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A Tutorial on the Basic Principles of Microwave Reflectometry Applied to

Fluctuation Measurements in Fusion Plasmas

R. Nazikian, G.J. Kramer and E. Valeo

Princeton Plasma Physics Laboratory, Princeton NJ 08543-0451

Abstract

Microwave reflectometry is now routinely used for probing the structure of magneto

hydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the

core of tokamak plasmas, such as small amplitude of density irregularities and the

uniformity of the background plasma, have enabled progress in the quantitative

interpretation of reflectometer signals. In particular the extent of applicability of the 1-D

geometric optics description of the reflected field is investigated by direct comparison to

1-D full wave analysis. Significant advances in laboratory experiments are discussed

which are paving the way towards a thorough understanding of this important

measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R.

Hawryluk, Plasma Physics and Controlled Fusion 33, 1509 (1991)] identifying the

validity of the geometric optics description of the scattered field and demonstrating the

feasibility of imaging turbulent fluctuations in fusion scale devices.
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I. INTRODUCTION

Achieving the promise of fusion energy requires detailed understanding and eventual

control of the underlying collective processes responsible for determining plasma

performance.  One current area of intense research involves the diagnosis and

understanding of the non-linear dynamics of turbulent fluctuations. In recent years great

progress has been made in unraveling the complexities of plasma behavior and isolating

the relevant non-linear feedback mechanisms which control turbulence and affect

transitions to, and maintenance of, various confinement regimes.  The quest to understand

these instabilities and to challenge leading theoretical models on turbulence and transport

has motivated scientists to devise new and ingenious methods to probe fluctuations in the

high temperature core of fusion plasmas.  In order to challenge theory, experimentalists

must devise ingenious new techniques for extracting local fluctuation properties in the

plasma with good spatial and temporal resolution.

In this tutorial we describe the development of one of the more exciting and challenging

experimental methods used to probe the local properties of waves and instabilities in

fusion plasmas.  The technique known as microwave reflectometry, a form of microwave

radar that uses the plasma as a reflector, has helped to revolutionize our understanding of

the relationship between fluctuations and transport by providing high resolution localized

measurements of turbulence in fusion plasmas. The method first saw use in probing the

height of ionospheric plasmas where it was called ionosonde [1]. These early

measurements also indicated the presence of irregularities in the ionosphere indicated by

amplitude fading of the reflected waves.[2-4]  Out of these observations evolved a branch

of statistical optics concerned with the physics of amplitude scintillations (fluctuations)

for waves passing through irregular media.[5-9]  One of the motivations for making use

of waves reflected from plasma is to take advantage of the sensitivity of the probe beam

to fluctuations near the turning point or zero in the refractive index. [10-14]  The

enhanced sensitivity to fluctuations near the turning owes to the decrease in the group

velocity as the wave front approaches the cutoff layer, unlike standard scattering

techniques that operate well above the plasma cutoff frequency. The advantages of
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localization and the ease of implementation of the diagnostic method has spurred a great

deal of experimental and theoretical research into providing a firm foundation for the

quantitative interpretation of these measurements. This tutorial will address the

underlying physics of reflectometry used in its application to fusion scale experiments

and the exciting progress in producing a quantitatively accurate description of the

measurements technique.

Since the discovery of the ionosphere in the early part of the 20th century from the

reflection of radio waves, the method of reflectometry or Ionosonde (pulsed or frequency

swept electromagnetic wave reflection from plasma) has evolved into an indispensable

tool for the investigation of the electron height distribution in space and laboratory

plasmas.[15-18]. Ionosonde was the first method used to investigate the ionosphere, and

it continues to be of great importance today for height determination of the electron

density and as a qualitative indicator of the presence of large-scale irregularities. The

method is also routinely applied to fusion plasma experiments on many devices and is

one of the few techniques which can resolve the sharp density profiles found in plasmas

with internal or edge transport barriers.[19-21] Reflectometry can be used both as a

measure of density profiles and as a diagnostic of turbulent or coherent fluctuations in the

plasma. The method has been extensively investigated theoretically and in controlled

laboratory experiments where the correlation properties of the reflected signals can be

compared to probe measurements of the density turbulence.[22-27] These studies have

greatly increased our quantitative understanding of the technique and its limitations as a

probe of turbulent fluctuations.

In order to provide a physically intuitive picture of reflection from plasma irregularities,

consider the simplified notion of a wave reflecting from a rippled mirror. A wave

reflecting from surface irregularities will experience fluctuations in amplitude, phase and

direction of the outgoing waves. These modulations on the reflected waves need to be

interpreted in order to extract information on the nature of the surface irregularities.  It

may be apparent to the reader that an important criterion for the quantitative

interpretation of a reflected signal is the degree of uniformity or smoothness of the
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reflecting layer.  If the fluctuations are too strong, the reflected wavefront will be over-

modulated and a linear relation between the modulation level on the reflected waves and

the depth of the surface irregularities will be lost. The advent of advanced confinement

regimes with low density fluctuation levels (<1%) in the core of the discharge is a major

advantage for the quantitative interpretation of reflectometer measurements as low

fluctuation levels lead to a simplified linear relation between the scattering amplitude and

the level of density fluctuations.  A further advance in the method was the use of multiple

frequency microwaves in order to sample fluctuations at different radii in the plasma

column.  The method, known as correlation reflectometry, has evolved into a routine

diagnostic of turbulent correlation lengths in major fusion facilities. [28-31]  Dramatic

examples of fluctuation suppression have been observed with the use of reflectometry in

the core of fusion plasmas. [32-34]  The radial correlation length of turbulence has also

been studied with this method, and the results are consistent with models of enhanced

confinement resulting from the radial decorrelation of turbulent eddies.[35-39]

This tutorial covers the basic principles of reflectometry relevant to current experiments

in fusion plasmas.  In Section II we review the basic principles of wave propagation in

inhomogeneous magnetized plasmas.  The birefringence of magnetized plasma and the

characteristic modes of propagation relevant to fusion plasmas are discussed.  Diffraction

from a random phase grating is presented in section III as a useful introduction to

scattering from density fluctuations near a reflecting layer.  The model is particularly

instructive in capturing qualitatively all the major features of reflectometer measurements

observed in fusion plasmas, although its range of validity must be checked against full

wave simulations in realistic geometry.  The range of validity of 1-D geometric optics is

explored in section IV by comparison to 1-D full wave analysis.  It is shown that the 1-D

geometric optics description of the scattered field is valid for radial scale lengths down to

the width of the interference fringe at the reflecting layer.  The validity of the random

phase screen approximation in describing the scattering from 2-D irregularities is

explored in section V.  Here it is shown that the phase screen approximation is indeed a

valid description of scattering from turbulent fluctuations in the TFTR device in at least

some cases [45].  The validity of the description of the scattering process as diffraction
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from a thin phase changing screen has important implications for future imaging

applications of turbulent fluctuations.  Conclusions on the present state of the art in

reflectometry and future directions in the application of the method are discussed in

section VI.

II. Basics of wave propagation in magnetized plasma

In order to understand the application of reflectometry to fusion plasmas, it is necessary

to go over some important yet straight-forward physical properties of wave propagation

in ionized gas. The emphasis will be on making clear how these physical principles

impact the design, execution and interpretation of experiments. As such, there will be no

attempt at rigor or completeness, there being a vast literature on this topic available to the

enthusiastic reader. [40]

A basic fact of magnetized plasma is its birefringence for weak high frequency waves

where ω>>ωci where  is the wave frequency and ci  is the ion cyclotron frequency.

Namely, for a homogeneous plasma (i.e., uniform electron density and magnetic field)

there are two characteristic modes of propagation in the plasma of different (orthogonal

or counter rotating elliptic) polarization.  This is true for any direction of propagation

relative to the direction of the magnetic field.  There are two very important limiting

cases resulting in a much simplified description of the characteristic modes of

propagation.  The first is for propagation near perpendicular to the direction of the

magnetic field (which is most relevant to reflectometer experiments in fusion and

equatorial “sounding” experiments in the ionosphere).  The second is wave propagation

in the direction parallel to the magnetic field, which is most relevant to ionospheric

sounding studies in the upper latitudes.  Here, sounding is used to denote the study of

microwave reflections.

A. The Dispersion relation
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Consider a homogeneous magnetized plasmas, and ignore collisions and ion motion for

high frequency waves.  The dispersion relation for a plane wave E = E0 exp(ikz − i t)

propagating at an arbitrary angle θ to the magnetic field B0 is given by

(1)

where  is the plasma permittivity, X = pe
2 / 2 , Y = ce / , pe

2 = nee
2 / 0me  is the

plasma frequency and ce = e B0 / me  is the electron cyclotron frequency, me  is the

electron mass and ne  is the electron density.  The refractive index is given by = .

Turning points, or reflecting layers correspond to locations where = 0  (infinite

wavelength), while resonances correspond to the cases where | |→ ∞  (i.e. where the

wavelength goes to zero).  Note that cyclotron absorption is ignored which is acceptable

as long as the waves do not approach the cyclotron frequency along the path of

propagation.  In contrast, the real part of the refractive index can be modified by finite

electron temperature and this needs to be taken into account.  The procedure of inserting

an electron mass correction into the dispersion relation me → me 1+ 5Te / Me  works very

well in reproducing the displacement of the cutoff layer where Me = 511 keV is the

electron rest mass and Te is the electron temperature in keV.[41-44]

In the above we have conveniently taken the wave front propagation in the z-direction,

and without loss of generality we are free to choose the magnetic field to be orthogonal to

the x-direction and hence lie in the z,y plane as shown in Fig. 1. We specify the

polarization of the characteristic waves of propagation by R = E x / Ey  (where x and y are

orthogonal to z). Here R is the ratio of the two components of the electric field

orthogonal to the direction of wave propagation.  The polarization is then given by

ck 
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1− Y 2 sin2

2(1− X)
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(2)

Note that in the absence of absorption, the two components of the electric field are

always out of phase by π/2 radians, so that we may take |R| as directly indicating the

degree of ellipticity of the characteristic waves in the medium. The polarization of the

two characteristic mode of propagation for a given direction  are identical upon

interchange of the two axes x-y, and are counter rotating.

The two cases of most interest correspond to the angles of propagation θ = 0˚ and 90˚ to

the magnetic field.  For θ=0˚ (180˚), corresponding to propagation parallel (anti-parallel)

to the field line then R=+i or –i.  This indicates that the two characteristic modes are

circularly polarized and counter rotating with respect to each other, with a dispersion

relation 1-X/(1±Y) which is sensitive to both the density and the magnetic field strength.

This case is of most interest to high latitude sounding experiments in the ionosphere

where the magnetic field lines intersect the ground and the plasma density varies with

height along the field lines.  For θ=90˚ or –90˚, corresponding to propagation

perpendicular to the magnetic field, R gives Ex = 0  or Ey = 0 .  Note that for Ex = 0 , the

dispersion relation is independent of the magnetic field strength (ε=1-X) which

corresponds to the Ordinary-mode (O-mode) of propagation where the polarization is

parallel to the magnetic field.  In addition there is the Extraordinary-mode (X-mode)

corresponding to the complementary (perpendicular) polarization state which is both

sensitive to the magnetic field and density, ε=1-X(1-X)/(1-X-Y2).  Here the polarization

states are linear in contrast to the general elliptic case for θ ≠ 90˚.

In an inhomogeneous medium, coupling between various modes of propagation can take

place, and these couplings are essential for understanding and making use of waves in

plasma.  Coupling can take place when the wavenumber of two modes with the same

frequency coincide.  For normal incidence (θ=±90 degrees), coupling can take place

  
R =

−i

Y cos

Y 2 sin2

2(1− X)
m

Y 4 sin4

4(1− X)2 + Y 2 cos2
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between oppositely directed waves at the plasma cutoff where µ=0, leading to wave

reflection.  The use of a reflecting (cutoff) layer (where k=0) for the investigation of

properties of the medium is the essential feature of reflectometry as a diagnostic

technique.  For propagation perpendicular to field lines (of greatest relevance to fusion

applications) the coupling - or turning point - for forward and backward going waves for

the O-mode is given by = pe  and for the X-mode it is given by

= ce
2 / 4+ pe

2( )1 / 2
± ce / 2.

In practice, waves will be launched from an aperture of finite extent and these waves will

have a spread of angles relative to the magnetic field.  From the experimental point of

view it is useful to determine to what extend the limiting case of 90 degree propagation

and linearly polarized characteristic waves represents a good approximation for

reflectometer experiments in fusion plasmas. In Figure 2, two important cases of interest

for wave propagation above and below the electron cyclotron frequency are shown.

Plotted is the square of the refractive index 2 vs X for Y=0.7 ( ce < < 2 ce ), and Y=1.3

( < ce ) and for relative angles of propagation to the magnetic field of 90, 80, 70 and 60

degrees. For any value of X there are two possible modes, one corresponding to the O-

mode (with polarization parallel to the magnetic field for normal incidence) and the X-

mode (polarization orthogonal to the magnetic field for normal incidence).  Also shown is

the degree of ellipticity |R| for these two cases in Figure 3. For inclinations of much less

than 10 degrees to the normal, (typical of high gain antennas in fusion experiments) the

refractive index is very close to that of normal incidence and the degree of ellipticity is

small. Note from Fig. 2 that the zeros of the refractive index are independent of the angle

of inclination to the magnetic field, while the location of the upper hybrid resonance in

the X-mode branch (where the refractive index diverges) depends on angle.  For all but

small angles to the magnetic field the degree of ellipticity of the characteristic modes is

considerable, and can represent > 10% of the amplitude of the mode.  Thus, a linearly

polarized wave launched from an antenna at 10 degrees off perpendicular to the magnetic

field will couple to both O and X modes of propagation and possibly lead to mixed

signals. For Y=0.7, the so called upper Right hand (RX) cutoff is encountered at a lower
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density than the O-mode cutoff and the upper hybrid resonance occurs at higher density.

The cutoff layer in the X-mode at even higher density is called the left hand X-mode

cutoff (LX) which is not accessible from vacuum due to the presence of the upper hybrid

resonance. For Y=1.3, corresponding to propagation below the cyclotron frequency, the

O-mode cutoff is encountered at a lower density than the LX cutoff. The practical

application of these cutoffs will be discussed in the next section.

B. Wave propagation in a spatially varying plasma

How can we use the information on local dispersion above to design a real experiment?

What do we launch and what do we measure? First note that in a slowly varying plasma,

where the medium changes little in one wavelength of the probe beam and where the

refractive indicies of the modes are distinct, then the characteristic modes essentially do

not couple.  Appreciable coupling can and does take place between the characteristic

modes when the magnetic pitch angle in the plasma varies sufficiently rapidly. This

coupling is the basis for proposed methods to measure the magnetic field line pitch angle

in fusion plasmas. [15,17] However, for the most part we can consider the characteristic

modes in Tokamaks as being independent of each other.

Figure 4 shows the cutoff layers for θ=90˚ propagation as a function of major radius for

the case of a low density Ohmic plasma on TFTR [45] with the following plasma

parameters: BT=4.5 T, ne(0)=2x1013 cm-3, Ip=1.1 MA, major radius R=2.6m. Note that the

case of Y>1 and Y<1 are shown. To access the RX cutoff the waves need to propagate

between the fundamental and second harmonic electron cyclotron frequency. Also, the O-

mode and LX cutoff layers are accessible for Y>1. The RX, O and LX cutoffs are all

accessible from the low magnetic field side (large major radius side) of the plasma.

However, the RX cutoff is not accessible from the high magnetic field side of the plasma

due to the presence of the upper hybrid resonance (shown between the electron cyclotron

and RX cutoff). The use of high field side propagation to the LX cutoff was proposed as a

means of measuring the core density in plasmas with flat density profiles and was tested

on the Doublet III-D device (DIII-D). [46]
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The second piece of information needed to address propagation in inhomogeneous media

is based on the simple principle that the only component of the wavelength which

changes is that which lies in the direction in which the medium varies.  For simplicity,

assuming a vertically stratified density in z and uniformity in x, then the wavelength in

the x-direction will remain constant.  Thus, only the z-component of the wavelength

varies as the wave propagates. Taking k x  as the unchanged component of the incident

wavevector in the x-direction, then the wave vector depends on height according to

k = kx
ˆ x + kz

ˆ z  where k z
2 = k0

2 2(z,kx / kz ) − k x
2, k0 is the incident wave number in free

space, ˆ x , ˆ z  are unit normals.

In order to determine the direction of propagation of a signal, we can consider instead the

propagation of a localized disturbance such as a beat wave generated by the product of

two waves with similar frequency. Both waves must satisfy the local dispersion relation

for the characteristic mode of propagation. Given frequencies 1, 2  and wavevectors

k1,k2  the beat wave propagates with frequency Ω = 1 − 2 and wavenumber

K = k1 − k2. Thus, as Ω → 0 the velocity of the beat wave is given approximately by

vg = k which is the usual definition of the group velocity of a wave packet typically

represented by a ray. A superposition of such beat waves can create a single pulse of

information represented by the trajectory of a ray dr / dt = vg . Given the trajectory of the

wave, the phase change along that ray depends of the alignment of the wave fronts to the

direction of propagation. The net phase change along a ray is then given by

(r) = k( ′ x ) ⋅d ′ x 
r

∫ (3)

where the integration takes place over the trajectory of the ray and the total time delay of

the pulse along the trajectory is given by
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g =
dl

vg
∫ (4)

where the integral is along the trajectory of the ray.  In Figure 5 we show the trajectory of

the four X-mode rays used in Figure 2 for Y=0.7 corresponding to propagation above the

cyclotron frequency and a linear variation of plasma density (X) in the vertical direction.

Two sets of ray trajectories are shown corresponding to tilt angles in the direction of the

magnetic field (equivalent to the toroidal direction in a tokamak) and tilt angles

perpendicular to the magnetic field (corresponding to the poloidal spread of rays in a

tokamak). For either set of curves, the lateral drift of the ray can be quite severe as the

angle of inclination increases, and its precise turning point and trajectory may differ

considerably from waves at normal incidence. The spread in the turning point location

will be minimal for high gain antennas with narrow beam angles (θ ≈ 90˚). In fusion

plasmas, reflectometry only works if you can get the reflection back into the receiver and

the receiver is usually located close to the transmitting antenna. The condition for

obtaining a reflection back to the transmitter location is most easily satisfied on the

plasma midplane, so that reflectometer measurements usually probe this region of the

plasma.

We now have in place a description of wave propagation in plasma which allows the

design of experiments and interpretation of some measurements. Experimentally, we

want to send a probe beam of well defined characteristics (direction, polarization and

frequency) into the plasma and we want to interrogate the beam on its way out to learn

about the properties of the medium. These variables can be the polarization, ray

trajectory, ray displacement, group delay and phase change. In practice only waves

returning to the launch site are measured so that we may assume that the ray paths are

very nearly normal to the reflecting layer on the plasma midplane. In such a case, the rays

propagate in a straight line along the plasma midplane and the polarization is linear. For

rays of normal incidence, the phase of the reflected wave is given by
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 = 2k0  dz
0

zc

∫  + / 2 (5)

where zc  is the location of the cutoff layer and = (ck / )2 . This expression, or the one

relating to the group delay, forms the basis for electron density vs height determination in

ionospheric and fusion plasmas. It is also the basis for the phase screen model and for the

geometric optics description of reflections from random irregularities.

As for fluctuation studies, it is far from clear that Eq. 5 can characterize the properties of

waves reflected from density irregularities in a fusion plasma.  The experimental

observation of large amplitude fluctuations, and large secular drifts in the measured phase

suggest that multi-dimensional effects are required to model the experimental data. A

schematic diagram of scattering from random eddies and the receiver geometry is shown

in Figure 6a. This figure illustrates the effect of a wavefront passing through irregularities

and scattering from a rippled cutoff layer. The waves propagating away from the cutoff

region and scatter in various directions. The net result is a superposition of waves

reaching the receiver from different directions and possessing different amplitudes and

phases. The sum of these waves leads to amplitude and phase fluctuations known in the

ionospheric community as scintillation phenomena or fading. [2-9] A method used to

probe the structure of irregularities in fusion plasmas is known as correlation

reflectometry which is illustrated in Figure 6b. [19,28] The method makes use of the

difference in the cutoff layer position of waves launched at different frequencies and is

used to correlate signals received simultaneously from two different cutoff layers. The

separation of the layers is varied by changing the frequency of one of the microwave

sources. Analysis is performed using standard statistical measures for the complex

amplitude of the detected waves to determine the scattering amplitude and the correlation

properties of the received waves.[20-25] The essential issue of reflectometry is how to

relate these measured signal correlations to the correlation properties of the fluctuations.

A very useful approximation to the scattered field in the limit of long fluctuation

wavelengths can be obtained using the ray description, as will be shown. It is a

remarkable fact that the combination of 1-D geometric optics with diffraction theory from
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random rough surfaces captures many of the properties of reflectometer signals observed

in experiment, at least qualitatively. In the following section we provide a description of

the correlation properties of reflectometer measurements using the approximation that the

entire scattering process can be represented by a thin phase changing mirror.

III. Diffraction from a phase changing screen in the 1-D geometric optics limit

The use of the 1-D phase equation for reflectometry (Eq. 5) has proven sufficient to

extract information on the bulk plasma profiles. If we assume the expression holds for

large and small scale fluctuations in the plasma then a theory of diffraction can be

developed which qualitatively reproduces many of the features of the experimental data

and thus serves as a starting point for more general models.[47,24,6]

The key feature of all phase screen models - which makes the physics of reflectometry

intuitively clear and analytically tractable - is the separation of the interaction region

from the propagation region. Namely, the part of the problem which represents the

plasma density fluctuations is separated from the part of the problem which represents

wave propagation and diffraction. It is clear from such a separation of interaction and

propagation processes that this treatment has no basis for application to actual

experiments except by direct confirmation using more sophisticated full wave analysis or

by identifying special properties of the experimental data (section V). However, it is

precisely the confirmation of such a simplified picture from early (rudimentary slab

model) full wave simulations that justified its quantitative application to real experiments

on TFTR. It is important to recall that the model itself had its origins in attempts to

develop a description of ionospheric reflectometer measurements, with extensive work

performed in the late 1950s and early 1960s. This early ionospheric work provides a

rather comprehensive treatment of the subject which forms the starting point for modern

developments.

A. The phase screen model
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The essence of the phase screen model is that the entire propagation region inside the

plasma can be compressed into a thin screen. The thin screen has the property that the

depth of the irregularities on the surface are directly related to the 1-D phase integral of

geometric optics (Eq. 5). The waves then propagate away from the screen as if in free

space, and the screen is placed at a distance to the observer (the effective distance) at

which the scattered field appears to originate. As a first step, the phase of geometric

optics can be linearized for small density perturbations such that the perturbed phase is

given by

= k0

zc

∫ dz  (6)

where  is the permittivity of the unperturbed plasma and = n ⋅ / n . Here

propagation is taken in the z-direction as indicated in Figure 6, and perturbations along

the path of propagation will be distributed in the x-z plane. This expression shows how

the dominant contribution to the perturbed phase can occur very close to the reflecting

layer due to the factor 1/  in the integrand. For the O-mode and for a density

perturbation of the form ne cos[K z(z − zc)] where zc  is the location of the cutoff layer,

we obtain the particularly simple expression for the perturbed phase

≈ 2 k0Ln( ) ne

ne

,                                             KzLn < 1

≈ 2k0

Ln

Kz

 

 
  

 

 
  

1 / 2
ne

ne

                                         K zLn > 1       

(7)

where Ln  is the density scale length at the cutoff layer, Kz  is the wavenumber of the

density perturbation in the direction of wave propagation. [13] A similar expression can

be derived for the X-mode taking into account the density and magnetic field scale

lengths. For edge measurements in a tokamak, taking k rLn ~1 , k r < k0 ≈ 1 cm−1  and
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n/ n ≈ 0.5 we have ≈ 1. A key point here is that there is only a weak dependence of

the phase perturbation  to the radial scale length of the fluctuations in the plasma,

particularly for small Ln relevant to edge plasma measurements.

 We now introduce the concept of a thin phase screen (equivalently a phase changing

mirror) where the magnitude of the phase change for each point on the screen is given by

the integral in Eq. 5. A schematic diagram of such a phase screen is shown in Figure 7a

for a sinusoidal perturbation. Consider a sinusoidal phase perturbation of the form

a.sin(K xx − Ωt)  illuminated by a plane wave E0 = Aexp i(k0z − 0t)  where Kx  is the

wavenumber of the phase screen and Ω  is its frequency. For a pure phase modulated

beam the total field E at the output of the thin screen is given by

E = E0 expi[a.sin( Kxx − Ωt)] which decomposes into multiple sidebands or diffraction

orders symmetrically distributed about the direction of the incoming wave as shown in

Fig. 7a. Expanding the perturbed field into a Bessel series and noting momentum

conservation ( kscatter = k0 ) we obtain at an arbitrary distance from the screen

E = A Jm(a)exp i[
m =−∞

∞

∑ mK xx + k0
2 − m2K x

2 (z − zc) + ( 0 + mΩ)t] (8)

where Jm(a)  is the mth order Bessel function and z − zc  is the distance from the phase

screen. Note that back scattering (the diffraction components propagating in the opposite

direction to the incoming wave) are not considered in this expansion. For a << 1, only the

m=0,-1,1 components of the scattered field are significant. In this case Eq. 8 can be

rewritten as

E = A 1 + 2i sin(Kx x − Ωt) ⋅ exp(i∆Kz(z − zc )){ } (9)

where ∆Kz = k0
2 − K x

2 − k0 ≈ −Kx
2 /2k0 . This simple expression in Eq. 9 goes to the heart

of the phase screen model and it also leads directly to a simple test for its validity. At the

screen location, the signal is purely phase modulated. From Eq. 9, setting z = zc  gives
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E = A 1 + 2i sin(Kx x − Ωt){ }  indicating that the perturbation is phase like. Figure 7b

illustrates this point by showing that the scattered field at the phase screen location ˜ E z =zc

is orthogonal in complex amplitude to the incident field E0, producing only a phase

change. However, when ∆Kz(z − zc ) ~ 1 we see that a significant component of the

perturbed field has now rotated in the complex phase plane with respect to the incident

wave, and this now represents a significant amplitude modulation of the signal. For

∆Kz(z − zc ) = / 2 , Eq. 9 becomes E = A 1 − 2 sin(K xx − Ωt){ } which represents a pure

amplitude modulation. As the distance increases the signal will rotate from a pure phase

to a pure amplitude modulation and back as illustrated in Figure 7b.

This very simple concept has a very powerful application. At the location of the phase

screen all the modes are coincident and all produce a pure phase modulation. As the

distance from the screen increases, the vectors ˜ E  associated with the higher wavenumber

components of the screen begin to rotate more rapidly with distance than the longer

wavelength components, producing a spread of rotations and a combination of amplitude

and phase fluctuations. At a far enough distance from the screen, the complex amplitudes

of all the scattered waves will appear totally randomized with respect to each other,

leading to a Gaussian-like distribution where the real and imaginary components of the

field appear independent, corresponding to the familiar Rice distribution.  However, if

we can identify the rotation of the scattered waves in the complex plane due to the effect

of propagation, and if that rotation for each scattered component of the field corresponds

to the same effective distance, then the validity of the phase screen model can be

determined from the experimental data.

B. Spatial moments of the complex amplitude

In the previous section we discussed properties of the amplitude and phase of the

scattered field, and the transition from a phase modulated wavefront to a random complex

behavior producing a Rice distribution far from the screen. In this section we discuss

moments (correlations) of the signal in order to determine a quantitative means for
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measuring the correlation properties of the fluctuations and the rotation angle of the

scattered components as illustrated in Figure 7.

Correlation properties of the scattered field are used to infer statistical properties of the

medium, so it is essential to understand how the correlation behavior of the scattered field

varies with propagation distance. Unlike a point measurement, reflectometry involves the

remote detection of waves which propagated some distance from the point of interest.

The complex amplitude of the scattered field possesses certain invariant (or near

invariant) qualities which makes its behavior a weak function of distance from the screen

and can therefore be used to determine the correlation properties of the medium. Indeed,

it is the propagation invariance of certain moments of the complex amplitude that makes

reflectometry a practical tool for diagnosing irregularities in the plasma. Assuming a

phase screen with random Gaussian distributed irregularities and rms phase fluctuations

= 2 1 / 2
 (where  is the perturbed phase in Eq. 6) then for an incident plane wave

of unit amplitude the mean of the diffracted field is given by [24]

E = exp(− 2 / 2). (10)

Experimentally this corresponds to the unscattered component of the signal appearing at

the center frequency of the mixed signal output. Note that as the magnitude of

fluctuations  increases the coherent reflection decreases, presenting a practical upper

limit to the fluctuation level which can be inferred from the measurement of the complex

amplitude (typically σφ≤1). The density fluctuation level for which a coherent or specular

reflection cannot be resolved varies dramatically from < 1% in the core plasma up to 10-

20% at the edge, depending on the density scale length and the wavelength of the probe

beam.

Consider the correlation between any two points on two partially correlated phase

screens. This is identical to considering the correlation of reflected waves from two
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radially separated cutoff layers. Given the correlation between two phase screens

1 2 = 2 (r1 − r2) with displacement r1 − r2  where the normalized correlation is

(0) = 1 . We then have for the correlation of the scattered field

E1E2
* = exp[− 2(1− (r1 − r2 ))] (11)

Note that Eq. 11 is propagation invariant for a homogeneous random screen, so that the

correlation function is identical on any plane of detection beyond the scatterer. This

represents a convenient property of the radiated field which simplifies analysis. For small

fluctuation levels ( < 1) the correlation of the complex amplitude is identical to the

correlation between the two phase screens. As long as there is a significant coherent

reflection (<E>~0.5-1.0), the correlation coefficient of the measured electric field E1E2
*

together with the coherent reflection E  can be used to infer the correlation coefficient

of the phase of geometric optics  between the two phase screens. However, Eq. 11

cannot be used to confirm the validity of the phase screen model for imaging

applications. In order to do this, a further property of the scattered field needs to be

considered based on sideband correlations. [48,49]

C. Sideband correlation and the phase screen model

The correlation between symmetric diffraction orders in the field scattered from a random

phase screen is given by [48]

E(K x , 0 + Ω;z)E(−Kx , 0 − Ω; z) = e−i 2 ∆K z z dxdte−i( Kx−Ω t )e
− 2 (1+ )

∫∫     
(12)

where the sidebands of the scattered field with components ±K x  are illustrated in Figure

7a. The importance of this expression is that for sufficiently weak fluctuations ( 2 <<1)

and there is a phase exp(2 i∆Kzz) which can be measured and corresponds to twice the
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rotation angle of the scattered component of the field in Figure 7b. This phase term in the

sideband correlation indicates the distance of the phase screen to the point of

measurement, while the magnitude of the correlation indicates the symmetry of the

scattered spectrum. If the sidebands are highly and the phase varies as the square of the

wavenumber Kx then the scatterer can be considered a this phase changing screen.  In

addition to determining the validity of the phase screen approximation, a numerical

transformation (by undoing the phase shift exp(i∆K zz) for each Fourier component of the

scattered field) will allow for the numerical imaging of the fluctuations without the use of

imaging optics. If the effect of phase curvature can be undone, by applying an appropriate

phase correction, then this scheme is equivalent to numerically imaging the screen by the

removal of phase dispersion due to propagation. Later we will show data taken on TFTR

which yields a high degree of sideband correlation and is consistent with the phase screen

approximation.

IV Full wave analysis in one dimension

The preceding discussion established the relation between the approximation of

geometric optics, correlation properties of the scattered field and its relation to the density

correlations in the medium. However, there are some very fundamental issues concerning

this approach which need to be resolved with full wave analysis. Namely, we need to

confirm under what conditions the geometric optics approximation adopted in the

preceding sections represents a valid description of the scattering process from an

extended plasma source. In order to do this, detailed comparison is required between the

geometric optics solutions and the solutions of the 1-D full wave equation incorporating a

spectrum of density fluctuations and a range of correlation lengths.

A. Description of the 1-D Wave Solver

In comparing the solutions of geometric optics to the full wave analysis in 1-D we solve

for the complex amplitude of the scalar wave equation
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2

x2 + k0
2

 

 
  

 

 
  E = 0 (13)

where  is the scalar approximation to the plasma permittivity for paraxial waves with a

zero (cutoff) somewhere in the integration region and the wave field

E = exp(ik0 x) + U exp(−ik0 x) (14)

represents the the sum of the inward [ exp(ik0 x)] and outward ( Uexp(−ik0x)) propagating

component in vacuum. For a real permittivity, only the phase of the outward solution is

modified so that U = exp(i ) where ω is the wave frequency. The wave amplitude is

taken to be zero on the opposite edge of the integration domain, and the wave equation is

solved using a tri-diagonal implicit method. The permittivity is taken for either O or X-

mode propagation and the coupling between modes due to magnetic field line pitch angle

variation is ignored. Although the expression for the permittivity contains the upper

hybrid resonance for the upper X-mode, in practice there are many wavelengths between

the cutoff and the resonance, making tunneling exponentially weak.

Figure 4 shows an example of the radial variation of cutoff frequencies for a typical

ohmic TFTR discharge. We compute the solution to the full wave equation for this

discharge in order to analyse the localization properties of reflectometry to fluctuations

near the cutoff. Figure 8 illustrates the sensitivity of the reflectometer response to

fluctuations near the cutoff layer for a model perturbation of the form

˜ n e = a.exp( −(z − z0 )2 / W2 )cos( K(z − z0)). In fig. 8a, the solution of the wave equation is

plotted as a function of the major radius for X-mode propagation at 115 GHz. The

fluctuation level of the density perturbation is taken as 0.1% of the electron density at the

cutoff. Figure 8b shows ˜ = (z0 ) − (−∞)  where (z0 ) is the phase of U for ˜ n e  centered

at z0 . As the packet is moved through the reflecting layer (i.e., z0  is scanned) the

response (z0 ) appears to be highly localized to the perturbtion centered near the cutoff

layer. The first case (7b) corresponds to a packet width of 0.5 WAiry  where

WAiry ≈ 0.5L1/3
0
2 / 3 is approximately the width of the last fringe of the full wave solution
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at the cutoff layer and L  is the permittivity scale length. This result indicates that the

scale length of the irregularity can be at least as small as WAiry  without significant

degradation of sensitivity or localization. At larger scales, for perturbations much larger

than WAiry , the phase response (z0 ) remains localized to density perturbations near the

reflecting layer as shown in Figure 8c. These examples illustrate that for both short and

long scale fluctuations, a high degree of localization is achieved to fluctuations very near

the reflecting layer. This localization was used effectively in the detection of long

wavelength Alfvén waves excited by fusion alpha particles in TFTR. [50]

B. Correlation analysis

We specify the density distribution by assuming a Gaussian correlation function of the

form

n(z)n(z + ∆z)

n2 =
˜ n 

n

 
 
 

 
 
 

2

Cn . (15)

where Cn = exp(−∆z2 / Wn
2)cos(k z∆z). Here Cn  is the normalized density correlation.

Each solution of the wave solver incorporates a randomly distributed density fluctuation

which conforms to this correlation function. Multiple random distributions are generated

by the following prescription: Assume a white noise source f(z). Then the spectrum of

density fluctuations with the above correlation function is given by N(kz ) = A1 / 2(kz)F(kz )

where F(kz )  is the Fourier transform of f(z) and A(kz )  is the Fourier transform of the

correlation function in Eq. 15. The inverse Fourier transform of N(kz ) gives only one

realization of a random density distribution ˜ n  with the correlation property of Eq. 15. A

new realization ˜ n (z)  is generated for each solution of the 1-D wave equation. Several

hundred such runs are performed for each probe frequency (i.e. position of the cutoff

layer) in order to build up statistics for the correlation analysis. From the ensemble of

runs for each frequency we can define a mean value for the reflected signal U = U
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and the set of the perturbed field ˜ U = U − U . Hence, U 
2
 is the relative intensity of

the coherent to total reflected signal.

The normalized cross correlation of the full wave solution is then given by

CF .W.( 1 , 2) =
˜ U 1

˜ U 2
*

˜ U 1
˜ U 1

* ˜ U 2
˜ U 2

*
(16)

where the cutoff location zc( )is a function of wave frequency. We also compute the

normalized cross correlation using the geometric optics approximation to the outgoing

solution

CG.O.( 1 , 2 ) =
˜ G 1

˜ G 2
*

˜ G 1
˜ G 1

* ˜ G 2
˜ G 2

*
(17)

where G = exp(i ) , = −  and  is given by Eq. 5. These correlation functions

are then evaluated for a range of wave frequencies and over an ensemble of random

density distributions.

C. Validity of 1-D geometric optics for correlation analysis

A key issue in reflectometry is the validity of the geometric optics in describing the

correlation properties of the scattered field. We consider here how well geometric optics

does in describing correlations in the radial direction in 1-D. Figure 9 shows the result of

a correlation analysis for two different density correlation lengths Wn = 0.5WAiry  and

Wn =10WAiry . The fluctuation level is chosen so that the phase perturbation of the

reflected signal is small (δφ <1).

In general the correlation lengths obtained from geometric optics are very similar to that

obtained from 1-D full wave analysis. Surprisingly, even when Wn < WAiry  as is the case
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shown in Figure 9a, the normalized correlations CF .W. ,CG . O. are almost identical, but

differ substantially from Cn . For cases where Wn >> WAiry  the correlations CF .W. ,CG . O. are

almost identical to each other and the similar to Cn .

In Figure 10 we plot the half widths W0.5
F.W ,W0.5

G.O. of CF .W. ,CG . O. respectively against the

half width W0.5
n  of Cn  varying W0.5

n  from 0.1 to 10 WAiry . The important result from this

figure is that geometric optics is essentially identical to the full wave analysis for

W0.5
n ≥ 0.5WAiry . For smaller values of W0.5

n  neither W0.5
F.W ,W0.5

G.O.  is a reliable measure of

W0.5
n . The resolution limit suggested by the 1-D is therefore approximately WAiry .

V Numerical imaging of fluctuations in TFTR

In the previous section it was shown that geometric optics provides an excellent

approximation to the correlation analysis of reflectometry in 1-D provided the correlation

length of the density fluctuations exceeds WAiry . Recent laboratory experiments and

simulation analysis at UCLA have shown that the 1-D full wave analysis of correlation

reflectometry provides a good approximation to the observed correlation lengths in the

Large Plasma Device (LAPD) although the range of observed correlation lengths is

limited.[23]  A natural question to ask is how well the random phase screen model (based

on 1-D geometric optics) provides a description of scattering in 2-D.  We now address the

issue of whether the phase screen approximation provides a valid description of scattering

near a cutoff layer in a fusion device by looking at properties of sideband correlations

measured on the TFTR tokamak.

As a first step we take two time segments of X-mode reflectometer data on TFTR for

discharge 65646 at two times t=2.53 and t=2.7 sec corresponding to the Ohmic and

neutral beam heated phase of the discharge with cutoff profiles given in Fig. 4 for a wave

frequency of 115 GHz. The distribution of the data in two 30 ms time segments is shown

in figure 11 with the dashed curves representing lines of best fit using the Rice

distribution. From the phase screen model, the best fit to the data in the Ohmic phase
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corresponds to an rms phase perturbation at the cutoff of 1 = 0.5  radians while in the

neutral beam phase we can only say that 2 > 2  leading to a Rayleigh distribution for the

amplitude fluctuations. For < 1 where E = exp(− 2 / 2 ) we can employ the method of

sideband correlations to determine the validity of the phase screen approximation.

Figure 12a shows the spectrum E( )
2 of reflectometer signals E(t)  detected during the

Ohmic phase of the discharge. The high normalized sideband correlation C , −  is shown

in Figure 12b where

C ,− =
E( )E(− )

E( )
2 . (18)

A high degree of sidband correlation is indicative of scattering from a thin phase screen.

The phase of the sidband correlation ,−  is also shown in Figure 12c. The phase fits

well to a parabola which suggests that ∝ K  and the phase shift is due to propagation

away from the phase screen. A procedure for numerical back projection can be performed

on the data by varying the degree of phase curvature in the sidband correlation. The phase

of the sideband correlation will increase as the distance increases from the phase screen.

A numerical projection is equivalent to the linear transformation E(t) → ′ E (t)  where

′ E (t) = d exp(i t).{E( )exp( ia 2∫ )}. (19)

This is just the inverse transform of the Fourier transform of the detected signal E(t) but

with the addition of an extra phase curvature term exp(ia 2 ) to effectively transform the

plane of observation. It should be noted that this is precisely the action of a lens but

where we are substituting ω for k by assuming that the fluctuations essentially drift

rigidly across the detector.

Before proceeding to the numerical back projection of the TFTR data, we show a

simulation of the amplitude spread of waves scattered from a thin phase screen. Figure 13
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shows a simulation of the distribution of data for scattering from a random phase screen.

The distribution (histogram displayed as a contour plot) is shown for a range of distances

from the phase screen. The spreading in amplitude and phase of the signal is shown with

increasing distance from the screen from left to right. The essential point here is that as

the waves propagate away from the screen then amplitude fluctuations develop and the

distribution begins to rotate until it becomes circular and loses any indication of its

original well ordered state. The transition from a well ordered phase modulated signal to

a random amplitude and phase distribution on the right side of the figure is entirely the

result of propagation. In the numerical back projection of the data, we look for signs of

reduction in amplitude fluctuations and rotation of the distribution.

Figure 14 shows the result of a sequence of numerical back projections. Increasing the

phase curvature of the sideband correlation in figure 12 by a large amount z > 2 k0 / K⊥
2 ,

leads to the circular distribution (frame 6). As the phase curvature is decreased, the

circular distribution first becomes elliptic (frame 5) and then rotates, continuing to

narrow in its amplitude spread until reaching the point of minimum amplitude

fluctuations (frame 3). Beyond this range, the distribution again rotates and amplitude

fluctuations increase, finally approaching more circular distribution. Figure 15 shows the

amplitude distribution of the signals in frame 5 and frame 3 of Figure 14, indicating the

amplitude compression occurring at the optimal (image) plane.

A reasonable question at this point is whether there is a significant difference in the

properties of the phase of the signals between the two distributions with the largest and

smallest amplitude spread. The answer is that there is a dramatic difference, as indicated

in Figure 16. In particular, the phenomenon of phase jumps, which has plagued the

quantitative interpretation of phase data for many years, is now conclusively shown to be

strongly dependent of the propagation distance. Figure 16 c shows the phase of the signal

at maximum amplitude spread (corresponding to the distribution in frame 5 of Figure 14).

The signal is full of phase jumps. The remedy up till now has been to surgically remove

the jumps on the assumption that the period between the jumps is representative of the

fluctuations in the medium. However, figure 16d shows a small segment of the same data
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set in a narrow time window where there are no phase jumps. Instead we see phase spikes

which are large transient phase events. These spikes could be misinterpreted as some

intermittent turbulent activity instead of what it really is: an interference effect due to the

spreading of the scattered waves from the cutoff layer. To make this clear, figure 16a and

16b shows the phase of the same data for the case of numerical back projection (frame 3

of Figure 14) which corresponds to the case of minimum amplitude fluctuations. In this

case we see that the large number of phase jumps in Figure 16c has mostly disappeared

indicating that the jump feature is also a result of propagation away from the cutoff.

Figure 16b displays the phase for the same time window of the data shown in Figure 16d,

indicating a signal where there is now an absence of phase spikes. Hence we can

conclude that the spikiness of the phase data and the predominant number of phase jumps

is essentially a result of interference effects resulting from the diffracted of waves

propagating away from a mostly irregular phase screen. These results strongly suggest

that imaging may indeed play a valuable role in reflectometry. The above analysis of

TFTR data also suggests that the naïve approximation of geometric optics should not be

underestimated in providing a description of the properties of reflectometer

measurements in fusion plasmas. On the other hand, extensive multi-dimensional

numerical simulation is required to understand better the limits of geometric optics and to

deal with plasma and wavefront curvature, as well antenna and receiver geometry. In

addition, extensive laboratory experiments are still needed to underpin theoretical studies.

VI Recent developments and future directions

In fusion science there is a pressing need to develop a quantitatively accurate description

of reflectometry benchmarked against direct experimental measurements in a variety of

scattering regimes. The objective is to transform the diagnostic from its historical role as

an indicator of plasma fluctuations into a technique used to extract quantitatively accurate

measurements of the statistical properties of plasma turbulence under a wide range of

circumstances. In order to achieve this level of understanding, it is essential to develop a

comprehensive description of the scattering process incorporating important experimental

details such as mean plasma background variation, antenna geometry and the correlation
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properties of the plasma turbulence. In addition this modeling needs to incorporate and

assess certain plasma processes such as resonant absorption and its possible role in the

interpretation of the scattering data. A high level of simulation capability in turn requires

well designed experiments which can measure the key plasma parameters including the

fluctuations together with the scattered field in order to benchmark against numerical

analysis. Such experimental studies are by no means straight forward given the difficulty

of measuring all the relevant physical parameters of a plasma which impact the modeling

of the scattered field such as the mean plasma profiles, fluctuation level and turbulence

correlation length. In addition, the computational task of incorporating all these variables

into a full wave solver is still a formidable task.

From a historical perspective the first attempts to address the interpretation of

reflectometry rested on analysis of the 1-D full wave equation.[12-14,51] As pointed out

above, the full wave equation reproduces the response of geometric optics for

wavelengths greater than the Airy width but it does not explain the development of

amplitude fluctuations in the reflected signal (except under conditions of wave

absorption). The next step in the development of a description of reflectometry

incorporated the 1-D geometric optics response locally with diffraction from a phase

changing screen.[24,47] This model had the advantage of a quantitatively correct

description of the plasma with the addition of phase dispersion for the scattered field

which was shown to lead to amplitude fluctuations in early work done on the

ionosphere.[6]

What was missing in these early studies was a description the real geometry of the

experiment incorporating plasma background inhomogeneity with receiver and

transmitter antenna structures. Within the context of scattering from a planar diffraction

grating, the filtering effect of the antennas on the detected signal was studied extensively

by a number of authors. [52-55] These studies revealed the intuitively reasonable result

that the spot size of the transmitter/receiver determines its spectral response to fluctuation

wavelength in the screen. The most recent development in this area, within the context of

the phase screen model and full wave analysis, shows that the effect of plasma non-



28

uniformity (specifically plasma curvature) leads to a much broader wavelength response

for reflectometry than predicted from slab models.[56] Such developments clearly

highlight the need for the inclusion of plasma inhomogeneities which can have a critical

impact on the interpretation of experimental measurements.

The challenge of incorporating full wave analysis with plasma inhomogeneity and

antenna structures has only recently been met with the advent of inexpensive parallel

computers and algorithms allowing the Courant condition to be greatly exceeded, thus

improving the efficiency of analysis.[57] Such developments allow for the first time the

2-D full wave simulation of correlation measurements using reflectometry, facilitating

comparison to correlation properties of the measured signals. The result of these studies

are now appearing more regularly in the literature, and hopefully these numerical studies

will soon become common place in the investigation of reflectometry.

The studies discussed above all relate to the interpretation of reflectometer measurements

in current experiments based on single receivers or a single receiver/transmitter system.

However, it was argued here and elsewhere [24] that under certain conditions it may be

possible to image fluctuations, and to recover the phase of geometric optics at the image

plane using wide aperture optics. The possibility of imaging was further supported from

statistical properties of data taken on TFTR [47] and by extensive numerical full wave

analysis in plane wave slab geometry with 2-D fluctuations [58,59]. It is likely that the

addition of detector arrays can be a valuable next step in reflectometry, particularly when

coupled to a strong full wave simulation capability using the 2-D plasma equilibrium to

help design experiments and interpret measurements. There are currently efforts under

way to develop the technology needed to produce the first reflectometer images of

fluctuations in fusion plasma experiments. [60] However, these developments are in

themselves insufficient to place reflectometry on a firm foundation as a quantitative

diagnostic of fluctuations in fusion plasmas. Only direct confirmation with experimental

data can do this. There have been a number of successes in comparing measurements to

model calculations in fusion scale experiments, and these efforts need to continue.

[22,23]
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Extensive data does exist on the comparison of reflectometer and probe measurements of

plasma turbulence in the cold edge region of fusion plasmas and in basic plasma

experiments where the insertion of probes deep into the plasma is possible, such as in the

LAPD device at UCLA. Such studies have revealed a wealth of information on the

measurement capability of reflectometry. Recent results from these investigations

indicate that the magnetic field strength can be measured from the frequency difference

between O-mode and X-mode reflectometry for the peak correlation due to turbulent

fluctuations. Analysis based on 1-D full wave simulation is in good agreement with

experiment on the LAPD device in a restricted range of parameters.

The sum total of all the work done in the basic science of reflectometer represents an

impressive body of knowledge which has helped to provide a firm foundation for the

quantitative interpretation of reflectometer measurements in the future. However, detailed

numerical simulation is required to determine if such 1-D estimates can be extended to

core fluctuation measurements in fusion plasmas. More basic studies are needed in order

to continue to challenge present understanding and to refine theoretical models and

simulation tools.  As a case in point, the role of resonant absorption by wave tunneling

beyond the cutoff layer has been proposed as playing a role in some experiments,

however this line of research has not been actively pursued. In fusion plasmas, the most

relevant resonance involves the upper hybrid frequency which is close to the cutoff layer

at low density near the plasma edge for the upper X-mode. A direct measurement of the

wave field in the presence of this resonance and comparison of fluctuation measurements

to full wave simuations incorporating the effect of resonant absorption is still needed. A

further area where analysis is required is the effect of large density fluctuation levels in

the edge plasma on reflectometer measurements. Both geometric optics and 1-D full

wave analysis indicate that weak scattering can still occur from large density fluctuation

levels at the plasma edge, primarily due to the short density scale length and long

wavelength of the microwave beam needed for low edge density studies. Such a

systematic analysis can readily be performed on existing experiments.
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In the area of imaging of fluctuation, it is clear that measurement of the complex electric

field is needed in order to extract the phase and amplitude fluctuations at the image plane.

At present, not all experiments measure the complex amplitude, so more effort is required

to extract all the available information from reflectometer fluctuation measurements. The

first demonstration of the validity of the phase screen description for scattering near a

cutoff actually occurred in space science using ionosonde measurements of the

ionosphere.[49] These early studies showed that the rotation of the complex amplitude of

the electric field as predicted by the model was actually consistent with experimental data

from F-layer measurements. The first confirmation of the same result, with the addition

of numerical back projection, was performed on TFTR.[48] It is appropriate that this line

of investigation be pursued by implementing an array of detectors and heterodyne

receivers to study the potential for imaging.

Reflectometry has already had a major impact on our understanding of the relation

between turbulence and transport in fusion plasmas. The technique in combination with

other diagnostics has shed valuable new light on the behavior of plasma instabilities,

improving their characterization and addressing their correlation with plasma

performance. Three major areas where reflectometery is yielding valuable results are in

RF wave physics of heating and current drive, energetic particle driven instabilities and

turbulence behavior in the transition to enhanced energy confinement regimes. [32-39,50]

The future development of the field will require very close coupling between theory,

simulation capability and experiment. The role of simulation in 2-D and even 3-D cannot

be underestimated in providing new insight into the method and its uses. Visualization of

the scattering process will be a powerful tool in aiding the conceptualization of the

physics of reflectometry and will greatly assist in the development of new and exciting

diagnostic ideas. From the experimental perspective, a more detailed and focussed effort

is required to map the field distribution at the plasma boundary for comparison with full

wave calculations. This includes the detection of the complex amplitude and the use of

multiple detectors to understand the angular spread and deflection of the scattered

radiation.
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Figure Captions

Figure 1

The coordinate system used in Eq. 1 and Eq. 2, with the wave vector pointing in the z-

direction and the magnetic field in the z-y plane.

Figure 2

The square of the refractive index for four angles of incidence (90˚, 80˚, 70˚, 60˚) to the

magnetic field is plotted against X = pe /( )2
 for (a) Y = ce / = 0.7 for propagation

above the electron cyclotron frequency and (b) Y = ce / = 1 . 3 corresponding to

propagation below the electron cyclotron frequency. The O, RX and LX refractive index

curves are marked. The polarization of the O-mode is basically parallel to the B-field

whereas the RX and LX modes are perpendicular to the magnetic field. Both the RX and

the O-X cutoffs ( = 0  crossing) are accessible from the plasma edge where = 1,

however the LX cutoff is not accessible for Y<1. In contrast, (b) shows that the LX and O

mode cutoffs are accessible from the plasma edge when < ce  .

Figure 3

The polarization or degree of ellipticity |R| for the O-mode is indicated for the four angles

of incidence to the magnetic field (90˚, 80˚, 70˚, 60˚). The figure indicates increasing

ellipticity with decreasing angle of incidence for the cases in Figure 2. The polarization

for the X-mode is complementary to the O-mode polarization and is not shown.

Figure 4

Profiles (a) of the RX, LX and O-mode cutoff layers vs major radius along the plasma

midplane for an Ohmic TFTR plasma (#65610 t = 2.53 sec) with the following

parameter: Toroidal magnetic field BT=4.5 T, central electron density ne(0)=2x1013 cm -3,

plasma current Ip=1.1 MA, plasma major radius R=2.6m. Profiles of the electron density

and magnetic field strength on the plasma midplane are shown in (b). These curves

represent propagation 90 degrees to the magnetic field. The location of the upper hybrid

resonance is the curve lying between the electron cyclotron and the RX cutoff.
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Figure 5

The trajectory of X-mode rays for four angles of inclination to the X-axis (89˚, 80˚, 70˚,

60˚) and for two orthogonal orientations of the magnetic field. The density varies linearly

in the vertical direction (90˚ inclination) and Y=0.7 for reflection from the RX cutoff.

The magnetic field is coming out of the page in the upper set of curves and is in the

direction of the tilted rays in the lower set of four trajectories.

Figure 6

In (a) a schematic of a reflectometer experiment showing the transmitter and receiver and

the reflecting layer perturbed by turbulent eddies (gray blobs). In (b) a schematic of a

generic detection scheme showing transmitter, receiver, local oscillator and basic analysis

of the complex signals. The signals are in general complex,

E(t) = ERe al + iEIm ag = A(t)e i ( t ) . Simultaneous reflections from different cutoff layers are

recorded and the signals are numerically correlated to determine the radial scale length of

the blobs.

Figure 7

Plot (a) indicates waves scattered from a sinusoidal phase screen showing the formation

of two symmetric sidebands. The difference in the parallel wave number between the two

forward scattered sidebands from a thin sinusoidal perturbation of wavenumber Kx and

the incident wave is given by Kx
2 / 2k0  . This difference in wavenumber leads to a relative

rotation of the complex amplitude of the scattered field relative to the unscattered field as

the waves propagate away from the phase screen shown in (b) where the rotation angle is

given by ∆ = zKx
2 / 2k0 .

Figure 8

The full wave solution of the wave field for 115 GHz X-mode launch at the outer

midplane for the discharge of figure 4 along with the electron density profile in (a). The

location of the reflection point is indicated by the position of the last fringe of the

standing wave pattern at around 3.1 m where the waves propagate in from right to left.
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The width of the last fringe is typically given by the Airy width, WAiry = 0.5L1 / 3k0
2 / 3 where

L  is the scale length of the permittivity at the cutoff. An initial density perturbation

˜ n e = a.exp[( z − z0 )2 / W2]cos[K z (z − z0)] is used to test the reflectometer response. In (b)

the phase of the full wave solution of the outgoing field is plotted (dashed) as a function

of the center of the density perturbation z0  for parameters a = 10−3ne ,W = 0.5WAiry  and

Kz =8cm-1. In (c) the parameters for the density perturbation are a = 10−3ne , W = 10 WAiry

Kz =2cm-1.

Figure 9

Simulation of correlation reflectometry for a model linear density profile with density

scale length Ln = 5cm , density fluctuation level ˜ n / n =10−3 , and incident wave vector

k0 = 25cm−1. These parameters were chosen to correspond to conditions similar to edge

plasma measurements in a fusion plasma. In (a) a short density correlation length is used,

where the 1/e width (Wn) of the density correlation is half the Airy fringe width

(Wn = 0.5WAiry ). Plotted is the normalized density correlation Cn  as a function of the

displacement of the cutoff layers. Also shown is the normalized correlation of the

outgoing full wave solution CF .W.  and outgoing geometric optics approximation to the

field CG.O.  as a function of the separation of the cutoff layers. Each point in the

correlation represents an ensemble average of the solution of the wave equation for 200

random density distributions. In (b) a density correlation length Wn =10 WAiry  is used.

Figure 10

Comparison of the half width of the density correlation W0.5
n  used in the full wave

analysis in Figure 9 and the half width of the normalized correlation of the full wave

solution W0.5
F.W .  . Also shown is the correlation based on the approximation of geometric

optics W0.5
G .O. . These parameters are plotted in ratio to the Airy fringe width WAiry . The half

width of the density correlation is scanned from 0.1 to 10 WAiry . Geometric optics and full

wave analysis are in excellent agreement for correlation lengths down to 0.5 Airy fringes.
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Figure 11

Histogram distribution of two reflectometer signals E = ER + iEI = Aexp(i )  taken on a

120 GHz X-mode reflectometer channel during ohmic operation ( 1) and during neutral

beam heating ( 2) in the discharge of Figure 4. Shown in (a) are curves of best fit using a

Rice distribution for ER , (the real part of the distribution where EI = 0); in (b) is plotted

the wave amplitude A and  (the phase distribution) is shown in (c). The two

distributions correspond to weak irregularities ( 1=0.5) and strong irregularities ( 2>2)

for the ohmic and neutral beam phase of the discharge, respectively where σ is the rms

phase of geometric optics.

Figure 12

The spectrum E( )
2 in (a) of the complex signal E(t)  of the ohmic data in Figure 11.

The high normalized sideband correlation C , −  is shown in (b) and the phase of the

sideband correlation ,− = arg(C , − )  is shown in (c). The phase is fit well with a

parabola, suggesting that ∝ K  and the sideband phase is due to propagation away

from the cutoff layer, which varies with distance like zK2 / 2k0.

Figure 13

Simulation of the histogram distribution if the complex amplitude of the field scattered

by a random phase screen. The histogram is presented as a contour plot where the largest

number of points correspond to the inner most contours. The spreading in amplitude of

the complex signal increases with increasing distance from the screen indicated by the

progression of the distribution from left to right. As the waves propagate away from the

screen the signal picks up amplitude spread and the distribution tilts relative to the origin,

finally becoming circular (uncorrelated real and imaginary components).

Figure 14

The distribution of the signal used in Figure 12 as a result of a sequence of back

projections for data taken between t=2.53 to t=2.59 sec in the ohmic phase of the

discharge. The back projection is equivalent to modifying the parabolic curvature of the
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phase of the sideband correlation in Figure 12. The sequence of increasing back

projection distance is indicated in the frames from 1 to 6. The distribution of frame 6

corresponds to a projection far from the cutoff layer where the distribution becomes

circular. As the signals are propagated numerically towards the cutoff layer the

distribution becomes more elliptic and eventually rotates to assume a predominantly

phase modulated form in frame 3. As the projection moves beyond the point of optimal

imaging, the distribution again rotates and the amplitude spread increases.

Figure 15

A plot (a) of the amplitude distribution of the signal in frame 3 of Figure 14 compared to

(b) the amplitude distribution of the same data in frame 5 of Figure 14. The difference in

the amplitude spread of the signals indicates the degree of amplitude compression

achieved by numerical imaging.

Figure 16

Shown in (a) and (c) is the phase of the signal at the numerical image plane and the phase

far from the image plane at the point of maximum amplitude fluctuations, respectively. In

(c) the data is full of phase jumps. A smaller segment of data is shown in (d) where there

are no phase jumps. Instead large intermittent phase spikes are observed. In (a) the phase

of the same data is shown at the numerical image plane. Phase jumps are minimized. In

(b) for the same small time window as in (d) the strong phase spikes are also not

apparent. The removal of the phase jumps and phase spikes has been achieved by

numerical back propagation, without the need to selective phase jump removal methods.
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