,
stated, “The method we employ for solving the Vlasov—Maxwell equation consists of two distinct pieces.
First, we assume knowledge of the electric field E ... . As a second step, we must ... require that the f
so determined does ... produce the assumed E [via Poisson’s equation].” Later he asserted, “The fact that
the initial phases of the background waves in the subsidiary [test wave] problem are uncorrelated ... does
not prevent the [Fourier coefficients] so calculated from being used to describe an actual system in which all
the initial phases have some precise relation to each other and to f.” However, freezing E in step 1 is the
definition of a passive problem. Statistical correlations are lost at that point and cannot be recovered with
the basic test-wave theory.

149 An alternate technique sometimes employed in early research is to add an unknown term (@ to both
the left- and right-hand sides of the kinetic equation, then to choose 2@ to cancel undesired terms in a
perturbative treatment (Rudakov and Tsytovich, 1971). That procedure works satisfactorily for second-order
passive problems, but is difficult to generalize.

113



[note the conventions of Appendix A (p. 262)]. For definiteness, let us make the normal-mode
approximation I, ~ 2wd(wq — §2q)Iq. Then Eg}i ~ k2 Dy, (I write D instead of D, to avoid clutter),
where

Diw = k72 Y sin’(p, q)g5¢ g = 3 sin* (K, @) gk squos0, 0° Lo (207a.b)
A q

For isotropic spectra the first form is more convenient for manipulations at general k, but for
considerations of the Markovian limit k,w — 0 the second form is easier. Thus RBT asserts that
an adequate approximation is Dy, ~ D = limg .0 Dk, OF

D =3 sin*(k,q)9q.0,(¢°1q) (208)
q

[see Eq. (48) of Dupree (1968)]. Formula (208) is a natural generalization of the quasilinear
expression (163).

That straightforward renormalization leads to a non-Markovian, k- and w-dependent zﬁji can be
the cause of significant confusion, as resonant and nonresonant effects are mixed together. This was
discussed at length by Tetreault (1976).

The recipe (200) relating the linear and nonlinear dielectrics is a significant Ansatz. Dupree (1968)
noticed that it is not correct in the presence of classical collisions, and he proposed modified formulas.
That work was the first hint of considerable difficulties in the ultimate systematic justification of the
resonance-broadening theory for self-consistent problems. [A systematic, formally exact theory of the
nonlinear dielectric function is given in Sec. 6.5 (p. 170).] In related research Catto (1978) argued
that the resonance-broadening approximation should be used for only the nonadiabatic part of the
response. Some further discussion of that work was given by Krommes (1981).

Considerable literature on Dupree’s techniques was written in the early days [see, for example,
Gratzl (1970), Cook and Sanderson (1974), Peyraud and Coste (1974), Rolland (1974), and Vaclavik
(1975)]. Some of their more formal features, which rely on manipulations involving a random
particle propagator, are discussed in Appendix E (p. 281). The principle result, Eq. (E.7), formalizes
Eq. (160) as, somewhat symbolically, D = [;°d7r (da(t)U(7)da(t — 7)), in terms of an averaged
particle propagator U. A series of papers by Weinstock (1969, 1970), who used the projection-
operator formalism (Sec. 3.9.11, p. 88), found this same result and clarified some of its foundations,
including (Weinstock, 1968) the role of cumulant expansions (Sec. 3.5.2, p. 59). Significant attacks
by Misguich (1974, 1975) and Misguich and Balescu (1975) should be noted. Additional physical
and mathematical insights were given by Tetreault (1976). As will become clear from the general
renormalization approaches of Secs. 5 (p. 126) and 6 (p. 146), the principle difficulty with Dupree-
style renormalizations is that for self-consistent problems U differs from the response function R in a
way that is difficult and unnatural to calculate; for more discussion, see Appendix E.2 (p. 285).

4.8.5 The relation of resonance-broadening theory to coherent response, incoherent response, and
transfer

The interpretation of Dupree’s saturation criterion ¥ = v, is best given by reference to the
general form of the wave kinetic or spectral balance equation (182) that has already emerged in WTT
but also holds more generally. The wave-number-dependent damping coefficient 7! generalizes the
resonance-broadening frequency v4. In RBT two central approximations are made: (i) The incoherent
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noise on the right-hand side of the WKE is neglected. (ii) np! is approximated (for the E x B
nonlinearity) by k2 D, where D is a constant. Both of these are problematical.

If the right-hand side of Eq. (182) were negligible, saturation would occur when yi* = Renil, the
generalization of Eq. (202). Such steady states are possible in principle because ng! is a functional of
the fluctuation spectrum, which may be able to adjust in order to satisfy the balance. Nevertheless,
this coherent approzimation (Krommes and Kleva, 1979) seems difficult to justify in general because
it neglects nonlinear effects of the same order as those that are retained. Such omission leads, for
example, to gross violation of the quadratic conservation properties of the nonlinear terms. That
error is compounded in the usual further approximation in which 7! is estimated by the diffusive
operator k% D, , which is at best appropriate for very small k. It seems clear (see also further discussion
in the remainder of this section) that detailed wave-number dependences deduced from any such
approximation should not be taken seriously. Nevertheless, if all k’s are merely replaced by some
typical k, the essentially dimensional balance between linear and nonlinear terms that is at the core
of the coherent approximation may provide a crude estimate of the saturation level of the turbulence
(note that both the coherent and incoherent effects stem from the same primitive nonlinearity, so
cannot be distinguished on dimensional grounds). Yoshizawa et al. (2001) have reviewed some of the
practical applications of (a matrix generalization '*° of) the coherent and diffusive approximation; for
more details, see Itoh et al. (1999).

Neglect of the incoherent noise may be permissible when n-wave coupling effects are negligible and
the kinetic wave—wave—particle interactions dominate; see the discussion of ion acoustic turbulence
in Sec. 4.2.7 (p. 105). To see where those effects are buried in the resonance-broadening formalism,
I follow the outlines of the seminal discussion by Rudakov and Tsytovich (1971). Consider a drift-
wave problem, for which gy, = [—i(w — kjv; + i€)] ™!, and assume that the renormalized g will be
used to estimate the nonlinear dielectric. Now w ~ €, so the Markovian approximation (w — 0) is

150 First consider a single field v. Suppose that the dynamics are represented in the Langevin form

(0 + iLE)0YR(t) = 5ﬂ(t), where Ly includes any coherent renormalizations and 5ﬂ(t) represents the
incoherent noise. The steady-state spectrum obeys (|6¢p.,|*) = Fl /|w — Lk|?, where F™ is the covariance
of the noise. The steady-state intensity is then

ol = [~ &2 i (F10)
RS oo 2T (w—Qk,—l—i’nk,)(w—Qk,—ink,)’ i

where Qp = Re Ly and 1 = —Im L. If the integral in Eq. (£-10) is to remain nonzero as Fl 0, the
imaginary parts of the poles stemming from the denominator must vanish: ng — 0. This is the coherent
approximation. The generalization to multiple coupled fields, represented by a coherent matrix L, is to
first diagonalize L. Then the criterion for nonvanishing intensity is that the imaginary part of at least one
eigenvalue vanishes. Let L be written as the sum of a Hermitian (symmetric) part L* and an anti-Hermitian
part L If L is purely anti-Hermitian (dissipative), then the condition is equivalent to detL® = 0. This
equation is sometimes called a nonlinear dispersion relation, but the nomenclature is misleading. Consider
again the scalar case. Then £ vanishes identically, and in the frequency domain the coherent approximation
is (W—Q)Vkw = 0 or Y, = 2mYpd (w—%). The true nonlinear dispersion relation, w = Qj, does not involve
the dissipative part. This analysis also demonstrates another inconsistency of the coherent approximation:
it predicts a linelike frequency spectrum (Dupree and Tetreault, 1978) whereas truly turbulent states are
well known to have broad spectra. That broadening is due to the incoherent noise, which clearly cannot be
neglected.
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inappropriate. Furthermore, if the fluctuations are sufficiently small, the waves live in the nonresonant
region kjvy; < w <K kjjvg.. Therefore w is large with respect to the ions (the fluid limit). For them
one may thus expand according to ¢ ~ gy — goX@go, thereby transferring the nonlinearity to the
numerator. It will be shown in Sec. 6.5.4 (p. 176) that the result provides half (an unsymmetrized
piece) of the induced scattering from the bare particles. The plausibility of this result can be seen from
the presence of the propagator g, in Eq. (207a). The long-wavelength limit describes ion diffusion,
but the asymmetry means that the action conservation laws are violated.

For the electrons the resonance broadening is a small correction even for Vp ~ Vi; the
approximation (200) then predicts a diffusive contribution, in accord with the simple random-walk
theories.

It is important to note that for 7; — 0 the induced-scattering contributions vanish since
they require ion thermal motion. Therefore the Dupree-style passive renormalization of the kinetic
response fails to recover any nonlinear effects related to the ion polarization-drift fluid nonlinearity
Vi - V(=V?2p) introduced in Sec. 2.4.3 (p. 34). This important conclusion is verified in more detail
in Sec. 6.5.4 (p. 176).

Fluid rather than kinetic theory is of considerable practical importance in view of the model
equations of Sec. 2.4 (p. 33). If one is given a robust fluid equation, it should not be necessary to engage
in kinetic renormalizations at all; renormalization of the fluid nonlinearity should be adequate. Such
renormalizations were considered by Weinstock and Williams (1971). If one renormalizes a Vg - Vn
nonlinearity, passive diffusive renormalization straightforwardly leads to the estimate ni! ~ k2 Dy.
The polarization-drift nonlinearity can be similarly renormalized, leading to the result (209) discussed
below.

Since simple kinetic RBT does not lead to polarization-drift effects but simple fluid RBT does, the
distinction between kinetic and fluid renormalizations is evidently quite subtle. The reader is advised
to return to these remarks after studying Sec. 6.5.5 (p. 178).

Usually Vi is self-consistently related to the vorticity V2¢; then passive renormalization a la RBT
is not appropriate. The DIA (Sec. 5, p. 126) properly includes the effects of self-consistency and makes
a prediction for ng! different from the passive one. The principle effects are already evident in the
Markovian form (183a), which for the polarization-drift nonlinearity reads

2 2 2 2
nl _ 2 (=P (K =7 «

One can verify that the passive approximation leads to only the p?k? term in the numerator, which is
clearly positive definite for positive definite #. The fully self-consistent form, however, is not positive
definite. Let I}, be concentrated near a characteristic wave number k—for example, I}, ~ 2k 6 (k—k).
Perform the summation over p to replace p by —(k + q), and integrate over q as k — 0 for fixed k
and isotropic statistics. One finds limy_o i ~ —KED <. (The passive contribution has this form
with a plus sign.) Crossover between negative and positive il occurs for k ~ k. The minus sign is
related to the possibility of an inverse energy cascade in 2D (Sec. 3.8.3, p. 74). I shall revisit this
point in the discussion of eddy viscosity in Sec. 7.3 (p. 189).

For the self-consistent problem it is inconsistent to precisely localize Iy at k because the damping
il ~ (k* — ¢*)I I then vanishes for k = k. (Passive renormalization does not encounter
this difficulty.) Therefore the spectrum must actually be spread over a range of k’s. The transfer
equation (117) provides the natural averaging. From the WKE (182), 7 (Ag) = Ypen, (M 1e — FRY),
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or

1
T(Ag) = ) Z Z Ok MrpqOrpg(Mparl gl + Marplelp + Mipglplg). (210)
keA, A

_nzllk FI:;AI

Resonance-broadening theory neglects the incoherent response (the F! term), but that term is clearly
required in order to provide the symmetry that guarantees conservation of the quadratic invariants.
Because T (00) = 0 (there is no net transfer due to the nonlinearities), Fp! is of the same order as
the ni terms. In the presence of Fi!, the RBT balance v = ni! clearly requires further discussion;
it cannot be literally true.

Assume homogeneous turbulence for simplicity and let the spectrum extend over a broad range
of k’s centered at k and of width Ak. In order to ensure a steady state, let there be a positive linear
growth rate v, and a positive linear damping rate v,,; that are concentrated over regions Akiy out
near ki, out—for example, iy ~ 2w Akind(k — kin)7;,. Temporarily, assume that the latter widths are
smaller than Ak. The situation kow < k < kin is sketched in Fig. 15. The steady-state balance for
transfer of an invariant from the modes between 0 and k is then

~[YoutTous) + [yinTin] = T (K), (211)

where a bracketed term contributes only if k is to the right of the appropriate source or sink region.
Note that according to Eq. (210) incoherent noise always contributes negative transfer whereas
ni! contributes positive or negative transfer depending on its sign. For example, consider kou; < k < k.
Then the balance equation is —Youtlout = 7 (k) and the transfer is necessarily negative. For the
polarization-drift nonlinearity 73! is negative in that region, so both coherent and incoherent response
contribute to transfer with the same (negative) sign. Because the n! and Fj! terms both arise from
the same basic nonlinearity, the nonlinear scaling of 7 (k) can be estimated from either one. The
k integration [Ypea, in Eq. (210)] basically averages np Iy, over the excited spectrum to the left of £,
giving rise to the balance Youtlout ~ |17™!|1, where n and I are typical values in the left-hand region. If
kout is in the middle of the excited region, then simply vout ~ ]nglllt], which provides an estimate for I,y
given Yout- Iin can be estimated from the balance i, Ii, — Youtlout = 0, which follows by integrating to
k> k.

Note that the spectral averaging is crucial. If k£ is taken to lie in a region where v, = 0, then
the steady-state balance is nill, = Fpl quite different from RBT. For related discussion of situations
with v, = 0, see Ottaviani and Krommes (1992).

If the roles of gy, and v,y are reversed in the above scenario, steady state would require transfer
to the right. To the extent that ng! is negative, such transfer is impossible. Even if n}! were positive,
its effect would be reduced by the negative definite incoherent transfer. The situation is obviously
tricky because of the possibility of dual cascade.

For forcing and dissipation distributed over a spectral range with just one characteristic wave
number &, the above estimates simplify with I, ~ Iy ~ I ~ I and ko ~ k ~ kin. Then Your = Yin
and the balance You ~ [7™|ouws Teduces to 7 ~ ]77%1]. The basic size of ]77%1] might adequately be
estimated from its (positive) passive contribution. For the polarization drift, that is in dimensional
units 77%1 ~ (Eps)‘%QD. This result obviously differs from the estimate E°D obtained by evaluating the

diffusive resonance-broadening prediction k2D at a typical wave number k.
It should now be clear that the RBT cannot be quantitatively correct; it is pointless to begin with
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Fig. 15. Hypothetical scenario that illustrates steady-state spectral transfer.

its various approximations, then proceed to deduce values for transport coefficients correct to several
decimal places, as has been done all too frequently in the literature. The importance of symmetries and
conservation properties was discussed for drift-wave problems by Dupree and Tetreault (1978), whose
work was a seminal contribution to the line of research that grew out of RBT. A more definitive and
general discussion was given by Boutros-Ghali and Dupree (1981); see also Similon (1981). Essentially,
those authors were rediscovering the symmetries of both systematically calculated WTT and robust
renormalizations like the DIA. [The latter had already been emphasized in the work of Orszag and
Kraichnan (1967); further illuminating discussion was given in the beautiful paper of Kraichnan
(1976b) on eddy viscosity, to be discussed in Sec. 7.3 (p. 189)]. I shall defer further discussion of these
topics until I develop the general apparatus of renormalized turbulence theory; see Sec. 6.5 (p. 170).

It must be emphasized that the characteristic growth rate 7 that enters into the simplest integrated
spectral balance is merely a particular integral property characteristic of the entire energy-containing
range, as is k. The rough balances given above are simply incapable of capturing details of wave-
number dependence, spectral shape, etc. For such information one must turn to more elaborate
closures such as the DIA (Sec. 5, p. 126) or its Markovian relatives (Sec. 7.2, p. 182). In Sec. 8
(p. 199) it is shown that such closures can make quantitatively accurate predictions for transport.

Finally, the estimate D, ~ T/Ei is simply incorrect in general if D, is taken to be the fluid
diffusion coefficient. For example, in HM dynamics the natural transport involves diffusion of vorticity,
which, as we have seen, introduces various powers of k2 p? into the calculation. Although those are O(1)
in the gyrokinetic ordering, they may be quantitatively significant. Indeed, since there are intimate
relations between transport and dissipation (thus between transport and spectral transfer), proper
estimates of spectral quantities are relevant to experimentally observable fluxes. For more discussion,
see Sec. 12.2 (p. 238).

4.8.6  Summary: Approximations underlying resonance-broadening theory

In summary, a variety of conceptual approximations underly the RBT. (i) Most fundamentally,
the incoherent response is neglected. That leads to violation of energy conservation and precludes
turbulent steady states of the kind envisaged in most fluid-turbulence theories. (ii) The RBT is at
best appropriate for passive, not self-consistent, advection. The passive assumption leads to the neglect
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of a variety of terms that reflect backreaction of the particles on the waves. (iii) The formalism is
in essence a crude theory of the nonlinear dielectric function. However, the form of that function
is not derived systematically, and indeed the recipe (200) will be shown below to be incorrect—
importantly so for strong turbulence. (iv) Unjustifiable Markovian approzimations (in both space and
time) are made. Such approximations are appropriate when a separation of scales exists. Although
there may be a scale disparity between microscopic fluctuations and macroscopic transport, the details
of microscopic events are intrinsically non-Markovian. Analysis of spectral mode coupling and transfer
requires that one study the interaction of energy-containing fluctuations that are all of the same order
in £ and w.

Because of the previous points, the RBT cannot provide a quantitatively accurate description
of steady-state turbulence. Nevertheless, in a very coarse-grained and dimensional sense, it can in
some circumstances be used to motivate formulas such as Eq. (203) for a perpendicular transport
coefficient. Furthermore, simple RBT can make qualitatively and sometimes even quantitatively
successful predictions for situations in which the passive approximation is appropriate. One example
is the experiment of Hershcovitch and Politzer (1979), in which an instability was suppressed by the
introduction of external turbulence.

Although various approximations are made, the RBT represents a serious early attempt on a very
difficult problem. Its major contributions were to focus attention on important physical processes of
strong plasma turbulence (including kinetic physics) and to provide simple ways of estimating their
significance. As we consider more elaborate closures [e.g., the DIA in Sec. 5 (p. 126)], it is important to
keep the intuition behind the RBT firmly in mind. The prescience of the insights of Dupree, Weinstock,
and the other early workers into the physics of strongly turbulent plasma processes, coming as they did
before the results of nonlinear dynamics and stochasticity theory were widely known, is remarkable.

4.4 Clumps

“The physics picture [behind the fluid clump algorithm)] is, in its emphasis on the small scales,
in disagreement with well-established facts about the small-scale behavior of turbulent fluids.”
— Krommes (1986a).

As described in the last section, RBT ignores incoherent response. Dupree (1970) recognized this
difficulty relatively early. Motivated by the structure of classical Langevin equations (Sec. 3.2, p. 48)
and plasma kinetic theory, in which the fluctuation effects are described by both a velocity-space-
diffusion term and a polarization-drag term [cf. the Balescu-Lenard operator (32)], he proposed that a
description of kinetic plasma turbulence more complete than RBT should involve a turbulent Fokker—
Planck equation. This insight was a definite advance; the topic will be revisited in Sec. 6.5.6 (p. 180).
A related paper that also introduced a turbulent Balescu—Lenard type of operator was by Kadomtsev
and Pogutse (1970a); see also the more detailed calculations by Kadomtsev and Pogutse (1971).

4.4.1 Dupree’s original arguments

Dupree (1972a,b) clarified his motivations by pointing out the physical importance of phase-space
granulations, i.e., extreme distortions of phase-space fluid elements arising from nonlinear processes.
His thinking was guided by the existence of BGK modes (Bernstein et al., 1957), which are exact
nonlinear solutions of the Vlasov equation that are obviously not well described by simple diffusion

119



theories, and by insights gained from studies of coherent trapping (O’Neil, 1965), which show how
initial phase-space perturbations are distorted by nonlinearity. Of course, phase-space fluid elements
are sheared at an exponentially rapid rate even in stochastic regimes, in which no trapping occurs. It
is interesting to note that the early work of Dupree preceded general awareness within the plasma-
physics community of the modern advances in stochasticity, chaos, and nonlinear dynamics, which
occurred in the middle 1970s [see, for example, Smith and Kaufman (1975)].

Dupree’s attempts at an analytical description that incorporated phase-space granulation,
however, introduced a fundamental confusion that has persisted, in one form or another, to the present
day. He recognized (correctly) that phase-space granulation in its various guises was not described
by RBT (which contains no hint of the stochastic instability of two adjacent orbits, for example), and
argued (correctly) that incoherent noise was essential. He also noted (at least implicitly) the structure
of the WT'T, in which the form and role of the coherent and incoherent parts of the nonlinearity are
well defined; in particular, he recognized that parts of n-wave mode coupling are contained in the
incoherent noise. He thus wrote

Of = 6f°°" 4 8f™,  where §f"C = §f™ + gfem, (212a,h)

The notation mc stands for mode coupling. The clump contribution was intended to take account
of small-scale granulations in phase space, which Dupree [echoing the remarks of Kadomtsev and
Pogutse (1970a, 1971) *31] suggested could behave as sources of fluctuations in the same sense as do
the discrete particles of classical kinetic theory. Dupree stated, “0f™¢ denotes all other effects|,] which
we shall ignore.”

One should note here a subtle change in the description of the fluctuations. Whereas in Sec. 4.2.4
(p. 102) coherent and incoherent terms were defined in the (ensemble-averaged) wave kinetic equation,
Eq. (212a) purports to divide the random variable §f into coherent and incoherent parts. It is not
immediately clear that such a decomposition is permissible. Dupree defined the coherent response as
that part that is “phase-coherent” with the electric field. Fortunately, that concept can be generalized
to statistical theory (Krommes, 1978) with the aid of the theory of Langevin representations to be
described in Secs. 5.3 (p. 132) and 8.2.2 (p. 201), which shows that Eq. (212a) does indeed make sense.
That coherent and incoherent response can be defined precisely in renormalized statistical dynamics
is one of the major triumphs of the modern formalism (Sec. 6.5.3, p. 173).

Dupree did not attempt any systematic classification of the two pieces §f™¢ and Jf°'"™s of the
incoherent kinetic noise. Intuitively, he seems to have intended that §f™¢ was the fluctuation calculable
from WTT, while §f""™P* was everything else. For the kinetic problem, 2 which includes both fine-
scaled v-space dynamics as well as velocity-integrated potentials, that is not unreasonable.

151 T the context of beam-plasma interactions, Kadomtsev and Pogutse explicitly calculated the clump

correlation function as a ballistic remnant of initial conditions. However, they incisively remarked (Kadomtsev
and Pogutse, 1971), “But of course [macroparticles] can be generated by the turbulent plasma itself so that
the problem arises of considering the generation and destruction of [clumps] in the turbulent plasma and of
clarifying their role in turbulent processes.”

152 Space limitations preclude a thorough treatment of the explicitly kinetic theory of clumps; for more
discussion, see Hui and Dupree (1975) and Dupree (1978).
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4.4.2  The clump lifetime

To describe the dynamics of the clumps, Dupree argued in part as follows. [These arguments, not
all of which are correct, will be critiqued below. A concise but clear summary of Dupree’s ideas was
given by Liang and Diamond (1993b); see also Terry and Diamond (1984).] (i) Clumps essentially
behave like point particles with a finite lifetime 7. (ii) 7o can be determined, by a consideration of
the relative diffusion of two adjacent trajectories in phase space, %3 to be the time for two trajectories
separated by a small distance d to separate a distance of the order of the correlation length L. of the
turbulence, i.e., a scale characteristic of the energy-containing range. One finds

T ~ TqIn(Le/0) > 74, (213)

where 7. is a characteristic energy-containing time. (iii) The steady-state spectral level § is determined
by a balance between the production term P [cf. the Navier—Stokes paradigm of Sec. 2.1.1 (p. 23)]
and the decay S/7. due to the finite clump lifetime:

S~ 7qP. (214)

153 Linearize Newton’s laws to find
Ai = Av, Av=(q¢/m)E'(x(t),t)Ax, (f-11a,b)
where E'(z,t) = 0, E(x,t). The second moments of Eqs. (f-11) exactly obey
(Az?) = 2(Ax Av), (AzAv) = (Av?) + (¢/m)(E' Az?), (Av?) = 2(q/m)(E’' Az Av). (f-12a,b,c)

Eliminate Av in Eq. (f-12¢) by integrating Eq. (f-11b) and making a quasinormal Markovian approximation,
appropriate for short autocorrelation time 7,.. [These arguments were presented in the context of stochastic
magnetic field lines by Krommes et al. (1983).] Finally, drop the last term of Eq. (f-12b), which can be shown
to be small in 7,.. One then finds

(Az?) = 2(Az Av), (AzAv) = (Av?), (Av?) = 2E°D"(Az?), (£13a,b,c)

where D" = E_Q(q/m)QfooodT (E'(1)E'(0)) and k is a characteristic wave number. Equations (f-13) can
be combined to yield (Az?)" — (2/7x)3(Ax?) = 0 with 7 = (kD”/2)7'/3, an equation first given by
Dupree (1972b). Exact solution is straightforward but uninteresting in detail. The long-time solution is
(Az?) ~ $AY?(0)e?/ 7% where Ay? = Az? + 2Az AvTi + 2Av%7%. Dupree (1972b) defined 7 to be the

time to separate one wavelength, E2<A{L‘2> ~ 1; thus
—2 _
Ta ~ 37 {3k A (0)] 7'} (1a > Tr); (£-14)

Tol is taken to vanish for 7 < 7x. This estimate is clearly very rough because the original linearization is
valid only for E2<A{L‘2> <1

Further discussion of relative diffusion was given by Misguich and Balescu (1982). For a more refined
calculation of the Liapunov time 75, see Rechester et al. (1979). In order of magnitude, 7 is of the order of
the diffusion time 74; see Eq. (159).

121



(Warning: 1 show in the next section that this result is generally incorrect.) (iv) Because 74 > 74,
the formalism predicts an enhancement of the steady-state fluctuation level over the level one would
obtain from a resonance-broadening type of theory based solely on the coherent fluctuations (which
Dupree and others identified with conventional mode coupling).

4.4.8  Critiques of the clump formalism

It is clear from the early papers of Dupree (1970, 1972b) that he was initially concerned with
and motivated by properties of the kinetic PDF. It is not difficult to argue that fine-scaled phase-
space granulations are mistreated in the usual perturbative approaches, and to argue for the general
importance of incoherent noise. ** Tt is shown in Sec. 6.5.3 (p. 173) how a particular approximation
to the kinetic incoherent noise is related to the relative diffusion calculation sketched in footnote 153
(p. 121).

Although one can give a formula for the kinetic 7 [Eq. (f-14), p. 121], the general arguments of
Sec. 4.4.2 (p. 121) use no specific properties of kinetic theory; they appear to apply to fluid problems as
well. Indeed, although the formalism was first presented for the z—v phase space of a Vlasov plasma,
Dupree (1974) soon developed a version for 2D turbulence in @ space. Because of the importance
of the 2D E x B motion for turbulence in strongly magnetized plasmas, it is the x-space form of
the theory that has been mostly used by subsequent authors [see, for example, Terry and Diamond
(1985) or Lee and Diamond (1986)], who have treated the a-space version of the “clump algorithm”
as synonymous with a theory of incoherent noise. However, one must be very cautious. The particular
properties of phase-space granulations cannot be relevant to such a formalism. If one replaces of by
a fluid fluctuation §¢), the procedure of dividing one well-defined nonlinear effect (6/™™) into two
ill-defined pieces (6¢™¢ and §9""™P%) invites confusion. The difficulty is that “mode” coupling, in its
most general manifestation, is not synonymous with n-wave processes; although those are well defined
and classifiable in regular perturbation theory, they lose their identity in regimes of strong turbulence,
in which well-formed linear eigenmodes do not dominate and terms of all orders in perturbation theory
affect the evolution of even second-order quantities. Clean distinctions between wave—wave and other
k-space mode-coupling processes need not exist. Indeed, there are no waves at all in the NSE.

With reference to the a-space algorithm, arguments that the philosophy of the clump formalism is
flawed have been presented by Krommes (1986a), Krommes and Kim (1988), and Krommes (1997a).

154 A5 a matter of nomenclature, theories of the incoherent noise are often referred to in the plasma-physics

literature as two-point theories because the clump lifetime depends on the motion of two adjacent trajectories;
resonance-broadening calculations are called one-point theories because they fundamentally calculate the
turbulent diffusion of a single trajectory. I do not use the terms “n-point theory” (n = 1 or 2) in this
article since their use is precisely backwards (Krommes, 1986b) from the point of view of a general formalism
based on correlation and response functions [Secs. 3.5.4 (p. 64) and 6 (p. 146)]. Namely, turbulent diffusion
coefficients follow from the behavior of the response function R(x,t;a’,t'), which clearly depends on two
points in both space and time. On the other hand, the spectral level (which contains both coherent and
incoherent contributions) is S = C(=,t;«',t')|/_,, y_,» which depends on just one point in both space and
time (and furthermore is entirely independent of z for homogeneous turbulence). Unfortunately, a student
of the plasma-physics literature needs to know that a “two-point” calculation has usually involved some sort
of relative diffusion calculation whose signature is the logarithmic term In(L./d) seen in formulas such as
Eq. (213), even though that procedure is now understood to be incorrect (Krommes, 1997a).
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As originally discussed by Krommes (1986a),'% the fundamental feature that is difficult to grasp
philosophically is the notion, formally expressed by Eq. (214), that the total spectral level should be
determined by properties of the very small scales (at least when those scales contain negligible energy,
which is almost always true). That violates well-established experimental properties of turbulence
(Frisch, 1995, Chap. 5), standard Kolmogorov-like ideas about cascade (Sec. 3.8.2, p. 73), and common
sense. 1°¢ Krommes pointed out that some of the central mathematical manipulations of the CA
were identical to the much earlier calculations of Batchelor (1953) for the dynamics and spectra
of the very small (far-inertial-range) scales; it was clear that Batchelor did not believe that his
methods or results applied to energy-containing scales. A more mathematically precise discussion
was presented by Krommes and Kim (1988), who addressed the decompositions (212). They argued
that (i) calculation of the incoherent noise is not equivalent to a theory of the small scales, and
(i) conventional wave-wave coupling is not synonymous with coherent response. As one has already
seen from the structure of the WTT, physical processes (renormalized mode-mode coupling) whose
balances determine the spectral levels in the energy-containing range (and therefore the total spectral
level) appear symmetrically in both the coherent and the incoherent parts of the fluctuations as well.
They used this observation to argue both qualitatively and quantitatively against the results of Terry
et al. (1986), who had used a clump analysis to conclude that magnetic fluctuations cannot contribute
to self-consistent transport to any order. %7

4.4.4  Two-point structure function and the clump approximation

The cleanest way of understanding the mathematical mistake in the x-space clump formalism is
to consider an exactly solvable model. In several important works Kraichnan (1968b, 1994) developed
the theory of a randomly advected passive scalar for which the velocity field u changes very rapidly
in time. One considers a scalar field T'(x, t) that obeys

OT +u-VT — kVT = f(x,t), (215)

where V - u = 0 and a Gaussian white-noise forcing f*** (uncorrelated with u) is used to model the
(long-wavelength) production of turbulent fluctuations. I assume isotropic statistics, so one can write

(f (@ + p,t 4+ 1) [ (@, 1)) = 2F(p)d(r/7L), (216)

where 7() plays the role of a microscopic autocorrelation time. (7{) is inserted for dimensional
purposes in order that [F] = [f?]; its actual value turns out to be irrelevant.) The strength of the
forcing is given by F = F*40) = 1o /7)), where o is the production rate of scalar variance; the
Fourier transform of F®'(p) is assumed to be concentrated at small (energy-containing) k’s. The
significant simplifying features of this model are (i) in the rapid-change limit for w(x,t), the effects
of the nonlinearity can be evaluated ezactly (Kraichnan, 1994); and (ii) the use of random forcing
precludes the need for an elaborate calculation of the actual production (which would otherwise

be described by two-point cross correlations). Even so, the study of the statistical properties of

155 A formal Reply to Krommes (1986a) was made by Terry and Diamond (1986). A reply to that Reply was
given by Krommes (1986D).

156 That is, one is concerned that the (spectral) tail wags the dog (total fluctuation level).

157 Additional, somewhat orthogonal discussion of the work of Terry et al. (1986) was given by Thoul et al.
(1987).

123



Eq. (215) for moments of order higher than two is difficult and the focus of much current interest !5
(HydrotConf, 2000). Fortunately, Kraichnan (1994) showed that the equation for two-space-point,
equal-time correlations rigorously closes. He presented his result in terms of the second-order structure
function Sa(p,t) = S(p,t) defined by Eq. (103), and that approach was followed by Krommes (1997a).
Nevertheless, one can just as well write the equation for C(p,t) = (0T (x + p, )01 (x,t)). For isotropic
statistics one finds '%°

0,:C(p, t) = 2p D0, [p" ' (p)9,C) = 2P (p) L) (217)

ac ?

where n_(p) = n*(p) + x and

(o) = 5 [ dr (Buylp. ) (.t - 7)), 218)

with Auy = [u(z+p,t) —u(z,t)] - p, is the two-particle eddy diffusivity. The n™(p) term describes the
statistical effect of the advective nonlinearity in Eq. (215) ezactly in the rapid-change limit. Therefore
with reference to the general formalism developed in Sec. 6 (p. 146), especially Sec. 6.5.3 (p. 173), it
can be seen that n™'(p) includes contributions from both coherent and incoherent response (because
n™ is the sole vestige of the nonlinearity), in agreement with the earlier approximate calculations of
Dupree (1974).

The limits

77111(0) =0, plggo WEI(P) =D, (219a,b)
where D is the single-particle turbulent diffusivity, have long been recognized in neutral-fluid
turbulence. In plasma physics they were emphasized by Dupree (1972b) and others (Misguich and
Balescu, 1982), and figure prominently in the clump algorithm. Equation (219a) states that two fluid
elements coincident at ¢ = 0 remain so forever; Eq. (219b) states that such elements separated by
more than a correlation length L. diffuse independently. For p — 0 it can be shown [see Krommes
(1997a) for all details of the following arguments| that

1 (p) = [p/ MNP D, (220)

Considerable progress in the analytical description of the 2D problem was made by Chertkov et al. (1996).
159 The proof relies on the result that for infinitely rapid variations of w and f, first-order perturbation
theory is exact [see Appendix H (p. 293)]. One has exactly

158

0,C(p,t) + V - (du(x, t)0T (x, t)0T (2, 1)) + (x « ') = (6f (2, t)0T (', 1)) + (z « ). (f-15)

Expand (udT 6T") = [(SudTOsT'M) + (susTWST' )], where, for example, 6TW(x/,t) =
ffoodf [0f (2, F) — (0w - VOT ) (a/,7)]. One ultimately finds
t —_ —_ p—
@MTMw_/ dTU(0,7) — U(p, )] - VC(p, 1), (£16)

—00

where U(p, 7) is the covariance of u. The final form of Eq. (217) follows by a straightforward symmetrization
and simplification of the operator V - (...)V for homogeneous, isotropic statistics.
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where )\gi‘ ) is the Taylor microscale (Sec. 3.6.3, p. 66) of the velocity field. This p? dependence underlies
the appearance of 7, in the clump calculations. By calculations analogous to those in footnote 153
(p. 121) (or more rigorously), one can show that such dependence leads in the present case to a mean-
squared divergence of adjacent trajectories (initially separated by p) that obeys (p2)(t | p/) = /75 o,
where Tx = [2(d + 2)k%D]~. This result leads to a “clump lifetime” 74(p') = 75 In(L./p’).

Nevertheless, the predictions of the CA—specifically, the estimate (214), which includes the
logarithmic enhancement due to trajectory divergence—do not follow in general. Equation (217)
is simple enough that its steady state can be calculated unambiguously and the result compared with
the approximation that would be made by the CA. This was done by Krommes (1997a), who discussed
the detailed Green’s-function solution of Eq. (217). In accord with the more general earlier arguments
of Krommes (1986a), the steady-state Green’s function contains no hint of a clump lifetime. The
exponentially rapid stretching processes described by 7. do contribute to the time-dependent Green’s
function that describes transient relaxation toward the steady state, but by definition the steady state
is achieved at times much longer than the times for transients to relax. In almost all cases of interest,
the steady-state fluctuation level, which from Eq. (217) is rigorously

S = /Oo / dp' g Fet(p)rl), 221
e ()7 (221)

can be estimated to be
S ~ 1pP = 1po, (222)

where 7p = L?/D is the macroscopic diffusion time and o is again the production (forcing) rate. Thus
Eq. (222) does not contain the logarithmic enhancement. The key to this estimate is the observation
that formula (221) is convergent at p = 0 [since 1_(0) = k|, but would diverge at p = oo were it
not that the support of F*(p) is essentially localized to p < L.. For an explicit example of the
integral (221), see Eq. (120) of Krommes (1997a).

That the correct result is Eq. (222) rather than the clump prediction (214) can be traced to the
facts that (i) the Taylor microscale Ar, which according to Eq. (220) enters into the behavior of 7™ (p)
at very small scales, is in general quite distinct from the macroscopic autocorrelation length; and
(ii) the p* behavior in Eq. (220) holds only for scales smaller than a dissipation scale (which is smaller
than Ar). If a well-developed inertial range exists, scale similarity predicts that n™(p) o< (p/L.)¢ for
some (, but it is not necessary that ( = 2. It can be shown that for ( < 2 the inertial-range scalar
variance is finite and does not sensibly contribute to the total fluctuation level. For { > 2 the total
variance diverges algebraically and there is no clean separation between an energy-containing range
and an inertial range.

Only for the marginal case ¢ = 2 does the prediction (214) make sense (and then only for passive
advection). This case corresponds to logarithmically divergent inertial-range variance and to purely
p? scaling for n™(p). The logarithmic factor introduced by 7. (evaluated for initial separations of
the order of a dissipation scale r4) then describes the energy content of a Batchelor k~! spectrum
extending from 74 to L.. See further discussion by Krommes (1997a).

With regard to x-space formalisms, the final conclusion of such analysis is that incoherent noise,
although essential for proper spectral balance as well as small-scale behavior, does not in general
predict spectral enhancements of the kind envisioned by Dupree. When treated properly, calculations
in either @ space or k space lead to the same answers for the spectra of the small scales [cf. Batchelor
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(1953)]. Energetics are dominated by the production scales; the spectral tail does not wag the
spectral dog. If a spectrum is purely energy containing, so there is no clean separation between
energy-containing scales and dissipative scales (often the case in plasma-physics applications), the
concept of infinitesimal trajectory divergence is irrelevant. To calculate the wave-number spectrum
and fluctuation level, one must consider the mode coupling of scales of comparable size. Sensible
and robust formalisms for doing so include the DIA, to be discussed in the next section, and the
Markovian closures discussed in Sec. 7.2 (p. 182). A particular example that can be worked out in detail
is the random coupling of three modes in the eddy-damped quasinormal Markovian approximation
(Appendix J, p. 297).

This leaves open the role of kinetic granulations in the overall spectral balance. Velocity-space
clumps were observed in the simulations of Dupree et al. (1975). For drift-wave problems and to
the extent that the velocity-space nonlinearity can be neglected (as conventional wisdom suggests),
nonlinearly driven kinetic granulations must be absent; however, see Dupree (1978). In any event, the
existence of such driven small-scale fluctuations is not in dispute; the issue is whether they materially
affect the total fluctuation level. It remains a challenge to rigorously explore the nonlinear properties
of physical systems with strong kinetic effects.

5 THE DIRECT-INTERACTION APPROXIMATION (DIA)

“The weak dependence principle leads to a perturbation treatment of the dynamical couplings
among sets of individual Fourier amplitudes which differs importantly from conventional
perturbation theory based on expansion in powers of the Reynolds number. ... [The lowest-
order] procedure, which we term the direct-interaction approximation, has a simple dynamical
significance and can be shown to lead to equations which are self-consistent in the sense that
they yield rigorously realizable second-order moments. [It] includes terms of all orders in an
expansion in powers of the Reynolds number.” — Kraichnan (1959b).

I now turn to a detailed discussion of Kraichnan’s direct-interaction approximation (DIA). From
several points of view, this closure is unique. Most importantly, it can be shown to describe the exact
second-order statistics of several varieties of stochastic amplitude equations, so those statistics are
realizable in the sense of Sec. 3.5.3 (p. 63). It is also the “natural” second-order renormalization
[in a sense to be clarified in Sec. 6.2.2 (p. 155)], taking full account of self-consistency effects and
propagator renormalization. Therefore it is a robust starting point for discussing the status of less
systematic approximations such as RBT.

The discussion in this section covers mostly the period from the inception of the DIA (in the late
1950s) to about 1984, the latter date being chosen as an approximate breakpoint between early and
modern DIA-related plasma research. A time line of key articles during this period can be found in
Fig. 35 (p. 261).

I shall mostly consider the DIA only for quadratically nonlinear equations [although I shall mention
a cubic DIA in Sec. 6.2 (p. 153)]. For much of the discussion it is adequate to consider the self-consistent
dynamics

i 1 N
Oroe +iLwt = o > Mipgpthy + (t), (223)
A
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where Mppq is symmetrical in its last two indices and 7 (%) is a statistically sharp source. For the time
being, one may think of ¢, as the Fourier transform of a scalar fluid variable such as the electrostatic
potential pg; cf. the Hasegawa—Mima equation (Sec. 2.4.3, p. 34). Ultimately, however, the index k
may include field labels % s or velocity variables v as well, and one can formulate a kinetic DIA for
the PDF f,(x,v,t); the most general development will be given in Sec. 6 (p. 146). I shall first state
the DIA, then discuss various derivations. Useful discussions and many details about Kraichnan’s
earlier works on the DIA were given by Leslie (1973b); a more recent and accessible account is by
McComb (1990).

The DIA closure consists of the exact equation for the mean field (¢) plus two coupled
equations for the two-point correlation function Cg(t,t') = (6¢w(t)dw;(#')) and mean response
function Ry (t;t') = (00w (t)/0nk(t'))|;—o, Written here in the absence of mean fields ' and external
forcing:

t
(0 + 1Lx) Ru(t; t)) + / A (T Re(F ) = (¢ — 1), (224a)
t/
t t
(0 + L) Ca(t, 1) + / dE S (1) Ch(F, 1) = / df FNE T RE (7). (224b)
0 0

Here 2! is a nonlocal “turbulent collision operator” (causal in time). It describes the tendency of
the turbulence to scramble (damp out) a perturbation, and is the turbulent generalization of the
time-local v term of classical Langevin theory (Sec. 3.2, p. 48). The F§! term on the right-hand side
of Eq. (224b) is the mean square of an internally produced incoherent noise. (If external forcing is
present, its covariance FX' should be added to F§'.) All of these assertions will be discussed further,
ultimately with the aid of an underlying Langevin representation of the DIA statistics (Sec. 5.3,
p. 132).

Equations (224) are called the Dyson equations of turbulence. Under certain reasonable
assumptions [see Sec. 6 (p. 146)], they are formally exact. A closure provides specific forms for the
nonlinear terms Y§ and FpL In the DIA those are

1
St ) ZMk,pq R (L) Co (8, ), FR(t, 1) 52 | Mipg|*Cop (£, 4))Ca (£,'). (225a,b)

The Dyson equations are obviously two-time, nonlocal generalizations of the wave kinetic
equation (182) of weak-turbulence theory. A spectral balance equation for the fluctuation

160 A Cartesian component index for vector fields (e.g., 1) — w = wu;) is a special instance of the general case
of arbitrarily coupled fields (%) such as n, ¢, or T.

161 The effect of mean fields is to add extra contributions to the zeroth-order operator Ry L= 9, +iLy on the
left-hand side of Eqgs. (224). If the nonlinearity is schematically %Z\/Z 1), then with Ay standing for R or C'
one must add the the first-order variation —M ()An). [For a formal proof of this statement, see Sec. 6.2.2
(p. 155), especially Eq. (283a).] Since M is a symmetrized operator, this leads to two extra terms. For
example, if a self-consistent velocity V' is linearly related to i via V[¢] = V4, then a V[¢]- Vi term leads
0 (V) - VAU + (VAY) - V{1)). The last term describes the interaction of the fluctuations with background
profile gradients. If it is assumed that those gradients are constant (for example, V{(n) = —L(n)Z), then
a statistically homogeneous theory results in which the effects of the gradients can be incorporated into Lg
and the equations can be reinterpreted as describing the fluctuations d1p.
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intensity Cy(t) = Cg(t,t) follows from Eq. (224b) by noting that 0,Cg(t,t) = 2Re 0;Ck(t, 1)
Then

’t/:t'

. t _ _ _ _
OiCi(t) = 27 C(t) + 2 Re /O A [FR(t, D) Ry (1) — SR (1) O (¢, 1)) (226)

The forms (225) guarantee that quadratic conservation properties of the primitive equation (223) are
preserved; specifically, the nonlinear terms are readily shown to conserve Z(t) = ", 0xCk(t) provided
that Eq. (184) is satisfied.

Equations (224) are causal. From a specified initial condition Ck(0), they can be integrated in
time by using Eq. (226) to advance from Cg(t) to Ci(t + At), then using Eqs. (224) to construct
the time-lagged functions for 7 =t — t' = At, 2At, ..., t. 12 Brief remarks on a practical numerical
implementation used by the author and his colleagues are given in Appendix I (p. 295).

The DIA properly reduces to lowest-order ' WTT. Explicit reduction to Eqs. (182) and (183)
is carried out in Sec. 7.2.1 (p. 183) for fluid problems. Reduction of the Vlasov DIA is described in
Sec. 6.5.4 (p. 176).

5.1 Kraichnan’s original derivation of the DIA

Although a variety of algorithms that lead to the DIA are now known, the original derivation
of Kraichnan (1959b) remains one of the most heuristically compelling. The difficulty of a theory of
strong turbulence is that no small parameter is apparent. The regular perturbation theory of WTT,
which retains only a few primitive terms, is clearly inappropriate. Instead, Kraichnan argued that one
should assess the importance of any particular elementary interaction by remowving it from the sea of
all fully developed interactions. At least for a continuum of wave numbers, the effect of a single such
interaction should be infinitesimally small, suggesting a perturbation treatment. Kraichnan argued
that the direct interactions of wave vectors k, p, and q (where k + p + ¢ = 0) should dominate.
Since the properties of the fully turbulent system are unknown a priori, the method leads to coupled
integral equations for the two-point correlation and response functions.

As plausible as this argument may appear to be, there is an important subtlety. Although in a
wave-number continuum a single indirect interaction may be subdominant to a direct one, there are
infinitely many more indirect interactions than direct ones. The possibility therefore remains that the
net effect of all indirect interactions may be comparable to that of the direct ones. That is, in fact,
the case. For strong turbulence the DIA is at best an order-unity approximation for at least some
frequencies or wave numbers [the precise meaning of this statement will be clarified below and in
Sec. 6 (p. 146)]; as a consequence, it possesses at least one qualitative deficiency, its lack of random
Galilean invariance (Sec. 5.6.3, p. 138). Nevertheless, the DIA is remarkably robust and effective in
practice, and reasons for this will be explained.

In addition to Kraichnan’s own work, the mathematics of the original derivation was given by
Montgomery (1977) and Krommes (1984a). Here I shall give a version appropriate for systems of

162 The Hermitian symmetry Ck(t, ') = Cj (¥, t) permits one to consider just ¢ > 0 and 7 > 0.

163 Here “lowest-order” means at the level of three-wave interactions quadratic in the intensity of the
turbulence. Perturbation expansion of the DIA contains higher-order interactions as well, through all orders,
but their description is not complete; vertex corrections (Sec. 6.2, p. 153) absent in the DIA contribute
to WTT at orders higher than quadratic (Thompson and Krommes, 1977).
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multiple coupled fields, for which the correlation functions need not be diagonal with respect to the
field indices. Accordingly, let us consider the dynamical equation

B3 ualt) = Oua(®) + Y iLosts = ;5 3 ZMamugm SO+ SO+ ), (227ab)

where u is taken to have zero mean for simplicity. The covariance matrix is defined by Coa(t, ) =
(Suq(t) 0u’,(t')), and the random response function is defined by Raw(t;t') = Gua(t) /0Tar ()]0
These functions rigorously obey

Ry Cow (1) = 5 D7 Mapy (0ujs (£)5u7 (£)dug (1)) + (0f5" (t) duar (1)), (228a)

Byy

N | —

Ry'Row () = 3 Magyul(t) Roor (1) = Ga,ud(t —t). (228b)
By

Consider the specific triad of modes {«, 3,7} as well as its primed counterpart. 1% Diagrammatic
perturbation theory such as described in Secs. 3.9.5 (p. 81) and 3.9.7 (p. 83) may be used to classify
the various possible interactions into direct ones (propagator renormalizations) and indirect ones
(vertex corrections). The direct interactions correspond to the shortest route through the bare-vertex
space. To assess the effect of a particular direct interaction, define Au,|3, = Au, to be the difference
between the exact solution u, and the value %, that the solution would take if the specific triads
under consideration were deleted from the right-hand side of Eq. (227b); i.e

1
= 5 5 Mo = 5 3 Mo 5, (229)

where the last sum is only over the specific (unprimed and primed) deleted triads. It is asserted—
the so-called weak-dependence principle; see extensive discussion by Kraichnan (1958b, 1959b)—that
Au, should be small (but see the further remarks at the end of this section). Thus to lowest order it
obeys

— 1 ex
Ry Aug = > Mapou's Auy = 3 ; Mgy (uul — (.)) + [ (230)
Py Rt

[To this order it is immaterial whether one writes u or @ on the right-hand side of Eq. (230).] Upon
comparing Eq. (230) to Eq. (228b), one can see that Green’s function for Au, is the exact (random)
infinitesimal response function R; thus the solution of Eq. (230) is

Nua(t) =5 [ A1 Ranl DMl (ut(d) — {...)) + 2D} (231)
a@,87y

This result may be used to evaluate the correlation functions needed on the right-hand side of
Eq. (228a). For example, one has without approximation

Sug 0Us Stte) = (0T 0Ty 0T ) + ((Aug 0T, Ty ) + 2 terms) + O(Au?). 232
B Oty B O Uy B Oty

164 The primed triad must be included because one is considering general, inhomogeneous statistics.
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Because 7, is missing the effects of the direct interaction, it is argued that the first term on the
right-hand side of Eq. (232) is small, and that the dominant contribution comes from the second
term. Upon inserting the result (231), one is left with the evaluation of terms like

LRSS (D ME_Su ()50 (0 [Sus(Doua(t’) — (.. )]) = RE (DS DCru (L), (233)

where the symmetry of M was used and higher-order correlations were neglected according to the
weak-dependence principle. The final result is

t
R Car(t,1') + /_ AT 2L (1:7) O (7 /_ 1Y (F" 4 Fo) (L DR (14 T), (234)
SEL(tF) = ZMamM;__R* (t;7)Co5(t,7), (235a)
ﬂvﬂv
Folt, 1) = Z Moy M5 Co5(t, 1) O (1, 7), (235b)
ﬂvﬁv

and Fgy'(t, 1) = (of(t)0f& (2)).
Equations (234) and (235) contain the as yet unknown mean response function R. A similar
technique can be used to find its equation in the DIA. The result is that R obeys

R Row (t:1) +/dtz S F) Rar (7, 1) = O (t — 1), (236)

Since the lower limit ¢’ can be replaced by —oo because R(t;t') is causal, the operator acting on R is
the same as the one on the left-hand side of Eq. (234).

Equations (234) and (236) are the multifield DIA. For the special case of a single-field model
(o — k) with spatially homogeneous statistics, so that Cpa/(t,t') — Ci(t,t')0g s, they reduce to the
results (224) and (225) quoted at the beginning of this section. A straightforward generalization 1%
is to multiple coupled fields, giving rise to a theory nondiagonal in the field indices but diagonal
in wave number (homogeneous in space). If « is further permitted to contain a velocity variable, a

165 Another kind of generalization is to the theory of predictability initiated by Kraichnan (1970b). He posited
two statistically identical ensembles with velocity fluctuations u®) and u(® correlated only through either
(i) the initial value A (z,t;2’,¥) = I([uW(z,t) —u®(z,t)][uM (2, ) —uP(2',¢)]) = Clz, t;2/,t) —
W(x, t; &', '), where W(z, t;2/,t') = (uM(x, t)u®(a’,t)); or (ii) correlated forcing F&*(x,t; 2/ 1) =
(fWext (g ) f2ext(x! 1)), The evolution of A is taken as a measure of uncertainties of measurement or
of instability in the flow. By taking o = 1 and o/ = 2 in Eq. (234), employing the statistical symmetries, and
noting that R,g = 0 for 8 # «, one is readily led to

(Rg" + 3%) » Wi(t,t) = (Fy + FiZn » Bi(t:1), (F17)
where FI3(t,T) = £ 3\ [Mipg|* W, (t, )W (t,7) and S} is the conventional one-field result (225a). These

results reproduce Kraichnan’s Egs. (3.9)—(3.13) (Dubin, 1984a). The predictability equations were compared
with DNS by Herring et al. (1973), who also gave additional references.
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kinetic DIA results [see, for example, DuBois and Espedal (1978)]. Discussion of the kinetic DIA is
given in Sec. 6.5 (p. 170).

However plausible the weak-dependence principle may be, it has not been demonstrated that its
lowest-order application, the DIA, is dominant in any sense. I have already suggested that the net
effects of all of the indirect interactions omitted from the DIA may, depending on the question asked,
be comparable to those of the direct ones; see Sec. 5.6 (p. 137) below. Kraichnan (1958a) suggested
that the procedure can be extended to higher order by systematically deriving a set of more and more
complicated closures of which the DIA is the simplest. With the techniques of the present section,
the algebra of even the next approximation (first vertex correction) becomes decidedly tedious; it is
remarkable that Kraichnan was able to formulate that theory (Kraichnan, 1961) and deduce nontrivial
consequences (Kraichnan, 1964e). In Sec. 6 (p. 146) I shall describe a more elegant and compact
procedure that leads to such closures with a minimum of tedium. Nevertheless, Kraichnan’s original
calculations are unsurpassed for their physical insights.

5.2 Random-coupling models

The original justification offered for the DIA, the weak-dependence principle, made explicit
reference to a continuum of wave numbers. The resulting DIA equations, however, can be applied
to systems with a finite (possibly small) number of coupled amplitudes. This observation makes it
clear that in general one must look elsewhere for a justification of the perturbation procedures that
define the DIA algorithm.

In seminal work Kraichnan (1961) showed that the DIA provides the ezact description of second-
order statistics for a certain random-coupling model (RCM). Several varieties of such models are
now known (Herring and Kraichnan, 1972; Kraichnan, 1991); their mere existence answers several
important questions.

Equation (223) together with a PDF of random initial conditions defines an ensemble of
realizations. Consider now a superensemble (ensemble of ensembles) consisting of N identical and
independent copies of the original ensemble; let Roman letters identify the particular copy. In an RCM
a new dynamics is constructed by inducing statistical dependence among the copies. In one version
of the procedure (Kraichnan, 1991), this is done by modifying the original dynamics

o

1 n
Ryt ulM(t) = 3 >, Ma,@'\/u/(g )*ug”)* (237)
By

(I omit f* for simplicity), in which each system evolves independently of any other, to the form

1
Ryl (t) = N1 S funaMapyu *uld*, (238)

2 7,8,0,Y

in which the systems are coupled. The dimensionless coupling coefficient ¢y, where A\ = {n,r, s},
is randomly assigned the value £1 as a function of A (while preserving symmetry under arbitrary
permutations of the elements of \). The factor of N~! preserves the variances of the nonlinear terms
at t = 0. It can then be shown (Kraichnan, 1958c, 1961) that as N — oo the DIA for u{” becomes
exact. That is, as N — oo the vertex corrections vanish because of the randomly phased couplings
induced by the random ¢)’s. A related derivation of the DIA as an infinite-N limit was given by Mou
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and Weichman (1993).

Thus the DIA has been demonstrated to have a primitive amplitude representation. The
consequences are profound. The very existence of such a representation means that statistical moments
formed from the solution of Eq. (238) are realizable in the sense of Sec. 3.5.3 (p. 63). In particular,
the DIA covariance matrix is guaranteed to remain positive definite as time evolves. This property is
extremely difficult to prove directly from the DIA equations themselves, and is not shared by many
other superficially plausible closures (Kraichnan, 1961).

An alternate derivation of the RCM of Kraichnan (1961) was given by Frisch and Bourret (1970),
who were able to prove a variety of theorems and asymptotic results.

Use of the RCM is not restricted to deriving the standard DIA equations for second-order statistics;
because a primitive amplitude equation is written explicitly, higher-order statistics can be predicted
as well. For further discussion, see Sec. 10.2 (p. 221).

The random-coupling representation of the DIA highlights a principal deficiency of the
approximation, namely, its failure to properly represent coherent structures. By definition, a
coherent structure is represented by well-specified, statistically sharp phase relations between Fourier
amplitudes. When mode-coupling coefficients are randomized, as in the RCM, those phase relations
are destroyed; the retained statistical information is insufficient to reconstruct the coherent structure.
[Nevertheless, a sea of interacting coherent structures may adequately be described by the DIA. For
more discussion, see Sec. 10.5 (p. 228).]

5.3 Langevin representation of the DIA

Although the RCM is very important, it is rather abstract; it is perhaps difficult to intuitively
relate the meaning of random couplings in a superensemble to the approximate statistical behavior
of the original equation. It is therefore useful to know that the DIA has a Langevin representation
(Leith, 1971; Kraichnan, 1970a). Consider the primitive amplitude equation

Obr + 1Lkt + S0 x U = FRN(1), (239)

where Y3 has the DIA form (225a) and
_ 1 -
nl * *
et =75 EAI MipaSp (1)Eq (1), (240)

&k being a random variable whose covariance is constrained to be that of ¢y, itself. Green’s function for
the left-hand side of Eq. (239) clearly obeys Eq. (224a) for the response function Ry, of the DIA. % To
verify that Eq. (224b) is obeyed, it is necessary to show that (f2(¢)w;(t)) is equal to the right-hand
side of Eq. (224b). This follows upon solving Eq. (239) for 1, using the Green’s function Ry, then
performing the required average over the assumed statistics of &.

This Langevin representation provides a route, alternative to that of the random-coupling model,
to the proof that the second-order statistics described by the DIA equations are realizable. It also has
a pleasing physical interpretation that parallels that of the original Langevin equations discussed in

166 Perhaps it is not so clear, since ZI,:} depends functionally on 1 through the covariance. However, in a
continuously distributed ensemble of realizations, the contribution of a particular ¥ to that covariance is
infinitesimal.
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Sec. 3.2 (p. 48). The statistical effects of the original nonlinearity [Eq. (223)] are seen to be broken into
two pieces: incoherent noise (internally created random stirring) f2!; and mean turbulent damping S3!
(typically positive). The specific form of f};l is just such that energy is conserved by the nonlinear
terms; the relation between Y3 and the covariance of f};l is a generalization of Einstein’s relation
relating the v and D, of Langevin’s original theory (Sec. 3.2, p. 48).

It is a Langevin representation like that for the DIA that is missing from the more heuristic
plasma closures such as RBT. Thus while Dupree sometimes speaks of incoherent noise, he cannot 167
refer to a realizable representation such as Eq. (240) that unambiguously captures the second-order
statistics of that noise. ' From this point of view, the elegance of the DIA is compelling.

It should be emphasized that the Langevin equation (239) is appropriate for deriving only second-
order statistics. At higher order, statistics predicted from Eq. (239) do not agree with those predicted
from the RCM (Krommes, 1996). Further discussion of this point is given in Sec. 10.2 (p. 221).

5.4 The spectral balance equation

The balance between incoherent noise and coherent damping can be demonstrated directly at the
covariance level. Upon noting that Green’s function for the left-hand side of Eq. (224b) is precisely Rk,
one can write the formal solution of Eq. (224b) (now allowing for external forcing) as

Cult,t) = [ T Ot AT Re(t:T) Fa(T,T)RE(H: ), (241a)
where F' = F™ 4+ F* Tt is conventional to introduce 7 =t — ' and T = 2(t +t'), then write '%
Cr(t,t') = Cg(7|T). Clearly both the intensity C(0|T) = C%(0) and the two-time shape must be
found. Although those are coupled, it is useful to think of the former as determined by the 7" dynamics,
the latter by the 7 dynamics. [Some related discussion was given by Boutros-Ghali and Dupree (1981).]
Because two-time correlations are expected to decay, it is natural to Fourier-transform with respect
to 7: Crw(T) = [°2.dTe“Cy(7 | T). T dependence disappears in steady state (' — oc), for which
Eq. (241a) transforms to the spectral balance equation

Ck:,w = ’sz,w’2sz,w- (241b)

Both the 7 and the w versions of the spectral balance determine the ultimate steady-state fluctuation
level as a balance between nonlinear forcing and damping. They generalize a familiar result of classical
Langevin theory; see the discussion of Egs. (70) and (72) in Sec. 3.2.2 (p. 49). For the DIA Kraichnan
(1964d) has given a thorough discussion of the interpretation of Eqs. (241) in terms of impedance and

167 Tt is not a matter of ignorance. The practical equations of RBT involve asymmetric approximations to
the effects of the mode coupling (e.g., long-wavelength, low-frequency limits) that preclude a demonstration
of realizability. That is to be contrasted with the Markovian closures discussed in Sec. 7.2 (p. 182), which in
appropriate cases possess Langevin equations similar to that of the DIA and can be shown to be realizable.
168 Nevertheless, Dupree understood that the coherent response (the ZI,:} term) was the portion of the
nonlinear effects phase-coherent with the turbulent field (i.e., ¢ is evaluated at k in Z}:} * 1g), and the
incoherent response was the remaining portion involving coupling between modes p and g not equal to k.
169 For a systematic treatment of the dependence on the slow variable T, as well as the generalization to
weak spatial inhomogeneity, see Appendix F (p. 286).
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related concepts. He also related them to earlier work by Edwards (1964), who employed a Fokker—
Planck description. For some discussion of Edwards’s approach, see McComb (1990, Chap. 6.2).

As shown in Sec. 6.2.2 (p. 155), the forms (241) transcend the DIA; they are a general
statement of the balance between forcing and dissipation that determines the overall fluctuation
level. In conjunction with specific expressions for ¥*! and F™, they also determine the details of the
“microscopic” turbulent noise. As I discussed in Sec. 3.2.2 (p. 49), that possibility does not exist in the
classical Langevin model, which compresses those details into unspecified dynamics with vanishing
autocorrelation time. General turbulence theory “opens up” those details.

A number of subtleties surround the balance equations (241). First consider the question of
ordering. Let € < 1 denote an appropriately normalized fluctuation intensity C'(0) such as ((dn/m)?).
According to Eq. (225b), F' = O(€*) whereas the left-hand sides of Eqgs. (241) are O(e). Thus it is not
always correct to take R to be of order unity, as is sometimes asserted. }7°

One can use Eq. (241b) to demonstrate that the DIA is compatible with the Gibbsian equilibrium
spectra found in Sec. 3.7.2 (p. 68); the single-field version of the argument!™ is given here for
simplicity. One begins with the FDT (110). One can decompose C'(7) into one-sided pieces according
to C(1) = Cy (1) + C_(7); it is a consequence of time stationarity that (for scalar fields) C_(k,w) =
CY(k,w). Thus Crw = (Riw + Ry;,,)Cik(0), or

Ck:,w = 2Re Rkvak(O). (242)

One has Ry, = [—i(w—Lx+iX},)] ", with Im £ = 7™ = 0 as a consequence of thermal equilibrium;
F** must also be taken to vanish. Then Re R = Re X" /|w —Re £L+i¥"|? = |R|? Re ¥", so Eq. (241b)
reduces to

2Re X} Cr(0) = Fyl. (243)

Insert the forms (225) into Eq. (243) and again use Eq. (242). After appropriate symmetrization, one
finds that Eq. (243) is satisfied provided that

Miepq/Ci(0) + c.p. = 0. (244)

With My = Mypq, the triple M = (Mg, Mp, My) can be interpreted as proportional to the set of
direction cosines that determine a line perpendicular to a “constraint plane”; Eq. (244) is thus an
orthogonality condition that requires the vector (1/Cg(0),1/Cp(0),1/Cq4(0)) to lie in that plane. It
is assumed that the M’s obey a,(j)Mk, + c.p. = 0 for one or more multipliers a,(j). Thus the vectors
oW = (ok,0p,04)? also lie in the plane. (There can be at most two linearly independent such o’s.)
Clearly the linear superposition 1/Cg(0) = 3, &ia,(;) also lies in the plane, so Eq. (244) is satisfied;
see Fig. 16 (p. 135). This result is just the Gibbsian spectrum.

Equation (241b) is quite reminiscent of the Test Particle Superposition Principle discussed in
Sec. 2.3.2 (p. 30). There are subtleties, however. As will become clearer in Sec. 6.3 (p. 165), the
derivation of the DIA in the form presented so far holds only for Gaussian initial conditions.
Unfortunately, as Rose (1979) has stressed, the statistical dynamics of discrete particles are

170 The other possibility, that the solution of Egs. (241) is C = O(1), can be dismissed on physical grounds,
in general; observable drift-wave fluctuations are, in fact, small.
171 See related discussion by Ottaviani (1990).
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Fig. 16. Geometrical interpretation (Johnston, 1989) of the result that the DIA is compatible with the
Gibbsian thermal-equilibrium solutions.

intrinsically non-Gaussian. (This can easily be seen in thermal equilibrium, in which the Gibbs
ensemble holds; potential-energy contributions to that ensemble are non-Gaussian.) The construction
of a proper renormalized theory that handles particle discreteness on equal footing with continuum
dynamics is quite difficult, but was done elegantly by Rose (1979), who developed a general formalism
and proposed a Particle Direct-Interaction Approxzimation (PDIA).

Further discussion of the spectral balance (241) is given in Sec. 6.5 (p. 170).

5.5 The DIA for passive advection

To this point the derivations of the DIA that I have presented have been for self-consistent
problems, in which both of the i terms on the right-hand side of Eq. (223) are treated on equal
footing and therefore the mode-coupling coefficient Mypq can be taken to be symmetrical in its last
two indices. However, problems of passive advection are also of interest. To accomodate those, consider
instead of Eq. (223) the passive dynamics

Onthre +1Lwthis = Y My b X + [ (1), (245)
A

where y is a specified random variable and MY has no particular symmetries. I allow the possibility
that y is correlated with the external forcing f***. In addition to the response function R defined in the
usual way, the independent two-point correlation functions for this problem are the six independent
entries of the matrix (®(¢)®7 (¢'))), where ® = (¢, x, f™)T, namely,

Cr(t, t) = (0vu(t)ovi (1)), Vilt,t') = (Gvn(t)oxic(t)),  Wi(t,t) = (0vr(t)ofi (1), (246a,b,c)
Xi(t ) = (Oxr()3fi (1), Sult,t) = (Oxu(t)oxi(t)),  Fe(t.¢) = (fu(t)ofi () (246d,e,f)

(0f = of**); of these, C, V, and W must be solved for whereas X, S, and F** are specified functions.
The usual perturbative algorithm leads to the passive DIA in the form

t
R(;}ch(t; 4+ | AESe(t; D Re(Ft) = 0(t — 1), (247a)
t/
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RahCultt) + [ df [Su(t:)Cw(E,#) + St DV (¢

_ Ot/dfF,ﬁjl(t,f)Rz(t’;f) FWEE 1), (247D)

Ry Vie(t, t)) + /Otd% St DVR(E ) + S0t DSEH, )] = X (2 1), (247¢)

Ry Wi(t, 1) + /0 i et DWe(E ) + St D) X0 (1)) = FE () 1). (247d)
Here

:—ZMkqugktR*(t;z)Sj(t,z), >0 (t, 1) ZMk,pq et D)Vg(T, 1), (248a,b)

FP(t,7) Zy fpql - Co (£, 1) S (£,7) + ZMgqugqjv*(t t)Vq(t,t). (248c)

Note that V is driven by the externally specified cross correlation X. If X and V are set to zero,

then Y vanishes, one finds Wy(t,t') = [idf Re(t;7) E*(#',7), and the right-hand side of Eq. (247b)
becomes [!dE [FP\(t,T) + F&(t, T)|RE(t;7), showing that F* adds to the internal noise F™
expected. Equation (247a) with formula (248a) reproduces the passive propagator renormahzatlon
derived in Sec. 3.9.7 (p. 83). Some features of these equations in the presence of nonzero cross
correlation X were discussed by Krommes (2000b); for further discussion, see Sec. 12.7 (p. 248).

Although the structure of Egs. (247) may appear to be more complicated than that of the
self-consistent DIA, the passive equations can actually be derived from the self-consistent ones if
one is careful. Thus 1mag1ne reworking the self-consistent calculation for a multispecies nonlinear
coupling 3= My a’g”’wﬁ*w , with ¢? = ¢ and 97 = y. That is, the first and second indices of MY
always refer to w (an active variable that responds under perturbations), while the third always
refers to x (a passive function). The statistics are determined by the symmetrized mode-coupling
coefficient Mypqg = Mg, + Mg, The strategy is to first retain all terms of the self-consistent
calculation, then to discard ones that do not enter in a passive problem. For example, with C=(Cop
the internal noise term for the self-consistent DIA is, from Eq. (225b),

1 L
Fpl(t,T) = 3 Z | Mipg|*Co (£, ) C (£,7) (249a)
= Z ’Mk:pq’2 + Mkqug;;))C: (t7 Bé;k (t7 B (249b)

A
:%: | My >Co (8, 1) S (8, 8) + Mypg Mt Vo (¢, ) Vg (, )] (249c¢)

This result is identical to Eq. (248c). Similarly, the self-consistent mass operator operating on some
unspecified function Zj is, from Eq. (225a),

SRt 1) Zu (T, 1) ZMk,pq RGO (D) Zi(E 1) (250a)

_ U* U U U* U*
- EA: Mk:ququ: + Mk:qupk:q + qupMqu: + qupMpkq)

x R (61 CE(t, 1) Zu(E 1) (250D)
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== MypqMpqie Ry (D) Vo (1, 6) Zi(2,1')
A

= > MypqMoppeg R (t:) S5 (6 1) Zi(2, ) + 0 + 0. (250c)
A

The third and fourth contributions vanish because the p index of Ry, is the third one of M, ,ﬁ,fqp; however,
that index refers to y, which does not respond under perturbations in a passive problem. The first
term is absent from the Ry equation (Zp = Rg) because the third index of ngk is passive; however,
it remains for Zy = Cj because ¥, responds under perturbations. It is readily seen that this result
reproduces the ¥ contribution to Eq. (247a) and the X and ¥}, contributions to Eq. (247b).
Finally, a Langevin representation for the passive DIA can be given by simply modifying
formula (240) such that Eq is replaced by the externally specified x4. A random-coupling model

can also be given. Thus the passive DIA is realizable.

5.6 Early successes and failures of the DIA

The DIA is one of the most extensively tested and thoroughly researched approximations in
modern nonlinear physics. It has enjoyed considerable success, but possesses some (well-understood)
flaws as well.

5.0.1 Application to stochastic-oscillator models

The application of the DIA to the pedagogically useful stochastic oscillator model (74) has
already been briefly described in Sec. 3.9.7 (p. 83). In the difficult limit of strong turbulence (Kubo
number K — 00), the DIA succeeds in predicting irreversible decay of the response function (on the
proper time scale), unlike naive approximations such as cumulant-discard approximations or regular
perturbation theory. Various measures of success may be formulated; for example, the area under the
response function (an autocorrelation time) is approximated by the DIA to within about 20%.

This general irreversibility of the DIA is an inherent property of the approximation, as can readily
be appreciated from its derivation from the random-coupling model. Unfortunately, it is not always
appropriate. Consider, for example, the modified oscillator model described by Eq. (84), whose most
important property is that its response function does not decay as 7 — oo. (This imitates the behavior
of various integrable systems.) The solution of the DIA for this model is compared with the exact
solution in Fig. 17 (p. 138). Although the DIA succeeds in capturing the general period of the nonlinear
oscillations, it superimposes an irreversible envelope such that the mean response asymptotes to 0 as
T — 0.

The lesson to be learned from this simple example is that in a certain sense the DIA is
“too irreversible.” The randomly phased coupling coefficients of the RCM wipe out delicate phase
correlations between cumulants of high orders. Such correlations are crucial for properly representing
various kinds of interesting physics such as coherent (possibly integrable) structures embedded in the
flow or intermittent statistics. One important consequence of the neglect of such correlations is that
the DIA does not properly describe the interactions of scales of very disparate sizes; see the discussion
of random Galilean invariance in Sec. 5.6.3 (p. 138).

Another deficiency of the DIA shows up in the context of passive advection with nonzero mean
fields. It is a rigorous consequence of Eq. (74) that the mean field conditional on unit amplitude
at t = t' should be identical to the mean response function R(t;t). However, that is not true in
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Fig. 17. The response function for the variant of the stochastic oscillator model described by Eq. (84)
with a = 0.9. Solid line, exact solution; dashed line, DIA; chain-dotted line, exact solution for a Gaussian
distribution of a with unit variance [R(7) = exp[—f(7)]lo(f(7)), with f(r) = sin?(37)].

the DIA (Orszag and Kraichnan, 1967), which predicts spurious long-time oscillations in the mean
field (Rose, 1985).

Finally, generalized stochastic-oscillator models have been used by Kraichnan (1976a) to illustrate
a deep failing of the DIA when applied to the kinematic-dynamo problem; see Secs. 5.8 (p. 141)
and 10.3 (p. 223).

5.6.2  Turbulence at moderate Reynolds numbers

In spite of those difficulties, the RCM preserves the basic dimensional and scaling properties
of the original dynamics as well as the essence of the quadratic nonlinearity as a convolution in the
mode or wave-number labels, and the second-order DIA statistics are realizable. One can infer that the
energetics of turbulence may be well represented by the DIA. This hypothesis was tested by Kraichnan
(1964b), who compared detailed numerical solutions of the DIA for homogeneous, isotropic turbulence
at moderate Reynolds numbers with experimental measurements of grid turbulence. Satisfactory
quantitative agreement was found. In later work Herring (1969) concluded that the DIA may also
provide a satisfactory description for certain problems of thermal convection.

5.6.3 Random Galilean invariance

In his original work Kraichnan (1959b) considered the predictions of the DIA for the inertial-
range spectrum of fully developed Navier-Stokes turbulence. He found E(k) ~ k~3/2 rather than
Kolmogorov’s K41 prediction k=%/3. At the time experimental data were insufficiently precise to
distinguish the exponents 1.50 and 1.67, and Kraichnan briefly admitted the possibility that the
k=3/2 result was correct; however, as measurements have been refined over the years and computing
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power has improved dramatically, the k=3/2 prediction appears to have been definitively ruled out.

A lucid and quantitative explanation was given by Kraichnan (1964e), although he was clearly
already aware of the issue in his original papers on the DIA a half-decade earlier. He traced the
incorrect k3/2 spectrum to a spurious interaction between the long-wavelength, energy-containing
scales and the short-wavelength inertial scales. Kraichnan argued that although the primitive
dynamics were invariant under a Galilean transformation and the equal-time correlation functions
(energy spectra) should be similarly invariant in an ensemble of random such transformations, the DIA
was not so invariant. Whereas a small-scale eddy advected by a very-long-wavelength flow should
in reality be affected only by the shear in that flow, in the DIA the small eddy is distorted at a
rate proportional to the energy in the long wavelengths. Thus transfer through the inertial range is
represented incorrectly, resulting in an incorrect spectrum.

To understand the origins of the —% exponent, recall that we have already encountered this
exponent in Eq. (123), the form of E(k) in the presence of a particular independent autocorrelation
time. Now the DIA predicts an Eulerian 7,. that is the characteristic time to advect a small-scale
eddy of size k! through a distance of the order of its own size by a macroscopic flow of rms
velocity @ = (du?):

= (ku)™"; (251)

This is the same assumption used in the derivation of Eq. (123), which reproduces Kraichnan’s
original result. ™® In the hydrodynamic DIA, that contains a spurious dependence on the size of the
long-wavelength fluctuations. If @ is replaced by the local velocity difference Au across an eddy—
T — [kE(k)]Y?, so that T, = Teddy—one recovers the Kolmogorov result.

To illustrate the technical difficulty with eliminating such spurious nonlocal effects, Kraichnan
considered the random advection problem 0;¢) +V - Vi = 0, where V is a spatially uniform random
Gaussian vector. The Fourier transform of this equation is thus 0wk + ik - Vb, = 0 [just the
K = oo SO model (74)]. Now moment-based closures typically work with three-point correlation
functions. For the present problem, consider T'(k,t;p,t'; q,t") = (e!® Vigip VIt ig Vi ). For calculations
of the equal-time energy spectrum, the triplet correlation is needed only for equal times. Then the
argument of the exponential vanishes because of the triangle constraint k + p + q¢ = 0, and one finds
T(k,t;p,t;q,t) = 1 for the exact solution. Closures, however, typically approximate the many-time
correlations. For example, the DIA for this problem approximates

T(k,t;p,t'; q,t") ~ (% V) (P V) (e V"), (252)

Each of the averages separately decays because of phase mixing; cf. the discussion of the stochastic
oscillator in Sec. 3.3 (p. 52). Therefore even when all of the times are taken to be equal, T" decays.
The characteristic time (251) is actually correct for the mean two-time response to a small
perturbation. The DIA, fundamentally a two-time theory, represents that effect qualitatively correctly
in the decay of the response function. Unfortunately, the Eulerian nature of the closure mixes the one-
and two-time information together in a way that is difficult to untangle. '™ Kraichnan noted that this

172 The essence of Kraichnan’s arguments was also sketched by Tennekes (1977).

173 Technically, the difficulty is manifested as a long-wavelength divergence when inertial-range forms are
substituted into the equation for the response function. The details can be found in Chap. 7.1 of McComb
(1990).
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kind of spurious coupling of the one- and two-time statistics would plague Eulerian-based closures
through all orders. He actually calculated in detail the first vertex correction (Sec. 3.9.8, p. 85) for
the random advection model; although the spurious effect was reduced, it was not eliminated.

At approximately the same time as the work of Kraichnan (1964e), Kadomtsev (1965) published
his monograph on plasma turbulence. He discussed what he called the weak-coupling approximation,
which is essentially the DIA couched in the frequency domain rather than the time domain. [DuBois
and Pesme (1985) discussed errors in Kadomtsev’s work, and showed that when his algorithm is
implemented consistently one recovers precisely the DIA.] In qualitative terms, he also pointed to
the difficulty that one now understands to be the lack of RGI; he referred to the need for a proper
treatment of the “adiabatic” interaction between the long and the short scales. It is clear that the
works of Kadomtsev and of Kraichnan were independent, and that although Kadomtsev’s work was
influential in plasma physics, Kraichnan should be credited with the more incisive, mathematically
and physically precise analysis of the issue.

The problem of random Galilean invariance can be ameliorated or cured by alternate approaches to
the closure problem. The physical idea that 7.q4y should be the appropriate time seen in a Lagrangian
frame can be made precise by the Lagrangian schemes mentioned briefly in Sec. 7.1 (p. 181); a general
“decimation” approach is described in Sec. 7.5 (p. 197). More prosaically, Kraichnan (1964e) suggested
several ways of cutting off the wave-number integrations to ensure RGI. For instance, in the equations
for the two-time functions one can restrict the p—¢ integration domain of Fig. A.1 (p. 263) to ¢ > o'k
and p > a~ 'k, where a > 2. Examples of calculations in which this approach has been used include
the works of Sudan and Keskinen (1977) and Sudan and Pfirsch (1985).

The difficulty with random Galilean invariance has been frequently invoked as sufficient reason
to dismiss the DIA (and, in some extreme cases, any approach based on statistical closures). The
latter reaction is obviously logically flawed; the k=°/3 law, possibly corrected for intermittency effects
(Frisch et al., 1978), is certainly an observable statistical property of a particular nonlinear system, so
must yield in principle to rigorous mathematical justification. Furthermore, even dismissal of just the
specific Eulerian DIA is indefensible in important situations, especially many of interest to plasma
physics. In particular, for situations with low or moderate Reynolds numbers (so that inertial ranges
are not well developed) failure to preserve random Galilean invariance does not seem to be crucial.
Furthermore, even a well-developed inertial range possesses little energy relative to that of the energy-
containing range (by definition); it is the latter that determines macroscopic transport coefficients. One
therefore expects that the DIA and similar closures should make reasonable predictions for transport.
One plasma-physics example that has been studied in some detail, the Hasegawa—Wakatani system,
bears out this claim, as is discussed in Sec. 8.5 (p. 208).

5.7 Eddy diffusivity

For homogeneous, isotropic fluid turbulence, the DIA is most simply couched in a Fourier
wave-number representation; the mean velocity field (kK = 0 component) may usually be taken
to vanish. However, for inhomogeneous, anisotropic turbulence (the usual case in practice), an
a-space representation is more convenient and the mean field is nontrivial. Taylor (1915) showed that
“turbulent motion is capable of diffusing heat and other diffusible properties through the interior of a
fluid in much the same way that molecular agitation gives rise to molecular diffusion” (Taylor, 1921).
According to the discussion in Sec. 1.3.1 (p. 13), a turbulent diffusion coefficient scales as D ~ o/,
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where 7 is a characteristic rms velocity fluctuation ™ and ¢ is a characteristic Lagrangian correlation
length, frequently called a mizing length after Prandtl (1925).'7 Thus for passive advection the
rigorous equation for the mean field, 0,(T") = —0,(6V, 0T, is assumed to reduce to 0(T") = 0, D 0,(T).
[D may itself depend on 0,(T"), as would be typical in problems of drift-wave turbulence. The solution
for the analogous equation for fluid velocity in a turbulent jet was reviewed by Kadomtsev (1965).]

Kraichnan (1964c) gave a systematic and detailed analysis of the DIA for arbitrary turbulent
flows. He showed that the DIA provides a natural generalization of mixing-length concepts to the
practical situation in which the scale lengths of the fluctuations and the mean fields are not cleanly
separated. That paper also contains some valuable discussion of the fidelity and interpretation of
the DIA. More such discussion can be found in the work of Kraichnan (1976b), where difficulties with
the naive concept of eddy viscosity were analyzed in detail. That work will be discussed in Sec. 7.3
(p. 189).

5.8 Diffusion of magnetic fields by helical turbulence

A natural generalization of the concept of eddy viscosity is to the problem of the kinematic
dynamo, defined in Sec. 2.4.8 (p. 43). If one assumes helical, isotropic turbulence (for which (u) = 0)
and that (B) has weak gradients, then general considerations of tensor symmetry lead to the form

0/(B) =y V*(B) = V x (a(B)), (253)

involving the two undetermined coefficients i, and «. The latter term is conventionally called the
« effect. For small R, straightforward quasilinear analysis of Eq. (62a) leads (Steenbeck and Krause,
1969) to Eq. (253) with ptym, = tim.el [ftm.q is defined after Egs. (62)] and « being a particular moment of
the helicity spectrum that is also proportional to fi,, . Kraichnan (1976a) instead considered R,, = oo
and discussed the problem from the point of view of the DIA. He showed that when the velocity field
was rapidly decorrelated on a timescale Téé‘), the form of Eq. (253) still held provided that g, = U?Tac
and a = %TaCH, where 7 is the rms velocity, H is the helicity density, and 7, is the shorter of Téé‘) and
the eddy turnover time. The turbulent « effect is usually said to exist only in helical flows, but see
Gilbert et al. (1988) for a counterexample. Linear analysis of Eq. (253) shows that sufficiently large «
can cause (B) to grow. Such an instability is due to the vector character; there is no corresponding
instability of a passive scalar.

174 Velocity fluctuations are du ~ £|0U/dy|. See Kadomtsev (1965), Chap. III, Sec. 2(a).

175 Tt is worthwhile to recall the warning of Tennekes and Lumley (1972): “Let us recall that mixing-
length expressions can be understood as the combination of a statement about the stress (—{(uzu,) ~ )
and a statement about the mean-velocity gradient (OU,/dx ~ w/{). These statements do not give rise to
inconsistencies if there is only one characteristic velocity, but they cannot be used to obtain solutions to
the equations of motion if there are two or more characteristic velocities that contribute to 7 in unknown
ways. In other words, mizing-length theory is useless because it cannot predict anything substantial; it is
often confusing because no two versions of it can be made to agree with each other. Mixing-length and
eddy-viscosity models should be used only to generate analytical expressions for the Reynolds stress and
the mean-velocity profile if those are desired for curve-fitting purposes in turbulent flows characterized by
a single length scale and a single velocity scale. The use of mizing-length theory in turbulent flows whose
scaling laws are not known before-hand should be avoided.” This admonition has frequently been ignored in
the plasma-physics literature.
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As discussed by Kraichnan (1976a), the appearance of 7,. (possibly computed self-consistently) in
the previous formulas is the principal qualitative contribution of the DIA; it appears to be successful
for nonvanishing H. But Kraichnan also emphasized that helicity fluctuations in mirror-symmetric
turbulence lead to what he called an a? effect that is not captured by the DIA. The reason is that
the o? effect first enters at fourth order in perturbation theory whereas the structure of the DIA
is determined algorithmically from statistical approximations made at second order. For further
discussion of this difficulty and of possible resolutions, see Sec. 10.3 (p. 223).

5.9 Vlasov DIA

It was at least half a decade after Kraichnan’s proposal of the DIA for strong Navier—Stokes
turbulence before plasma physicists began to develop theories of strong plasma turbulence that
attempted to go beyond WTT. In the U.S. the resonance-broadening theory (Sec. 4.3, p. 108) of
Dupree (1966) was very influential, but see also Galeev (1967). Shortly after Dupree’s original paper,
Orszag and Kraichnan (1967) published a critique of the RBT (and other related approximations) in
which they proposed the DIA for Vlasov turbulence. At the time, that work was largely ignored by
the plasma-physics community. 17® That was very unfortunate, as the paper contained a large number
of important insights. An incomplete list includes the following:

(1) Orszag and Kraichnan clearly distinguished between the passive (stochastic-acceleration)
problem and the self-consistent Vlasov problem.

(2) They used the random-coupling approach to write down realizable models, including the DIA,
for both passive and self-consistent dynamics.

(3) They gave an elegant and pedagogical discussion of the properties of the models, emphasizing
both their strong points and their weak points.

(4) They pointed out that Dupree had not provided a complete prescription for closing the statistics
of the electric field, and they offered a consistent one.

(5) They observed that Dupree’s theory did not conserve energy and momentum, and they traced
that to the passive approximation that was implicitly used. 7"

(6) They took issue with an assertion of Dupree that his test-wave expansion of the exact particle
propagator in powers of the mean one was convergent.

The work of Martin et al. (1973) on the general field theory of classical statistical dynamics led
to a revival of interest in the formal and systematic description of plasma turbulence. Krommes,
independently DuBois, and co-workers of those authors showed how to reduce the formal theory to
simpler approximations such as RBT. Their work will be described after the general MSR formalism
is developed in Sec. 6 (p. 146).

5.10 Early plasma applications of the DIA

In this section I survey various early research on the DIA as applied to plasma physics. This
discussion covers work done through about 1984 except that detailed applications to the Vlasov

176 Tt was discussed a decade later by Montgomery (1977), and influenced DuBois and Espedal (1978) and
Krommes (1978).

177 Analogous observations in the plasma literature were not made until much later with the work of Dupree
and Tetreault (1978).
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equation (including considerable important work by DuBois and co-workers) are reserved for Sec. 6.5
(p. 170). For an earlier, much more cursory review, see Krommes (1984a). Subsequent, more
quantitative research is described in Sec. 8 (p. 199).

5.10.1 Renormalized plasma collision operator and convective cells in magnetized plasma

Classical Coulomb collisions in weak magnetic fields lead to cross-field transport coefficients that
scale as B2 (Braginskii, 1965). E x B motion, however, leads to B~! scaling in the absence of parallel
dynamics (Taylor and McNamara, 1971). It is of interest to consider a unified formalism that embraces
both of those regimes. The cleanest situation arises for the thermal-equilibrium statistical dynamics
of a 2D system of charged rods. Pioneering numerical simulations of that model were performed
by Dawson et al. (1971) and Okuda and Dawson (1973). They actually observed three regimes for
the magnetic-field scaling of the test-particle diffusion coefficient: (i) the classical B2 regime; (ii) a
plateau regime in which the transport was independent of B; and (iii) a B~! regime. In order to
explain those results, they carefully considered the normal modes of a 2D magnetized plasma in
thermal equilibrium. In addition to the well-known hybrid oscillations and Bernstein modes, they
identified a new “zero-frequency” mode (damped by ion shear viscosity) that they called a convective
cell. They employed the fluctuation—dissipation theorem to show that the convective cell carried the
bulk of the energy as B — 0o, and used simple strong-turbulence estimates (not necessarily identified
as such) to argue that the convective cells were responsible for the B~! scaling.

Although Dawson and Okuda did not recognize it, their work was closely related to the then-recent
discovery of long-time tails in certain correlation functions arising in neutral-fluid kinetic theory. The
observation, first made by Alder and Wainwright (1970) on the basis of their computer simulations,
was that the Green—Kubo integrands, time integrals of which define transport coefficients, exhibited
an algebraic decay ~ 7-%2 (d being the dimension of space) on hydrodynamic timescales. The result
was subsequently reproduced by a variety of theoretical calculations [pedagogically reviewed by Reichl
(1980, Chap. 16)] and interpreted as the effect of the hydrodynamic modes (those whose frequency
vanishes as k?). Whereas in 3D the 7732 tail is integrable, in 2D the integral of the 77! tail is
logarithmically divergent, signaling a breakdown of the usual local description of transport.

Krommes (1975) and Krommes and Oberman (1976b) discussed the connection between the
work of Dawson and Okuda and the theory of long-time tails. They developed a general formalism
(Krommes and Oberman, 1976a), based on a two-time BBGKY hierarchy developed in earlier work
by Williams (1973), that could be used to predict hydrodynamic contributions to plasma transport
but also embraced the usual classical regimes. 7 They showed that a consistent treatment of the self-
interactions of the hydrodynamic modes required that terms of all orders in the BBGKY hierarchy
be retained. They argued for a particularly natural subset; the resulting renormalized approximation
was identical in form to the self-consistent field approzimation'™ of Herring (1965).

In fact, since Krommes and Oberman were working in thermal equilibrium, in which the FDT
holds, the approximation turned out to be identical to the DIA for their problem. It led to a
renormalized Balescu—Lenard-like collision operator for plasmas in strong magnetic fields that indeed

178 The two-time hierarchy also provides the most natural way of deriving the Test-Particle Superposition

Principle of Rostoker (1964b); see Krommes (1976).
17 The self-consistent field approximation (Herring, 1973) retains the DIA equations for C(t,t) and R(t;t'),
but drops the equation for C(¢,¢') in favor of the fluctuation—dissipation Ansatz C(¢,t') = R(t;t')C(t',t').
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embraced all of the scaling regimes previously found by Dawson and Okuda.

The methods used by Krommes and Oberman were relatively primitive. Direct renormalization of
the BBGKY hierarchy is clumsy and not to be recommended; the generating-functional methods of
Martin et al. (1973), to be discussed in Sec. 6 (p. 146), are far superior. Nevertheless, a variety of useful
physical and technical insights followed from the work, which was one of the first practical applications
of the DIA in plasma physics (albeit not to a true turbulence problem involving fluctuations that are
far from equilibrium).

5.10.2  Turbulence in the equatorial electrojet

Sudan and Keskinen (1977, 1979) formulated the DIA for a model of weakly ionized plasma
turbulence driven by the equatorial electrojet. Following Kadomtsev (1965), they wrote the equations
in the frequency representation. They did not faithfully solve the coupled equations for correlation and
response functions, but postulated a plausible form for the spectrum, then estimated the turbulent
linewidth. Reasonable agreement was found with the experimental data. Their calculations [see also
Sudan et al. (1997)] provided an early plasma-physics example of how to estimate for complicated

practical situations the self-consistency effects inherent in the DIA. Some of that work was reviewed
by Sudan (1988) and Similon and Sudan (1990).

5.10.3 Forced and dissipative three-wave dynamics

One of the important early tests of the DIA was given by Kraichnan (1963), who compared its
predictions for a system of three coupled “shear waves” with direct numerical simulations. The model
equations studied had the form

Ovx = Mipipg (254)

plus the cyclic permutations K — P — (); i.e., linear effects were absent. An appropriately defined
energy is conserved. In fact, the system (254) is integrable (Meiss, 1979; Terry and Horton, 1982),
so random behavior enters only extrinsically (from random initial conditions). Although general
arguments suggest that the performance of closures such as the DIA should not depend on whether
the turbulence is extrinsic or intrinsic in origin, it is useful to verify that explicitly. Therefore as a
paradigm Krommes (1982) considered the generalization of Eq. (254) to include a complex linear
frequency wy = Qg + i

O + iwgtbye = Mg, (255)

Such models can possess strange attractors and exhibit chaos in certain regimes (Wersinger et al.,
1980). The particular form of the M}’s was derived from the three-mode version of the Terry—Horton
equation (43). Direct simulations of the new system exhibited linear growth, then nonlinear saturation.
Numerical solution of the DIA showed that it was able to adequately reproduce the steady-state
fluctuation level. This calculation was technically trivial, but it made the important conceptual point
that the DIA provided a reasonable description of renormalized drift-wave mode coupling.
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When all of the 7;’s are taken to vanish, it is not hard to show that Eq. (255) is derivable from
the Hamiltonian

_ Q0
H = 2Im(Yxippig) + (M—I;WKV + c.p.> (256)

written in the canonical coordinates g, = ¥/v/My and py = i)} //Mj,. H is a third constant of the
motion; this underlies the integrability mentioned above and uniquely determines the final covariances
in terms of their initial values. The random-coupling model (Sec. 5.2, p. 131) or direct calculation can
be used to prove that the DIA also conserves H, so it predicts the final covariances exactly in this
case (Bowman, 1992; Bowman et al., 1993).

5.10.4 A Markovian approximation to the DIA

Waltz (1983) used a parametrization of the two-time correlation functions to derive a Markovian
approximation; he compared its predictions with direct numerical simulations of the forced HM and
TH equations. The agreement was quite reasonable given the relatively low resolution. It must be
stressed that, as he recognized, Waltz was not solving the DIA itself, which is a very specific set of
nonlinear integro-differential equations with memory. Nevertheless, his work added further evidence
to the belief that appropriately symmetric second-order closures could be successful in plasma-physics
applications. The modern theory of Markovian closures is described in Sec. 7.2 (p. 182).

5.10.5 Self-consistency and polarization effects

In Sec. 3.5.4 (p. 64) I referred in general terms to the difference between self-consistent and passive
problems; see Eq. (102). When the self-consistent DIA is written out for the Vlasov equation, the extra
term in Eq. (102) leads to a plethora of terms in the closure equations. To gain physical insight into
their meaning, Krommes and Kotschenreuther (1982) considered an analogy to the Balescu-Lenard
operator of classical transport theory. As was described in Sec. 2.3.2 (p. 30), the two terms of Eq. (32)
are well known to correspond to (i) (passive) velocity-space diffusion of test particles by the random
fields, and (ii) a self-consistent polarization effect that describes the formation of a shielding cloud
around the test particle. Krommes and Kotschenreuther showed how the terms from the Vlasov DIA
could be put into more or less one-to-one correspondence with terms from the linearized Balescu—
Lenard operator; the extra terms arising from self-consistency were identified with and henceforth
called the polarization effects (Krommes and Kleva, 1979). I defer further discussion of this point
until Sec. 6.5 (p. 170), where the theory of the nonlinear dielectric function is described.

By considering the derivation of the BL operator from Fokker—Planck theory (Ichimaru, 1973),
Krommes and Kotschenreuther were also able to see how the extra terms were related to linearization
of Fokker—Planck coefficients, an observation that was independently made by Boutros-Ghali and
Dupree (1981).

5.10.6 The DIA and stochastic particle acceleration

Maasjost and Elsésser (1982) criticized the use of the DIA for the stochastic-acceleration problem
on the grounds that it either agreed with much simpler Fokker—Planck theory or did not agree with
simulation data. Their arguments were analyzed in detail by Dimits and Krommes (1986). The latter
authors noted that Maasjost and Elsésser had used a highly non-Gaussian acceleration for which none
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of the standard closures, including the DIA, would be expected to be correct (Sec. 6.3, p. 165). Dimits
and Krommes argued that for nearly Gaussian acceleration the DIA was qualitatively superior to the
Fokker—Planck and Bourret approximations.

5.10.7 Miscellaneous references

Among a variety of additional papers on the DIA that could be cited, I shall mention just three
representative ones selected for their diversity of applications.

DuBois and Rose (1981) gave an authoritative and detailed discussion of the DIA in the context
of Langmuir turbulence.

Krommes et al. (1983) discussed the DIA in the context of particle transport in stochastic
magnetic fields by treating the magnetic field in the drift-kinetic streaming term v b-V F [see Sec. 2.3.1
(p. 28)] as a passive random variable. Although the DIA was deemed to be qualitatively successful in
some regimes, in others it failed to capture some detailed consequences of the stochastic instability of
magnetic field lines. Krommes et al. argued that such problems would be cured by appropriate vertex
renormalizations (Sec. 6.2.2, p. 155), and made some initial steps in that direction.

Finally, Dubin (1984b) considered the application of the DIA to the logistic map (May, 1976)
defined by Eq. (98). For the important case of A =4 (whose invariant measure is known analytically
and covers the entire interval 0 < z < 1), he showed that the basic DIA failed because it did
not constrain x to lie in the unit interval. Instead, a periodic extension of the DIA appeared to
be promising. Dubin also discussed a variety of deep issues and techniques relating to realizability
constraints (Sec. 3.5.3, p. 63) that might be used to formulate superior closures. The lines of research
initiated by Dubin have not been pursued to the extent that they deserve.

6 MARTIN-SIGGIA-ROSE FORMALISM

“[We] present what we believe to be the elusive generalization which is necessary for deriving
a renormalized set of equations and thus to deduce the renormalized statistical theory of a
classical field satisfying a nonlinear dynamical equation.” — Martin et al. (1973).

We have by now encountered a variety of approaches to the derivation of closed equations for low-
order statistical moments. Some are semiheuristic [resonance-broadening theory (Sec. 4.3, p. 108) and
the clump algorithm (Sec. 4.4, p. 119)]; some are more systematically based, especially the methods
based on regular perturbation theory [quasilinear theory (Sec. 4.1, p. 90) and weak-turbulence theory
(Sec. 4.2, p. 98)] and diagrammatic summation of perturbation theory through all orders (Sec. 3.9.7,
p. 83). However, none of them is easily extendable to justifiable, quantitatively accurate descriptions
of strong turbulence.

Of the methods mentioned, diagrammatic summation has the most generality. However,
diagrammatic representations are tedious to work with, especially for self-consistent problems; one
can be plagued by both combinatoric and topological questions. An example of the plethora of terms
that can result is provided by the work of Wyld (1961) on the diagrammatic renormalization of
the NSE; see also the work of Kraichnan (1961) on the simpler stochastic oscillator model, Eq. (74).
At the level of the DIA, Kraichnan called the diagrammatic resummations line renormalization, to
be distinguished from a further vertez renormalization [called higher-order interactions by Kraichnan
(1958a)|. Indeed, he derived (Kraichnan, 1961) a vertex renormalization for the L = oo stochastic
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oscillator (Sec. 3.3, p. 52) that was very successful, and referred in several publications (Kraichnan,
1958a, 1964e) to the corresponding approximation for Navier—Stokes turbulence although he did not
publish the details. A simpler example of the diagrammatic method is the work of Horton and Choi
(1979) on renormalized ion acoustic turbulence.

In fact, renormalization procedures had been highly developed in quantum field theory (QFT) long
before the classical attempts outlined in the last several paragraphs; a brief history is given in Sec. 6.1
(p. 147). However, the nonlinear equations of concern in the present article are classical, and taking
the direct classical limit of quantum mechanics is difficult and subtle; moreover, one needs to handle
dissipation, not incorporated in either standard quantum-level descriptions or the thermal-equilibrium
classical descriptions frequently used in condensed-matter physics. It was therefore a major triumph
when, in one of the most elegant papers of modern classical statistical physics, Martin et al. (1973)
showed how to treat the nonequilibrium statistical dynamics of classical field theories directly by
replacing the infinity of primitive diagrams by a few (functionally) closed equations: (i) the exact
equation for the mean field; (ii) a 2 x 2 matrix Dyson equation linking the two-point correlation
function C' and the mean infinitesimal response function R; and (iii) a functional equation for a
vertex matrix I' (containing three distinct entries) related to three-point correlation and response
functions. The method has come to be known as the MSR formalism; based on generating functionals
and path-integral representations, it is the classical generalization of Schwinger’s nonperturbative
approach to quantum field theory (Schwinger, 1951a). It accomplishes renormalization in one fell
stroke, banishing tedious combinatoric difficulties. The DIA emerges as the natural lowest-order
approximation, and Kraichnan’s higher-order approximation follows as a logical generalization (first
vertex renormalization). The method also suggests a variety of nonperturbative techniques that are
still incompletely explored.

Various considerations to be discussed below show that the MSR formalism is “not a panacea”
(Martin, 1976). Nevertheless, it provides a compelling unification of various earlier cumbersome
techniques, highlights strong and beautiful links between a variety of fields, and permits an economy
of description that can be extremely useful in practice (Krommes and Kim, 2000). I therefore give a
relatively thorough discussion. In Sec. 6.1 (p. 147) I provide a highly condensed historical background
on the general problem of renormalization. The actual equations of MSR (correct for Gaussian initial
conditions) are derived in Sec. 6.2 (p. 153). The treatment of non-Gaussian initial conditions is
discussed in Sec. 6.3 (p. 165). The path-integral representation of the formalism is described in Sec. 6.4
(p. 166). In Sec. 6.5 (p. 170) the MSR techniques are used to derive a formally exact representation of
the nonlinear dielectric function. The theory of the nonlinear plasma dielectric permits a unification
of various superficially disparate lines of research in plasma physics, including derivations of the
wave kinetic equation (Sec. 6.5.4, p. 176), resonance-broadening formalism (Sec. 6.5.5, p. 178), and
self-consistent quasilinear theory (Sec. 6.5.6, p. 180).

6.1 Historical background on field-theoretic renormalization
Although the MSR formalism of classical renormalization is self-contained, it did not spring

from a (field-theoretic) vacuum. In presenting the following abbreviated history, I draw heavily
on the excellent works of Pais (1986; a “history and memoir” of elementary-particle physics) and
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Mehra (1994; a scientific biography of Richard Feynman). '8 A historical account of Feynman’s early
contributions to quantum electrodynamics was given by Schweber (1986). Further historical and
philosophical remarks can be found in the collection of articles on renormalization edited by Brown
(1993). The reader is urged to consult those works for a much more complete perspective and many
references impossible to list here. A very clear and pedagogical introduction to renormalization in the
context of critical phenomena was given by Binney et al. (1992). A modern and detailed account of
renormalized QFT is by Zinn-Justin (1996).

6.1.1 Mass and charge renormalization

“The elementary phenomena in which divergences occur, in consequence of virtual transitions
involving particles with unlimited energy, are the polarization of the vacuum and the self-
energy of the electron ... . The basic result of these fluctuation interactions is to alter the
constants characterizing the properties of the individual fields.” — Schwinger (1948).

By the end of the 1930s it had become clear that the nascent analytical theory of quantum
electrodynamics (QED), initiated by Dirac (1927), was in serious trouble due to various infinities.
Certain primitive infinities such as infinite energy due to zero-point oscillations of the electromagnetic
sea or infinite charge due to a Dirac sea filled by an infinite number of negative-energy electrons
were easily eliminated by redefinitions of the zero points (technically, by “normal ordering” of the
creation operator 12 and annihilation operator ). '®! Nevertheless, although a small parameter (the
fine-structure constant) a = e*/hic ~ ﬁ had been identified so that perturbation theory seemed
appropriate, effects thus calculated still exhibited high-energy (ultraviolet) divergences. Although such
infinities became visible only at extremely short distances, where modifications to the theory could be
expected, the divergences could not simply be ignored; for example, Oppenheimer (1930) predicted
an infinite shift of the spectral lines of the hydrogen atom due to interaction of the electron with
the radiation field. Of course, the measurable experimental value of that shift (Lamb and Retherford,
1947) is finite and very small.

It became appreciated that the remaining divergences were related to two distinct physical effects:
the self-energy of the electron; and the polarization of the vacuum. A short and readable discussion
can be found in the Introduction to the paper by Schwinger (1948). A very clear technical explanation
of the self-energy correction was given by Feynman (1949). 12 Briefly, at first order %% in o an electron
can interact with itself by emitting a photon and later reabsorbing it, as shown in Fig. 18 (p. 149).

Unfortunately, the process diagrammed in Fig. 18 is divergent at large energies. A partial solution
to this difficulty of apparently infinite electron self-energy was found by noting that standard field
theories of QED begin with a Lagrangian containing an electron mass parameter mg. The crucial

180 The definitive biography of Julian Schwinger by Mehra and Milton (2000) was not available to me at the
time of writing, but provides a wealth of useful information and insights.

181 A nice account of the role of creation and annihilation operators in the second-quantization route to
many-particle quantum field theory, and of the relation of that formalism to solution of the many-particle
Schrodinger equation, can be found in Fetter and Walecka (1971).

182 These papers are cited for their clarity, not historical precedence.

183 Tt would be more consistent with the discussion in the rest of the article to introduce @ = /a. Then
one would speak of processes of second order in @, emphasizing that the effects are related to quadratic
nonlinearity.
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Fig. 18. First-order self-energy contribution of an electron interacting with itself by emitting, then absorbing
a photon; after Figs. 2 (real space) and 3 (momentum space) of Feynman (1949) (momentum labels have
been changed to conform to present notation). Straight lines represent the electron; wiggly lines represent
the photon. s is the invariant space-time distance t* — r2. Compare these figures with Fig. 7 (p. 84). In
general renormalization theory (Sec. 6.2, p. 153), the electron propagator becomes the infinitesimal response
function R, and the photon term becomes the two-point correlation function C.

insight was to recognize that my is not the experimentally measurable mass m of the electron. Instead,
the “bare” parameter mg should be renormalized '%* by a correction dm due to the electron-radiation
interaction: m = mg + dm. Perturbation theory predicts an infinite value for dm. Presumably a more
complete theory would provide ultra-high-energy corrections that would render om finite (and small,
proportional to «). Therefore physical phenomena observable at modest energies should be insensitive
to the precise form of the high-energy cutoff. Feynman (1948a) regularized the integrals by replacing in
a relativistically covariant way a Dirac delta function by a regular function. Alternatively, the theory
can be reworked by using m rather than my as the fundamental mass by adding to the Lagrangian
appropriate counterterms that are chosen to cancel the infinities; a detailed discussion is given by Zinn-
Justin (1996). Gratifyingly, with the theory expressed solely in terms of the experimental mass m, a
finite value can indeed be obtained for the Lamb shift; the nonrelativistic calculation of Bethe (1947)
was followed by the exceedingly tedious but successful relativistic calculation of Kroll and Lamb
(1949). 185

Mass renormalization is a specific example of the propagator renormalization introduced in
Sec. 3.9.7 (p. 83). An analogous discussion can be given of charge renormalization, which is the proper
solution to the problem of polarization of the vacuum (by virtual pairs of electrons and positrons).
Charge renormalization is an example of the vertex renormalization introduced in Sec. 3.9.7 (p. 83).
We will encounter both kinds of renormalization again in the general MSR formalism (Sec. 6.2, p. 153).

184 Pais (1986) attributes the first use of the word renormalization to a paper by Serber (1936). Ideas of
Kramers were also significant; see Mehra (1994, Chap. 11) for references.

185 This single reference does not do justice to the intense activity of the time. For more discussion, see
Mehra (1994, Chap. 13) and Feynman (1949, footnote 13). Coincidentally, this particular section of the
present article was written on Friday the 13th (really).
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6.1.2 Renormalization and intermediate asymptotics

“The concepts of self-similarity are widely used by physicists in quantum field theory and in
the theory of phase transitions (where self-similarity is called ‘scaling’). ... In fact, scaling is
precisely what we understand today by self-similarity of the second kind. It would seem to
me useful for those interested in scaling to look at how this concept works in other situations,
where ... the origins of the self-similar asymptotics can be traced directly.” — Barenblatt
(1979).

Infinite bare masses, regularization of divergent integrals, and the addition of infinite counterterms
may be unpalatable, confusing, or both. Although these concepts will not be used in the formal
MSR procedure to be described in Sec. 6.2 (p. 153), they are discussed frequently enough in the
literature that it is useful to have a simple model in mind. To illustrate some of the issues, I shall
return to the stochastic oscillator (Sec. 3.3, p. 52) at infinite Kubo number (7,. = 00). Thus consider

Db = —idw, (257)

where @ is a Gaussian random number with standard deviation 3. Let the goal be to find the damping
rate n of the mean response function R, eschewing details of the actual time dependence. I shall
distinguish the total rate n from the nonlinear contribution n™, the difference being a possible linear
damping rate v to be added later. I shall consider the Markovian approximation (Sec. 3.9.2, p. 78)
nt = [5°dr X0(7), where ¥ is the mass operator discussed in Sec. 3.9.7 (p. 83). Both dimensional
analysis and the exact solution lead to n™(3) oc 3. However, let us examine the problem from the
point of view of perturbation theory.

When 3 = 0 the oscillator does not decay, so n™ = 0. For 3 # 0, however, one has in lowest-order
perturbation theory Y™ = 32Ry(7) [cf. Egs. (134b) or (247)], so one finds n™ = [5°dT 3% = co. The
discontinuous lowest-order result

n_ 0 (5:0)
W ={s (20 (258)

is a characteristic signature of unusual asymptotics and is reminiscent of the infinities encountered
in QFT.
To regularize the infinity, let us add a linear damping term to the left-hand side of Eq. (257):

O + v = —iGnp, (259)

where v is arbitrary but should be thought of as small. This extra term causes the zeroth-order
response function to decay exponentially with rate v, so has the effect of terminating the 7 integral
that defines 7™ at a long-time cutoff A = v~!. Now one has X3! = 32/v, a continuous function of 3.
Notice that [ enters to the power 2 [quasilinear scaling; see Sec. 3.3.2 (p. 55)|. This classical exponent
is analogous to the prediction of mean-field theory for a scaling exponent in the Ginzburg-Landau
model of phase transitions (Binney et al., 1992).

With perturbation theory regularized, one can resum according to the propagator renormalization
procedure of Sec. 3.9.7 (p. 83). The result is the direct-interaction approximation ¥"(7) = 32R(7).
Since in the Markovian approximation one has R(7) = H(7)e ™, with n = v + n", one finds
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™ = 3%/(v +n™), a self-consistent nonlinear equation %¢ to be solved for n*(3;v). But now there is
no difficulty with taking the limit v — 0 (A — oo). The solution of 7*(3) = 5%/n™ is the expected
result () = (. Here 3 is raised to the power 1, a value differing by an amount of order unity from
the classical power 2. This appearance of an anomalous exponent is analogous to the way in which
critical exponents in the theory of critical phemonena differ from the predictions of mean-field theory.
The self-consistently calculated n™ is analogous to the renormalized mass of QFT; the infinity in
Eq. (258) is analogous to the infinity in the perturbation theory for the bare mass in the Lagrangian
of QFT.

Deep insights into the appearance of anomalous exponents may be had by considering the theory
of scaling, self-similarity, and intermediate asymptotics as described by Barenblatt (1996) and very
briefly reviewed in Appendix B (p. 264). Barenblatt (1979) had noted the essential identity between
(i) the renormalization (scaling) theories employed in QFT and critical phenomena, and (ii) self-
similarity of the second kind (defined in Appendix B). The analogy was developed in detail by
Goldenfeld and co-workers and was reviewed by Goldenfeld (1992); see also Barenblatt (1996). For
the I = oo stochastic oscillator, and upon using the notation introduced in Appendix B, one has

%ﬂ = (g, e) , (260)

where € is assumed to multiply the right-hand side of Eq. (257). Whereas first-order perturbation
theory would give ® = ¢2(3/v), the correct result in the limit 3/v — oo is

with @4 (e) = e.

In the present calculation the cutoff time A = v~ was not present in the original model
equation (257) (and, of course, is not present in the final result). That is analogous to the situation
in QFT, in which no large-energy cutoff is apparent (at least in the absence of gravity).!'®” The
situation is typically different in classical applications. In the application to critical phenomena
(Binney et al., 1992; Goldenfeld, 1992), where time integrals are replaced by d-dimensional momentum
integrals, a natural large-k cutoff is provided by the inverse of the lattice spacing a: kmax = 27/a.
For dissipative systems such as the NSE, linear dissipation k%u. provides a physical analog to v. To
the extent that there are no finite-time singularities, one can calculate the response for all times,
both below and above the natural cutoff, and for all spatial scales, both larger and smaller than the
Kolmogorov dissipation scale. Thus the MSR procedure makes no reference to a cutoff. Nevertheless,
various long-wavelength limits can sometimes be profitably treated by renormalization-group ideas;
for more discussion, see Sec. 7.4 (p. 196).

1

186 Compare the closely related Eq. (f-9b), p. 112, for the perpendicular diffusion coefficient of
magnetized RBT.

187 Although I shall not discuss the details here, one method of calculating the anomalous exponents by
exploiting the independence of the solution on A is the renormalization group; see Zinn-Justin (1996).
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6.1.3 Path-integral formulation of quantum mechanics

“The formulation to be presented contains as its essential idea the concept of a probability
amplitude associated with a completely specified motion as a function of time.” — Feynman
(1948b).

So far I have concentrated on the necessity and intuitive content of field-theoretic renormalization.
I now turn to the technical advances that are the natural antecedents of the MSR formalism, which
is rooted in the two main threads of development of post-war QED, namely, the works of Schwinger
(and closely related work of Tomonaga) and of Feynman. An important unification was achieved by
Dyson (1949), who demonstrated the ultimate equivalence of the “radiation theories of Tomonaga,
Schwinger, and Feynman”; for a short account, see Dyson (1965).

Actually, the specific work of Schwinger that underlies the MSR formalism came later and is
described in Sec. 6.1.4 (p. 152). Here I concentrate on Feynman’s contribution [see, for example,
Schweber (1986)]. In his Ph.D. dissertation (Feynman, 1942), key parts of which were published by
Feynman (1948b), he stressed the importance of action principles [thoroughly reviewed by Mehra
(1994); see also Lanczos (1949)]. He then showed that the Schrodinger equation —(h?/2m)y” +
Vi) = ihdy) follows from the propagation law (X, t 4+ €) = A~! [dz el LXttenty (5 1) where
L = imi* — V is the Lagrangian and A = (2rhe/m)"/?. By compounding that law, he was then
led to a path-integral representation of the propagator K(z,t;a’ '), defined such that (z,t) =
Jdo' K(x,t; 2’ t" ) (2’ t'). Namely,

dz; dz; -
K(z, t;2',t) = lir% j 3;;1 ...exp <1h ! Zs(xjaxj—i—l))a (262)
J
where S = [ldf L(f) is the classical action and the velocity dependence of the Lagrangian is

appropriately differenced in time.

The beauty of the path-integral formulation is that it deals at once with the entire solution of the
problem through all of space-time. It is therefore intrinsically nonperturbative. In some cases, that
feature can be usefully exploited by integrating away the dependence of S on certain variables (such
as the field coordinates in a theory of coupled particles and radiation). However, it also lends itself
naturally to perturbative calculations and thus facilitates physical interpretation; the famous Feynman
diagrams are nothing but graphical representations of various terms in perturbation theory, in which
L is written as a zeroth-order part Lo plus a perturbed part 0L and Eq. (262) is expanded in §L.
Feynman’s methods were written up most formally by Feynman (1950). A path-integral representation
of the classical MSR formalism will be discussed in Sec. 6.4 (p. 166).

6.1.4 The role of external sources

“The temporal development of quantized fields, in its particle aspects, is described by
propagation functions, or Green’s functions. The construction of these functions for coupled
fields is usually considered from the point of view of perturbation theory. Although the latter
may be resorted to for definite calculations, it is desirable to avoid founding the formal theory
of the Green’s functions on the restricted basis provided by the assumption of expandability
in powers of coupling constants.” — Schwinger (1951a).

Although I have pointed out that path-integral representations are intrinsically nonperturbative,
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all of the practical work on QED was initially implemented perturbatively. An alternate approach
to a nonperturbative formalism was initiated in deceptively short papers by Schwinger (1951a,b)
[elaborated by Schwinger (1951c)]. He considered a Lagrangian for interacting matter and radiation
that included coupling to external sources of particles and currents. He then showed that appropriate
functional variations with respect to those sources leads to an exact functional differential equation
that relates various propagators. It is this approach that most immediately underlies the work of MSR;
the technical details are described in the next section. For a retrospective on Schwinger’s work, see
Martin (1979).

6.2 Generating functionals and the equations of Martin, Siggia, and Rose

“The formal quantity which will play a central role in our discussion is an operator which
serves to infinitesimally change the classical random variable at a given point in space and
time. With the aid of this quantity we will be able to ask questions about the response of the
system in a representation-free fashion and thus, to determine the response in a state, the
details of which are only determined at the end of an exact (or approximate) self-consistent
calculation.” — Martin et al. (1973).

In the present section I review the MSR formalism as presented in the original paper of Martin
et al. (1973). In Sec. 6.3 (p. 165) I discuss the generalization needed to treat non-Gaussian initial
conditions. The path-integral version of the formalism is described in Sec. 6.4 (p. 166).

6.2.1 Classical generating functionals and cumulants

The MSR formalism is based on a sophisticated use of generating functionals. The concepts of
moment and cumulant generating functions have already been introduced in Sec. 3.5.2 (p. 59), the
moment generating function being simply the characteristic function (Fourier transform) of the PDF.
For the random field (1), where 1 denotes the complete set of independent variables, a moment
generating functional is Z[n] = (exp[n(1)y(1)]). Here and subsequently the Einstein summation—
integration convention is adopted for repeated indices. The statistically sharp field n(1) plays the
role of the —ik in Eq. (89).1® For example, the mean field is the first functional derivative of Z:
(¥(1)) = 6Z/on(1)],_y: compare this and similar equations with Eq. (90b).

The corresponding cumulant generating functional is Wn] = In Z[n]; cf. Eq. (91a). The n-point,
n-dependent cumulants are defined by

() .. b))y = Ca(l, ... n) = 577(;5;'”'/'[;7}7(71) _ ) 577(%” “U) (963a.b.0)

cf. Eq. (91b). The usual Eulerian correlation functions are obtained by setting n = 0. For example,
the two-point correlation function can be generated from the second functional derivative of W:
C(1,1) = 0*W(n]/on(1)én(1’)|,—,- Usually it is unnecessary to indicate the 1 dependence explicitly.

188 One need not worry here about possible convergence difficulties in various regions of the complex 1 plane.
The formal manipulations are independent of the value of 7, and analytic continuations can be performed if
necessary.
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For example, one often writes C'(1,1") = §((x(1)))/dn(1"). n can always be set to zero at the end of
the calculation. 8

A multitime BBGKY-like cumulant hierarchy readily follows by taking successive functional
derivatives 1% of the equation resulting from the time derivative of {(1/(1))); see analogous calculations
in Sec. 6.2.2 (p. 155). However, mere generation of such a hierarchy does not in itself effect statistical
closure. The difficulty is that the cumulant hierarchy as described so far contains only correlation
functions. However, it seems intuitively reasonable that an efficient description of turbulence should
involve not only correlation functions but also response functions. Speaking very loosely, one may say
that correlation functions describe the intensity of fluctuations that have arisen in the turbulent state
whereas response functions describe the time-dependent fate of fluctuations once they have appeared.
The steady turbulent state represents a balance between correlations and response. The fluctuation—
dissipation theorem (Martin, 1968) of thermal equilibrium is an important special case, and the DIA
spectral balance equation (241) provides a key approximate realization of the general nonequilibrium
balance.

In the very pedagogical introduction to the paper of Martin et al. (1973), MSR discussed at length
the difficulties of statistical closure of a classical theory. They pointed out that whereas in quantum
theory the existence of nontrivial commutation relations for the field operators lead naturally to both
correlation functions (anticommutators) and response functions (commutators), in classical theory
the commutation properties of v are trivial. Thus although n-point correlation functions can readily
be derived from W, no means is immediately apparent for the derivation of response functions. The
solution of MSR was to extend the system to include not only the original field ) but also the operator

= —6/01p. (264)

The need for such a (functional) differential operator arises from the fact that the state of a classical
field can change by an infinitesimal amount, as stressed by MSR.

In fact, Martin et al. never wrote Eq. (264) explicitly; they preferred a more abstract discussion
based on the commutation properties of ¢ and ¢ [see Eq. (265a)]. Many details underlying the
MSR paper were given by Rose (1974) and Phythian (1975, 1976). An explicit construction that leads
to Eq. (264) is afforded by the path-integral representation to be described in Sec. 6.4 (p. 166). For
additional discussion of the relationships between the MSR formalism and quantum field theory, see
Eyink (1996).

At equal times v and 12 exhibit canonical (boson) commutation relations analogous to those
of the position and momentum variables ¢ and p = —ihd, of quantum mechanics, which obey
[p,q] = —ih. That is, upon using an underline to represent all variables except the time and with
the conventional notation [A, B] = AB — BA, one has [¢(1,t),1(1',t)] = 6(1,1). If an extended field
vector ®(1) = (1(1), (1)) is introduced, then

B(1, 1), B(1', 1)] = i0d(L, 1), iai<_01 é) (265a,b)

189 1 must not be set to zero prematurely because derivatives with respect to  may be taken.
190" Compare the two-time hierarchy discussed by Krommes and Oberman (1976a); (less sophisticated)
generating-function techniques were used in its derivation as well. See also Dawson and Nakayama (1967).
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Now consider the extended, time-ordered generating functional 1
Zm] = <ew<1>n(1>+$<1>ﬁ<1>>+ — (e®Wmmy (266)

where %2 n; = (n, §)T. It is not difficult to show that

~

022 /(1)o7 (1) = ([1(1), 1 (1)]e D) ; (267)

the commutator is introduced by the time ordering. A key result is that the right-hand side of Eq. (267)
evaluated at 7, = 0 is precisely the mean infinitesimal response function R(1;1’):

R(L; 1) = ([$(1), ¥ (1)), = 6°Z/5n(1)8i(1)],, — - (268)

For the detailed arguments, see Rose (1974), Phythian (1975), and the discussion of path integrals in
Sec. 6.4 (p. 166). One can adopt the convention that the expectation of any function of ¢ and 1 that
begins with ¢) on the far left vanishes; thus one finds the alternate represention

R(L;1) = (w()o(1)  (t>1). (269)
Extended cumulants with spinor indices can now be defined by generalizing Eqs. (263):

_ 5W[771]

0G(1,...,n—1)
B 5771(1) '

¢ dm(n)

= (@), G(1....n)=

(270a,b)

In particular, upon noting Eq. (269) one finds that the two-point, time-ordered correlation matrix of
the extended field contains both of the usual correlation and response functions:

Gu(11) = 5~ e, G, = (G TG enabe

Diagrammatically, Go = G will be represented by a heavy solid line [Fig. 20(a), p. 161].

6.2.2 The Dyson equations

“The elimination of graphs with self-energy parts is a most important simplification of the
theory.” — Dyson (1949).

In the usual approach to renormalized field theory, one does not attempt to calculate the
correlation and response functions directly from their definitions; instead, one deduces evolution
equations for them. For the formal work in this section, let us take the primitive dynamical equation

191 The + subscript denotes time ordering [discussed in footnote 121 (p. 88)]. A shorthand notation is used

in which, for arbitrary functional A[®], (A), = ((A)+); i.e., the time ordering must be performed before the
statistical averaging.

192 The 1 subscript indicates that 7;(1) depends on a single argument, and also distinguishes the vector 7;
from the scalar n and, later, from a two-body source 72(1, 2).
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to have the form 93

Onp(1) = Ur(1) + Ua(1,2)9(2) + 5Us(1, 2, 3)9(2)¥(3), (272)

where 0; = 0y, and the U, coefficients are given. In general, the U,’s may be random. Random U,
describes external forcing; cf. Eq. (7a). Random U, describes the usual passive advection problem
(linear in dynamical variables but quadratically nonlinear in random variables); cf. the stochastic
oscillator model (74) or the kinematic dynamo problem (62). The corresponding equation for ¥ can
be shown to be

—0ab(1) = Ua(2,1)8(2) + Us(2,3, 1) (2):(3). (273)
Equations (272) and (273) can be combined (Martin et al., 1973) into the symmetrical equation
Cigh(1) = 34(1) +15(1,2)0(2) + 1ra(1,2,3)B(2)B(3), (271)

where the arguments now include the spinor indices in the 2x 2 extended state space. The nonvanishing
elements of the fully symmetric matrices v; (called bare vertices) have precisely one — index and are
defined by v1-(1) = Ui(1), 72-+(1,2) = Us(1,2), and v3-4+4(1,2,3) = Us(1,2,3). For the remainder
of this section I shall assume that the 7’s are not random (i.e., are statistically sharp), so the
present formalism deals with self-consistent nonlinearity. A generalization of the formalism that uses
statistically sharp +’s but handles passive advection and other kinds of random coefficients can be
accomplished by extending the ® vector to include the random coefficient as its third component and
using 2 x 3 spinors instead of 2 x 2 ones; see Deker and Haake (1975). A superior technique is to allow
random 7’s and employ a path-integral formalism, as described in Sec. 6.4 (p. 166).

Successive functional differentiations with respect to 71 generate higher-order correlation matrices
and multipoint generalizations of R(t;t') such as the “two in, one out” response function R(t;t',t").
One has

oW/om (1) = (®(1)),, /Zy = (2(1)) = G(1) (275)

(I now drop the n; subscripts); the time derivative of this expression introduces both the right-hand
side of Eq. (274) and, because of the time ordering, an extra forcing term 7;:

—i00,G(1) — 12(1,2)G(2) — 573(1,2,3)[G(2)G(3) + G(2,3)] = 71 (1) + m(D). (276)

The appearance of 77 on the right-hand side of this equation makes its significance as an external
probe of the system apparent; the present methods stem from the seminal work of Schwinger (1951a)
mentioned in Sec. 6.1 (p. 147). Note that because of the —io it is 7j that perturbs ¢: dpp + -+ - = 17,
8,512 + .-+ = —n. Equation (276) at n; = 0 reproduces the exact equation for the mean field, which
is retained without approximation in the MSR formalism. [The — component of Eq. (276) is the
statistical average of Eq. (272).] Fluctuation-induced contributions to the mean fields arise, of course,
from G(2,3); those are generalized Reynolds stresses. 194

193 Tn the original development of MSR, the U’s were taken to be local in time. That restriction is unnecessary,
however; see Sec. 6.4 (p. 166).
194 Note that a possible solution for any closure that includes Eq. (276) is one for which fluctuations vanish
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The functional derivative of Eq. (276) with respect to 7;(1’) gives an equation for G(1,1'):
—i00,G(1,1") = 12(1,2)G(2,1') — 5(1,2,3)G(2)G(3,1') — Ls(1,2,3)G(2,3,1') = 6(1,1). (277)

Additional functional derivatives could be taken, but that procedure would merely generate more
members of an unclosed multipoint statistical hierarchy. Instead, the key to effecting at least a formal
statistical closure of that hierarchy is to perform a Legendre transformation (de Dominicis, 1963;
de Dominicis and Martin, 1964a,b; Krommes, 1978, 1984a) from 7;(1) to the mean field G(1), i.e., to
consider 19

L[Gl] = W[771] - 771(1)G1(1)- (278)
Functional derivatives of L with respect to Gy are called the vertex functions I'y:

O"L[Gh]

To(l,...,n)= (279)

cf. Eq. (263b). The vertices are clearly completely symmetrical in their arguments. The first few of
them are

(1) =—m(1), (280a)
I(1,2)=-G71(1,2), (280b)
I'(1,2,3) =G (1,1)G"1(2,2)G7'(3,3)G(1,2,3), (280c)
1(1,2,3,4) =G (1,1)G7'(2,2)G*(3,3)G""(4,4)G(T, 2,3, 4)
—I'(1,5,2)G(5,5)[(3,5,4) — [[(1,5,3)G(5,5)(2,5,4) + (3 < 4)]. (280d)

Equation (280b) follows by writing d1;(1)/6G(2) = [60G(2)/6n:(1)]7" and using the result (280a).
Equations (280c) and (280d) additionally use the result that follows by varying the operator identity
G7'G =1, namely, §(G™') = —G71(6G)G™. Note that Egs. (279) and (280b) imply that

I(1,2,3) = —6G~1(1,2)/6G(3). (281)

A quick graphical way of deriving the relations between G, and T, is to represent G5 by a heavy solid
line and I's by a filled circle, then to note that 6G2/dm = Gs = GG(I'sG); i.e., differentiation
of a line with respect to ny inserts a (third-order, renormalized) vertez. Additionally, the result
oL, /dm = (01, /0Gy) (6G1/dm) = T'ni1Gy shows that differentiation of a vertex raises its order
by one. The results for Gy, G3, and G, are diagrammed in Fig. 19.

Note that I's = I' is a matrix in the spinor indices. The symmetry of that matrix, Eq. (280c),
and the vanishing of G___ can be used to show that there are exactly three nontrivial elements of I’
namely, I'_,, I'__, and I'___; I'; 4, vanishes identically.

identically; i.e., the exact dynamics (with singular initial condition) satisfy the closure. Presumably, however,
in turbulent regimes such solutions are unstable.

195 Frequently an overall minus sign is included on the right-hand side of Eq. (278). A graphical explanation
of the Legendre transform can be found in Box 1.2 of Binney et al. (1992).
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Gy = m— G3=>— G4=>—<+ I + x+x

Fig. 19. Relationships between the first few cumulants and renormalized vertices. Successive diagrams follow
by differentiation with respect to 71, using the rules that (i) the derivative of a line inserts a vertex, and
(ii) the derivative of a vertex raises its order by one. The first term of G4 is the DIA; the last three terms
represent all of the doubly connected contributions omitted in the DIA.

Because the three-point vertex (matrix) function is intimately related to the three-point
correlation function, it is a good target for statistical closure. Indeed, Eq. (277) can be formally
closed by introducing the result (280c):

(Gt (1,1) — 2(1,D)]G(T, 1) = (1,1, (282)
where [Fig. 20(d), p. 161]

Gy (
D

) = —iO'at(S(l,T) - 72(17T) - 73(1
)=273(1,2,3)G(2,2)G(3,3)l5(T

1)G(2), (283a)

17 T ) 27
1,1 ,2,3). (283b)
Equation (282) is called the Dyson equation in view of the work of Dyson (1949). In the form
G = Gy + GpXG it is diagrammed in Fig. 20(c) (p. 161), which should be compared with Fig. 10
(p. 86). ¥ is analogous to the renormalized mass of QFT. In this classical formalism it is a 2 x 2

matrix equation whose (——) and (—+) components are

R (L, DRI 1) =06(1,1), R*(1,1HCT, 1) =F"(1,T)R1;1), (284a,b)

where
R'(1,1) =Ry (1,T) + ¥"(1,1), (285a)
RyY(1,T)=0,6(1,1) — Uy(1,T) — Us(1,2,1)G(2), (285b)

Frl=3%__ and!'" ¥ = —3__ . One has already seen this general structure in the form of the DIA;
see Egs. (224). However, under certain technical restrictions Eqs. (284) are exact. %7 ¥ plays the
role of a generalized resonance broadening of the linear response; F™ describes a generalized internal
stirring that can be called incoherent noise. *® An appealing alternate form of Eq. (284b) is [Fig. 20(g),
p. 161]

C(1,1) = R(; T)F"N(T, T)R(1; T)). (286)

We have already encountered this balance form in classical Langevin theory [Eq. (72)] and in the
discussion of the DIA [Eq. (241)]; it is now seen to be a general property of renormalized theory.

196 The minus sign that defines ¥ [so that it appears with a plus sign in Eq. (285a)] emphasizes its role as a
dissipative (generalized) resonance broadening. Krommes (1984a) incorporated that sign into the definition
of the ¥ matrix, but that convention leads to confusion with the general field-theory literature.

197 Specifically, the initial conditions must be Gaussian. The generalization to non-Gaussian initial conditions
is given in Sec. 6.4 (p. 166).

198 More precisely, F™! is a positive definite form that can be viewed as the variance of an internally produced
random noise.
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Early discussion of the physical interpretation of this form was given by Kraichnan (1964d) in the
context of the DIA (Sec. 5.4, p. 133). Additional interpretation is given in Sec. 6.5 (p. 170).

Since the Dyson equation is formally exact, the focus of statistical closure shifts to the
determination of the unknown renormalized vertex matrix I', which is analogous to the renormalized
charge of QFT. To derive an equation for I'; write Eq. (282) in the form

G(1L,2) = G'(L.2) - D(1,2) (257)
recall Eqgs. (281) and (283a), and functionally differentiate Eq. (287) with respect to G(3):

5%(1,2)

I'(1,2,3) =~(1,2,3) + 5G(3)

(288)

If the last term of Eq. (288) is ignored [see Sec. 6.2.3 (p. 159) below for more discussion], the result
is the (Eulerian) DIA in an elegant and compact matrix form:

Tpia = 7 (289)
(i.e., the DIA omits vertex renormalization), or [Fig. 20(f), p. 161]
Spia(1, 1) = 379(1,2,3)G(2,2)G(3,3)7(1, 2, 3). (290)
The scalar components of Eq. (290) are [Fig. 20(g), p. 161]

Yl (1;T)=-U(1,2,3)R(2;2)C(3,3)U(2,3,1), (291a)
Fia(1L,T)=1U(1,2,3)C(2,2)C(3,3)U(T,2,3). (291Db)

Compare these space- and time-dependent formulas with Eqs. (224), (234), and (236).

6.2.3 Vertex renormalizations

The remaining and most difficult issue in the formal statistical-closure problem is to identify
the conditions under which vertex renormalization may be ign